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Abstract: We discuss filtering procedures for robust extraction of a signal from noisy time
series. Moving averages and running medians are standard methods for this, but they have
shortcomings when large spikes (outliers) respectively trends occur. Modified trimmed means
and linear median hybrid filters combine advantages of both approaches, but they do not
completely overcome the difficulties. Improvements can be achieved by using robust regression
methods, which work even in real time because of increased computational power and faster
algorithms. Extending recent work we present filters for robust online signal extraction and
discuss their merits for preserving trends, abrupt shifts and extremes and for the removal of
spikes.
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1 Introduction

In speech recognition, video transmission and intensive care monitoring the basic task is to
extract a signal from the observed noisy time series. The signal is assumed to vary smoothly
most of the time with a few abrupt shifts. Besides the attenuation of normal observational
noise and the removal of outlying spikes for recovering smooth sequences, the preservation
of the locations and heights of shifts and local extremes is important. All this needs to be
done automatically and in real time with short delays. This increases the risk of confusing
outlier sequences and shifts or local extremes. For distinguishing extremes and outliers we
rely on the smoothness of the underlying signal, i.e. observations which are far away from an
estimated signal value are treated as outliers and not as being due to a signal peak. We can
identify shifts by their duration setting a lower limit for the length of a relevant shift.

Moving averages and other linear filters are popular for signal extraction as they recover
trends and are very efficient in Gaussian samples, but they are highly vulnerable to outliers
and they blur level shifts. Tukey (1977) suggests running medians for removing outliers and
preserving level shifts, but standard medians have deficiencies in trend periods (Fried and
Gather, 2002). Linear median hybrid filters (Heinonen and Neuvo, 1987, 1988) have been
suggested as they are computationally more efficient than running medians, and preserve
shifts similarly good or even better than these. These filters track polynomial trends, but
they can only remove single isolated outliers. Modified trimmed mean filters are another
compromise between running means and running medians. They choose an adaptive amount
of trimming, but like running medians they also deteriorate in trend periods.

A better solution for tracking trends is to replace the median, a robust location estima-
tor, by the estimated intercept obtained by robust regression of the data in a moving window
against time. Based on a comparison of functionals with high breakdown point Davies, Fried
and Gather (2004) recommend Siegel’s (1982) repeated median because of its robustness
against outliers and its stability. Since larger outliers have stronger effects on the repeated
median we can add automatic rules for online trimming of outliers and construct proce-
dures which are almost as bias-robust as filters based on least median of squares regression
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(Rousseuw, 1984), but considerably faster and more efficient for Gaussian samples (Fried,
2004). The Qα-method (Croux and Rousseeuw, 1992, Rousseeuw and Croux, 1993) has very
nice properties for scale estimation even when a level shift occurs (Gather and Fried, 2003).

Robust regression also allows to construct hybrid filters which have similar benefits as lin-
ear median hybrid filters, while being considerably more robust (Fried, Bernholt and Gather,
2004). Procedures applying adaptive trimming which do not deteriorate in trend periods can
also be derived (Bernholt, Fried, Gather and Wegener, 2004b).

In Section 2 we introduce the filtering procedures. In Section 3 we discuss computational
and other aspects. In Section 4 we propose a robust rule for the adaptive choice of the window
widths. In Section 5 we analyze real and simulated data for further comparison before we
give some conclusions.

2 Methods for robust filtering

We assume a component model for the sequence (xt) of observed data

xt = µt + ut + vt, t ∈ Z. (1)

The underlying signal µt is the level of the time series, which is assumed to vary smoothly
with a few sudden changes, while ut is additive noise from a symmetric distribution with mean
zero and variance σ2, and vt is impulsive (spiky) noise from an outlier generating mechanism.
For online signal extraction we move a time window of width n = 2k + 1 through the series
and use xt−k, . . . , xt+k to approximate µt. This causes a time delay of k observations. Firstly
we fix k to a given value for all filters.

2.1 Filters based on robust regression

A standard median filter (running median) approximates the signal µt by the median of the
observations {xt−k, . . . , xt+k} within a moving time window,

SM(xt) = µ̃t = med{xt−k, . . . , xt+k}, t ∈ Z,

where µt is regarded as the level of the series at time point t, which is assumed to be
locally constant. For tracking trends, Davies et al. (2004) suggest fitting a local linear trend
µt+i = µt + iβt, i = −k, . . . , k, to {xt−k, . . . , xt+k} by robust regression and recommend
Siegel’s (1982) repeated median (RM). When applied to the data (i, xt+i), i = −k, . . . , k, the
RM reads

RM(xt) = µ̃RM
t = med{xt−k + kβ̃t, . . . , xt+k − kβ̃t}

β̃RM
t = medi=−k,...,k

{
medj �=i

xt+i − xt+j

i − j

}
.

2.2 Filters based on trimming

Lee and Kassam (1985) suggest modified trimmed mean (MTM) filtering as a compromise
between running means and running medians. MTM filters regulate the amount of trimming
depending on the data. Firstly the local median µ̃t and the local median absolute deviation
about the median (MAD) σ̃t are calculated, then all observations farther away from the
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median than a multiple qt = dσ̃t of the MAD are trimmed. Finally, the average of the
remaining observations is taken as filter output:

MTM(xt) =
1
nt

k∑
i=−k

xt+i · 1[µ̃t−qt,µ̃t+qt](xt+i),

nt = #{xt+i ∈ [µ̃t − qt, µ̃t + qt], i = −k, . . . , k},
qt = d · cn · med{|xt−k − µ̃t|, . . . , |xt+k − µ̃t|} .

Here, cn is a correction factor, which is chosen to achieve unbiasedness for Gaussian noise.
For a very large window width we get cn = 1.483, while e.g. for n = 21 we have cn = 1.625.
For d = 0, MTM(xt) is a running median, while for d = ∞ we get a moving average.

MTM filters implicitly assume a location model as standard median filters do. A straight-
forward modification is to fit a local linear trend by the repeated median and trim those
observations having large residuals in this regression setting. The local variability can be
estimated by applying the MAD to the regression residuals (Bernholt et al., 2004). The filter
output can then be derived either by least squares regression or by the repeated median of
the observations with moderately large residuals. We denote the resulting filters by TRM
and MRM, respectively:

TRM(xt) = xJt − β̃TRM
t jJt

xJt =
1
|Jt|

∑
j∈Jt

xt+j

jJt
=

1
|Jt|

∑
j∈Jt

j

β̃TRM
t =

∑
j∈Jt

(j − jJt
)(xt+j − xJt)

∑
j∈Jt

(j − jJt
)2

Jt = {j = −k, . . . , k : |xt+j − µ̃RM
t − jβ̃RM

t | ≤ qt}
MRM(xt) = med{xt+j − jβ̃MRM

t , j ∈ Jt}
β̃MRM

t = medi∈Jt

{
medj∈Jt,j �=i

xt+i − xt+j

i − j

}
,

with (µ̃RM
t , β̃RM

t ) being the repeated median level and slope estimate for the current time
window {xt−k, . . . , xt+k}.

2.3 Hybrid filters

Linear median hybrid filters are combinations of linear and median filters (Heinonen and
Neuvo, 1987, 1988). Linear subfilters are applied to the input data before taking the median
of their outcomes as final filter output. This reduces computation time and increases the
flexibility compared to standard median filters due to the variety of linear subfilters. Linear
median hybrid filters with finite impulse response, briefly FMH filters, are characterized by
subfilters which respond to a finite number of impulses only.

A simple FMH filter corresponds to a location model and applies two one-sided moving
averages and the current observation xt as central subfilter for edge preservation:

SFMH(xt) = med{Φ1(xt), xt, Φ2(xt)}
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Φ1(xt) =
1
k

k∑
i=1

xt−i, Φ2(xt) =
1
k

k∑
i=1

xt+i.

Predictive FMH filters correspond to a linear trend model and apply predictive FIR subfilters
for one-sided extrapolation of a trend:

PFMH(xt) = med{ΦF (xt), xt, ΦB(xt)},

ΦF (xt) =
k∑

i=1

hixt−i, ΦB(xt) =
k∑

i=1

hixt+i.

Choosing the weights hi = 4k−6i+2
k(k−1) , i = 1, . . . , k results in the minimal mean square error

(MSE) predictions for a linear trend which is disturbed by white noise (Heinonen and Neuvo,
1988).
Combined FMH filters use predictions of different degrees,

CFMH(xt) = med{ΦF (xt), Φ1(xt), xt, Φ2(xt), ΦB(xt)},

with Φ1(xt), Φ2(xt), ΦF (xt) and ΦB(xt) being the subfilters for forward and backward ex-
trapolation of a constant signal and a linear trend as given above.

In view of increased computational power and because of improved algorithms, com-
putation time is nowadays not a great problem. Fried, Bernholt and Gather (2004) use
half-window medians and repeated medians to construct robust hybrid filters:

PRMH(xt) = med{RMF (xt), xt, RMB(xt)}
CRMH(xt) = med{RMF (xt), µ̃F

t , xt, µ̃
B
t , RMB(xt)}

Here, µ̃F
t = med{xt−k, . . . , xt−1} and µ̃B

t = med{xt+1, . . . , xt+k} are half-window medians,
while RMF (xt) and RMB(xt) estimate the level at time t using the repeated median of
xt−k, . . . , xt−1 and xt+1, . . . , xt+k, respectively:

RMF (xt) = med{xt−k + kβ̃F
t , . . . , xt−1 + β̃F

t }
β̃F

t = medi=−k,...,−1

{
medj=−k,...,−1,j �=i

xt+i − xt+j

i − j

}

RMB(xt) = med{xt+1 − β̃B
t , . . . , xt+k − kβ̃B

t }
β̃B

t = medi=1,...,k

{
medj=1,...,k,j �=i

xt+i − xt+j

i − j

}
.

3 Comparison of different filtering procedures

In the following we compare the previous filtering procedures w.r.t. computation time and
their analytical properties.

3.1 Computation

The time needed for the filtering is crucial in real time applications. Fast algorithms for the
update of the filter output are needed for online signal extraction. Denoting the length of
the time window by n, the median of the proceeding window can be updated in logarithmic
time (O(log n)) using linear space if the data in the window are stored in sorted order using
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a red-black tree (Cormen, Leiserson and Rivest, 1990, Section 15.1). This improves on the
linear time needed for calculating the median from scratch.

An algorithm for the update of the repeated median in linear time using quadratic space
based on a hammock graph is proposed by Bernholt and Fried (2003), and another update
algorithm needing only linear space running in O(n log n) average time is presented by Fried,
Bernholt and Gather (2004).

Updating the MAD can be done in logarithmic time (Bernholt et al., 2004). Hence, the
MTM can be calculated in logarithmic and the TRM in linear time. For the MRM, however,
O(n log n) time is needed at least for the second repeated median. Detailed descriptions of
the update algorithms can be found in Bernholt et al. (2004) and Fried, Bernholt and Gather
(2004).

Table 1 summarizes the time and the space needed for the updates of the filtering proce-
dures. Note that the space for the repeated median and both repeated median hybrid filters
can be reduced to O(n), but at the expense of larger computation times.

Table 1: Time and space needed for the update of the filters.
SM RM MTM MRM TRM FMH RMH

time O(log n) O(n) O(log n) O(n log n) O(n) O(1) O(n)
space O(n) O(n2) O(n) O(n) O(n2) O(n) O(n2)

3.2 Analytical properties

For a discussion of the filtering procedures we concentrate on the analytical properties within
a single time window when being applied to data generated from the component model (1).

Equivariance and invariance are important properties of statistical procedures. Location
equivariance means that adding a constant to all observations in a window changes the filter
output accordingly. Scale equivariance means that multiplication of all observations with a
constant changes the estimate in the same way. All the above procedures possess these two
properties.

Only some of the procedures are trend invariant, however (Fried, Bernhold and Gather,
2004a,b). This property means that the extracted level does not change when adding a linear
trend as long as the central level is fixed. The RM, the PFMH, the PRMH, the TRM and the
MRM are trend invariant, while the median, the MTM, the CFMH and the CRMH are not.
Therefore, for the latter methods the efficiency, the removal of spikes and the preservation of
shifts are influenced by underlying trends.

Filters which are not trend invariant blur e.g. upward shifts within downward trends.
Although the median and the MTM can remove k spikes completely in a single time window
from a constant signal if there is no observational noise (σ2 = 0), even a single positive
outlier within a downward trend causes smearing. The predictive FMH can remove a single
spike and preserve a shift exactly within a linear trend irrespectively of the directions as it
is trend invariant, while the combined FMH does so only if the outlier (shift) has the same
direction as the trend. The RMH filters improve on the FMH filters as they can remove up
to �k/2� subsequent spikes without any effect. Furthermore, the predictive RMH preserves
shifts exactly, while for the combined RMH this is true only if the shift is in the same direction
as the trend, just like for the combined FMH. The RM, the TRM and the MRM can even
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remove k− 1 spikes completely within a single time window irrespectively of a linear trend if
σ2 = 0.

The previous results hold when there is no observational noise. Lipschitz continuity
restricts the influence of minor changes in the data due to small noise or rounding. The
standard median, the FMH, the RM and the RMH filters are Lipschitz-continuous. The
median is Lipschitz-continuous with constant 1 like all order statistics, while the repeated
median and the repeated median hybrid filters are Lipschitz-continuous with constant 2k+1.
An FMH filter is Lipschitz-continuous with constant max|hj

i |, the maximal absolute weight
given by a subfilter. MTM, MRM and TRM filters, however, are not Lipschitz-continuous,
which can cause instabilities when there are small changes in the data. The discontinuity is
caused by the trimming of observations. Application of continuous M-estimators is preferable
for this reason, but computationally more expensive. Nevertheless, we investigate simpler
trimming based methods in order to obtain information about the possible gain by further
iterations.

The finite-sample breakdown point (FSBP) is the fraction of observations which have to
be put into worst case positions in order to make the estimate take arbitrarily wrong values.
For the median the breakdown point becomes (k + 1)/n when applied to n = 2k + 1 data
points, meaning that at least half of the window needs to be outlying in order to cause an
arbitrarily large spike in the extracted signal. Since for the explosion of the local MAD also at
least k +1 observations need to be modified, the MTM has the same breakdown point, while
for the FMH filters two outliers are sufficient to make it break down. From the following
Table we see that the RMH filters are considerably more robust than the FMH filters, and
that the RM, TRM and MRM are almost as robust as the median in the sense of breakdown.

Table 2: Fraction of outliers in a window causing breakdown.
SM MTM RM TRM MRM FMH PRMH CRMH

k + 1
n

k + 1
n

k
n

k
n

k
n

2
n

�k/2� + 1
n

�k/2� + 2
n

Simulations show the effect of the second step in the derivation of the TRM and the
MRM on their MSE as compared to that of the RM filter. Application of least squares
to the trimmed observations (TRM) increases the efficiency for Gaussian noise, but almost
preserves the robustness of the repeated median, while application of the repeated median
(MRM) further reduces the bias caused by outliers (Fried, Bernholt and Gather, 2004b).

4 Adaptive choice of the window width

From the previous discussion we see that only the repeated median and the predictive hybrid
filters PFMH and PRMH are both trend invariant and continuous, i.e. stable w.r.t. the
occurrence of both trends and small changes in the data. The hybrid filters tend to preserve
shifts and extremes, while the repeated median smoothes them considerably when being
applied with a large window width (Fried, Bernholt and Gather, 2004a, b). This means
that on the one hand we should choose a short window width, but on the other hand a
large window width is better for removing outlier patches and for the attenuation of the
observational noise. This is a robust variant of the common problem of bandwidth selection
in nonparametric smoothing.

Fried (2004) investigates rules for online shift detection based on the most recent residuals
in the time window. Similarly, we can formulate rules for the automatic choice of the window
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width using the regression residuals. Often least squares criteria are used to assess the local
model fit and to find the bandwidth, but this is not suitable when outliers are present. Instead,
a robust criterion is needed. Remembering that the median is the value which balances the
signs of the residuals and that the repeated median is a regression analogue, it is natural
to use the sign of the residuals. In this way we give the same weight to all observations
irrespectively of their magnitude. However, note that there are always as many positive as
negative residuals in the window for the repeated median fit. Therefore, we have to apply
this idea to a suitable subset.

The Figure below visualizes the smoothing of a maximum by fitting a line with a too
large window width. The residuals in the center will typically be positive, while most of the
residuals at the start and the end of the window will be negative. These signs are simply al
reverse for a minimum. Therefore it is natural to use the total number of positive residuals
at the start and the end of the window for assessing the model fit. We divide the window into
three sections as follows, namely the first �(k+1)/2� observations, the central n−2�(k+1)/2�
observations and the last �(k+1)/2� observations. If the total number T of positive residuals
in the first and the last section is much larger than the average �(k+1)/2�, we should shorten
the window width since the signal slope might be decreasing substantially within the window.
If T is much smaller than �(k + 1)/2�, the window width should also be shortened since the
signal slope might be increasing.

Figure 1: Smoothing of a maximum by fitting a line to the filled points.
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However, this reduction should not result in a window width which is too small to re-
sist outlying patterns. Results of previous studies (Fried, Bernholt and Gather, 2004a, b)
show that the repeated median resists up to between 25% and 30% outliers without being
substantially affected. Therefore, the minimal window width should be about four times the
maximal length of outlier patches to be removed. For patches of length three e.g. we use
the constraint n ≥ 11. Since longer time windows allow better attenuation of observational
noise and also robustness against many outliers we increase the window width after each step
whenever possible.

The proposed repeated median algorithm with robust adaptive selection of the window
width is as follows: Let kl < ku be lower and upper bounds for k, and 0 ≤ dl < 1 < du ≤ 2
be constants. Set k = kl and t = k + 1.

1. Calculate the repeated median fit (µ̃t, β̃t) for xt−k, . . . , xt+k to obtain RM(xt) = µ̃t.
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2. Get the residuals ri = xt+i − µ̃t − iβ̃t, i = −k . . . , k, and set T = #{i = −k, . . . ,−k −
1 + �(k + 1)/2�, k + 1 − �(k + 1)/2�, . . . , k : ri > 0}.

3. If k > kl and T < dl · �(k + 1)/2� or T > du · �(k + 1)/2� set k = k − 1 and go to 1.
4. If k < ku set k = k + 1.
5. Set t = t + 1 and go to 1.

The same or similar approaches can be used for the other robust filters. We just need to
modify the window sections for the hybrid filters possibly obtaining asymmetric filters.

5 Application

We now apply the filtering procedures to two data sets. The first example is a time series
simulated from an underlying sawtooth signal, which is overlaid by Gaussian white noise
with zero mean and unit variance, and there are three isolated, three pairs and two triples of
outliers of size -5. The Figure below shows the outputs of the CRMH and the adaptive RM
filter with kl = 5, ku = 15, dl = 0.7 and du = 1.3. The CRMH with n = 21 preserves the
local extremes very well, but it is rather variable. The adaptive RM is almost as good at the
extremes while being much smoother. Most of the time a width close to the maximal n = 31
is chosen, but close to the three local extremes and at about t=280 the width decreases even
to the minimal n = 11. The PRMH not shown here is similar to the CRMH, but it is more
affected by the outliers, while the ordinary RM and the median cut the extremes.

Figure 2: Simulated time series (dotted), underlying signal (dashed) and outputs of the
CRMH (thin solid) and the RM with adaptive window width (bold solid).
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As a second example we analyze five hours of measurement of the arterial blood pressure
of an intensive care patient. Figure 3 visualizes these data along with the outcomes of the
MRM with a window width of n = 21 and of the adaptive RM filter with the same constants
as before. The MRM resists some aberrant patterns very well, but it oversmoothes the local
extremes at t = 70 and at t = 290. The adaptive RM again chooses the largest width n = 31
most of the time, but the width drops down to n = 17 about t=175 and t=225, and even
to the minimal n = 11 about t=60 and t=130. It performs better at the extremes than the
MRM, but it is affected by two subsequent outlying patterns about t=180. The RM with
fixed window width also shows a spike there and performs in between the adaptive RM and
the MRM at the extremes.

Figure 3: Arterial blood pressure (dotted) and outputs of the MRM (bold solid) and the RM
with adaptive window width (thin solid).
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6 Conclusion

Improved numerical algorithms render the real time application of robust procedures for
time series filtering possible. Methods for robust regression like the repeated median allow to
construct filters which have similar benefits like classical linear or location based approaches
when these perform well, but overcome deficiencies w.r.t. the removal of spiky noise (outliers)
or the tracking of trends. We find the repeated median procedure with robust adaptive choice
of the window width particularly promising. First applications show that this algorithm can
be modified even for online filtering without any time delay by estimating the intercept at the
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right hand side of the time window, but more experience is needed to optimize the automatic
choice of the window width then.
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