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Abstract

One approach for system identi�cation among many others is the fuzzy identi�cation approach. The

advantage of this approach compared to other analytical approaches is, that it is not necessary to make

an assumption for the model to be used for the identi�cation. In addition, the fuzzy approach can handle

nonlinearities easier than analytical approaches. The Fuzzy{ROSA method is a method for data{based

generation of fuzzy rules. This is the �rst step of a two step identi�cation process. The second step is the

optimization of the remaining free parameters, i.e. the composition of the rule base and the linguistic terms,

to further improve the quality of the model and obtain small interpretable rule bases. In this paper, a new

evolutionary strategy for the optimization of the linguistic terms of the output variable is presented. The

e�ectiveness of the two step fuzzy identi�cation is demonstrated on the benchmark problem 'kin dataset' of

the Delve dataset repository and the results are compared to analytical and neural network approaches.

Keywords: fuzzy identi�cation, fuzzy system optimization, data{based fuzzy rule generation,

evolutionary strategy, Delve benchmark

1 Introduction

When trying to identify a real{world process or system there are di�erent approaches available. These ap-

proaches can be divided into analytical approaches and CI approaches, like fuzzy logic or neural networks.

The disadvantage of an analytical approach is, that an assumption for the type of model to be used for the

identi�cation has to be made. This assumption restricts the success of an applied method, because the quality

of the obtained model depends strongly on the assumption. Especially, it is diÆcult to make assumptions on

possible nonlinearities. These disadvantages are overcome by the CI approaches. Both the fuzzy logic and the

neural networks need no model assumption and can handle nonlinearities more easily. Here, we use fuzzy logic,

because it has the advantage of giving insight into the modeled system. The main steps of a fuzzy identi�cation

are:

� De�nition of the linguistic input and output variables either by using classi�cation methods or by heuris-

tics.

� Generation of the rule base describing the relations between the input variables and the output variable.

� Validation and optimization of the fuzzy system.

Here, we use the Fuzzy{ROSA method [10{12] for the generation and optimization of the fuzzy system.

In the �rst step the linguistic variables are de�ned and then the IF/THEN statements are set up and tested

regarding to their local relevance [8, 13]. The relevant rules are incrementally collected. In the second step an

optimization method is applied to the fuzzy system.

The optimization process includes two processes: First the composition of the rules is optimized. Here, a

genetic algorithm searches for a good compromise between an improved quality of the model and a small number

of relevant rules. In a second step the linguistic terms of the output variable are optimized. For this purpose a

new approach based on an evolutionary strategy is introduced in this paper. The reasons for optimizing only

the linguistic terms of the output variable are as follows: The linguistic terms of the input variables are used
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for the generation of the fuzzy rule base. Changing these terms withdraws the basis of the local relevance of

the rules. Whereas, the de�nition of the linguistic terms of the output variable is mainly done by heuristics.

This leads to the assumption that there is space for optimization.

In Section 2 the concept of the Fuzzy{ROSA method is brie
y described. The evolutionary strategy for the

optimization of the output terms is presented in Section 3. A benchmark example is discussed in Section 4.

The paper closes with a short conclusion.

2 The Fuzzy{ROSA method

Main parts of the Fuzzy{ROSA method are the fuzzy rule generation and the optimization. As these parts

make the core for the fuzzy identi�cation, they are described in the following.

2.1 Concept of rule generation

The basic idea of the rule generation process is to apply a relevance test to single IF/THEN statements to assess

their ability to describe a relevant aspect of the system under consideration [8, 13]. This allows not only to get

transparent and comprehensible rule bases, but reduces the immense problem of �nding a good rule base to the

much smaller problem of �nding single relevant rules.

Instead of complete rules that consider every input variable in each premise, generalizing rules are used that

consider only a part of the input variables in the premise. The advantage of generalizing rules is that they cover

not only one but several input situations and therefore, less rules are necessary.

For a high number of variables, an adaptive evolutionary search concept [11, 17] is used to �nd the relevant

fuzzy rules in the search space of IF/THEN statements. An online rule reduction removes redundant rules

during the rule generation process.

In comparison to methods that directly search for an optimal rule base [7, 9, 14, 15], the computing time

of this approach is also practicable for applications with more than a handful variables. Even an industrial

problem with 149 input variables has been successfully solved [18]. Approaches that also aim at an incremental

collection of single rules [2{4] di�er mainly in two points. First, they have no relevance test integrated and

second, their rule search is not realized with one population in one evolutionary process.

2.2 Concepts for optimization

After a fuzzy system has been obtained there are remaining parameters, that can be used for optimization. The

Fuzzy{ROSA method uses two methods:

Optimizing con
ict reduction: Here, the number of rules in the fuzzy system is reduced in such a way,

that the modeling error becomes as small as possible. A reduction is possible as generalizing rules are used

that consider not all input variables in the premise and consequently cover each other substantially. The

reduction has the further advantage of reducing the evaluation time of the fuzzy system and of making

the fuzzy rule base more transparent.

Position and form of the linguistic terms of the output variable: As the de�nition of the linguistic

terms of the output variable is mainly done by using some sort of heuristic, it can be expected that

there is some space for optimization. Thus the terms are varied to decrease the modeling error under the

restriction of preserving the linguistic meaning of the fuzzy rules.

3 Optimizing with an evolutionary strategy

The aim of the evolutionary strategy is to minimize the modeling error by positioning the linguistic terms of the

output variable. An important restriction is, that the linguistic meaning of the fuzzy rules must be preserved.

This means that the order of the terms must not change, e.g. if there are two terms t1 = cold and t2 = hot

the term t1 has to contain lower values than the term t2. A linguistic term in the Fuzzy{ROSA method is

de�ned as a trapezoid with four supporting points or alternatively as a singleton. In order to further support

the interpretability of the rules, additional restrictions for the intervals of the terms can be given. For example

if temperature is considered as an output variable, the lower bound of the terms should be �273oC.



In contrast to other approaches in literature, that use genetic algorithms, the whole concept here is based

on a standard evolutionary strategy [1,16] because the positioning of the membership functions is a real valued

problem. Therefore the mutation operator, the recombination operator and the selection operator used here

are standard operators. In the following two alternative representations are presented and compared, followed

by a description of the �tness function.

3.1 Representation

One individual of the evolutionary strategy consists of the nMF membership functions of the output variable.

The np(j) parameter1 of the j{th membership function of the i{th individual ~ai of a population are summarized

in a vector ~xi;j . All vectors ~xi;j with j 2 f1; ::; nMFg are consecutively represented by the individuals:

~ai = f~xi;1; ~xi;2; ::; ~xi;nMF ; �i;1; �i;2; ::; �i;n�g (1)

The vectors ~xi;j with j 2 f1; ::; nMF g contain the optimization parameters and the parameters �i;s with

s 2 f1; ::; n�g represent the step width. Here, three possibilities exist:

� n� = 1 one global step width for all parameters

� n� = nMF one step width per membership function

� n� = 4 � nMF one step width for each parameter2

There are two ways to represent the membership functions: using the positions of the supporting points or

using the distances of the supporting points.

3.1.1 Position coding

Each vector3 ~xj consists of four elements describing a trapezoid. The elements have to ful�ll the condition

8j 2 f1; ::; nMFg : xj;1 � xj;2 � xj;3 � xj;4 (2)

To get a valid individual in the sense that the order of the terms is preserved compared to the starting point

the condition

xj;k � xj+1;k 8k 2 f1; ::; 4g (3)

must hold. The advantage of this type of coding is that every element is independent of each other. This

means a change of an element changes only one parameter of the membership function. A disadvantage is that

the validity of an individual is not automatically preserved, as it is not automatically descended in the mutation

and recombination process to the o�spring.

3.1.2 Distance coding

If (xj;1; xj;2; xj;3; xj;4) are the four values describing the trapezoidal membership functions, then the k{th vector

of an individual is represented by

~x1 = (x1;1; d1;1; d1;2; d1;3)

~xk = (dj�1; dj;1; dj;2; dj;3) if 1 < j < nMF .
(4)

Here dj;l = xj;l+1 � xj;l is the distance between the l{th and the (l + 1){th supporting point of the j{th

membership function and dj = xj+1;1�xj;1 the distance between the j{th and (j+1){th membership function.

1if using singletons np(j) = 1
2this assumes trapezoidal membership functions with four supporting points
3as only one individual is investigated the i of ~xi;j is left out in the following



The exception is the element x1;1 of the �rst membership function representing the �rst supporting point. To

generate a valid individual, the conditions

8j 2 f1; ::; nMF � 1g : dj � 0

8j 2 f1; ::; nMFg ; l 2 f1; 2; 3g : dj;l � 0
(5)

have to be ful�lled. The advantage of this coding is that after the recombination of two valid individuals

a new valid individual is created. Thus, the validity of the parents is preserved. A disadvantage is that if

an element of ~xj is changed it has consequences for all membership functions ~xk with k > j. This leads to

undesired e�ects concerning the mutation operator. Therefore a repair mechanism is introduced which removes

the e�ects on the other membership functions.

3.1.3 Comparing the representations

In addition to the form of representation, it has to be considered whether to restrict the step width or not.

With the three representations, position coding, distance coding and distance coding with repair there are six

cases which have to be analyzed. Figure 1 shows the results for an typical optimization process. The bottom

�gure is the detailed lower part of the top �gure.
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Figure 1: Best �tness over the generations using di�erent coding variants: (1) distance coding without repair

without step width restriction, (2) distance coding without repair with step width restriction, (3) position coding

without step width restriction, (4) position coding with step width restriction, (5) distance coding with repair

and without step width restriction, (6) distance coding with repair and with step width restriction.

The results show that the optimization with step width restriction converges at a better �tness than the

optimization without step width restriction. The optimizations with position coding and distance coding with

repair show the best behavior for the convergence time and for the reached �tness.

3.2 Fitness

The �tness evaluation is done in two steps. First the modeling error is evaluated and second a penalty factor

is applied. For the evaluation of the modeling error the output values of the fuzzy system are compared to the

original output values of the training data. This can be done either by using the average absolute error or the



average square error. If the individual is invalid in the sense that one of the coding conditions is violated or

that an interval restriction of a membership functions is violated, a penalty factor proportional to the degree

of violation is applied to the individual.

4 Example

As an example, the 'kin dataset' of the Delve4 dataset repository is chosen. The kin datasets are a family of

datasets synthetically generated from a realistic simulation of the forward kinematics of an 8 link all{revolute

robot arm. The tasks associated with these datasets consist of predicting the distance of the end{e�ector from

a target, given the 8 angular positions of the joints and also given the link twist angles, link lengths, and link

o�set distances for all 8 joints resulting in 32 input variables altogether. The dependency between the input

variables and the output variables is nonlinear and noisy.

The available tasks of the kin dataset di�er in the degree of linearity, the amount of noise and the number

of input variables. In the following the task kin-32nm (32 input variables, highly nonlinear, moderate noise)

is considered. For each input variable and the output variable seven equi{distant distributed linguistic terms

are de�ned. The range of the output variable spans from zero to three. The modeling error is measured as the

average absolute error. In a �rst step only rules are generated with a combination depth5 of one. After the

generation the fuzzy system was optimized with the methods presented before. The results are shown in table

1.

Table 1: Results for kin-32nm with the Fuzzy{ROSA method with a combination depth of one

number of rules error rate on training data error rate on validation data

185 0.344 0.343

optimized 74 0.311 0.329

In a second step the combination depth was increased by one and the same steps as before were carried out.

The results are shown in table 2. It can be seen that the initial results after the generation are better than

the results achieved before. After the optimization the results for the training data is further improved, but

the performance on the validation data decreases. This is the common problem of over�tting, which could be

prevented by a method for early stopping.

Table 2: Results for kin-32nm with the Fuzzy{ROSA method with a combination depth of two

number of rules error rate on training data error rate on validation data

2892 0.303 0.322

optimized 189 0.278 0.338

These results are compared to the results of other methods used for solving the kin problem. The following

methods have been chosen:

gp-map-1 A Gaussian processes for regression trained with a maximum{aposteriori approach implemented

with conjugate gradient optimization [19].

mars3.6-bag-1 Multivariate Adaptive Regression Splines (MARS) method developed by Jerome Friedman.

The bagging procedure is used in conjunction with MARS [5].

knn-cv-1 This method uses an average of the k nearest neighbors in the training set for predictions. For

each loss type, the value of k (the neighborhood size) is chosen leave{one{out cross validation, repeated

exhastively for all possible values of k.
4Data for Evaluating Learning in Valid Experiments http://www.cs.utoronto.ca/�delve/index.html
5combination depth is the number of linguistic expressions in the premise



mlp-mdl-vhMinimum description length (mdl) based training of a multilayer perceptron (mlp) (feedforward

neural network) with a single layer of hidden units [6].

The table 3 shows the average absolute error on the validation data of the di�erent methods.

Table 3: Comparison of di�erent methods

mlp-mdl-vh gp-map-1 mars3.6-bag-1 Fuzzy{ROSA knn-cv-1

0.2979 0.2996 0.3281 0.329 0.3327

5 Conclusion

In this paper we presented how a fuzzy approach can be applied for system identi�cation. Along with the

description of the Fuzzy{ROSA method we presented a new evolutionary strategy for the optimization of the

position of the linguistic terms of the output variable. Here, it has been shown that the selection of the repre-

sentation for the individuals is the key to a good performance of the optimization. The methods were applied to

the benchmark problem 'kin dataset'. The results are in the scale of the results of other analytical and neural

network methods. The advantage of the fuzzy approach is that the result consists of only 74 interpretable fuzzy

rules. This is remarkable because the problem consists of 32 input variables with each having seven linguistic

terms. Further work is necessary to design an intelligent method for early stopping for preventing an over�tting

on the training data.
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