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Abstract

We derive approximate formulae for the credit value-at-risk and the eco-

nomic capital of a large credit portfolio. The representation allows to change

the risk horizon quickly and avoids simulation or numerical procedures. The

Poisson mixture model is equivalent to CreditRisk+ and uses the same pa-

rameters.

1 Introduction

The probability distribution of the future losses generated by a credit port-

folio is of major interest in banking. The credit value-at-risk (CreditVaR)

denotes a high quantile of the loss distribution and is a key parameter for

the management of portfolio credit risk. The CreditVaR must be decomposed

into a sum of the expected loss and the unexpected loss. The expected loss is

a regular cost (see Weißbach and Sibbertsen (2004)) whereas the unexpected

loss has to be covered by capital. For the latter reason it is denoted economic

capital (EC). However, the latter is often named CreditVaR itself (see e.g.

Grundke (2004)). Rules for the magnitude of the capital as required from

the regulators have been release recently in the new basel capital accord by

the Basel Commitee on Banking Supervision (Basel Commitee on Banking

Supervision (2004)). As the rules in the regulations take portfolio effects

only globally into account large banks maintain internal models. Internal

credit risk portfolio models have the aim to account for the specific portfolio

to be managed. Additionally, internal models may be used to with securi-

tization. i.e. to price collateralized loan obligations (CLO). Strategically,
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large banks hope to use them to calculate their capital requirements as is

already common practice portfolio market risk (Basel Commitee on Banking

Supervision (1995)). But even more applications of the EC have an immense

impact on banking. The EC is a risk management high level performance

measure for a financial mother to control its children. The EC contribution

to business units is an important steering tool. The return on risk capital

(RoR) can be assigned to compare their performances. On the transaction

level risk contributions can be calculated (e.g. by leave-one-out comparisons

or by variance decomposition (see CSFB (1997)). The capital is associated

with opportunity costs, as is the risk capital per trade. The costs must be

incorporated into the price.

Portfolio models can be categorized into structural models and intensity

based models. In structural models a mechanism for the default is assumed

whereas in the intensity model the default is modeled directly as random

event. We will restrict ourselves the intensity based modeling (see e.g. Jar-

row and Turnbull (1995); Artzner and Delbaen (1995); Duffie and Singleton

(1999)). However, for some structural and intensity model an equivalence

is well documented (see Gordy (2000); Crouhy et al. (2000); Hamerle and

Rösch (2004)). From a practical point of view to most common of the in-

tensity based models is CreditRisk+TM (Credit Suisse First Boston (CSFB)

(1997)). The model is a Poisson mixture model and builds on the negative

binomial distribution for the loss count as established already by Greenwood

and Yule (1920). The default of a counterpart here is a Bernoulli random

variable. One explicit point in time in the future is of interest. The ques-

tion ”Will a counterpart be defaulted by then?” suffices to be answered with
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the dichotomous states ”Yes/No”. In practice two problems arise from the

specific set-up. In the first place, is it sufficient to consider one point in

time to judge the bank’s ability the take the load of risk? Especially, the

time horizon for which the capital requirements are calculated is arbitrarily

fixed. E.g. German banks often use a one-year horizon because the balance

sheet for large companies (under German law) is calculated (and published)

yearly. (Accounting schemes for the US (US-GAAP) and international rules

(IAS) oblige a more frequent accounting of 3-4 times a year.) The link be-

tween the balance sheet and the risk management duty to warrant sufficient

capital is the profit and loss account (P&L). Costs for the expected credit

losses are provisioned in that account. The unexpected loss is calculated for

convenience in the same cycles.

However, for the existential question ”Has the bank enough capital to

survive awkward events?” a time profile is needed. In order to overcome

the drawback of a fixed time horizon we derive in the paper a model with

variable time horizon. The calculation can be easily and quickly realized

e.g. in spreadsheet software. The derived formulae build on well established

asymptotic martingale approximations (see e.g. Rebolledo (1980); Andersen

et al. (1993)). In order to overcome unrealistic independence assumption in

a base formulation we incorporate the general economic activity analogous

of the procedure in CreditRisk+. The derived frailty - or latent risk - model

is typical in modern statistical failure analysis (Hougaard (2001)). As means

of conditional modelling we use counting processes in the notion of Aalen

(1978). Poisson- or Cox processes, usually used to model credit risk for the

purpose of single (derivative) trade pricing, do not prove to be useful in the
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portfolio risk problem.

The paper is structured as follows: In Section 2 a simplified portfolio is

analyzed, the counterparts are assumed to belong to one rating class only,

their exposure is assumed to be identical and their defaults are assumed

to be stochastically independent. The sample EC is derived in detail. In

Section 3 the portfolio is assumed to be more realistic, namely we introduce

rating classes and individual exposure levels. The lengthy calculation for

that case are mostly deferred to the Appendix. In Section 4 the assumption

of independence of defaults is replaced by a dependency model of the defaults

related to economic activity. The loss distribution in that case is technically

intractable. By neglecting cumulants of order higher than two, we fit a

normal distribution.

2 An expository model for the loss

2.1 The loss process

Our model for the default of a counterpart in a credit portfolio is the jump

process Dt := I{τ≤t} where τ denotes the default time, i.e. Dt is 1 if the

default occurs prior to t and 0 otherwise. Dt is assumed to be adapted to a

filtration {Ft} where τ is a Ft-stopping time. Dt generalizes the Bernoulli

model B(PD) (= D1) being the basic model in the major credit risk portfolio

model CreditRisk+.

Consider a homogeneous portfolio where all independent counterparts

i = 1, . . . , n owe the same amount of money, w.l.o.g. 1 unit, to the creditor.

The portfolio is equivalent to the basic model of CreditRisk+ where at first
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stage the distribution of the loss count is calculated.

The elementary parameter of the model is the notion of the ”instanta-

neous probability of default”. The notion is that each counterpart moves

though time, i.e. ”lives”, with the permanent risk to default. The probabil-

ity of instantaneous default is quantified as P (τ ∈ [t + dt] | τ ≥ t) ≈ h(t)dt.

The probability is dependent on the time, t, via the function h(t). We assume

w.l.o.g. that the t ≥ 0, i.e. we contemplate the future and define our present

time as 0. The function hazard rate h(t) is long known, consider Kalbfleisch

and Prentice (1980) as a reference.

In practice the one-year probability of default (PD) is given, e.g. by the

rating of the counterpart, expert guesses, etc. For the moment we assume

that the tendency to default does not change with time, that means for the

default time τ : P (τ ∈ [t, t + dt]|τ ≥ t) ≡ h dt ∀ t. The constant hazard

rate h and the PD are linked by the relationship PD = 1 − e−h, so that

h = − log(1 − PD) and F (t) = 1 − (1 − PD)t.

As further simplification to the unit exposure, we assume a homogeneous

portfolio where all counterparts belong to the same rating class with a com-

mon PD and hence hazard rate. Denoted by τ1, . . . , τn the independent

identically distributed default times.

Define the loss process

Lt := ]{i : τi ≤ t}.

In order to analyzing the distribution we distinguish between trend and

noise, i.e we need a decomposition of Lt so that Lt = Λt + Mt. Λt denotes

the compensator of the process whereas Mt is the residual martingale.
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For the calculation of Λt consider its increments. Clearly the expected

increase in count is for independent failures

E(dLt | Ft−) = ]{i : τi ≥ t}hdt. (1)

Define Yt := ]{i : τi ≥ t}, the number of counterparts ”at risk” and the

intensity λ(t) := Yth.

The compensator is Λt :=
∫ t

0
λ(s)ds.

2.2 The economic capital

Credit portfolio models are common only in large international financial insti-

tutes. The portfolios contain usually more than 5000 counterparts enabling

asymptotic approximations, as we will see later.

For large portfolios, i.e. for n → ∞, the proportion of the counterparts

at risk is approximately given by the survival function: Ys

n

a.s.−→ 1 − F (s)

(because 1 − Ys

n
= Fn(s)

a.s.−→ F (s)), so that Λt

n

a.s.−→ 1 − (1 − PD)t, owing to

h(s) = f(s)
1−F (s)

.

For large n the path of Lt√
n

is almost smooth. The compensator is

Λt√
n
≈

√
n −

√
n(1 − PD)t (2)

The predictable variation process is 〈Mt〉
n

= Λt

n
and approximately v(t) =

1− (1−PD)t (see Appendix). The latter is a deterministic smooth function.

There exits only one stochastic process with smooth path and deter-

ministic variance function, namely the gaussian process. In fact, we have

that Mt√
n

is asymptotically a Gaussian martingale with variance function
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F (t) = 1 − (1 − PD)t (see Rebolledo (1980) or Andersen et al. (1993)).

For a central Gaussian process with variance function v(t) the increments

are normally distributed with expectation 0 and variance v(t)− v(0), so that

P

(

1√
n
((Lt − Λt) − (L0 − Λ0))
√

F (t) − F (0)
≥ u1−α

)

≈ α.

The denominator reduces to F (t) because F (0) = 0. With L0
f.s.
= 0,

Λ0
f.s.
= 0 and Λt

n
≈ F (t) we have the credit value-at-risk, CreditV aRt,1−α =

u1−α

√

F (t)
√

n + nF (t). The expected loss is clearly E(Lt) = nF (t) so that

we have the following result:

Theorem 2.1 Consider a credit portfolio of n counterparts with debts 1.

Their default times are assumed to be identical and independently distributed

with constant hazard rate. The annual probability of default is denoted by

PD and assumed to be known. The economic capital for the risk horizon t

at level 1 − α is approximately for large n

ECt,1−α = u1−α

√

1 − (1 − PD)t
√

n,

where u1−α denotes the upper α-quantile of the standard normal distribution.

Note: The result is not surprising because the theorem of De Moivre-

Laplace for the mean of the Bernoulli variables I{τi≤t} ∼ B(F (t)) yields (note

Lt =
∑n

i=1 I{τi≤t})

Lt − nF (t)
√

n
√

F (t)

F (t)2≈0
≈ Lt − nF (t)

√
n
√

F (t)(1 − F (t))

D−→ N(0, 1)

⇔ P (Lt ≥ u1−α

√

F (t)
√

n + nF (t)) ≈ α.
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However, in the terminology of the counting process the loss count can be

generalized to the full loss.

Large sample approximations seem applicable in banking although sim-

ulations must clarify when the asymptotic behavior ”kicks in”. It is a well

known implication of the Berry-Esséen theorem that small probabilities of

default obstruct the asymptotics (see e.g. Shiryaev (1996)). In a sample

portfolio of 5000 counterparts with the common annual PD of 1% the 99%

one-year EC is exactly given by 67 (with cumulative probability of 99.13%)

compared to a normal approximation of 66.4. A detailed comparison is given

in Table 1. It can be seen that the approximation is excellent for practical

proposes. And even if the annual PD attains the smallest possible value

allowed for the regulatory capital (Basel Commitee on Banking Supervision

(2004)), 0.03% for at portfolio of 10000 counterparts and level of 99% the

difference between the exact value of 8 and the approximation of 7.5 is neg-

ligible.

2.3 Calibration of the model

The relation between the hazard rate and the density f(·) of the default time

is well-known to be h(t) = f(t)
1−F (t)

and enables the expression of the cumulative

distribution function F (·) as argument of the cumulative hazard rate function

H(t) :=
∫ t

0
h(s)ds, namely F (t) = 1 − e−H(t). The cumulative distribution

gives the annual PD’s. For the one-year PD the relation PD = P (τ ≤
1) = F (1) has already been used to calibrate a constant, i.e. one parameter,

hazard rate. However, the shape of the hazard rate is not defined, we must
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Table 1: Comparison of the exact economic capital and the approximate
economic capital. The exact value is given as integer from the binomial
distribution closest to the level. The approximate value is given by the
normal asymptotics.

Portfolio size
5000 10000
PD PD

Level 1% 0.5% 1% 0.5%

exact asym. exact asym. exact asym. exact asym.
90% 59 59.1 31 31.4 112 112.8 59 59.1
95% 61 61.6 33 33.2 116 116.4 61 61.6
99% 67 66.4 37 36.6 123 123.3 67 66.4
99.5% 69 68.2 38 37.9 126 125.8 69 68.2

only insure that

∫ 1

0

h(s)ds = H(1) = − log(1 − PD) (3)

and that the number of parameters matches the number of input variables.

We can e.g. assume the hazard rate to be piece-wise constant (see e.g.

Hougaard (2001)), a assumption which often used when pricing credit deriva-

tives. For the first year we derive

h(t) = − log(1 − PD) for 0 < t ≤ 1.

The procedure can easily be extended for t > 1 given PD’s exist for the

two-year, three-year, etc PD’s. Usually, the development of the PD over time

is defined using migration matrices for the change of counterparts between

rating classes. Each rating class can be attributed a one-year PD which
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implicitly defines two-year, three-year, etc PD’s. If no assumption is made

on the longer development of the PD the hazard rate can be assumed to

be constant. Note that a constant hazard rate ≡ h implies an exponentially

distributed failure time with parameter h. It has to be mentioned that doubts

exist that the hazard rates are constant (see e.g. Hakenes and Altrock (2001),

Jones and Mingo (1998)) and Nickell et al. (2000), Weißbach and Sibbertsen

(2004)) which is accounted for in the next Section.

3 Introducing rating classes and exposure

3.1 Inhomogeneous hazard rate

In a realistic situation a portfolio consists of counterparts with different PD’s,

i.e. from different rating classes. Assume our portfolio contains counterparts

with default times

τij ∼ Fj

for i = 1, . . . , nj independent counterparts with hazard rates hj(·) from j =

1, . . . , J rating classes. Note that we do not assume a constant hazard rate

now.

We simply need to redefine the loss count process

Lt := ]{(i, j), τij ≤ t}
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with compensator and predictable variation process

Λt =
J
∑

j=1

∫ t

0

Yjshj(s)ds.

Here the counterparts ”at risk” are counted per rating class Yjt := #{i, τij ≥
t} for j = 1, . . . , J .

3.2 Inhomogeneous portfolio

As in CreditRisk+ we assume the exposure νij, or more correctly the ”loss

given default” to be deterministic. The portfolio loss is the sum of individual

loss of the counterparts, or default entities

Lt =
J
∑

j=1

nj
∑

i=1

νijI{τij≤t}. (4)

Theorem 3.1 Consider a portfolio containing exposure in J rating classes

with nj counterparts in rating class j and loss given default of νij, i =

1, . . . , nj in each. The default times for the nj counterparts in rating class j

are assumed to be identical and independently distributed with hazard rates

hj(·). For a risk horizon t, a risk level 1 − α and approximately for large

n =
∑J

j=1 nj with not negligible proportion in each rating class
nj

n
→ cj > 0

the economic capital is given by

ECt,1−α = u1−α

√

√

√

√

J
∑

j=1

(1 − e−
∫ t

0
hj(s)ds)

nj
∑

i=1

ν2
ij,

where u1−α denotes the upper α-quantile of the standard normal distribution.
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The proof is deferred to the Appendix.

Corollary 3.1 The approximate credit value-at-risk is now given by

CreditV aRt,1−α = u1−α

√

√

√

√

J
∑

j=1

(1 − e−
∫ t

0
hj(s)ds)

nj
∑

i=1

ν2
ij

+
J
∑

j=1

(1 − e−
∫ t

0
hj(s)ds)

nj
∑

i=1

νij

Proof. The expected loss is clearly E(Lt) =
∑J

j=1

∑nj

i=1(1−e−
∫ t

0
hj(s)ds)νij.

�

Corollary 3.2 For the assumption of constant hazard rates hj for each rat-

ing class defined by the annual PDj the economic capital simplifies to

ECt,1−α = u1−α

√

√

√

√

J
∑

j=1

(1 − (1 − PDj)t)

nj
∑

i=1

ν2
ij.

Proof. For a constant hazard rate e−
∫ t

0
h(s)ds = (1 − PD)t. �

Note: The same result is achieved using the central limit theorem and

the Lindeberg-Feller condition (see Ferguson (1996)) for the Bernoulli for-

mulation of the problem.

12



4 Introducing economic activity

In the derived model so far the economic capital can be reduced to any aimed

level by diversifying the portfolio, i.e. by splitting the exposure. The reason

is that the economic capital converges to zero for the maximal exposure

max{νij : i = 1, . . . , nj, j = 1, . . . , J} going to infinity for fixed total exposure
∑J

j=1

∑nj

i=1 νij. The basis for that is the assumed mutual independence for

the default of any pair of counterparts. From an economic view this is not

reasonable. It is well understood that the - potentially stratified - economic

activity influences the probability of default of all counterparts - in a sector.

Credit Suisse First Boston (CSFB) (1997) models the dependence in the

Bernoulli formulation for the default by assuming a latent economic activity

variable increasing or reducing the probability of default PD for counterpart

ij compared to the mean PDj. In detail, if the counterpart is solely influenced

by the economic activity in sector k (k = 1, . . . , K) the default behaves as

Iij ∼ B(PDjXk) with E(Xk) = 1 for any k and V ar(Xk) = σ2
k.

The resulting dependence of the defaults between two counterparts A =

(i, j) and B = (̃i, j̃) can easily be seen to be

Corr(IA, IB) =

√
PDAPDBρkAkB

σkA
σkB

√

(1 − PDA)(1 − PDB)
.

Here, kA and kB are index the sectors the counterparts A and B are active in.

ρkAkB
denotes the correlation between the economic activity variables XkA

and XkB
. If the latter correlation is 0, the inter-sectorial default correlation

is 0. If it is 1, the inter-sectorial default correlation equals
√

PDAPDBσkA
σkB√

(1−PDA)(1−PDB)
,

which is the intra-sectorial default correlation is kA = kB.
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We want to make use of the established model and integrate the idea in

our hazard rate based model.

4.1 Global economic activity

At first stage we assume the default of counterparts is driven by one economic

activity variable as is implied by the famous Merton model, i.e. K = 1.

The easiest way one can think of is to use a random factor Y to the hazard

rate, often denoted as frailty to achieve the - now stochastic - hazard rate

gj(t) = Zhj(t) j = 1, . . . , J.

Here, hj(t) is the deterministic baseline hazard rate in rating class j as used

before. The compounding of the two distributions is a common approach in

modern survival analysis (see Hougaard (2001)). For our simplified model of

a constant hazard rate the approach is equivalent to the model of a random

factor to default time rather than the hazard rate. Theorem 3.1 implies that

1√
n
Lt converges in distribution and conditional on Z to

N

(

1√
n

J
∑

j=1

(1 − e−
∫ t

0
Zhj(s)ds)

nj
∑

i=1

νij,
1

n

J
∑

j=1

(1 − e−
∫ t

0
Zhj(s)ds)

nj
∑

i=1

ν2
ij

)

As small PD’s imply small hazard rates we may use the Taylor approxi-

mation ex ≈ 1+x to simplify the arguments to 1√
n
Lt |Z D−→ N(Za, Zb) where

a := 1√
n

∑J

j=1 Hj(t)
∑nj

i=1 νij and b = 1
n

∑J

j=1 Hj(t)
∑nj

i=1 ν2
ij.

To calculate the marginal distribution we need a parametric assumption

for the distribution of the frailty Z. As one of our goals to stick to the as-

sumptions (including notation) of CreditRisk+, we need to take the relation
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between Z and X into consideration. In Credit Suisse First Boston (CSFB)

(1997) X is assumed to be Γ-distributed. This assumption erroneously en-

ables annual PD’s larger than 1. However, the probability of that error is

negligible when the variance of the distribution is selected in practice (see e.g.

Rosenow et al. (2004)). As technical advantage of the Gamma assumption

over, say a Beta-distribution, the probability generating function (PGF) of

the loss can be given in closed form. As we are not interested in the PGF,

we may change the distributional assumption with little harm and decide

to use a log-normal distribution. Again, we enable PD’s larger than 1 but

argue as above. Formula (3) clarifies the relation between the conditional

annul PD and the conditional hazard to be ZH(1) = − log(1 − XPD). As

a consequence, we derive a normal assumption Z ∼ N(µ, ϑ2) as plausible.

The deficiency of PD’s larger than 1 translates into the possibility of hazard

rates smaller than 0. The expectation µ needs to be 1 because of E(X) = 1.

The volatility parameter derives from the assumption as in Credit Suisse

First Boston (CSFB) (1997) of V ar(X) = σ2 and denoted for that reason as

ϑ2(σ).

Let us consider the marginal distribution of Lt. The density of 1√
n
Lt is

∫

IR φza,zb(t)φµ,ϑ(σ)(z)dz =
∫

IR
1

zb
√

2π
exp

{

− (t−za)2

2zb

}

1
ϑ(σ)

√
2π

exp
{

− (z−µ)2

2ϑ2(σ)

}

dz

where φl,m(·) denotes the density of the normal distribution with expectation

l and variance m. The integral is not feasible. We like to fit a distribu-

tion in two moments. The symmetry of the conditional asymptotic distribu-

tion of 1√
n
Lt together with the symmetry of the distribution of Z suggests

to use a normal distribution. The expectation is clearly E(E( 1√
n
Lt|Z)) =

1√
n

∑J

j=1 Hj(t)
∑nj

i=1 νij. The variance is E(V ar( 1√
n
Lt|Z))+V ar(E( 1√

n
Lt|Z)) =

15



E(Zb) + V ar(Za) = 1
n

∑J

j=1 Hj(t)
∑nj

i=1 ν2
ij + ϑ2(σ) 1√

n

∑J

j=1 Hj(t)
∑nj

i=1 νij.

Theorem 4.1 Consider a portfolio containing exposure in J rating classes

with nj counterparts in rating class j and loss given default of νij, i =

1, . . . , nj in each. The default times for the nj counterparts in rating class j

are assumed to be identical and independently distributed with hazard rates

Zhj(·) conditional on Z. The frailty Z is assumd to be normally distributed

with E(Z) = 1 and V ar(Z) = ϑ2(σ). For a risk horizon t, a risk level 1 − α

and large n =
∑J

j=1 nj with not negligible proportion in each rating class

nj

n
→ cj > 0 the economic capital is approximately given by

EC1−α = u1−α

√

√

√

√

1

n

J
∑

j=1

Hj(t)

nj
∑

i=1

ν2
ij + ϑ2(σ)

1√
n

J
∑

j=1

Hj(t)

nj
∑

i=1

νij,

where u1−α denotes the upper α-quantile of the standard normal distribution.

Note. For a stable economy reflected by the a small variance ϑ2(σ) the

EC is close (and in the limit equal) to the economic capital with independent

defaults as in Theorem 3.1.

4.2 Sectorial economic activity

To account for several sectorial economic activities as is the case in CreditRisk+

we suggest to use the idea of Bürgisser et al. (1999). The variance σ2 of the

latent variable X is calibrated so that the variance of the loss in the one-factor

model is equal to the variance in the multi-factor model with X1, . . . , XK ,

where V ar(Xk) = σ2
k k = 1, . . . , K and Corr(XkA

, XkB
)) = ρkAkB

. To that

end, we assume as in a slight simplification of Credit Suisse First Boston
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(CSFB) (1997) that each counterpart ij belongs to one economic sector. A

straight forward calculation proves our last

Theorem 4.2 Under the conditions of Theorem 4.1 and the model for the

default of I{τij≤t} ∼ B(XkF (t)) with variances V ar(Xk) = σ2
k and correlation

Corr(XkA
, XkB

)) = ρkAkB
the economic capital is approximately given by

EC1−α = u1−α

√

1
n

∑J

j=1 Hj(t)
∑nj

i=1 ν2
ij + ϑ2(σ̃) 1√

n

∑J

j=1 Hj(t)
∑nj

i=1 νij with

σ̃2 = 1
ε(t)2

∑K

k,l=1 ρkl σkσl εk(t)εl(t), where ε(t) =
∑J

j=1(1−e−Hj(t)ds)
∑nj

i=1 νij

denotes the total expected loss and εk(t) denotes the expected loss restricted

to counterpart in sector k.

5 Summary

Based on the model CreditRisk+ we give an approximate closed form expres-

sion of the economic capital for a diversified portfolio. The formula has the

risk horizon as covariate which enables either to change the view quickly or to

print an economic capital profile. The approximation is based on conditional

asymptotic arguments. The calculation of the marginal loss distribution by

means of compounding is avoided by approximation with a feasible distribu-

tion. The default behavior is described by the hazard rate of their default

time enabling to use the one-year PD as parameter, forward PD’s, or any

assumed default behavior. The economic activity is taken into account and

restricts the diversification potential by introducing dependency between the

counterparts’ credit risk. Replacement of CreditRisk+ calculations are ap-

plicable for large credit portfolios and yield reduced operational risk due to

the lack of numerical procedures.
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A Appendix

A.1 Derivation of compensator and variation for The-

orem 2.1

The process Λt :=
∫ t

0
λ(s)ds is the compensator of the count process Lt. One

can show that the residual Mt := Lt−Λt is a martingale (see Andersen et al.

(1993)).

The predictable variation process 〈Mt〉 is the compensator of the squared

martingale Mt.

Because dM 2
t = M2

(t+dt)− − M2
t = (Mt− + dMt)

2 − M2
t− = (dMt)

2 +

2dMtMt−, we have

E(dM 2
t | Ft−) = E((dMt)

2 | Ft−),

i.e. the increments of the compensator of M 2
t are the conditional variances

of the increments of M , since the conditional expectation is 0:

V ar(dMt | Ft−) = d〈Mt〉.

The increments of Lt are in {0, 1}, therefore the increments of Mt are in

{−dΛt, 1− dΛt}. The variance is invariant altering the location. Adding dΛt

implies values 0 or 1, i.e. the shifted variable is Bernoulli distributed. The
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expectation is dΛt because before the shift is was 0. Hence:

V ar(dMt | Ft−) = dΛt(1 − dΛt) ≈ dΛt,

because dΛt is small and dΛ2
t negligible.

Note, that the same reasoning was applied when deriving the Poisson

distribution as the distribution of a sum of Bernoulli distributed defaults

Credit Suisse First Boston (CSFB) (1997).

A.2 Proof of Theorem 3.1

The compensator of the loss (4) is

Λt =
J
∑

j=1

∫ t

0

nj
∑

i=1

νijI{τij≥s}hj(s)ds. (5)

Now
∑nj

i=1 νijI{Xij≥s}
nj→∞−→ ∑nj

i=1 νij(1− Fj(s)) where 1− Fj(s) = e−
∫ t

0
hj(s)ds

because for Xi
iid∼ B(p), i = 1, . . . , n and ai ∈ IR+, i = 1, . . . , n with

∑n

i=1 ai =

n follows Y := 1
n

∑n

i=1 aiXi
P−→ p. (Define ai :=

njνij
∑nj

i=1
νij

and Xi := I{Xij≥s}.)

It follows that
∫ t

0

∑nj

i=1 νijI{τij≥s}hj(s)ds
nj→∞−→ ∑nj

i=1 νij(1 − e−
∫ t

0
hj(s)ds)

and finally Λt →
∑J

j=1(1 − e−
∫ t

0
hj(s)ds)

∑nj

i=1 νij.

The predictable variation process 〈M〉t is the compensator of the squared

compensated loss process M 2
t = (Lt − Λt)

2. Note that E(dM 2
t |Ft−) =

E((dMt)
2|Ft−) as in the case of Section 2.1 and proven in the Appendix.

dMt is a multinomial random variable with values in {νijI{τij≥t} − dΛt, i =

1, . . . , nj, j = 1, . . . , J,−dΛt}. (Especially it is −dΛt for dLt = 0.) We assume
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that the νij’s do not contain ties.

d〈M〉t = E((dMt)
2|Ft−) =

J
∑

j=1

nj
∑

i=1

(νij − dΛt)
2P (dLt = νij|Ft−)I{τij≥t}

+ −(dΛt)
2P (dLt = 0|Ft−)

≈
J
∑

j=1

nj
∑

i=1

(νij − dΛt)
2
hj(t)dtI{τij≥t}

because P (dLt = νij|Ft−) = P (τij ∈ [t, t+dt[|τij ≥ t)I{τij≥t} = hj(t)dtI{τij≥t}

and (dΛt)
2 ≈ 0.

Again with (dΛt)
2 ≈ 0 and the definition of Λt (5) we have

d〈M〉t ≈
J
∑

j=1

nj
∑

i=1

(

ν2
ij − 2νij

J
∑

j=1

nj
∑

i=1

νijI{τij≥t}hj(t)dt

)

hj(t)dtI{τij≥t}

Ignoring terms of order (dt)2 yields

d〈M〉t ≈
J
∑

j=1

hj(t)dt

nj
∑

i=1

ν2
ijI{τij≥t}

Note, that the process 〈M〉t simplifies to (1) for the situation of one rating

class and νij = 1 ∀ i, j.

Let us consider again the dampened loss process Lt√
n

where n :=
∑J

j=i nj

denotes the number of all counterparts. The increments of its variation

process are

d〈M〉t
n

≈
J
∑

j=1

hj(t)dt

(

1

n

nj
∑

i=1

ν2
ijI{τij≥t}

)
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Similar arguments as for the proof of (5) lead to
∑nj

i=1 ν2
ijI{τij≥t}

nj→∞−→
∑nj

i=1 ν2
ij(1 − Fj(t)) and hence

〈M〉t
n

n→∞−→
J
∑

j=1

∫ t

0

hj(s)ds

(

1

n

nj
∑

i=1

ν2
ij(1 − Fj(s))

)

=
J
∑

j=1

Fj(t)
1

n

nj
∑

i=1

ν2
ij

=
J
∑

j=1

(1 − e−
∫ t

0
hj(s)ds)

1

n

nj
∑

i=1

ν2
ij

In the case of an exposure of 1 for all counterparts, 1
n

∑nj

i=1 ν2
ij reduces to

1. For the general case we will assume that the exposure sizes do not increase

too much with growing portfolio, 1
n

∑nj

i=1 ν2
ij −→ a, 0 < a < ∞.

The asymptotic variation process is deterministic and smooth function so

that the limiting process is gaussian with variance function v(t) := a
∑J

j=1(1−
(1 − PDj)

t). We have again

P

(

1√
n
((Lt − Λt) − (L0 − Λ0))

√

v(t) − v(0)
≥ u1−α

)

≈ α

Slutzky’s theorem enables us to replace v(t) with its empirical analogue

v̂(t) := 1
n

∑J

j=1(1 − e−
∫ t

0
hj(s)ds)

∑nj

i=1 ν2
ij. �
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