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Abstract: Building homogenous classes is one of the main goals in clustering. 

Homogeneity can be measured by the intra-class variance (Bock, 1998). 

Especially in erosion projects but in other applications as well the separation 

between the built classes is as important as the homogeneity of the classes. 

Special clustering methods can be used to reach this aim, for instance the 

Maximum Linkage Algorithm (Zerbst, 2001) or the Advanced Maximum Linkage 

Algorithm (Tschiersch, 2002). To judge the separation quality of such clusterings, 

the shortest distances between all centroids is considered. Zerbst (2001) shows 

that the arithmetic mean over all distances isn’t good enough for judging 

selectivity. Therefore the concentration centroid minimum distance criterion is 

proposed in this paper. This criterion is based on the ratio of weighted symmetric 

mean over the minimal distances and the Gini coefficient over the minimal 

distances. It also judges the class separation independent of the underlying data 

situation. 
 
 
 

1 Introduction 
Clustering methods are widely used in many applications, for instance in data 

preparation. While clustering information is gathered for further analysis. 

Foregone the building of homogenous classes is essential. The homogeneity is 

indicated by a small intra-class variance of the clustered data. In some area of 

application a high selectivity between the classes is essential, too. Examples of 

these applications are pixel based image clustering of erosion studies or gene 

expression data analysis, respectively. Beside the need of special algorithms for 

clustering under the aspect of high selectivity between the classes, such as the 

Maximum Linkage Algorithm (Zerbst, 2001) or Advanced Maximum Linkage 

Algorithm (Tschiersch, 2002), there is a demand for a criterion which judges the 

selectivity of a clustering. As abbreviation for Maximum Linkage Algorithm we 

use MLA and for Advanced Maximum Linkage Algorithm we use AMLA. An 

attempt in developing such a criterion is based on the minimal distance of each 

centroid to its nearest neighbors and can be read by Zerbst et al (2000). This 

criterion is called average minimal distance (AvgMinDist). The use of the minimal 

distance of each centroid to its nearest neighbor is very suggestive. Though, 
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Zerbst (2001) shows that the simple arithmetic mean over these distances is only a 

good criterion under special conditions. Especially in the case of outliers in the 

data the criterion can come to a wrong decision. Even the use of a censored or 

winsorized mean can not guarantee an improvement. The determination of the 

grade of censoring is a not trivial problem in such a case. A solution of such a 

problem is given by the Concentration Centroid Minimum Distance criterion 

(CCMD), which will be introduced next. The presented examples demonstrate the 

functionality of the criterion. Two worst-case examples show its behavior in such 

cases. Further a possibility is presented to determine the number of needed 

clusters. 

In the outlook chapter the results will be summarized. As well the determination 

of the number of cluster is considered. 

 

 
 

2 Judging criterion for selectivity between classes 

2.1 Clustering and known clustering criteria 
A clustering separates a set of elements in as homogenous classes as possible. Let 

mRI⊆Ω be the feature space and { } ,,...,1 nxxO =  nix i ,...,1, =Ω∈  a set of 

vector values. We sought after a clustering C(O) of the values nxx ,...,1  from O. 

The number of classes q , in which the data will be separated, has to be established 

a priori. A clustering is given by  

 

{ }qccOC ,...,)( 1=     with  { }
iniii xxc ,...,1= , i = 1,...,q . (2.1) 

 
For a meaningful clustering we need two further assumptions: 
1. To ensure that all classes are not empty, let q,...,i,n i 10 => .  

2. To reach information reduction through a clustering, let nq << .  
 
Moreover, we sought after additional class representatives for the q classes from 

(2.1). These class representatives m
q RIzz ∈,...,1  will be needed to describe the 

classes and for further analysis. The easiest way of building such centroids is: 
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To judge the clustering quality some criteria are necessary. Thereby the 

homogeneity of the classes has to be to the fore. This will be judged by the intra-

class variance g(C(O)). According to Bock (1998) this can be formalized by: 
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Equation (2.2) shows that a better clustering implies a smaller intra-class variance. 

In many ecological and biological applications an additional requirement is 

needed. We ought to have a high selectivity between the classes. This feature 

should not be mixed up with a maximized inter-class variance. We are much more 

interested in the actual distance between the classes. Therefore the distances 
between the centroids or class representatives m

q RIzz ∈,...,1  build the basis for 

judging the selectivity. The decisive distances are given by:  

 

{ } 2\,...,1
min ji

jqj
i xxd −=

∈
 , i = 1,…,q. (2.3) 

 

According to Zerbst (2001) the criterion of the average minimal distances with 

respect to equation (2.3) are derived by  
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The separation of the classes is better if the above criterion has larger values. The 

following section shows the drawbacks of this criterion with some examples. 
 
 

2.2 Misjudging of AvgMinDist based on examples 
The AvgMinDist has one essential disadvantage. It is founded on the arithmetic 

mean; hence it is sensitive to outliers. This can be lead to misinterpretation, if only 

one large minimal distance exists. This clarifies to the following example. 

 

 

Example 1 

Let two clusterings A and B be carried out. The ordered distances between each 

centroid to his next neighbor are given in Tab. 1. Notice, that d(i) is the ordered 

distance. 

 
 d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) 

Clusterung A 3.2 3.2 4.4 5.0 6.7 7.2 7.6 8.1 8.6 22.0 

Clusterung B 4.7 4.7 5.1 7.0 7.0 8.0 8.0 9.0 9.5 9.5 

Tab. 1: Distances of each centroid to his next neighbor of the two clusterings A and B. 
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To get further knowledge about the quality of separation of the classes, we’ll have 

a look on the following diagram. 
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                   Fig. 1: Diagram of the minimal distances from Tab. 1. The black line represents    

                                   clustering A and the gray line clustering B. 

  

 

 

It can be seen from the above Tab. 1 that the clustering A (AvgMinDist(CA) = 7.6) 

is better than Clustering B (AvgMinDist(CB) = 7.25) due to the one really large 

distance (22.0). It can be seen at once from Fig. 1 that the judgment should be 

just the other way round, because the distances of B are larger for all values 

exceptionally the last one. The wrong judgment has its reason in building the 

mean over the distances with respect to the arithmetic mean. 

Basically, we can see an additional problem. The judgment doesn’t only depend 

on the mean value, but on the concentration as well. We will consider this in the 

next example.  

 

 

Example 2 

Let us consider two further clusterings A and B again. The ordered minimal 

distances between the centroids and their next neighbor are listed in Tab. 2. 
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 d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) 

Clus. A 0.50 0.50 0.75 0.79 0.84 19.80 
20.1

0 

20.4

0 

21.7

0 
22.10 

Clus. B 7.00 7.00 7.40 7.90 8.20 10.00 
11.0

0 

11.5

0 

12.3

0 
13.10 

Tab. 2: Distances of each centroid to his next neighbor of the clusterings A and B of example 2. 

 

When looking on Tab. 2, we see that the distances can be blocked in two groups 

for each clustering. In clustering A the first five values are very small, the last five 

essentially larger. Clustering B behaves similar. The distinction between the 

blocks is smaller. 

 

The judgement of both clusterings leads to the following results. Clustering A, 

with an AvgMinDist of 10.75, is better than clustering B with an AvgMinDist of 

9.54. This holds because five large values of clustering A dominate the criterion. 

Figure 2 shows the extreme differences within clustering A and the differences 

between clustering A and B as well. Therefore clustering B should be preferred, 

because of having no extreme small values (high selectivity) and no extreme shifts 

in distances (equality of distances). 
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     Fig. 2: Diagram of the minimal distances of example 2 from Tab. 2. The black line 

                            belongs to clustering A and the gray line represents clustering B. 
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In the following section we will present a new criterion which overcomes the 

disadvantages showed in example 1 and 2. It will also lead to a clustering with an 

even better selectivity. 

 

 

2.3 The Concentration Centroid Minimum Distance criterion 
(CCMD criterion) 

 

The CCMD criterion is founded on two ideas. Let di  , i = 1…,q  be as in (2.3). The 

first idea is to use weighted symmetric mean over the ordered di instead of using 

the usual arithmetic mean. The weighting is performed by weighting values lying 

at the edge less than those lying in the middle of the ordered distances. Thereby 

the effect of outliers is weakened in all directions. The weighting is done 

according to the following equations. 
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where 0 ≤ a < 1. In our case a will be chosen equal to zero. The structure of the 

weights defined by (2.4) is not as complex as it seems when looking on the 

equation. Fig. 3 contains two examples for (2.4) with q = 10 and a = 0 (black 

line) and a = 0.5 (grey line). Beside the fact, that the ω(i) are discrete values, the 

single points are connected to get a better impression of them. 
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       Fig. 3: Diagram of function (2.4) for q = 10 distances and a = 0 (black line)  
                     and a = 0.5 (grey line). 

 

Based on this weighting we define the Weighted Average Minimal Distance 

(WAMD) by 

 

( ) ( )∑
=

⋅=
q

i
id diWAMD

i
1

ω . (2.5) 

 

The interpretation follows the principle: A larger value for WAMDC(O) implies a 

better clustering. The negative effects of extreme unequal distances, as in 

example 2, will not be considered, though. The solution of this problem has been 

partly mentioned above. We have to take into account the growing of the ordered 

distances, moreover the concentration of the distances. 

The consideration of the distance concentration leads to the Lorenz curve. We 

also can consider the strongly related Gini coefficient G. As known from the 

literature a small Gini coefficient implies less concentration, hence with respect to 

the minimal distances a better clustering. 

 

Therefore we use the WAMDC(O) over the distances relative to the Gini coefficient 

to judge a clustering. So CCMDC(O) has the form 

 

( ) 2
1

)(

)(
)(
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G

WAMD
CCMD = , 

 

where GC(O) is the Gini coefficient. This coefficient is clearly the double area 

between the Lorenz curve and the 45° line. In our case the Lorenz curve has q + 1 
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points of support. When joining the points of support with a straight line we get 

the Lorenz curve.  

 

In our case the points of support for the abscissa (ki) and ordinate (li), i = 0,…,q  

are given by: 
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The Gini coefficient has the form 
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To calculate the CCMD criterion the following equation is used: 
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In contrast to the AvgMinDist is this parameter able to identify “better” clusters. 

 

Example Clustering AvgMinDist WAMD Gini CCMD 
1 A        7.60 *   6,51  0.154   16,60 

 B 7.25 7,37 * 0.069 

* 

28,02 * 

2 A      10.75 * 10,49 *  0.241   21,36 

 B        9.54     9,33 0.065 

*  

 36,66 * 

 

Tab. 3: Parameters for judging the clusterings of example 1 and 2. The grey 
lines represents the  better clusterings with respect to the judgement 
based on the optical impression of the diagrams of minimal distances. 
The “*” mark the values which belong to the better clustering for the 
corresponding criterion. 
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The parameter of judging the selectivity of two clustering of example 1 and 2 are 

given in  

Tab. 3.  The grey rows show the “best” clustering for each example. The 

parameter marked with * represent the best parameter within the example. The 

Gini coefficient identifies the best clustering in each case. After a further look 

onto 

Tab. 3 the question rises whether the judging according to the Gini coefficient is 

sufficient. As one can see from the following example this holds not in every case. 

 

 

Example 3: 

Consider the clustering A and B. The minimal distances between the centroids to 

its nearest neighbors are listed in Tab. 4. 

 

 

 
 d(1) d(2) d(3) d(4) d(5) d(6) d(7) d(8) d(9) d(10) 

Clustering A 5,8 5,8 5,9 6,1 7.2 7.6 8.1 8.4 8.8 9.2 

Clustering B 5,3 5,3 6.7 8.4 10.5 11,8 12,5 13,1 14,5 16,1 

Tab. 4: Example 3: Distances of each centroid to his next neighbor of two clusterings A and B. 

 

 

 

Clustering A starts with a larger minimal distance as B does. Considering only 

this we would prefer clustering A. Even the rise of the minimal distances is 

smaller than in B. The uniformly concentration of the distances considered alone 

is an argument for A as well. When considering the minimal distances of B, which 

are lower than the distances of A in the beginning and larger in the end one will 

decide to choose clustering B. The diagram underlines this fact. 
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Fig. 4: Diagram of the minimal distances of example 3 from Tab. 4. The black 
line belongs to clustering A and the gray line represents clustering B. 

 

 

The results are summarized in Tab. 5. 

 

Clustering AvgMinDist WAMD Gini CCMD 

A 7,29      7,25  0,048 *     32,97 

B 10,42 *   10,57 *   0,099   33,51 * 

Tab. 5: Parameters for judging the clusterings of example 3. 

 

The example shows: The Gini coefficient does not detect the “best” clustering in 

this case, but the CCMD criterion does detect the “best” clustering. 

 

Due to the presentment of the CCMD criterion for judging the selectivity of a 

clustering this criterion is superior to the AvgMinDist. The criterion yields the 

same results as an expert when looking at the visualization of the graphical tools. 

The CCMD criterion is suitable for judging the selectivity of a clustering, 

regardless which method for clustering is used.  

The next chapter shows how to interpret the graphical output of the minimal 

distances for the MLA and AMLA methods with respect to find the optimal 

number of clusters for clustering. 
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3 A graphical method for determination of the 
number of clusters 

 

When considering the selectivity of a clustering we can use a graphical tool for 

MLA and AMLA for finding the right amount of classes. Analog to the considered 

graphics of the minimal distances we will create some graphic tools as well. For 

this new graphic we do not need a clustering. The method can also be used for the 

calculated centroids of AMLA. In this graphic the distances of each centroid to its 

nearest neighbor will be mapped. But the values will not be sorted in ascending 

order than in descending order. A typical graphic is shown in Fig. 4. 
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Fig. 5: Diagram of minimal distances in descending order 

 

 

 

Interpretation of Fig 5.: Is the curve to low or does the curve show an extreme 

downward buckle, as between centroid seven and eight, we have a hint that the 

number of clusters is to large for a clustering with high selectivity. Only a 

clustering with fewer clusters can reach a higher selectivity. The reason for this is 

that the selectivity is chosen maximal with this method. 

At this point we can use an advantage of the MLA / AMLA method. A clustering 

with i clusters has the same 1 to i centroids as a clustering with i + 1 clusters. The 

i + 1 cluster is only an additional centroid. If we would test which number of 
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classes for a clustering is necessary the centroids which are calculated by MLA / 

AMLA can be used. Suppose we have clustering with a maximum of j clusters. 

Therefore, j centroids have been calculated by MLA / AMLA. When the selectivity 

of the clustering with j clusters isn’t large enough the following process is started: 

Remove the last calculated centroid and draw the diagram of the minimal 

distances. By leaving out the last centroid two things are archived. The centroid 

with the smallest distance value is skipped due to the fact that MLA / AMLA 

chooses the centroid with the maximal minimal distance in each step. The value is 

the last in the diagram. When calculating new minimal distances with a reduced 

number of centroids by one, the diagram of minimal distances rises. At least the 

value of the now last and smallest distances rises to the value of the former third 

last value. In most cases even the values of further minimal distances become 

larger. This effect is shown in Fig. 6. However, the diversification depends on the 

site of the data. 
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    Fig. 6: Diagram of minimal distances in descending order. The gray line be-

longs to the original clustering. The black line represents the minimal 
distances after skipping one centroid. 

 

 

 

Omitting the last centroid is carried out as long as the smallest value is conform 

with the users requirement. Subsequent the intra-class variance has to be checked. 

The variance should not be “to large”. To large depends on the requirement of the 
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user and the demand of the problem. If the intra-class variance is too large, we 

have to re-implant the omitted centroids step by step until the combination of 

small intra-class variance and large minimal distances reach the users 

requirements. The stepwise adding of centroids is much more time consuming 

than omitting a centroid. This holds because there is a need for a new 

classification to calculate the intra-class variance. 

 The graphical selection procedure is not restricted to MLA / AMLA. Furthermore 

it can be used for other clustering methods as well. But the expenditure of 

omitting and re-implanting centroids will be greater with other methods. 
 
 
 

Outlook 
The introduced CCMD criterion is excellent applicative in finding the clustering 

with the intuitive “best” selectivity. The identification is achieved independently 

of two problematic effects. First a low regime of the minimal distances of the 

centroids to its nearest neighbor and second a large contrast of the minimal 

distances. This connotes that the curves have a larger difference in altitude. 

Therefore, this criterion is more sensitive than the AvgMinDist. Moreover, in 

extreme cases like outliers, we wouldn’t come to the wrong decision.  

Nevertheless, there are still two criteria needed for judging a clustering: The 

CCMD for the selectivity and the intra-class variance for the homogeneity of the 

classes. An optimal innovation would be the conflation of these two criteria. The 

problem which arises is that the criteria measure different quality properties. The 

conflation would involve a number of assumptions and pre-considerations. 

The graphical interpretation for the determination of the number of classes is a 

byproduct of CCMD. This approach is insightful, but the use of the method will 

probably be too much time consuming. Furthermore, when calculating a 

clustering we have to take the underlying problem into account as well. Therefore, 

the choice of the number of classes is not arbitrary. It is conceivable to convert the 

graphic tool into a parameter like the conversion of the minimal distance diagram 

to the CCMD criterion. This supplement of the algorithm could lead to a parallel 

computation of the number of clusters and of the clustering itself. But even for 

this a couple of pre-considerations are necessary. 
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