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The paper introduces a new type of random utility model.  Here the random term is
formulated as a multiplicative factor to express the random effects of the utility
together with deterministic utility aspects.  Some arguments are given why this
multiplicative approach is preferable over the additive solution which is more common
in transportation planning.  It is shown using the Weibull distribution, that this concept
can be transformed into rather simple equations for the probability of the selection of
different modes by individual travellers.  More mathematical derivations show that the
new concept has close relations to the Logit model.  It can, however, provide one more
degree of freedom and thus, better flexibility to adjust the model to reality.  Also with
other assumptions for the random utility term, like the lognormal distribution, this
basic concept can be developed.  For the model, a method of parameter calibration
based on individual traveller’s decisions by maximum likelihood has been developed.
The whole concept is demonstrated with real world data to demonstrate its usability.
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In transportation planning disaggregated choice models play an important role. They
try to model decisions of individual travellers by means of mathematical equations.
These could be decisions about the travel mode on a trip from A to B (modal split).
This could also be decisions between different destinations of their activities (traffic
distribution) or between different routes (traffic assignment).  Disaggregated models
try to represent these decisions based on individual traveller’s behaviour.  Most
popular are  the so-called Logit-models and Probit-models and different kinds of model
approaches derived from these two basic types. All of these models can be summarised
under the term "random utility" solutions since they are based on the determination of
the utility which different travel modes provide to the individual traveller. Here the
utility is divided into one deterministic term and a second term which has properties of
randomness. This random term traditionally is treated as an additional term to the
deterministic utility where the mean of the random utility is usually regarded as sero.
The different formulations of models are a consequence of  different statistical
distributions which are applied for the random utility term.

In this paper the random term is defined as a multiplicative factor to the deterministic
utility. This requires a different set of mathematical derivations to make the model
ready for application. These derivations together with some examples are given below.
Moreover, the implications of the model in comparison to classical solutions are
discussed.
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We look at an individual traveller (index  t)  who has the choice between different
modes or alternatives to travel on a trip from A to B . He/she (in this paper „he“ stands
for „he/she“) has to decide which mode from a set of  J  alternatives (index  i ) he is
going to select. For his selection he applies a set of  K  attributes  (index  k) which
characterise the usefulness of the alternative  i  for the traveller  t . Each attribut can
obtain different specific values  (x i t k)  which depend on the individual  t  and on the

alternative  i . Such an attribut e.g. could be the travel time or costs. Moreover, an
attribut could also be established by a socio-economic parameter of the individual itself
like e.g. income or car-ownership.  Each attribut  k  can have different importance for
the individual . Therefore, each attribut  k  is weighted by a specific factor  Bk  which

we call the parameter of attribut  k .

The individual expects a characteristic utility from his decision.  Of course, this utility
is different for each alternative  i  and it depends on the special situation of the
individual  t . We call this utility:  Uit . Now we assume that the utility is combined by

two different components:
• a deterministic utility  Vit  which can be derived from objective values of the

attributes and
• a random component  εit .

The random component - like in other random utility models - comprises all
disturbances which cannot be described precisely by a mathematical model plus all the
uncertainties which the traveller has to suffer within his decision making process.
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������� The figure illustrates that the Logit model using an additive Gumbel
distributed random term always implies an identical variance independent
of the magnitude of the deterministic utility V.

Therefore, the random component  εit  should be treated as a disturbance term by

which the deterministic utility  Vit  has to be corrected to obtain the true utility  Uit for

the individual  t  and mode  i . Due to these reasons of uncertainty it is realistic to
assume that the random component can be modelled as a multiplicative disturbance
term attached to the deterministic utility. This multiplicative assumption seems to be
more meaningful than to use an additive term to describe the uncertainties. By the
multiplicative term, larger attribut values are weighted with a larger absolute value of
uncertainty than smaller values. This seems to be more realistic. E.g. this example
could help for further illustration: If a traveller likes to get a rough imagination about
his travel time using his car he might be wrong by 1 or 2 minutes if the total travel time
is around 10 minutes. But for a longer trip of 1 hour with the same degree of precision
the error could be between 6 and 12 minutes. It can not be expected that in this larger
range of total travel time a margin for estimation precision of 1 minute is realistic.
Exactly this, however, is assumed by the conventional additive random utility models
like Logit.  This is illustrated in figure 1.  Independent from the magnitude of the
deterministic utility  Vit  the variance of the total utility  Uit  remains always the same
using the Logit model.

Therefore, we assume for our model that the random component of the utility should
be proportional to the absolute value of the utility. Thus we define:

� �
� � � � � �

= ⋅ε (1)
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where  εit  is a positive random variable.

This multiplicative usage of the random component has been called the Rubit-concept
in a former paper (Brilon, Bondzio, 1996).  In this paper we enhance this basic
concept.

In our further derivations we propose a linear model for the deterministic utility, i.e.

� � � �
� � � � � �

�

�

= + ⋅
=

∑�

�

(2)

This assumption corresponds to the other conventional types of random utility models.
It is the most simple format for the utility function. To enhance the model, of course,
also non-linear components might be included, an improvement which would not
complicate the model solution.  It should be noted that with real world data the  Vit

which result from eq. 2 are usually below sero.  This is assumed to be fulfilled in each
case for the following derivations.  This assumption demands for  attributes  Xi t k

which should always be adverse to the selection of an alternative like travel time,
distance, or costs.  Attributes  Xi t k  which with increasing values argue towards
selecting that alternative, should be reformulated such that the assumption mentioned
before is fulfilled ( e.g.  1 / Xi t k    or    1- Xi t k ).

For the random utility term  εit  we have to assume a useful distribution function. This

distribution function in our paper is denoted by
• fε (x) = f (x) for the statistical density function,
• Fε (x) = F(x) for the cumulative distribution function .
It is reasonable to assume that the expectation  E(ε)  of the random utility term  εit  is

equal to  1  irrespective of the individual  t  and the alternative  i . The distribution
function should fulfil this requirement. That means: we assume that the individuals, on
average, make a suitable estimation of their utility situation in the selection process.

We now assume that the individual makes his decision based on rational
considerations. That means: he selects alternative   i  instead of any of the other
alternatives  j  if

� �� �
� �

� �>
≠

max (3)

for all alternatives  j . With eq. 1 this can be expressed as
� �� � � �

� �
� � � �⋅ > ⋅

≠
ε εmax( ) (4)

Taking into account that  Vit < 0  (for each i  and  t ) this inequality can be transformed

via
�

�
� �

� �

� �

� �

<
ε
ε

  ( for all alternatives j ≠ i )

into
ε
ε

� �

� �

� �

� �

�

�
<   ( for all alternatives j ≠ i ) (5)

This means: The alternative  i  is chosen by the individual  t  if inequation 5 is fulfilled
for all alternatives  j  other than  i . Therefore, the probability that alternative  i  is
chosen, is  pi  with:
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  ( for all alternatives j ≠ i )  . (6)

where 
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�
� =

For further derivations the index  t  for the individual can be omitted.  Eq. 6  can be
transformed as follows


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≠∀<= ����� ��

�

�
� ε

ε
  . (7)

where „ �� ≠∀  “   stands for „for all alternatives  j  except  i “
With the derivations in annex 1 we get:
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1)(  (10)

where f(x) = statistical density function for the random variables  εi

and   εj

F(x) = corresponding distribution function
Eq. 10  is accessible for analytical or numerical solutions if
•  the type of distribution function  F(x)  ( and  f(x) = dF/dx   ) is given and if
•  all the  Vi  for each of the alternatives i  (included in  zij  ) are known numerically.

�� ��	�
����	���	�
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�	�	��
Let us now assume as a specific type of the distribution function for the random utility
term  εi :

α
α ββαε





� ⋅−⋅⋅⋅= −1)( (11)

This is the density function of the Weibull-distribution (cf. Plate, 1993). The form of
the distribution function F(x) then is:

αβ
ε




� ⋅−−= 1)( (12)

The function is only defined for  x > 0 .  The shape of this distribution can obtain
various forms (cf. fig. 2 and 3).  For  α = 1  the Weibull distribution coincides with the
well known exponential function whereas for larger  α  we get skewed functions with
shapes comparable to Erlang or Log-normal or other distributions.  Thus the function
can figure out quite differently shaped distributions.  One advantage is that for large  α
, the distribution is rather concentrated on an area along the x-axis in a close vicinity
around  1 (cf. fig. 3).    The Rayleigh distribution which has been used in a former
approach to the problem (Brilon, Bondzio, 1996) is just a special case  (for  α =2  and
β = π/4 )  of this more general distribution.
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Fig. 2: Distribution density function (eq. 11 )  for the Weibull-distribution  for
different parameters  a = α .  In this example  β  is always = 1 .
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Fig. 3: Distribution density function (eq. 11 )  for the Weibull-distribution  for
large parameters  a = α .  In this example  β  has been adjusted such that
E(ε) = 1.
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The parameters of this function are :
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where Γ is the Gamma-function.
With  E (X) = 1   we get

α

α
β 





 +Γ= 1

1
(13a)

From eq. 10 using the Weibull distribution for  f(x)  and  F(x)  we get
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Combining all the exponential terms in eq. 14  into one exponent and with  zii = 1  we
get

∫
∞ ⋅⋅−
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where ∑⋅=
=

�
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���1

1
αβγ

Solving the integral in eq. 15   we obtain:
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 (16)

Here the parameter  β  of the model is not of importance whereas the parameter  α
introduces another degree of freedom into the model structure.  This formula allows an
easy calculation of the probability ( pi ) that alternative  i  is selected by the individual
under consideration, if the deterministic utilities  Vi  are known for each alternative  i ,
which is an important advantage similar to the Logit model.  Moreover, this formula
provides better flexibility compared to Logit due to the additional parameter  α .   α  is
a representation for the variance of the random component  εi  of the utility.

We finally note that in the case of only  J = 2  alternatives we get

1

21

1
2

21

2
1
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��
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 (17)
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It is worthwhile to mention, that our approach also contains the classical Logit model
(cf. Ben Akiva, Lerman, 1987). But it allows more freedom with respect to the
distributional assumptions for the random component. To be precise, define

)ln(
����

�� −=
)ln(

����
εη −=

)ln(
����

�� −=
Then the multiplicative model (eq. 1) can be rewritten as an addititive model

������
�� η+=  (18)

If ��
ε   is Weibull-distributed (eq. 11) then the random variable ��

η  is distributed
according to a Gumbel distribution with density

�
�� 

��

⋅⋅−⋅ ⋅⋅⋅=
αβαβα)(  (19)

and distribution function
�
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��
⋅⋅−⋅−=

αβ1)(  (20)
The decission process in eq. 3  to 6  is equivalent to the well known derivation of the
Logit model. Here the probability  pi  that alternative  i  is selected is given by
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Thus the model can be transformed into the same form as the Logit model. However,
there are important differences between the method proposed in this paper and the
Logit approach:

(1) Note that the linear representation of the utility

∑
=

⋅+=
�

�

������
����

1
0

shows that the parameter  α  in eq. 21  can not be included into the Logit model and
can be assumed as α  = 1   without loss of generality.  On the other hand in the Rubit
model the parameter α  in eq. 16  is identifiable because of the non-linearity of the

transformation x → xα.  Therefore the Rubit concept introduces an additional
parameter, which allows for further flexibility and for a better fit of the model to real
world data.

(2) Secondly, the introduction of the additional parameter β  for the Weibull
distribution (eq. 11) allows an easy adjustment to the condition E[εit] = 1  in the Rubit
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model without loosing any degree of freedom. Note that in principle this is also
possible in the Logit model, by solving

( ) 0
ln =+=

α
γβη

��
�  (22)

where  γ  denotes Euler’s constant, i.e. β = ε-γ.  However, α is not identifiable and
therefore the adjustment according to eq. 22  eliminates all degrees of freedom in the
distributional assumptions for the random component.
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The Weibull distribution must not be the only assumed function for the distribution of
the   εi .  A set of other function has been tested (cf. Brilon, Bondzio, 1996).  Here the

Raleigh distribution turns out as a special case of the Weibull function.  Also the
Gamma function would provide possibilities to further develop the model.

However, as the only solution which is worth to be mentioned besides the Weibull
solution the  log-normal distribution (Aitchison, Brown, 1957) can be considered for
the distribution of the  εi.  Then the distribution function  f(x)  has to be written as (cf.

Plate, 1993):

� 
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σ
σ π
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(ln )

=
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⋅
−

−

⋅1

2

2

2 2
    for x > 0 (23)

where
y = ln x : logarithmic transformation of the original scale  x  for the  εit
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= expectation of the transformed variable
σy

2 = ln( ) var(ln )� �
�

2 1+ = (25)
= variance of the transformed variable
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σ
µ
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2
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σ
µ

(26)

= expectation of the original variable  εit  on the x-scale

σx
2 = µ σ



�
2
2

1⋅ −( ) (27)

= variance of the original variable  εit  on the x-scale

It should be noted that for these derivations the variance σx
2  is assumed to be identical

for each alternative  i .  Then the cumulative distribution function of the  εi  is

∫=
�

	���
�
0

)()( εε (28)
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As we have shown in connection to eq. 1 and 2 the expectation of the  εi  should equal

1  ; i.e.: we assume that on average the individuals can estimate their utility correctly.
As a consequence from this consideration we get   µx = 1  and further on:












+
=

21

1
ln

2

1

�

� σ
µ (29)

σ σ� 

2 2 1= +ln( ) (30)

where  µy  always is negative.

With the Log-normal distribution we can only treat the two-dimensional case; i.e. that
the number  J  of alternatives is  2 .  We now look at the variable  Q (cf. eq. 6) :

�

��
2

1

ε
ε=

Taking the logarithm of  Q  we obtain: )ln()ln(ln 21 εε −=� .  Since  ln(ε1)  and

ln(ε2)  are both assumed to be independent normal distributed variables with their

respective parameters  (µy,1 , σy,1)  and    (µy,2 , σy,2)  the new variable  ln(Q)  is also

normal distributed with parameters
µ µ µ

σ σ σ
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
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� �
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�
�
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This means: Also  Q  is a log-normal distributed variable with the distribution function
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σ π
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For the case that both  ε1  and  ε2  have the same variance  σx  the parameters of the

distribution for  Q  can be written using eq. 29  and 30  as



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+=

=

)1ln(2

0
22

��

�

σσ

µ
(33)

For abbreviation we now use the parameter

( )1ln2 222 +==
��

� σσ (34)

as the new parameter of the model. Thus the variance of the  εi  is expressed by  R

using the equation

σ
�

�


� �

�

�= − (35)
Eq. 32 then can be written as
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2
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Using as another transformation

�
�

� = or ��� ⋅= (37)

we get a  N(0,1) - distribution for the variable  Y .  For practical application we can
obtain solutions for the cumulative distribution  FY(x) from each tabulation of the

N(0,1) - distribution which is available from statistical textbooks.
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At this point we should once again state (cf. eq. 6):
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1

2
1 ln

1
(38)

where
Φ(x) = value of the cumulative distribution function of the  N(0,1) - distri-

bution at point  x
R = parameter of the model which is related via eq. 34 and 35 to the

variance  σx  which the individuals apply to recognise their utility

This means: the application of the Rubit-model for the log-normal case becomes quite
easy. The only equation which has to be used for practical application is eq. 38 where
R  is treated as the parameter of the model.  Once again it should be noted that the Log-
normal distribution allows only the treatment of the two-dimensional case.  Other
derivations by Brilon, Bondzio (1995)  were based on an insufficient assumption of
statistical independence.

!� ���	���	�
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����������

The parameters of the model  Bk  (cf. eq. 2) and  α  (for the Weibull approach) or  R
(for the Log-normal approach)   have to be evaluated based on empirical data.  Let us
assume that we have information from a sufficient sample of travellers about their
travel behaviour. Let the sample size be  T  individuals. For each of these individuals
we know
• the true value for each of the attributes which we consider, e.g. travel time, costs,

length of the distance to be covered, availability of modes.  Also socio-economic
parameters of the person itself could be used as attributes, e.g. income, size of the
household, access to specific travel modes.  These attributes are known for every
individual and here for each of the possible alternatives.

• the type of decision which has been made by the individual (cf. yit  below).

Then the likelihood function can be written as

( )∏ ∑
= =






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
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�

�

�

�

���� �������
�
���
1 1

)(* (39)

with:
j = index for the  J  alternatives
t = index for the  T  individuals in the sample
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


�

$

T = no. of individuals in the sample
For  yit  we introduce the known values obtained from the sample.  For the  pij  the
formulas of the model (eq. 17 or 38) are introduced.  They contain the deterministic
utilities  Vit   (eq. 2)  calculated from the given attributes of travellers and their possible
alternatives observed in the sample.  Then L* is only a function of the parameters in
the model.
We now have a look on the logarithmic transformation of eq. 39:
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For the two-dimensional case this equation can be written as
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The function  L*  has to be maximized to obtain a maximum likelihood estimation for
the parameters  B0 ,  B1 ,  ...  , BK  of the model plus the parameters:

- α for the Weibull-approach
- R for the log-normal approach.

L  has its maximum at the same  parameter values as  L* .  Due to numerical reasons it
is easier to maximise  L (eq. 41 or 42).  An analytical solution for the maximum by
determining the derivatives of  L  towards  the parameters seems to be rather
complicated. A solution of the maximisation problem for  L  is, however, possible
using maximisation facilities in spreadsheet programs such as Quattro-Pro or Excel.
Of course, some more mathematical derivations might be useful to prove the existence
of the maximum. However, using a spreadsheet, solutions for the maximum of  L
could always be found for the examples so far.

"� 		�� ��������	���������������
The model in the form of eq. 16 has also the IIA property (IIA = Irrelevance of
independent alternatives) like the Logit model which can be shown easily applying eq.
16 for  J = 2 and J = 3.  This is not a desired property of a random utility model.
However, all the methods to overcome this problem might be used for the
multiplicative model as they are applied for the Logit solution.  Among these we
should first mention the nesting of alternatives.  This might be studied in a further
phase of the model’s development.

#�� ����	���	�

As a realistic example we use the modelling of the selection process of air passengers
who have to decide which from two accessible airports they use for starting their trip.
Bertram (1995) has performed a survey by interviewing air passengers waiting in the
departure lounge of two smaller airports in Germany. These are Muenster/Osnabrueck
(MOS) and Dortmund (DTM) . For each passenger a set of parameters were evaluated
from the interviews. Our evaluations for this example are concentrated on two
attributes:
1.  the travel times of the travellers from the origin of their trips to both of the

two airports  (in minutes of car travel time; the proportion of travellers using
public transport accessing the airport is negligible) and

2. the availability of flight connections to the desired destination of the
travellers.  A linear model for the deterministic utility has been used:

�	���������� ⋅+⋅+=
210

(43)

where
Tit = travel time of traveller  t  to airport  i  (in minutes of car travel time)
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aid = availability of flights from airport  i  to the desired destination d (in
number of flights per normal workday; max. value in the sample =
5). The evaluation only took into account those destinations d  which
were provided by both airports with at least  1 connection per day.

B0  ,  B1  and  B2  =  parameters of the model

The parameters of the model obtained by a maximum likelihood estimation both for a
conventional Logit-model and the multiplicative Rubit-model  are given in table 1.
Also the frequencies of differences between observed behaviour and model estimations
are indicated. Applying the different models it turned out by t-tests that in the sample
the frequency of flights was not significant for the results. This may be caused by the
fact that - if a destination was provided by both airports - nearly the same number of
flights were scheduled at both of the airports. Basis is a sample size of  521
interviewed persons.  From table 1 we can obtain that for each of the models the
number of wrong estimations was around 5 % .  These 24 cases where the model did
not explain real behaviour were identical for each of the models.

Logit Rubit
Weibull

Rubit
Log-normal

B0 0.092 -49 -1.865

B1 -0.1276 -0.774 -0.0314

B2 not significant

parameter of the
model

α = 14 R = 0.1360

no. of wrong
estimations

24 24 24

�$%&'��� �$($)'*'(+�,-�*.'�%�/$(0�1.,�1'�),2'&+�-,(�*.'�'3$)4&'

From the rather large constant parameter  B0  we can obtain that in the Weibull-based
Rubit-model the attributes are not rather important for the selection probabilities
developed from the model.

The model concept has also been applied on a sample for modal split behaviour of
students at the Ruhr-University.  Zöllner (1997) has investigated this behaviour based
on a sample of 122 interviewed students and employees.  For the example we like to
focus on modelling modal split.  Our evaluations for this example are concentrated on
the attributes:
1.  the travel times
2.  estimated travel costs
A linear model for the deterministic utility has been used:

������������ ⋅+⋅+=
210

(44)

where
Tit = travel time of traveller  t  from the origin of his trip to the university

using mode  i  (in minutes)
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Cit = the estimated travel costs using mode  i  in DM  (assumed to be  0
for bike and walking) .

B0  ,  B1  and  B2  =  parameters of the model
Modes: 1 = car 2 = public transit 3 = motor bike

4 = bicycle 3 = walking
The parameters of the model obtained by a maximum likelihood estimation for the
multiplicative Rubit-model  are given in table 2.

Rubit
Weibull

B0 0,006466

B1 -3,83

B2 -4,37

parameter of the model α = 4

�$%&'��� �$($)'*'(+�,-�*.'�),2$&�+4&�*�),2'&�-,(�*.'�'3$)4&'

As an example for the application of the example fig. 4 illustrates the consequences of
increased travel times in public transit on the modal split. Here we look on the case
that the car travel time is 15 minutes and the cycle travel time is 30 minutes. Travel
costs for car usage is treated as a constant value of 3,oo German marks (DM) whereas
the transit costs are 0, since meanwhile each student has a ticket included into his
university inscription fees, which was not the case at the time of the data collection.
We see that with increasing transit travel time the acceptance of transit is reduced
towards increased car usage. The dotted line applies for the case that also transit
passengers have to pay the price for a single ticket (3,oo DM). The example makes it
clear that the model is able to produce useful results.

ÖV = public transit (= ÖPNV)
Rad = cycle
PKW = passenger car
Reisezeit = travel time [minutes]

������� Example for the use of the model according to eq. 44.
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This paper has shown that it can be useful to apply a multiplicative term εit as the

component of randomness in a random utility model. We call this the Rubit concept.
There is some evidence that this basic concept is more meaningful then other more
conventional model outlines. Like in the traditional case where  εit is added to the

deterministic utility (i.e. Logit or Probit) also here different assumptions for the
distribution of the random variable  εit  can be introduced.

Here the Weibull distribution has been found to provide the easiest solution for the
estimation of selection probabilities. These probabilities can be obtained from a rather
simple equation (eq. 16).  Also the multinominal case can be treated without any
complication. This model concept is rather closely related to the traditional Logit
model. It provides, however, an improved flexibility.
Another solution is provided by using the log-normal distribution for the random utility
term  εit . Then still an acceptable applicability is reached by referring the solution to

the standardised normal distribution  Φ .  This case has so far only been solved for the
two-dimensional case of binary choice.
Also the parameter estimation from given samples based on a maximum likelihood
technique can be solved.  Here up to now only an estimation procedure which can be
run on a spreadsheet has been proposed.  Examples for the application of the model
concept in transportation planning are given.  They showed the usefulness of the
concept.
Of course, some further investigations on the model concept would be useful if the
basic outline is acceptable for further application. Among the possible unsolved
questions the following items should be studied in further detail:
• development of iterative numerical procedures for the computation of maximum

likelihood estimators,
• study of the model performance using more data provided by transportation studies

from the real world in comparison with other models,
•  expanding the model by nesting alternatives for the multinominal case.
Nevertheless, also the version and procedures of the model being presented here
provide direct applicability in practice.

��6
���������
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Equivalence between (7) and (8). Without loss of generality assume  i = 1 . Because
ε1, ... , εg  are independent, the conditional density of  ε1, ... , εg  given   ε1 = x   is

given by

g ( x2, ..., xy | x ) = ∏
j=2

y
 f (xj)

while the joint density is

g ( x1, ..., xy ) = ∏
j=1

y
 f (xj) .

Let  I{A}  denote the function which is equal to  1  if  A  is satisfied and  0  otherwise,
then

P1 = 
⌡

⌠

P ( 
εi

z1j
 < εj   ∀    j≠1 | ε1=x1 ) f(x1) dx1

= ⌡⌠ ...
⌡

⌠

I{
x1
z1j

 < xj ∀  j≠1} g( x2; ...; xy | x1 ) f (x1) dx1...dxy

= ⌡⌠ ...

⌡


⌠

I{
x1
z1j

 < xj ∀  j≠1} ∏
j=1

y
 f (xj)  dx1...dxy

= ⌡⌠ ...
⌡

⌠

I{
x1
z1j

 < xj ∀  j≠1} g( x1; ...; xy )  dx1...dxy

= P ( 
ε1
z1j

 < εj ∀  j≠1 )


