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Abstract

Objectives: To determine how different mathematical time series approaches can be implemented for
the detection of qualitative patterns in physiologic monitoring data, and which of these approaches
could be suitable as a basis for future bedside time series analysis.

Design: Off-line time series analysis.

Setting: Surgical intensive care unit of a teaching hospital.

This work has in part been supported by the Deutsche Forschungsgemeinschaft, Sonderfors-
chungsbereich 475

This work has already been published in: Imhoff M, Bauer M, Gather U, Löhlein D (in press)
Statistical pattern detection in univariate time series of intensive care on-line monitoring data.
Intensive Care Med 24: 1305-1314

Preliminary results of this study were presented at the 10th European Congress of Intensive
Care Medicine, Paris, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46902284?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Patients: 19 patients requiring hemodynamic monitoring with a pulmonary artery catheter.

Interventions: None.

Measurements and results: Hemodynamic data were acquired in 1-minute intervals from a clinical in-
formation system and exported into statistical software for further analysis. Altogether, 134 time se-
ries for heart rate, mean arterial pressure and mean pulmonary artery pressure were visually classified
by a senior intensivist into five patterns: no change, outlier, temporary level change, permanent level
change, and trend. The same series were analyzed with low order autoregressive (AR) models and
with phase space (PS) models. The resulting classifications from both models were compared to the
initial classification. Outliers and level changes were detected in most instances with both methods.
Trend detection could only be done indirectly. Both methods were more sensitive to pattern changes
than they were clinically relevant. Especially with outlier detection, 95% confidence intervals were
too close. AR models require direct user interaction, whereas PS models offer opportunities for fully
automated time series analysis in this context.

Conclusion: Statistical patterns in univariate intensive care time series can reliably be detected with
AR models and with PS models. For most bedside problems both methods are too sensitive. AR mod-
els are highly interactive, and both methods require that users have an explicit knowledge of statistics.
While AR models and PS models can be extremely useful in the scientific off-line analysis, routine
bedside clinical use cannot yet be recommended.
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1 Introduction
Today most of our bedside decisions are based on subjective judgment and experience, rather than on
hard data analysis. Most of the changes of a variable in over time are more important than one patho-
logical value at the time of observation. Over the past three decades mathematical methods have been
developed that allow the assessment of single or multiple variables over time.

There are various approaches to describe time dependent data generated from dynamical systems re-
flecting the different natures of the underlying processes. Time-dependent data are either generated
in controlled scientific and engineering experiments or observed in medical, biological, environmen-
tal, and econometric studies. Although in neighboring sciences that deal with dynamical systems
some of the same phenomenona are investigated, different terminologies and interpretations of the
data generating mechanism are applied. This also leads to the use of a different calculus for data anal-
ysis.
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Methods used for describing these systems assume that the process under consideration is determin-
istic or stochastic or a combination of the two. In mathematics and theoretical physics, methods from
the theory of dynamical systems [1] are often used to describe deterministic processes, whereas in
physical and engineering applications approaches from the fields of systems theory [2] and digital sig-
nal processing are frequently applied [3]. Most of this work deals with fully deterministic processes
as well as deterministic processes and additive noise. In that context noise is seen as measurement er-
rors or additive random effects, which are superimposed on the deterministic signal. By contrast, in
statistical time series analysis the models are constructed in a way that random effects also drive the
processes themselves. This approach is suitable to model medical, biological, environmental, and
econometric variables like blood pressure or stock prices, because many of these processes can be re-
garded as stochastic processes [4, 5, 6, 7, 8, 9, 10]. We, therefore, concentrate here on time series anal-
ysis techniques for analyzing intensive care data.

Only a few investigations have employed this methodology in the field of intensive care medicine. In
general it has been shown that time series analysis techniques are suitable for retrospective analysis
of physiologic variables [8, 9, 10]. A statistically similar, but methodologically more challenging task
is the on-line analysis of intensive care monitoring data. Statistically, approaches to this problem are
rare and not readily available for application in clinical practice [11, 12, 13].

For this study, two entirely different statistical methods were used to describe critical care time series:
autoregressive models, which have been used in numerous applications since their introduction in the
1970s, and phase space models, which represent a new approach to time series data. In autoregressive
models the current value of a process is expressed as a finite, linear aggregate of previous values of
the process and a stochastic term [14, 15]. In phase space models, after a transformation, the time se-
ries data are regarded as a multivariate sample with dependent observations [16].

Several authors have applied autoregressive models in the field of critical care [8], in longitudinal
physiological experiments [10], as well as in studies of laboratory data of the chronically ill [9]. Au-
toregressive models have also been successfully used to describe on-line time series from intensive
care bedside monitors [8].

Clinical investigations with autoregressive models into therapeutic effects have recently been report-
ed from the fields of cardiology [10], rheumatology [17], neurology [18], psychiatry [19], and nursing
research [20].

The phase space approach originally came from the theory of nonlinear systems and is used for anal-
ysis of complex, deterministic, and especially chaotic systems. Several authors have applied measures
which are based on phase space embeddings to judge the complexity of heart rate dynamics [21, 22,
23]. The application of these methods to heart rate dynamics is only feasible, when data are recorded
with high sampling frequency (e.g., 50 ms [21]).

In clinical information systems data is often recorded in longer time intervals (e.g., 1 min) and, there-
fore, a different approach for analysis has to be selected. A new application of phase space models
was recently introduced in the context of intensive care data, where phase space models are formulat-
ed in the statistical framework of linear stochastic systems [16]. This allows a meaningful application
of these models to different physiologic variables, even with small sample sizes.
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The detection of qualitative patterns in physiologic monitoring data (e.g., outliers, level changes,
trends) is one of the basic applications of medical time series analysis. Traditional statistical methods
for pattern identification like cluster or discriminant analysis are appropriate for time independent
data [24] but cannot be used for identifying and discriminating time series patterns. One possible sta-
tistical approach to the identification of patterns in time series are state space models, first used in the
engineering sciences [25]. Several applications of Kalman Filter techniques to intensive care data ex-
ist [12, 26]. But these procedures are not very reliable in the identification of patterns and they require
significant computational power [26, 27].

Recently, neural networks have been used for describing and controlling dynamical systems [28, 29].
The transfer of neural networks to pattern recognition in intensive care data is difficult: Every patient
has to be controlled individually, and it is not clear how to construct training phases. It is also difficult
to decide with the help of neural networks whether or not the state of a critically ill patient is improv-
ing, because too little information about the health of the patient is available for the training phase
[30, 31].

In the following investigation we chose autoregressive and phase space models, because they are suit-
able to model the underlying dynamic processes of intensive care variables and seem to be promising
for the identification of patterns [8, 9, 16]. This study evaluates two aspects of the application of time
series analysis to on-line monitoring data: (a) can all patterns be correctly identified with the applied
statistical methods? (b) are the applied methods adequate for clinical use?

2 Patients and methods

On a 16-bed surgical intensive care unit in a 2000 bed teaching hospital on-line monitoring data were
acquired from 19 consecutive critically ill patients (8 females, 11 males, mean age 65 years), who had
pulmonary artery catheters for extended hemodynamic monitoring, in 1-minute intervals from a stan-
dard clinical information system. These data were transferred into a secondary SQL database and ex-
ported into standard statistical software for further analysis. The system configuration was comprised
of the following: (a) Clinical Information System (CIS): Emtek Continuum 2000, Version 4.1M3, (b)
Decision Support System (DSS): Sybase SQL server 4.9.2, (c) Statistical Software: SPSS version 6.1,
SAS version 6.12 with additional programs in SAS/IML, and (d) System platform: Sun Sparc, Sun
Solaris 1.1.2 (CIS, DSS) and 2.5 (statistical software).

From a total of 550,000 single observations of seven variables (heart rate and invasive pressures), seg-
ments of 150 to 500 observations for each variable were visually classified by a senior intensivist into
five medically relevant patterns: no change, outlier, temporary level change, permanent level change,
and trend. The intensivist did not have to define objective criteria to explain why he chose a specific
classification. A total of 134 time series were included in the study. The classifications are listed in
table 1. All these a priori classifications were done by one senior intensivist. After all time series were
classified, they were presented again in a different order for reclassification by the same intensivist.
There were no differences in the classification, which was attributable to the obviousness of the pat-
terns as shown in the examples in figures 2 to 6.
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The same segments were analyzed with second order autoregressive [AR(2)] models and with phase
space [PS] models.

Each series of autoregressive models was split into a model estimation period, and a prediction period,
where the pattern should be diagnosed. The average length of the estimation period was 173 minutes
- that of the prediction period 123 minutes (table 1).

The actual measurements were compared to the confidence intervals (CI) for the prediction period.
According to the percentage of values outside the CI, the variation was classified into the different
patterns. Values outside the CI were classified as an outlier, if less than five consecutive observations
(= minutes) were outside the CI. A level change was identified by five or more consecutive observa-
tions outside the CI, and was called a temporary level change with less than 50% of the prediction
period outside the CI, and a permanent level change with 50% or more of the prediction period outside
the CI.

Trend patterns were indirectly identified by deviations of the autocorrelation function (ACF) of the
residuals and the Durbin-Watson statistics. In this case, the ACF of the original series was analyzed
for trend typical patterns. Typically, the ACF plot of a time series without a trend declines exponen-
tially (diagram 1). In the case of a trend (i.e., a nonstationary series) the ACF plot fades only slowly
over a larger number of lags (diagram 1). In these cases, an AR(2) model of the first derivative of the
time series was calculated. If this model showed sufficient goodness of fit, a significant trend of the
time series was assumed.

Table 1 Physiological time series included in the study:
Variables and patterns, as identified a priori by an intensivist.
Length of estimation and prediction periods for autoregressive models.

Variables and Patterns

No Change Outlier
Level Change

Trend Total
Temporary Permanent

Variable

HR 8 6 7 11 8 40

AP (mean) 5 24 5 7 0 41

PAP (mean) 10 5 12 24 2 53

Total 23 35 24 42 10 134

Estimation Period for AR-models

Mean 208 163 144 177 184 173

Maximum 501 481 334 451 410 501

Minimum 81 51 41 50 80 41

Prediction Period for AR-models

Mean 98 94 152 150 94 123

Maximum 299 270 470 337 150 470

Minimum 20 20 40 50 50 20
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Because the correct CI width was unknown before the study, a posteriori adjustment of the CI was
done and the analysis rerun with this CI. This was done in cases where an inexplicable difference be-
tween the visual classification and the percentage of outliers occurred. The margin of the CI deter-
mines the “sensitivity” of the model. In this study an autoregressive or phase space model was con-

Diagram 1 Top: Plot of the autocorrelation function for the first 16 lags of a series without a
trend (prediction period of the series from diagram 3). Rapid decline of the coeffi-
cients for the ACF.
Bottom: Plot of the autocorrelation function for the first 16 lags of a series with a
trend (prediction period of the series from diagram 6). Slow decline of the coeffi-
cients for the ACF.
Solid bars = Coefficients of the ACF or PACF.
Solid lines = 95% Confidence Limit for the ACF or PACF.
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sidered too sensitive if at least one outlier was detected by the model that was not described in the
initial visual classification.

In order to compare the CIs between different time series as one measure of the sensitivity of the pre-
dicted model the relative confidence interval ( ) was calculated as the difference between the up-
per ( ) and lower confidence limits ( ) in relation to the fitted model ( ) for the entire
prediction period expressed in percent:

For PS models, the first 60 observations were taken and retrospectively analyzed (i.e., outlying re-
gions were estimated and patterns in this time interval identified). After this, a time window of length
60 was moved through the data. That means, that at time point 61 it was determined if the phase space
vector was in a distant region. If not, then no pattern was present, and the estimated outlying re-
gion was replaced by a new one, that was estimated from the last 60 observations . This
was repeated for every new observation as long as for the time point the phase space vector was
in a distant region. Then the system was not in a steady state, and after analyzing the consecutive ob-
servations , it was decided if a pattern was present similar to the retrospective analysis.

A detailed description of the concepts of autoregressive and phase space models and the underlying
statistics is given in appendix 1.

3 Results

With autoregressive models, both outliers and level changes could always be identified. All series that
were classified as “without change” were also correctly identified by autoregressive models. Phase
space models allowed the identification of series without any change and with outliers in evary in-
stance, too. Temporary level changes were correctly identified in 20 out of 24 series, and permanent
level changes in 37 out 42. In the instances where identification failed, the level changes were marked
by a very slow decrease or increase of the observed values.

Diagrams 2 to 6 display typical examples of each pattern analyzed by the two different methods. Di-
agram 2 shows the same series for mean pulmonary artery pressure, which was clinically classified
as “no change”, while in the AR model the confidence interval was adjusted to 99% to allow the cor-
rect classification. The graphic representation of the series without a change is obvious in the PS mod-
el and is confirmed by the phase space procedure.

Typical graphs for outliers are shown in a time series for heart rate in diagram 3. As before, the 95%
CI for the AR model was too close for the clinical situation. With a 99.9% CI, two outliers could be
identified that extrude from the CI. The same outliers are graphically represented by two vectors in
the PS model that protrude from the imaginary ellipsoid of the vector cloud.
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The analysis of a time series for heart rate with a temporary level change is shown in diagram 4. In

the PS model the temporary level change is represented by a small secondary ellipsoid of vectors that

extrude from and fall back into the main ellipsoid, when the series returns to baseline values. Similar-

Diagram 2 Top: Autoregressive model for a time series without significant change: AR model
for mean PAP. All data points for the prediction period are within the 99% CI.
Solid line: Measured series of mean pulmonary artery pressure (PAPm)
Dashed line: fitted AR(2) model of PAPm
Dotted lines: 99% confidence interval for AR(2) model of PAPm
Time: time after start of first measure in minutes

Bottom: Phase space model for the same time series: PS-model for mean PAP. All
vectors of the PS model are within an imaginary ellipsoid.
 d_n: Value for PAPm at time “n”
d_(n-1): Value for PAPm at time “n-1” (i.e. one observation prior to d_n)
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ly, the time series lies outside the 95% CI of the AR for the time of the temporary level change.In the
PS model of a permanent level change the vectors from the secondary ellipsoid do not fall back into

Diagram 3 Top: Autoregressive model for a time series with an outlier: AR model for mean
AP. Three data points (outliers) are outside the 99.9% CI.
Solid line: Measured series of heart rate (HR)
Dashed line: fitted AR(2) model of HR
Dotted lines: 99.9% confidence interval for AR(2) model of HR
Time: time after start of first measure in minutes

Bottom: Phase space model for the same time series with an outlier: PS model for
mean AP. Few vectors extrude from the imaginary ellipsoid. Each vector repre-
senting an outlier.
 d_n: Value for HR at time “n”
d_(n-1): Value for HR at time “n-1” (i.e. one observation prior to d_n)
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the main ellipsoid, as the time series in the AR model will not return to the baseline within the pre-
diction period (diagram 5).

Diagram 4 Top: Autoregressive model for a time series with a temporary level change: AR-
model for HR. A series of values is outside the 95% CI. Quantification with addi-
tional regressor.
Solid line: Measured series of heart rate (HR)
Dashed line: fitted AR(2) model of HR
Dotted lines: 99.9% confidence interval for AR(2) model of HR
Time: time after start of first measure in minutes

Bottom: Phase space model for the same time series: PS model for HR Several
vectors extrude from the imaginary ellipsoid and form an additional ellipsoid,
which falls back to the main ellipsoid. Changes cannot be quantified.
 d_n: Value for HR at time “n”
d_(n-1): Value for HR at time “n-1” (i.e. one observation prior to d_n)
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