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Abstract

In modern intensive care physiological variables of the critically ill can be reported

online by clinical information systems. Intelligent alarm systems are needed for a suitable

bedside decision support. The existing alarm systems based on �xed treshholds produce

a great number of false alarms, as the change of a variable over time very often is more

informative than one pathological value at a particular time point. What is really needed

is a classi�cation between the most important kinds of states of physiological time series.

We aim at distinguishing between the occurence of outliers, level changes, or trends for a

proper classi�cation of states. As there are various approaches to modelling time-dependent

data and also several methodologies for pattern detection in time series it is interesting to

compare and discuss the di�erent possibilities w.r.t. their appropriateness in the online

monitoring situation. This is done here by means of a comparative case-study.

Key words: Online monitoring, time series analysis, state classi�cation, change point

detection, ARIMA models, phase space models, dynamic linear models

1 Introduction

In intensive care prompt detection of critical states and of intervention e�ects is of utmost im-

portance. Most of the bedside decisions are still based on subjective judgement and experience

and do not rely on statistical data analysis. Currently a physician may be confronted with

more than 200 variables of each critically ill during his morning round (Morris and Gardner

(1992)), while an experienced physician may not be able to develop a systematic response

to any problem involving more than seven variables (Miller (1956)). Furthermore the exist-

ing alarm systems based on �xed treshholds produce a great number of false alarms due to

measurement artefacts, patient movements or minor problems such as transient 
uctuations

past the set alarm limit (O'Carrol (1986)). Usually changes of a variable with time are more
important than one pathological value at the time of observation. Hence, the online detection

of qualitative patterns like outliers, level changes, or trends in physiological monitoring data is

an important goal in medical time series analysis. In this paper we compare several statistical

methods which could reach this goal.

In autoregressive models (AR) (Box et al. (1994)) each variable is expressed as a �nite, lin-

ear aggregate of previous observations plus a stochastic term. Several authors have successfully

applied AR models in the �eld of critical care (Imho� and Bauer (1996)), in longitudinal phys-

iological experiments (Lambert et al. (1995)), as well as in studies on laboratory data of the

chronically ill (Imho� et al. (1997)). It has been shown that usually autoregressive processes

of low order are suitable for physiological variables. Pattern detection can be accomplished by

comparing new observations with prediction bounds calculated by an AR model, which has to
be speci�ed automatically.

The phase space (PS) approach was originally introduced for nonlinear systems. Complex

deterministic, especially chaotic systems can be analyzed by transforming the observed series

into a Euclidean space. Several authors judge the complexity of heart rate dynamics by
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measures which are based on such a phase space embedding (Faustmann and Ganz (1994),

Gar�nkel et al. (1992), Khadra et al. (1997)). In the context of intensive care phase space

models were introduced by regarding the phase space embedding as a multivariate sample of

dependent observations (Bauer et al. (1998)). Consequently multivariate outlier identi�ers

(Becker and Gather (1999)) can be used for pattern detection then.

In dynamic linear models (DLM) (West and Harrison (1989)) the current value of the

process is a linear transform of an unobservable state parameter and a random observation

error. The state parameter is assumed to follow a �rst order AR model. In an early application

Smith and West (1983) used a multiprocess version of the linear growth model, which can

be formulated as DLM, for monitoring patients after renal transplant (see also Smith et al.
(1983)). This procedure requires high computational power and is not very reliable in pattern

identi�cation (Gordon (1986), Stronegger (1991), Daumer and Falk (1998)). Alternatively de

Jong and Penzer (1998) suggest pattern detection by assessing the in
uence of observations

on the parameter estimates.

In general it has been shown that time series techniques are suitable for retrospective

analysis of physiological variables (see the references mentioned above or also Hill and Endresen

(1978), Gordon and Smith (1990), Hepworth et al. (1994)). In the following we extend a case-

study described in Imho� et al. (1998) by the inclusion of dynamic linear models. After

describing the data set, we give some background information for each of the models and a

description of their use for state classi�cation. Finally we present and discuss the results of

the case-study.

2 The data

On the surgical intensive care unit of the Community Hospital Dortmund, a 2000 bed teaching

hospital, online monitoring data was acquired from 19 critically ill patients (eight female, eleven

male, mean age 65 years) with extended hemodynamic monitoring requiring pulmonary artery

catheters, in one minute intervals from a standard clinical information system. These data

were transferred into a secondary SQL database and exported into standard statistical software

for further analysis.
From a total of 550,000 single observations of seven variables (heart rate and invasive

blood pressures), segments of 150 to 500 observations for each variable were visually classi�ed

by a senior intensivist into �ve clinically relevant patterns: no change, presence of outlier,

temporary level change, permanent level change, and trend. The intensivist had not to de�ne

any objective criteria, why he chose a speci�c classi�cation. From a total of 134 time series 23

were classi�ed as without change, 35 as containing outliers, 10 as showing a trend pattern, and

24 and 42 as containing temporary and permanent level changes respectively. The time series

were presented to the intensivist a second time in di�erent order for reclassi�cation without any

di�erent result. The same segments were analyzed with second order autoregressive (AR(2)),

phase space (PS) and dynamic linear models (DLM).

In the following let x1; : : : ; xN be a time series consisting of observations of a physiological
variable at equidistant time points t = 1 ; : : : ; N. As usual we denote the corresponding random

variables by capitals X1; : : : ;XN .
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3 Autoregressive models

An autoregressive model for a time series formally resembles a multiple regression. A stochastic

process fXt : t 2 Zg is called an autoregressive process of order p, denoted by AR(p), if

Xt = �1Xt�1 + : : :+ �pXt�p + �t for all t 2 Z;

where �1; : : : ; �p are unknown weights measuring the in
uence of preceding values on Xt. The

variables �t; t 2 Z, are assumed to stem from a white noise process, which is a sequence of

uncorrelated variables from a �xed distribution with mean zero and time invariant variance.

In most cases �t is assumed to be normally distributed (see Box et al. (1994) for more details).

Typically, physiological variables can be modeled by AR processes with short memory

p � 2 in a satisfactory manner (Lambert et al. (1995), Imho� and Bauer (1996), Imho� et al.
(1997)). For our data preliminary tests with classical interactive model selection showed, that

either �rst or second order models were statistically appropriate. Second order autoregressive

models were chosen for all cases as slight overdetermination is better than underdetermination

if there are not too few observations. An extensive model selection process is not possible in

online monitoring and has to be avoided.

Each time series was split into two segments, an estimation period (observations x1; : : : ; xn,

average length 173 minutes) and a prediction period (xn+1; : : : ; xN , average length 123). An

AR(2)-model with weights �̂1 and �̂2 was �tted to the data from the estimation period by

conditional least squares. Prediction intervals were constructed for both the estimation pe-

riod (one-step predictions) and the prediction period (h-step predictions) on the basis of the

estimated weights.

Pattern detection was done by comparing the actual observations to the prediction intervals
(PI) for the prediction period. According to the number of values outside the PI, the pattern

was classi�ed into the di�erent categories. Values outside the PI were classi�ed as an outlier,

if less than 5 consecutive observations (= minutes) were outside the PI, while a level change

was identi�ed by 5 or more consecutive observations outside the PI. A level change was called

temporary, when less than 50% of the observations of the prediction period were outside the

PI, permanent otherwise.

A simulated time series is shown in Figure 1. The data represent an AR(1) process, where

one large and some small outliers have been inserted as well as a temporary level change and

a trend period. The �rst 60 minutes are used for estimation and predicting the subsequent

observations. Obviously the outliers and the level change are rapidly detected by comparison

with the prediction bounds, while the detection of the trend takes longer in spite of the steep
slope.

Hence, trend patterns were identi�ed indirectly by deviations of the autocorrelation func-

tion (ACF) of the residuals and the Durbin-Watson-statistics. In this case, the ACF of the

original series was analyzed for typical trend patterns. If corresponding signs could be found,

an AR(2) model was �tted to the �rst di�erences of the series. If this model showed a su�cient

goodness of �t, a signi�cant trend was assumed.

A suitable choice of the best PI width for pattern detection was unknown before the study.

In some cases a di�erence between the visual classi�cation and the percentage of observations

identi�ed as outliers by the model occurred, if a 95% PI was chosen. One possible reason for

this di�erence is a temporary violation of model assumptions like stationarity or the Gaussian

distribution of the observations. The other important reason is that a �xed level for the PI
cannot adapt to changes of the process variability. For a �xed level, small variability implies a

small PI. Observations outside such a PI may be clinically irrelevant. Therefore, the PI level

was adjusted a-posteriori from an initial 95% to 99% (strategy L1), 99.9%, 99.99% (together:
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Figure 1: Simulated Time Series

AR(2) process with large outlier

at t = 80 , temporary level change

between t = 100 and t = 125 and

steep trend between t = 150 and

t = 180.

The same series with upper and

lower prediction bounds for � =

5%. The outlier and the tempo-

rary level change are rapidly de-

tected by the PI, while for the

trend it takes some time.

strategy L2), or in some cases to 90% (strategy H). The analysis was run again and pattern

identi�cation was done one more time with this adjusted PI.

4 Phase space models

Phase space models are based on a transformation of the series x1; : : : ; xN into anm-dimensional

Euclidean space Rm, the so-called phase space, by constructing phase space vectors ~xt:

~xt := (xt; xt+1; xt+2; : : : ; xt+(m�1))
0 2 Rm ;

with m 2 Nnf0g ; t = 1 ; : : : ; N� (m � 1) and m�N . Here, m is called the embedding

dimension. By this technique, which is derived from the theory of nonlinear dynamic systems
(Packard et al. (1980), Takens (1980)), the dynamical information of a series is transformed

into a spatial information.

For choosing m there are numerous rules for nonlinear models, and in most applications

the components of the phase space vectors are separated by a time delay. For linear Gaussian

processes, Bauer et al. (1999) recommended to choose m similarly to choosing the order of

an AR(p) model. They de�ned the components of ~xt to be chronological observations with a

time delay (lag) of always one, as dependencies between consecutive observations should be

considered for pattern identi�cation.

For m = 2 the set of vectors can be plotted in a two-dimensional space. The corresponding

vector cloud, which is called phase space embedding, visualizes properties of the underlying

dynamic. For stationary linear Gaussian processes (corresponding to a steady state) the vectors
form an elliptic cloud. Its form re
ects the dependency structure of the process. The centre

and the shape of the ellipse are determined by the unknown mean vector ~� and the covariance

matrix � of the vectors (Xt;Xt+1)
0. For estimating these parameters either the classical or

robust estimators of the mean and the autocovariances of a time series can be used (Bauer et

al. (1998, 1999)).

The distance of the vector (xt; xt+1) from the mean vector ~� = ( �; �) gives information

about its deviation from the steady state. The Mahalanobis distance (MD) can thus be used

for identifying such spurious observations. Taking

MDt =

q
(~xt � ~�)0��1(~xt � ~�);
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Figure 2: Simulated Time Series - II

Phase space embedding of the sim-

ulated series. The steady state

corresponds to the big ellipse, the

introduced outlier to the large tri-

angle with points (160; 145) and

(145; 160), the temporary level

shift to the small ellipse and the

trend to the movement along the

diagonal.

After taking di�erences, the trend

is no longer visible. The outlier

and the return to steady state af-

ter the trend are represented by

the large triangles with two points

outside the ellipse and the tempo-

rary level change by two triangles

with points extruding for change

and return.

MD2
t is �

2
2 distributed. The set of vectors ~x given by

f~x 2 R2 : (~x� ~�) 0
�

�1(~x� ~�) = �22;1��g

forms an ellipse around the mean vector ~�, where �22;1�� is the 1��-quantile of a �
2 distribution

with two degrees of freedom for a given level �.

In practice the unknown parameters have to be replaced by estimators. By the choice of

�, which determines the size of the critical ellipse, the probability for the procedure to falsely

identify one or more values as outliers can be kept below a given probability.

If all observations lie inside the estimated ellipse, it can be said that the system is in a

steady state. If one or more vectors extrude from the ellipse, a disturbance can be assumed.

Disturbances can be distinguished by the movement of the a�ected vectors in the phase space.

The left hand side of Figure 2 shows the phase space embedding of the simulated series from

Figure 1. Subsequent vectors are connected by a line to visualize the movement through the

phase space. The steady state corresponds to the large ellipse, the introduced outlier to a

triangle leaving the ellipse, the level change to a second, smaller ellipse and the trend to the
movement along the diagonal.

Our identi�cation procedure uses the di�erenced time series dt = xt � xt�1; t = 2 ; : : : ; N.

The vectors ~dt are analyzed in consecutive order whether they extrude from the cloud. On

the basis of the movement of outlying phase space vectors a discrimination between di�erent

patterns is done. An abrupt level change in the original series results in one single outlier in

the di�erenced series. Thus, if the vector ~dt extrudes from the cloud, a distinction between an

outlier and an abrupt level change is possible by the location of ~dt+1 (see Bauer et al. (1998)

for a detailed description). The right hand side of Figure 2 shows the phase space embedding

of the �rst di�erences of the simulated series.

In our case-study the �rst 60 observations were taken and analyzed retrospectively (i.e.,

outlying regions were estimated and patterns in this time interval were identi�ed). Thereafter
a time window of length 60 was moved through the data. That means, that at time point

t = 61 ; : : : ;it was determined, if the phase space vector was in an outlying region. If not, then

no pattern was deteced, and the ellipse was replaced by a new one, which was estimated from
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the last 60 observations dt�59; : : : ; dt. If the phase space vector ~dt was found in a distant region,

it was concluded that the system was not in a steady state, and after analyzing the consecutive

vectors dt+1; dt+2; : : :, it was decided which pattern was present. In this case only the aberrant

observations have to be replaced by their predictions for continuing the monitoring procedure.

5 Dynamic Linear Models

Similar to autoregressive models, dynamic linear models (DLM) are de�ned by sequential

parametric equations (West and Harrison (1989)). The idea is, that the observation Xt is a

linear transformation of an unobservable state parameter ~�t plus an error term. For these states

an AR(1) structure with possibly time-varying, but known parameters is assumed. Smith and

West (1983) use a linear growth DLM for monitoring patients after renal transplant:

Xt =
�
1 0

�
~�t + �t

~�t =

�
1 1

0 1

�
~�t�1 + ~�t

Here, the states are 2-variate parameters ~�t = ( �t; �t)
0, where �t is the process level and �t is the

slope, i.e., the change in level at time t. Furthermore, �t � N(0; Vt) is the random observation

error and ~�t � N(~0;Wt) is the random change in "evolution" at time t, respectively. An
initialization ~�0 � N(~0;W0) is needed to start the process.

The proper a-priori speci�cation of the covariances is di�cult. Smith and West deduced

from theoretical considerations the general form

Wt =

�
�21 + �22 �22
�22 �22

�
:

They used a multiprocess model with di�erent time invariant values V (j), �21;j and �22;j , j =

1; : : : ; 4, for describing steady state, level change, slope change and outlier, which were de�ned

by preliminary empirical trials. Classi�cation was done by online calculation of the a-posteriori

probabilities of the states for each time t. In a similar way Daumer and Falk (1998) used a
conjugate sequential updating procedure. Experience shows that overparametrization and

insu�cient sensibility may occur in pattern detection since the model may turn out to be too


exible.

Other authors propose to assess the in
uence of groups of observations on the parameter

estimates for (retrospective) diagnostics and detection of structural changes in a single-process

model. Normand and Tritchler (1992) suggested the directed Kullback-Leibler divergence for

diagnostic purposes. However, this is a summary measure for all changes, e.g. also changes in

variability and, therefore, di�cult to interpret. Harvey and Koopman (1992) proposed also in a

retrospective setting to use auxiliary residuals of the observations, level and slope parameters,

which are calculated via the smoothed parameters. De Jong and Penzer (1998) extended this

approach by ideas of Pe~na (1990) and suggested Cook (1977) type in
uence statistics of the
smoothed parameters, which are based on deletion diagnostics. Along the same lines we use

the statistics

D
t;h;k
0 := (xt � �tjt+k)V

�1
tjt�h

(xt � �tjt+k)

D
t;h;k
1 := (�tjt+k � �tjt�h)w

�1
t;1jt�h

(�tjt+k � �tjt�h)

D
t;h;k
2 := (�tjt+k � �tjt�h)w

�1
t;2jt�h

(�tjt+k � �tjt�h) ;
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where �tj~t and �tj~t are the estimated parameter values at time t in the light of the information

D~t gained until time ~t. In the same way Vtjt�h, wt;1jt�h and wt;2jt�h are the predicted variances

of Xt, �t and �t respectively. D
t;h;k
0 is a normalized deviation from the process level, while

D
t;h;k
1 and D

t;h;k
2 are normalized changes in the level and in the slope respectively.

The unknown covariances were �tted to the observations of an estimation interval using

an ad hoc approach tested before with simulated data. We did one step of an EM-algorithm
towards the ML-estimates from the starting values �0 = xn, the mean of the estimation

interval, �0 = 0, V = s2T , the standard deviation in the estimation interval, and a non-singular

covariance matrix W chosen by some preliminary trials. This procedure turned out to be

rather robust against misspeci�cation of W. This is due to the large improvements of the

estimates in the early steps of an EM-algorithm.

Several strategies were considered w.r.t. the estimation intervals. Interval lengths of 30

and 60 minutes were applied, and both possibilities of estimating the parameters only once

for the whole series (as in the AR approach) and moving a time window of 30 (60) minutes

through the series (like in the PS approach) were tried out.

A level change at time t induces a signi�cant change in the level parameter and therefore

large values of D
t;h;k
1 for h; k > 0. Similarly, trends can be characterized by slope changes and

thus by large Dt;h;k
2 . An outlier implies a large value of Dt;h;k

0 . However, the distinction of

the patterns is not easy. An outlier also results in a large Dt;1;0
1 and a level change typically

also implies large Dt;h;k
2 . Figure 3 illustrates the in
uence statistics for the simulated data.

By preliminary trials with simulated and real data we found the following slightly complicated

rules for pattern recognition, where D
h;k
i;j is the j-largest value of Dt;h;k

i in the estimation

period. Classify the state at time t as

1. level change LC,

if the following four conditions are all ful�lled:
a) the one-step normalized level in
uence is large: Dt�1;1;0

1 � D
1;0
1;q ,

b) during the last �ve minutes at least six out of eight multi-step level in
uences are

large: Dt;i;5
1 � D

i;5
1;3 or D

t+i;i+1;5
1 � D

1;0
1;3 (i = 1 ; : : : ;4),

c) neither xt�1 is an outlier nor xt+1 has returned to the steady state (see 4.),

d) j�t+5j0 � �tj0j < j�t+5j0 � �t�1j0j.

2. temporary level change TLC,

if within half of the time after the change, say at t+ i, another change or a trend occurs,

such that minfj�t+ijt+i � �t+jjt+jj; j = 0 ;1g > minfj�t+ijt+i � �t�j�1jt�j�1j; j = 0 ;1g.

3. trend,

if within the last 40 minutes there is no level change and in at least 80 % of the cases
we have Dt�i;j;20

2 � D
j;20
2;3 ; i = 0 ; : : : ;10; j = 0 ; : : : ;4.

4. outlier,

if Dt;1;0
0 � 9:0 �D1;0

0;r and at time t there is no level change or trend.

If Dt;1;0
0 � 9:0 �D1;0

0;r , but D
t;5;0
1 < D

5;0
1;q and xt�1 is an outlier, then we suppose that for

time t the series has returned to the steady state after an outlier.

5. steady state:

else.
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Figure 3: Simulated Time Series { III

In
uence statistics for outlier,

level change and slope change one

observation ahead. For both the

outlier and the sudden end of the

trend period all in
uence statistics

are very large.

In
uence statistics for outlier,

level change and slope change �ve

observations ahead. Now the in-


uence of the level change is better

visible, while the trend still is not

obvious.
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Basically we set q = 2, r = 8, and q = 3, r = 16 respectively for an estimation period of

30 or 60 minutes. These rules failed similarly as in the AR approach, when there was either

very little variability in the estimation period or very high variability with some outliers. The

former resulted in the detection of too many outliers and level shifts, as even small changes

are "relatively big", while the latter rendered the detection of any change di�cult. Thus, we

tried several adjustments. In case of low variability, we multiplied the estimated variance V by

the factor 10 (strategy L1), or multiplied all Dh;k
i;j by 10 (L2). In case of very high variability,

we either divided V by 10 and used q = 4 (H1) or we divided V by 100 and used q = 5 (H2).

Standard factors were chosen as a routine adjustment is needed.

Under the normality assumption the statistics D
t;1;0
0 are independent (biased) estimators

of the standardized squared deviation from the process level when the process is in a steady

state. For r = 8 ( r= 16) we have more or less the 32% percentile of the in
uence statistics for

an estimation period of 30 (60) minutes (we started the calculation of the statistics at t = 5).

As the expected 32% percentile of a squared N(0; �2)-distributed variable is an estimate of �2,

D
1;0
0;r can be treated as a robust variance estimator. Thus, our basic rule for outlier detection

corresponds to the common "3� rule".

6 Results

The results of our case-study are summarized in Figure 4. With autoregressive models all series

with outliers, level changes and without change were correctly identi�ed. The phase space

approach always identi�ed series without any change and with outliers, too. Identi�cation of

level changes failed, when the decrease or increase of the observed values was rather slow.

Dynamic linear models are at �rst sight very appealing as they allow to assess the distance

of each observation from the current level as well as the changes in level and in slope over time.

Nevertheless, classi�cation with DLMs was more problematic since the in
uence statistics turn

out to be not very reliable when the changes do not have an ideal form. Moreover, parameter

estimates can be strongly a�ected by outliers. Series without change and with outliers could be

identi�ed more often with estimation intervals of 60 minutes. Level changes were detected best

by moving an estimation interval of 30 minutes through the series. However, any of the results
was worse than for the AR and the PS approach. Identi�cation by in
uence statistics for

the DLM parameters has severe problems with little variability during the estimation period,

with level changes occuring stepwise and with patterns of outliers in small time lags. Little

variability during the estimation period causes the detection of outliers and level changes to be

too sensitive subsequently. Stepwise level changes are hard to detect since the smoothed level

parameter adjusts step by step, possibly without any signi�cant in
uence statistics. Several

close outliers may either mask each other or be mistaken for a level change. Figure 5 shows

an example of a stepwise level change which could not be detected.

All methods were more sensitive to outliers and level changes than clinically relevant.

Especially with outlier detection, 95% prediction intervals for autoregressive models were too

close. In a second run the prediction intervals were adjusted until clinically relevant results were
found. This problem was most pronounced when the series had very small variability during

the estimation period. For those series deviations from the mean are statistically signi�cant on

the 95% level which are clinically not meaningful, as the small prediction intervals do not re
ect

therapeutically important changes. In �ve cases of outlier detection, the PIs were adjusted

to 99.99%. For a very sensitive detection of outliers in some instances the PI was reduced to

90% (Table 2). In PS-models an overall level of 99.99% was chosen for all series. For DLMs,

standardized adjustments depending on the estimation period could improve classi�cation in

some cases.
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Figure 4: Numbers of correct classi�cation results
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Figure 5: Real Data Example { Heart Rate

Top: Series with a stepwise level

change;
middle: In
uence statistics for

level change, one observation

ahead;

bottom: Phase space embedding of

the series;

Top: Upper and lower prediction

bounds;
middle: In
uence statistics for

level change, �ve observations

ahead;

bottom: Phase space embedding of

�rst di�erences;

While the level change is detected by the AR and the PS approach, the in
uence statistics do

not detect this stepwise change.
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Trend detection cannot be done directly neither with AR nor with PS models. With AR

models, it requires complete model diagnostics as described in section 3. After �rst order

di�erentiation, the AR model was �tted to the time series in the estimation period. Because

of the di�erentiation of the series the 95% PI widens rapidly after the start of the prediction

period. This phenomenon precludes sensitive detection of changes during the prediction period.

With PS models a trend can only be detected by the shape of the vector ellipsoid, which is a

relatively insensitive method for the detection of slight trends, see Figure 2. The possibility of

direct trend detection is the main advantage of DLMs. Trend detection with DLMs was best

when the hyperparameters were �tted to an estimation interval of 30 minutes at the beginning

and kept unchanged thereafter.
Comparison between precisely diagnosed AR models and over-determined models (AR

order higher than necessary) showed that over-determined models allow a semi-automatic

pattern detection without any trade-o� in clinical sensitivity. PS models o�er opportunities

for fully automated time series analysis in this context. DLMs demand suitable speci�cation

of the hyperparameters, and for any classi�cation rule formulated by in
uence statistics there

are patterns of outliers which destroy the analysis. A more detailed discussion of AR and PS

models can be found in Imho� et al. (1998).

7 Discussion

The individual statistical evaluation of a single patient constitutes an important task in critical

care monitoring. Reliable algorithms for artefact rejection have to be used before the series

can be subjected to statistical analysis. Robustness against artefacts and outliers is still a

major problem with most time series methods (Atkinson et al. (1997)).

In our study, patterns of univariate physiological time series could reliably be identi�ed

both with low order autoregressive models and phase space models. The only exception were

trend patterns where both approaches have shortcomings. DLMs o�er advantages for trend

detection, but they are not as reliable as the other approaches for the detection of outliers

and level changes. The phase space approach allows a meaningful application even with small

sample sizes.
For most bedside decision problems the methods are too sensitive. AR models seem to

be better in this regard than PS and DLMs. But a direct comparison is di�cult because, in

the estimation period of AR models, no pattern detection is performed. Thus, there is no

possibility to misclassify patterns in this period, whereas PS models look for patterns from

the onset.

A possible task for further research is to replace the assumption of normality by allowing

for distributions with more weight in the tails (Adler et al. (1998)). This could reduce the

sensitivity of the procedures. A disadvantage would be that estimation procedures are more

complicated and demand more computational e�ort. This could be critical for an extension to

a multivariate monitoring procedure for several physiological variables. Another way to reduce

the sensitivity is to use an automatically adjusted level. A low level should be chosen, if the
variability of the process is small and vice versa. Such an automatized level adjustment has

already been included into the PS procedure and has lead to signi�cant improvements. For

DLMs robust Kalman �lter procedures (Schick and Mitter (1994)), which are less sensitive

against outliers, might improve classi�cation. In
uence statistics are based on non-reversible

transformations, thus they imply a loss of information. This is much worse in online monitor-

ing, where few information is available, than in a retrospective setting. As an alternative, the

smoothed parameter estimates could be monitored directly.
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Research has also to be done w.r.t. multivariate time series analysis since the underly-

ing processes in intensive care are high dimensional with multiple dependencies between the

physiological variables. This could improve classi�cation of the physical state of a patient.

Automatic classi�cation of states in every situation and online application are not feasible at

present. Methods for automatic online analysis of physiological variables would o�er an option

for a more reliable evaluation of the individual treatment. Such techniques could be employed

to generate smart alarms, that may be more reliable and less error prone than currently used

simple treshold alarms. On the other hand, time series analysis can be very helpful in the

scienti�c o�-line analysis of univariate intensive care monitoring data. They may complement

the other analytical, data-based approaches towards medical diagnostics (e.g. Wernecke et al.
(1988)).
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