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Abstract

If the number of assessors in a difference test is not large enough to ensure the desired power

of the testing procedure, then it is often advised to use assessors repeatedly. That is, each

assessor performs the testing not just once but several times. There is a discussion going on,

how results of a repeated difference testing are to be analysed. The present paper (as was to be

expected) supports the point of view expressed in Kunert and Meyners (1999). It also tries to

generalise their approach such that we get confidence limits. While the exposition

concentrates on the triangle test, the approach is also applicable for other difference testing

procedures (e.g. pairwise difference test, duo-trio test).
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1. Introduction

In repeated difference tests, each assessor performs the testing procedure repeatedly, thus

increasing the number of assessments. This introduces technical problems for the analysis of

the experiment. How do we take account of the structure introduced by the repetitions? And,

more fundamentally, what is the structure introduced by the repetitions?

A commonly used test statistic for repeated difference tests is the sum of all correct

assessments, summed over all assessors. Several authors (e.g. o’Mahony, 1982, Brockhoff and

Schlich, 1998) argue that the binomial distribution cannot be used to analyse this kind of data.

Brockhoff and Schlich (1998) propose an alternative model for difference tests with

replicates, where the assessors have different probabilities to correctly identify the odd sample

even if the products are identical.

This is criticised by Kunert and Meyners (1999) who agree that assessors will have different

probabilities of correct assessment if there are true differences, but who do not think that

Brockhoff and Schlich’s model makes sense under the null hypothesis of product equality.

They show that, if the null hypothesis is true and the experiment is properly randomised and

properly carried out, then all assessments are independent and all have the same success

probability c. This implies that the sum of all correct assessments is binomial with parameter

c, where c depends on the special kind of experiment that we have done. For instance, we

have c = 1/3 for the triangle test, while c = 1/2 for the duo-trio test. Therefore, the usual test

based on this sum and the critical values of the binomial distribution is a level α test for the

null hypothesis of equality of the products, even if there are replications.

If there are differences between the products, then things are more complicated. The present

paper discusses the distribution of the sum of all correct assessments if the probabilities for

correct assessment are not all equal to c. Let πij be the probability that assessor i gives a
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correct answer at his/her j-th assessment. To analyse the results of the experiment, we need a

model for πij.

In the author’s opinion any model for πij must be compatible with the experimental setup. It

has to be realised that the randomisation of an experiment restricts the possible distributions

of the results. For instance, if there is no difference between the products, then πij equals c, for

each assessor i and each assessment j, see Kunert and Meyners (1999). If there are differences

between the products, then we assume that assessor i with probability ai at his/her j-th

assessment actually experiences the products, and not only guesses. Note that ai depends on

the assessor but not on j, therefore we neglect possible variations of ai over time, e.g. due to

fatigue.

With this assumption the probability to get a correct answer from assessor i at any assessment

is constant over time and equals

iiiij acccaa )1()1( −+=−+=π .

Here c is the (constant) probability that we have had when all products were equal. Therefore,

we can omit the index j and define

ii acc )1( −+=π (1)

as the probability of a correct answer from assessor i at any given assessment. Let Yij be the

result of the j-th assessment by assessor i, where Yij = 1 if the assessment is correct and Yij = 0,

otherwise. It is a central point of the paper to make clear that if the experiment is run properly,

then for given ai the Yij are conditionally independent. To achieve this independence, we must

randomise the order in which the products are arranged for each presentation. And this

randomisation must be done in such a way that it is independent of the other orderings and

independent of the last assessment.

At any assessment, the assessor will either experience the difference and therefore give a

correct answer, or he/she will only guess. We assume that the probability to experience the
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difference is a constant ai for each assessor. When the assessor does not experience the

difference then he / she has to guess. With independent randomisation the assessor cannot

influence his/her probability to guess correctly. It will always be c, independent of the

outcome of the previous assessment. This is not the case if the randomisation is not done

independently.

If e.g. we run a repeated triangle test with six replicates, then it is often recommended to give

each assessor all six possible orderings AAB, ABA, BAA, ABB, BAB, BBA. It is only

randomised which of the six orderings comes first, second, and so on, see e.g. Hunter (1996)

or the ISO 4120 (1983).

Assume assessor i in her first assessment experiences the difference and notices that the odd

sample is in the middle, say. Further assume that in the second assessment she can not

experience the difference. Then, however, she will expect that the odd product will not be at

the same position as before. Therefore, she will take either the right or the left sample. With

the ISO randomisation this gives the assessor a chance of 2/5 of a correct guess. Therefore, Yi1

and Yi2 are no longer independent. If Yi1 = 1 then the probability of Yi2 = 1 increases.

The assessor’s strategy does not work, however, with independent randomisation for each

assessment. Then, with whatever outcome of the other assessments, the assessor has

probability c to guess correctly if he/she does not experience the difference. Therefore with

independent randomisation, the Yij are independent, and for given ai we have that the number

of correct answers Xi from assessor i is binomially distributed with success probability πi.

To proceed, assume that our assessors are a sample from some super-population of potential

assessors, such that the ai are i.i.d. random variables, with some unknown expectation b and

variance var(ai). Therefore, for given assessor i and for all assessments j, the probability of

correct assessment πi is a random variable πi = c + (1 − c)ai, with expectation

 - c)b (c 1* +=π .
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Note that the parameter b is of interest: It is the probability that a randomly selected assessor

correctly experiences the difference between the products at any given assessment, while

 - c)b (c 1* +=π is the probability of a correct answer at any given assessment with any

randomly selected assessor.

We derive a confidence interval for the parameter b, using a bound for )var( ia . The

derivation also uses the central limit theorem, so the confidence interval is valid only if the

number of assessors is not too small. We show some simulation results on the performance of

the interval for small numbers of assessors.

Finally, the confidence interval is compared to corresponding intervals derived from other

methods. This is done with data from an empirical study reported by Hunter, Piggott and

Monica-Lee (2000).

2. A conservative confidence interval for b

We start with the conditional distribution of Xi the number of correct answers of assessor i for

fixed ai. Model (1) implies that, for fixed ai, Xi is binomially distributed with parameters m,

where m is the number of assessments performed by each assessor, and πi = c + (1 − c)ai. This

implies that the conditional expectation is

iiii acmmcmaX )1()|E( −+== π ,

while the conditional variance equals

22)1()21)(1()1()1()|Var( iiiiii acmaccmcmcmaX −−−−+−=−= ππ .

Consequently, the unconditional expectation of Xi is

bcmmcacmmcX ii )1(E)1()E( −+=−+= ,

while the unconditional variance equals

))|Var(E())|E(Var(Var iiiii aXaXX +=

)Var()1(E)1()21)(1()1( 2222
ii acmacmbccmcmc −+−−−−+−=
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)Var()1()Var()1()1()2)(1( 22222
ii acmacmbcmbcbccm −+−−−−−+−=

( ) )Var()1)(1()1()1)(1( 2
iacmmbccbcm −−+−+−−= .

Note that like the ai, the Xi are also i.i.d. variables. Therefore, we have from the central limit

theorem that nXXZ ++= ...1 , the total number of correct assessments, is approximately

normal, if the number n of assessors is sufficiently large.

We can use this approximate normality to get a confidence interval for b. Basically, there are

two ways to do this.

First method: Estimate Var Z from the data.

Define 2 21
( / )

1 iS X Z n
n

= −
− ∑ . Then 2nS is a consistent estimate for Var Z. Consequently,

2

)(
1

E
)(

nS

ZZ
ZT b −= , say,

is approximately IN(0,1) distributed. Note that E Z = nm(c+(1−c)b), and therefore )()(
1 ZT b

depends on b. We conclude that
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is an approximate upper 1 − α confidence limit for b, while
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is an approximate lower 1−α confidence limit for b. Here, t1-α, n-1 is the critical value of the t-

distribution with n − 1 degrees of freedom. The interval [ ])(),( 11 ZUZL is an approximate

level α−1 confidence interval for b.

A disadvantage of [ ])(),( 11 ZUZL lies in the fact that it does not take account of the special

structure of the variance of Z. Note that for b = 0 the nonnegative variable ai must be 0 with
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probability 1. It follows that for b = 0 we have Var(ai) = 0 and, consequently, we know that

)1()Var( cnmcZ −= . Therefore, we do not have to estimate it. Hence, for small b, the interval

[ ])(),( 11 ZUZL does not use all available information and will therefore be generally too large.

We will also see with the help of simulations that the normal approximation for )()(
1 ZT b does

not work too well for some distributions of ai. Therefore, we use the

Second method: Use an upper bound for Var Z.

Note that ]1,0[∈ia . Therefore, we have that ii aa ≤2 with probability 1, and ii aa EE 2 ≤ = b.

This implies that

2Var bbai −≤

and consequently

≤ZVar ( ) )1()1)(1()1()1)(1( 2 bbcmnmbccbcnm −−−+−+−−

)1()1()1()1( 22 bbcnmbccnm −−+−−= . (2)

Equality holds if the ai are Bernoulli-variables, i.e. if they are only 0 or 1.Equation (2) and the

central limit theorem imply that

)1()1()1()1(

)1(
)(

22

)(
2

bbcnmbccnm

bcnmnmcZ
ZT b

−−+−−
−−−= , say,

is asymptotically IN( 0, δ2 ) distributed, where δ ≤ 1. It follows that, for large n, the inequality

α−≤ 1
)(

2 )( uZT b (3)

is true with a probability of at least 1 − α. Note that u1-a is the critical value of the normal

distribution and not of the t-distribution. The denominator of )()(
2 ZT b is a constant, not an

estimate.

Once we have observed Z, we therefore can calculate a one-sided confidence interval by

determining the set of all [ ]1,0∈b , such that equation (3) holds. If Z ≥ nmc, then )()(
2 ZT b is
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decreasing and continuous in b for all [ ]1,0∈b . Therefore, there is a number L2(Z), such that

α−≤ 1
)(

2 )( uZT b for all L2(Z) ≤ b ≤ 1. If Z < nmc, then equation (3) is true for all [ ]1,0∈b and

we define L2(Z) = 0.

With these definitions L2(Z) is conservative approximate lower confidence limit for b.

Similarly to equation (3), we have that for sufficiently large n the inequality

α−−≥ 1
)(

2 )( uZT b (4)

is true with a probability of at least 1 − α. Unfortunately, if Z < nmc then )()(
2 ZT b is

increasing in b for small b and decreasing for larger b. Therefore, it is possible that there are

up to 2 values b with α−−= 1
)(

2 )( uZT b . This may lead to the counter-inductive result that

equation (4) may not hold for very small and for large b, while it holds for intermediate b. In

the special instance n = 1, m = 12 and c = 1/3 and Z = 0, then 96.1)()(
2 −=ZT b for b = 0.036

and for b = 0.52. Therefore, all b < 0.036 and all b > 0.52 would be rejected as too large,

while all b between 0.036 and 0.52 would be accepted.

To get an upper confidence limit, we define U2(Z) = 1, if α−−≥ 1
)(

2 )( uZT b for all b, and we

define U2(Z) = 0 if α−−< 1
)(

2 )( uZT b for all b. If there are one or two b0 such that

α−−= 1
)(

2 )(0 uZT b , then we take the conservative approach and define U2(Z) as the largest of

those. This makes U2(Z) an approximate and conservative upper confidence limit for b. The

conservative approach accepts some b for which inequality (4) does not hold, i.e. it is too

long. However this is not a real problem. It can be shown that the set of all Z for which there

are two b0 with α−−= 1
)(

2 )(0 uZT b has probability less than α/2 whatever may be the true b.

Therefore, in what follows, we will use [ ])(),( 11 ZUZL as a 1 − 2α confidence interval for b.

It is easiest to calculate L2(Z) and U2(Z) numerically from equations (3) and (4) with the help

of a computer.
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3. Simulations on the performance of the interval

For n = 1 and for some distributions of a1, the normal approximation can be a very poor fit for

the distribution of Z. The approximation is relatively good in the case that a1 has zero

variance, i.e. if a1 is always equal to b. In that case, Z is binomially distributed, a distribution

that generally can rather well be approximated by the normal distribution, especially if the

number of replicates m is large.

In the other extreme case, if a1 is 1 with probability b and 0 with probability 1 − b, the

distribution of Z is very skewed. This implies that the normal distribution with the same mean

and variance is no good fit.

With any distribution of the ai the fit gets better if n gets large. It is of interest, therefore, to

find out how well is the fit for reasonably sized n. To see how well our confidence limits work

for n in the practical range, we use simulations. The simulations are for m = 12 and for n = 5,

10 or 20. To see what happens in the worst case, we have simulated the most skewed situation

in which each ai has probability b to become 1 and probability 1 − b to be 0. Note that this

two-point distribution is exactly the case in which the upper bound for the variance used for

the calculation of )()(
2 ZT b is exact. Therefore, if [ ]22 , UL has a good coverage probability for

the simulated distribution of the ai, it will have an even higher one for other distributions with

a smaller variance.

The simulations indicate that for n ≥ 10 the normal approximation works rather well for

)()(
2 ZT b but surprisingly poor for )()(

1 ZT b . The poor performance of )()(
1 ZT b is due to the fact

that there is a correlation between Z and S.

For r = 1 or 2, whenever )()( ZT b
r is larger than the critical value or less than minus the critical

value, then the confidence interval [ ])(),( ZUZL rr does not cover b. Therefore, if the

confidence intervals were exact, then we would expect that all the entries in Table 1 were

equal to 250. If we observe a lower number than 250 then the estimated coverage probability
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is higher than expected. Any entry that is much larger than 250 indicates that the confidence

interval is not reliable.

Table 1
Simulation results on the confidence intervals derived in section 2 when m = 12

number of runs (out of 10,000) where
b n

1,975.0
)(

1 )( −> n
b tZT 1,975.0

)(
1 )( −−< n

b tZT 975.0
)(

2 )( uZT b > 975.0
)(

2 )( uZT b −<

0.0 20 249 279 265 221
10 212 275 198 205
5 200 303 201 174

0.1 20 72 722 279 139
10 37 990 352 110
5 34 762 499 47

0.2 20 112 516 300 200
10 75 823 341 154
5 56 1327 355 53

0.3 20 163 415 268 238
10 138 379 273 165
5 144 1096 339 83

0.4 20 258 303 273 243
10 222 336 240 213
5 252 678 171 195

0.5 20 299 215 229 262
10 322 226 230 280
5 449 284 335 224

The numbers for )()(
2 ZT b if n ≥ 10 are not too far away from the expected 250.

The statistic )()(
1 ZT b , however, performs very poorly for instance for b = 0.1, when we have

too many cases where 1,975.0
)(

1 )( −−< n
b tZT . Note that this means that we are falsely assuming

that b is significantly less than its true value. Figure 1 shows the empirical distribution

function of )()(
1 ZT b in the case m =12, n = 20, b = 0.1 and if the distribution of the ai is a two-

point distribution. For comparison, Figure 1 also contains the distribution function of the t-

distribution. It is evident that )()(
1 ZT b is consistently too small. This indicates why, even for

n = 20, we falsely conclude in 7% of the runs instead of the nominal 2.5% that b is

significantly less than 0.1.
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Figure 1:
The empirical distribution function of )()(

1 ZT b in the case m =12, n = 20, b = 0.1

For comparison, the empirical distribution function of )()(
2 ZT b displayed in Figure 2 fits much

better to the normal distribution. However, here the distribution is slightly biased in the other

direction: there are some observations less with small )()(
2 ZT b than expected from the normal

distribution, while there are some observations with large )()(
2 ZT b too many.

Figure 2:
The empirical distribution function of )()(

2 ZT b in the case m =12, n = 20, b = 0.1.
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The poor performance of )()(
1 ZT b is due to the fact that there is a correlation between Z and

the estimated variance: Note that in our simulations each assessor is either a responder and

therefore gives a correct answer all the time, or the assessor is a non-responder who always

only guesses. For the data in Figure 1, the probability to be responder is 0.1. This implies that

whenever there are many responders, then there are still many non-responders and the

variance is large. If, however, there are no responders, then the variance is small. Therefore,

in cases with large Z, we generally also had a large S and )()(
1 ZT b was relatively small

compared to )()(
2 ZT b . In cases with small Z, we generally got a highly negative )()(

1 ZT b

because Swas small. Therefore, the confidence interval based on )()(
1 ZT b is not reliable in the

worst case scenario simulated here.

Our simulations seem to indicate that the confidence interval [ ])(),( 22 ZUZL is reliable for

n = 10 or more. It is of interest to see if it is useful. That is, we want to find out whether it is

small enough not to cover too many b. It has to be noted that [ ])(),( 22 ZUZL was constructed

to be model robust and conservative. Therefore, it will generally cover too many b. However,

it was also constructed to be good for small b. This results in an excellent performance for

testing the hypothesis that b = 0, i.e. that all products are equal.

We reject the null hypothesis of equality of the products whenever [ ])(),( 22 ZUZL does not

cover 0. This, however, is equivalent to 975.0
)0(

2 )( uZT > . Note that )()0(
2 ZT is the test statistic

which assumes that we have n times m assessors. Kunert and Meyners (1999) have shown that

this is a level α test. The fact that for b = 0, we have n m independent observations instead of

n makes the asymptotics work much better for this case.

Again simulating the two point distribution for the ai, we have counted how often the null

hypothesis of equality of the products is rejected by the test based on [ ])(),( 22 ZUZL . Table 2
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reports the results. For comparison, we have also counted how often [ ])(),( 11 ZUZL did not

cover 0. It is clear from Table 2 that the confidence interval based on )()(
2 ZT b has much larger

power.

Table 2
Number of experiments (out of 10,000) where the null-hypothesis of equality of the products

is rejected for the two point distribution of the ai.
b n

1,975.0
)0(

1 )( −> ntZT 975.0
)0(

2 )( uZT >
0.0 20 249 265

10 212 198
5 200 201

0.1 20 1394 5215
10 413 3715
5 174 2761

0.2 20 4493 8682
1425 6729
315 4988

0.3 20 7549 9734
10 3237 8618
5 801 6809

If we simulate the one-point distribution, where all ai are equal to b with probability 1, then

we still find that the test based on )()(
2 ZT b gives more correct rejections for each b > 0 than

the test based on )()(
1 ZT b , see Table 3. The entries in Tables 2 and 3 for b = 0 indicate that

both tests are level α tests. Note that, to get a 95% confidence interval, the one sided tests

have to be level 2.5% tests. Therefore, we should have 250 rejections for b = 0.0.

We have simulated the two extreme situations for the distributions of the ai. The two-point

distribution is the one with the largest variance. The test based on )()(
2 ZT b is constructed with

this distribution in mind. Therefore, it is no surprise that this test produced much more

rejections of the null-hypothesis for this case. The one-point distribution is the case with the

smallest variance. Here, the test based on )()(
1 ZT b should compete much better, because the

test based on )()(
2 ZT b overestimates the variance. Our simulations show, however, that the

latter performs better even in this case.
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Table 3
Number of experiments (out of 10,000) where the null-hypothesis of equality of the products

is rejected for the one point distribution of the ai.
b n

1,975.0
)0(

1 )( −> ntZT 975.0
)0(

2 )( uZT >
0.0 20 242 252

10 200 215
5 206 225

0.1 20 5,134 5,751
10 2,411 3,093
5 1,165 1,789

0.2 20 9,767 9,879
10 7,405 8,387
5 3,382 5,428

0.3 20 10,000 10,000
10 9,742 9,937
5 6,341 8,778

4. Practical examples

Hunter, Piggott and Monica-Lee (2000) report three experiments with repeated triangle tests.

In all three experiments, each assessor examined m = 12 presentations of the two products. In

experiment 1 they had n = 30, in experiment 2 they had n = 24 and in experiment 3 they had

n = 23 assessors. So all three experiments were in the range where we would expect the

interval [ ])(),( 22 ZUZL to be reliable.

Table 4 contains the data from the experiments.

Table 4
Number of assessors i for which the number of correct assessments Xi equals x
x 0 1 2 3 4 5 6 7 8 9 10 11 12

Experiment 1 0 0 1 2 3 7 8 6 2 1 0 0 0
Experiment 2 1 0 1 5 5 3 3 3 1 2 0 0 0
Experiment 3 0 0 2 1 1 4 3 6 3 1 0 1 1

We count that Z equals 170 in Experiment 1, 117 in Experiment 2 and 147 in Experiment 3.

Clearly, the examples indicate that the model of a two point distribution of the ai with mass

only at the points 0 and 1 is not correct for these data. All assessors with ai = 1 would have
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Xi = 12. It has to be pointed out, however, that the interval )](),([ 22 ZUZL does not assume

this model to hold. It only allows it as a possible case.

If we determine the set of all b for which equations (3) and (4) are fulfilled, we get that

)](),([ 22 ZUZL equals [0.0862, 0.3919] in Experiment 1, [0.0151, 0.3057] in Experiment 2

and [0.1382, 0.5112] in Experiment 3. Note that none of the confidence intervals covers 0, so

we can reject the null-hypothesis that all products are equal in all three experiments.

Hunter, Piggott and Monica-Lee (2000) in their paper considered π∗, the expected probability

to get a correct result. They used several methods from the literature to calculate confidence

intervals for π∗. It is interesting to note that these intervals from the literature make different

assumptions on the distribution of π∗, while our interval is conservative and works without

any assumptions on the distribution of the ai. So is clear that it will generally give a larger

interval. It is of interest to see how much larger it is. Also note that the methods considered by

Hunter, Piggott and Monica-Lee (2000) do not split πi up into c + (1 – c)ai.

To compare our results these confidence intervals, we therefore have to transform the interval

)](),([ 22 ZUZL to )]()1(),()1([ 22 ZUccZLcc −+−+ , which is a model robust confidence

interval for π*.

We then get a generalisation of Hunter, Piggott and Monica-Lee's (2000) Table 2. The

intervals displayed in Table 5 show that generally the model robust confidence interval is

indeed the largest. There is one important exception: The model robust confidence interval is

the only one (except the one based on the binomial distribution which is clearly too

optimistic) to find out that there is a significant difference between the products in

Experiment 2. The other models do not find a significant difference for this example.

We might get a smaller (and maybe more useful) confidence interval by making more

restrictive assumptions on the distributions of the πi which exclude our two point distribution,

but which use the relation π* = c+ (1 – c)b. Some work in this area is currently being done.
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Table 5
Confidence intervals for p* from several methods.

Method Experiment 1 Experiment 2 Experiment 3
Binomial
Distribution*
(assuming a one point
distribution of the ai)

[0.4206,0.5238] [0.3495, 0.4629] [0.4737, 0.5915]

GLM* no interval derived [0.3305, 0.4807] [0.4419, 0.6214]
Brockhoff & Schlich* [0.4207, 0.5238] [0.3176, 0.4949] [0.4297, 0.6355]
t-test (calculated from

)](),([ 11 ZUZL )
[0.4230, 0.5214] [0.3277, 0.4848] [0.4438, 0.6214]

model robust
(calculated from

)](),([ 22 ZUZL )

[0.3933, 0.5947] [0.3433, 0.5373] [0.4254, 0.6742]

*) These intervals were calculated by Hunter, Piggott and Monica-Lee (2000).
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