
A New Optimization Technique for Improving Resource Exploitation
and Critical Path Minimization

Birger Landwehr, Peter Marwedel

Dept. of Computer Science XII, University of Dortmund
D-44221 Dortmund, Germany

Abstract

This paper presents a novel approach to algebraic op-
timization of data-flow graphs in the domain of computa-
tionally intensive applications. The presented approach
is based upon the paradigm of simulated evolution which
has been proven to be a powerful method for solving large
non-linear optimization problems. We introduce a genetic
algorithm with a new chromosomal representation of data-
flow graphs that serves as a basis for preserving the correct-
ness of algebraic transformations and allows an efficient
implementation of the genetic operators. Furthermore, we
introduce a new class of hardware-related transformation
rules which for the first time allow to take existing com-
ponent libraries into account. The efficiency of our method
is demonstrated by encouraging experimental results for
several standard benchmarks.

1 Introduction

The very first step in the design-flow of digital systems is
concerned with formulating the behavioral specification in
a hardware description language such as VHDL [9]. This
behavioral description forms the basis for all subsequent
design steps starting with behavioral (or high-level) syn-
thesis at the algorithmic level. High-level synthesis deals
with the transformation of the behavioral description into a
netlist of RT-level components and is generally understood
as a mapping of operations of the data-flow graph (DFG)
to control steps and to suitable components of an existing
library [16]. Since high-level synthesis systems directly
operate on the internal representation of the behavioral de-
scription it is quite obvious that the chosen formulation
style has a lasting effect to later design steps and therefore
to the final result.

Although the use of high-level synthesis systems has
gained acceptance during the recent years, the actual ques-

tion of how to suitably formulate a behavioral description
has often been underrated. This question particularly arises
in the domain of digital signal applications which are char-
acterized by complex arithmetical computations resulting
in complex data-flow graphs.

Figure 1 demonstrates the effect of different transform-
ations for expression ((a � c)+ (b � c)) + d with respect to
time and resource equirements.

+

*

+

*

a b* *c c((())) + + d

critical path: 3 cs
1 adder
2 multiplier

a)

*

+
*

+

a b* *c c((())) + + d

critical path: 3 cs
1 adder
1 multiplier

b)

+

*
*

+

a b* *c c((())) + +d

critical path: 3 cs
1 adder
1 multiplier

c)

+

+
*

a b*c(()) ++ d

critical path: 2 cs
1 multiplier-adder

critical path: 3 cs
1 adder
1 multiplier

d)

MAC

Figure 1: Time and resource requirements for
equivalent expressions

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46901962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1a presents the original expression requiring one
adder and two multipliers with a critical path of 3 control
stepsy. After applying the associativity law (figure 1b), the
order of operations has been changed such that component
sharing could be improved. Therefore, only one multi-
plier is required after the transformation. The additional
exploitation of commutativity shown in figure 1c neither
leads to a further improvement of resource sharing nor to
a shorter critical path, but may increase the applicability
of other transformation rules. Figure 1d shows the expres-
sion after exploiting distributivity. Although implementa-
tion costs and critical path have not further changed, the
application of a special component-driven transformation
(x � y) + z , MAC(x; y; z) is possible. This rule implies
a mapping of the two operations to a single multiplier-
adder-accumulator (MAC) in contrast to a separate imple-
mentation by one multiplier and one adder. As we can
recognize, the use of this component-directed transforma-
tion has a major impact on the synthesis result: in the latter
case, only one MAC is required because this component
can also be employed as a simple multiplier or adder by ap-
plying the particular identity element to the corresponding
input port. Since components like MACs are capable of
performing two ore more operations in one execution step
we call such functional units complex components or BIC
(built-in-chaining)-components [15].

Even this simple example has shown that synthesis res-
ults are strongly dependent on the choice of a certain for-
mulation style of the behavioral description. Obviously, it
might be difficult to recognize in advance how to formulate
a behavioral description that leads to the best synthesis res-
ult. This becomes almost impossible for complex data-flow
dominated circuits. The goal of applying algebraic trans-
formations can thus be stated as making synthesis results
mostly independent of the formulation style or to trans-
form the input description such that synthesis yields better
results than for the original description.

The remainder of this paper is organized as follows:
Section 2 gives an overview of the research on algebraic
optimization in different areas. After introducing some
hardware-related transformations in section 3 we describe
the genetic algorithm including the chromosomal repres-
entation and the genetic operators in section 4. Section 5
presents experimental results for several standard bench-
marks, and section 6 concludes the paper.

2 Related work

The use of algebraic transformations has been estab-
lished in different domains: In classical computer-algebra

y In this example all operations are assumed to be single-cycled.

systems such as MAPLE [5] or MATHEMATICA [21] they
are indispensable for the transformation and simplification
of algebraic expressions. In the domain of high-level-
language compilers (see [2] for an overview) algebraic
transformations are mainly used for tree height reduction,
common subexpression elimination, constant folding, con-
stant propagation and rather simple optimizations based on
strength reduction.

In the area of high-level synthesis algebraic transform-
ations have been particularly used for improving resource
utilization [18] [17], tree-height minimization [6] [7], the
maximization of data throughput [8] [10] and minimiza-
tion of power consumption [3]. The use of algebraic trans-
formations in combination with complex components (e.g.
MACs) was first proposed in [14]. However, to the author’s
knowledge there is no optimization technique that exploits
component-directed transformations in the same extent as
the approach presented in this paper.

An approach based upon evolutionary programming
for an area efficient design of Application Specific Pro-
grammable Processors (ASPP) has been published in [22].
ASPPs are programmable architectures which are designed
for a set of different algorithms. The underlying approach
is based on a genetic algorithm for transforming the partic-
ular data-flow graphs such that a given behavioral kernel
(defined by a set of RT-level components) is optimally ex-
ploited by the algorithms.

Concerning the chromosomal representation of data-
flow graphs and genetic operators (mutation and crossover),
our method appears similar to [22]. However, it combines
the concept of evolutionary programming with the algeb-
raic optimization techniques for critical path minimization
and improved resource exploitation on a finer level of gran-
ularity.

3 Overview of algebraic optimizations

The introducing example has already shown that apart
from the exploitation of algebraic laws e.g. commutativ-
ity, associativity, distributivity etc., even hardware-related
transformations have the potential of a considerable reduc-
tion of hardware costs and the critical path. In this section
we demonstrate how hardware-related transformations can
be specifically employed in order to reduce resource re-
quirements.

3.1 General hardware-related transform-
ations

First let us consider the expression x � c. Let c be a
constant with c = 2n. Obviously, the expression can be
implemented in several ways: a) using a multiplier, b)

2

using a shifter, or c) by an offset in the wiring pattern. The
transformationof the multiplicationto a possiblyhardwired
shift-operation is well known as strength reduction [2], i.e.
an expression with a cost intensive realization is always
replaced by a “cheaper” expression. This optimization
technique is usually exploited in almost all modern software
compilers, however rarely in synthesis systems.

The exploitation of powers of two is not restricted
to multiplications: Consider the expression x[msb:0] + y.
[msb:0] represents the bit-slicey of x, and y = 2n is
a constant again. Since an addition with 2n incre-
ments only the upper bits [msb:n] whereas the lower bits
[n-1:0] are not affected, we can state the following trans-
formations: x + 2n , (x[msb:n] + 1) & x[n�1:0] ,

inc(x[msb:n]) & x[n�1:0]. Hence, additions with a power of
two can be replaced by increment operations and thus lead
to cheaper hardware realization. The same transformations
also hold for x� 2n, however applying a decrement opera-
tion. The reduction of an addition to an increment operation
can also be exploited in order to find a cost efficient imple-
mentation for 1� z with only one incrementer and one in-
verter: 1�z , �z+1 , z+2 , inc(z[msb:1]) & z[0:0].

All transformations presented above are accompan-
ied by an immediate reduction of the realization costs.
However, we still have to take transformations into account
which temporarily have the opposite effect:

Constant Unfolding is a technique that promises a fur-
ther improvement in terms of cost and speed by splitting
constants into a power of two and a remainder. Consider
the rule c = [c � r]z + r; where [c � r] = 2n is a
constant. We can split expression 9 � x into (23 + 1) � x,
which is equivalent to 23 � x+ x. Since 23 � x = x &000
can be implemented by an offset in the wiring pattern,
only one adder instead of a multiplier is required to realize
the expression. Another transformation rule is concerned
with introducing identity elements which may be neces-
sary to increase the applicabilityof further transformations:
a + a , (a � 1) + (a � 1) , a � (1 + 1) , a � 2.
Obviously, the use of identity elements is necessary for the
formal proof of equivalence without knowledge of the rule
a + a , a � 2. Although the introduction of identity
elements helps to find new formulations of an initial ex-
pression, it also temporarily increases the implementation
costs. Concerning the length of the critical path it was
shown in [13] that the creation of additional operations in
the DFG may have a positive effect on synthesis results.
Therefore it is essential that the underlying optimization
method does not reject transformations which temporarily

yCorresponding to the VHDL [9] notation x : Bit vector
(msb DOWNTO 0) where msb denotes the most significant bit, i.e.
msb := x’LENGTH - 1.

zThe brackets mean an instant evaluation of the subexpression, e.g.
constant c = 9 is splitted into [9� 1] + 1 = 8 + 1.

lead to suboptimal results.

3.2 Component-driven transformations

As we saw in the introduction, the use of a
special component-driven transformation for employing
multiplier-adders has the potential of a further reduction
of both hardware costs and the critical path. In the fol-
lowing example we demonstrate how such transforma-
tions can be applied in order to exploit existing library
components more efficiently: Consider the transformation
rule x + y + z , CADD(x; y; z), with z 2 f0; 1g.
This rule implies that expression x + y + z is mapped
to one carry-adder. In combination with the transform-
ations presented above the following rule allows to im-
plement x + y � z with y = 2n by only one carry-
adder and one inverter: (x + z[msb:n] + 1) & z[n�1:0] ,

CADD(x; z[msb:n]; 1) & z [n�1:0].

This section has shown the applicability and the positive
impact of hardware-related transformation rules concern-
ing hardware costs and speed. We also have recognized that
some transformations temporarily may increase the costs
but allow the application of further rules which globally
may decrease the costs. Since cost-driven heuristics do not
work appropriately in this case, we formulated the problem
using a probabilistic approach based on a genetic algorithm
which will be presented in the following section.

4 Algebraic optimization by genetic al-
gorithm

The general principle in natural evolution as well as evol-
utionary algorithms is the optimization of a population’s
fitness in the course of generations driven by the random-
ized processes of selection, recombination and mutation.
Genetic algorithms as one representative of evolutionary
algorithms (see [1] for an overview) have been proven to
be very powerful for searching vast solution spaces. Solu-
tions found by genetic algorithms are generally close to the
global optimum.

4.1 Chromosomal representation

Each chromosome of the population represents one se-
mantically equivalent formulation of an initial data-flow
graph. The genes which are located on the chromosome—
or the gene positions, to be precise—represent the opera-
tions of the DFG together with references to the predecessor
operations.

Example: We use expression ((a � 2) + (b � 2)) + 1 as a
running example in order to demonstrate the chromosomal rep-
resentation and the particular genetic operators. Figure 2 depicts

3

the chromosome representation �! � ! ! � with its genes
� : � + 1, � : + �, : a � 2, and � : b � 2.

Figure 2: Representation of expression
((a � 2) + (b � 2)) + 1 by a sequence of genes

Each gene has a specific phenotype, called its allele.
We distinguish different alleles of the same gene by roman
numbers I, II, etc. Operations of the original data-flow
graph are thus represented by the alleles �I; �I etc. The
set of alleles for one specific gene represents the set of
functionally equivalent expressions. Since all alleles of the
same gene are semantically equivalent they are mutually
replacable without changing the functionality of the entire
DFG. Nevertheless, the resulting DFG can be distinguished
by potentially different hardware costs and critical path
lengths.

alternative
alleles

Figure 3: Alternative alleles

Figure 3 shows new alternative alleles for the gene � after
applying the transformations b � 2) b + b) b shl 1)

b & 0. Obviously, each allele of gene � can be replaced
by any other allele without changing the semantics of the
expression. In the same way, algebraic transformations can
be applied to the other genes of the chromosome.

Figure 4 presents the gene pool for our example after
applying associativity, distributivity and the demonstrated
simplification of multiplications. The gene pool serves as a
basis for the creation of the initial population: for each chro-
mosome that represents one individual of the populationwe
can arbitrarily select one allele at each gene position (figure
4). Due to the fact that each chromosome implicitly repres-
ents the structure of a data-flow graph, the creation of any
DFG can be performed in linear time O(n). In this example,
the chromosome �III ! �III ! IV ! �II ! �II ! �I

represents the expression inc((a + b) shl 1). It should be
mentioned that chromosomes may also contain some re-
dundant genes (in this example: ! � ! �) which have
no direct influence on the created DFG. However, redund-
ant genes can be reactivated instantly by small mutations
of the chromosome.

As we have seen, the chromosomal representation intro-
duced above guarantees that all subexpressions referenced
by different alleles at the same gene position are semantic-
ally equivalent. This means that every possible allele sub-
stitution at any gene position will subsequently lead to a
new semantically equivalent data-flow graph. This prop-
erty is crucial for preserving the correctness of the used
genetic operators, namely mutation and crossover.

4.2 Genetic operators

4.2.1 Mutation

The principle of mutation was implicitly shown in figure 3:
Without changing the entire semantics we can transform a
data-flow graph by a simple gene mutation that substitutes
the selected allele by another one at the same gene position.
For example, the substitution of allele �I by �IV represents
the transformation (a�2)+(b�2)+1, (a�2)+(b& 0)+1.

Obviously, the mutation operator can be implemented
in time O(1).

4.2.2 Crossover

The goal of crossover is to recombine the parental prop-
erties and its transmission to the new offspring. In the
meaning of transforming algebraic expressions, crossover
recombines subexpressions of the parental data-flow graphs
and can be sketched as follows:

1. Create two new chromosomes representing the chil-
dren.

2. Select an arbitrary gene position.

4

I II III IV V

α

β

γ

δ

ε

ζ
(a) (b)

Figure 4: (a) Extended gene pool for the running example and
(b) exemplary creation of a DFG by selecting alleles at each gene position

3. Copy all alleles from first (second) chromosome up to
the selected gene position to the first (second) child.

4. Copy the remainder of the first (second) chromosome
the second (first) child.

Also crossover benefits from the underlying representation
and always creates only those DFGs which are semantically
equivalent to the initial specification. Obviously, crossover
can be implemented in linear time O(n) wheren represents
the chromosome length.

αI - βI - γI - - δIV - εII - ζI

αIV - βI - γIV - - δI - εII - ζI⇒αIV - βI - γIV - δIV - εII - ζI

⇒αI - βI - γI - δI - εII - ζI

cadd ((a & 0), (b & 0), 1) cadd ((a & 0), (b∗ 2), 1)

(a ∗ 2) + (b∗ 2) +1 (a ∗ 2) + (b & 0) +1

Figure 4: Crossover

Figure 4 demonstrates crossover for our running ex-
ample. As initialchromosomes we use�IV ! �I ! IV !

�IV ! �II ! �I corresponding to cadd((a & 0); (b & 0); 1)
and �I ! �I ! I ! �I ! �II ! �I which corresponds to
((a � 2) + (b � 2)) + 1. The crossover position has been
chosen at gene position �. In the resulting expressions,
(b & 0) and (b � 2) have been interchanged.

4.2.3 Selection

Selection is a crucial process in (simulated) evolution that
favors individuals of higher fitness to survive (“survival of
the fittest”) and thus become the co-founders of the next
population. Generally, we presume the probability of an
individual to be selected is proportional to its fitness. This
enables even individuals with a lower fitness to be selected
and thus to transmit their gene information to the offspring.

In the meaning of the final hardware realization we
define the fitness as weighted sum of the required func-
tional units and the length of the critical path. In contrast to
the critical path computation that can be done in linear time
by an ASAP (or ALAP) scheduling, the exact computation
of resource costs is NP-complete. Therefore, we have to
employ resource estimation techniques (e.g. [19]) in order
to value the effect of performed transformations. Surpris-
ingly, experimental results have shown that even simple
fitness functions are sufficient for producing excellent op-
timization results (see figure 5–6 and table 2). We used a
combination of the critical-path length and hardware costs
computed by direct compilation, i.e. each operation of the
data-flow is associated with certain hardware costs. An
advantage of using direct compilation is its efficient im-
plementation in linear time and is thus crucial for the fast
execution time of the optimization routine.

5

4.3 Skeleton of the genetic algorithm

Figure 5 presents the genetic algorithm that serves as a
basis for algebraic optimization and takes pattern from the
standard algorithm in [4].

1 initialize individuals of the population p
2 FOR EACH epoch e DO
2.1 apply transformation rules to the current population p
2.2 FOR EACH generation g DO
2.2.1 compute fitness of all individuals
2.2.2 select individuals according to their fitness
2.2.3 create offspring by crossover
2.2.4 mutate offspring
2.2.5 replace individuals of the current population by the offspring
2.2.6 exit loop, if criterion TG is fulfilled
2.2’ END
2.3 terminate, if criterion TE is fulfilled
2’ END

Figure 5: Skeleton of the genetic algorithm

The algorithm consists of an outer and an inner loop.
The inner loop repeats the tasks of fitness computation, se-
lection, crossover, mutation and replacement of individuals
as long as the loop-exit criterion TG is not fulfilled. The
loop exit is usually controlled by the state of the generation
counter or by the yielded gain of the population’s fitness.

The outer loop is required in order to extend the current
gene pool in two directions: On the one hand we introduced
the new alleles �II; �III and �IV in our example to represent
the transformations a�2) a+a) a shl 1) a & 0. On
the other hand the chromosome is extended by new genes
along with their alleles. In our example, we introduced
gene � with its alleles �I and �II and the new allele �II in
order to exploit the associativity.

In contrast to the actual composition of new DFGs in-
cluding their recombination, mutation and selection in pro-
gress with the generations, we call the continuousextension
of the current gene pool by transformations epochs. The
termination of the entire algorithm is controlled by fulfilling
TE that can be realized in the same way as the loop-exit
criterion TG.

5 Experimental results

We applied the presented algorithm to several standard
benchmarks. For each example we achieved a gain of up
to 30 % concerning the critical path and an area gain of
up to 26 %. On the basis of empirical tests we determ-
ined the following genetic parameters: population size: 80
individuals; number of individuals in the population to be
replaced by the offspring: 60; number of generations: 40,
Mutation rate: 0.1.

All presented results have been computed on a SparcSta-
tion 20. The execution time of the optimization routine was
for all examples approximately one minute for the chosen
parameters.

Figure 6 and 7 present the initial and the optimized data-
flow graph of the 5th-order elliptical wave filtery [11], re-
spectively. All operations are assumed to be single-cycled.
The macro-nodes in fig. 7 represent multiply-add subex-
pressions which have been bound to MACs. These complex
components can also be used for computing additions by
simply applying the corresponding identity elements to the
appropriate inports (control steps 3, 8, 9, 11 in fig. 8).

 READ

 +

 +

 READ READ

 +

 READ

 +

 +

 READ

 +

 READ

 +

 READ

 +

 +

 READ

 +

 +

 +

 +

 +

 +

 +

 +

 +

 ∗ ∗

 +

 +

 +

 +

 ∗ ∗

 WRITE

 +

 +

 ∗ ∗

 ∗

 +

 ∗

 +

 WRITE

 WRITE WRITE WRITE

 WRITE WRITE

 1

 2

 1

 2

 1

 2

 2

 3

 2

 3

 2

 3

 3

 4

 3

 4

 3

 4

 4

 5

 4

 5

 4

 5

 5

 6

 5

 6

 5

 6

 6

 7

 6

 7

 6

 7

 7

 8

 7

 8

 7

 8

 8

 9

 8

 9

 8

 9

 9

 10

 9

 10

 9

 10

 10

 11

 10

 11

 10

 11

 11

 12

 11

 12

 11

 12

 12

 13

 12

 13

 12

 13

 13

 14

 13

 14

 13

 14

 14

 15

 14

 15

 14

 15

Figure 6: Initial DFG of the EWF-benchmark

y in contrast to some existing formulations of this benchmark contain-
ing only multiplications by 2, we dispense with the exploitation of the
special transformation rule x � 2 ! x& 0. I.e. we assumed multi-
plications with different coefficients in order to produce results for rather
realistic applications

6

benchmarka #cs add sub mult mac gain (areab) gain (#cs)
2405k�2 2433k�2 14717k�2 15435k�2

areaorig�areaopt

areaorig

#csorig�#csopt

#csorig

EWForig 14 3 0 2 0
EWFopt 10 2 0 0 2 2.6 % 28.6 %
FFTorig 8 3 4 12 0
FFTopt 8 0 4 5 4 25.1 % 0 %
FIRorig 10 2 0 2 0
FIRopt 7 2 0 1 1 -2 % 30.0 %
FDCTorig 6 4 2 8 0
FDCTopt 6 1 2 3 3 26.1 % 0 %
BForig 15 2 1 2 0
BFopt 14 0 1 0 2 9.1 % 6.7 %
Edgeorig 10 2 2 4 0
Edgeopt 9 0 2 1 3 3.9 % 10.0 %

Table 2: Optimization results

aEWF: elliptical wave filter, FFT: fast fourier transformation, FIR: finite impulse response filter,
FDCT: fast discrete cosine transformation, BF: bandpass filter, Edge: edge detection

barea of allocated functional units

 READ

 +

 MACRO

 READ

 +

 MACRO

 +

 READ

 +

 MACRO

 +

 READ

 +

 READ

 +

 +

 READ

 MACRO

 +

 +

 MACRO

 +

 +

 +

 +

 +

 READ

 MACRO

 +

 WRITE

 READ

 +

 MACRO

 +

 MACRO +

 WRITE

 WRITE WRITE

 WRITE

 WRITE WRITE

 1

 2

 1

 2

 1

 2

 2

 3

 2

 3

 2

 3

 3

 4

 3

 4

 3

 4

 4

 5

 4

 5

 4

 5

 5

 6

 5

 6

 5

 6

 6

 7

 6

 7

 6

 7

 7

 8

 7

 8

 7

 8

 8

 9

 8

 9

 8

 9

 9

 10

 9

 10

 9

 10

 10

 11

 10

 11

 10

 11

Figure 7: Optimized DFG of the EWF-benchmark

It seems to be quite obvious, that manually formulat-
ing a behavioral description with the same quality of the
presented optimized DFG is virtually impossible. In this
example, the critical path has been shortened from 14 to
10 control-steps requiring only two MACs and two adders
instead of three adders and two multipliers.

Table 2 shows the synthesis results for several bench-

marks before and after algebraic optimization. We used the
high-level synthesis system OSCAR [12] for synthesizing
the original and the optimized design. Due to its underlying
integer programming formulation all presented results are
optimal concerning the overall costs of functional units.
Areas and delaysz of functional units have been adopted
from the underlying 1:0� VLSI component library [20].
The execution times of high-level synthesis were always
less than one second.

6 Conclusion

We presented a genetic algorithm based approach for
algebraic optimization of data-flow graphs. Due to the un-
derlying chromosomal representation all genetic operators
are correctness preserving and can be implemented very ef-
ficiently. Apart from standard transformation rules such as
commutativity, associativity and distributivity,we also sup-
port hardware-related transformations. It has been shown
that even these transformations have a positive effect to the
quality of the achieved synthesis results. Since all rules
are stored in an external library, they can be modified or
extended by the designer.

The system has been implemented as a front end to
an ILP-based synthesis system [12] and benefits from
its capability of supporting complex component libraries.
However, the approach can also be easily realized as a
source-to-source (e.g. VHDL-to-VHDL) optimizer that

zadd [vdp1add001]: 16.1 ns , sub [vdp1sub001]: 16.7 ns, mult
[vdp3mlt004]: 112.1 ns, mac [vdp3mlt006]: 112.1 ns

7

enables the employed synthesis system to support complex
functional units (e.g. MACs).

The experimental results have shown the efficiency of
our method. For all examined benchmarks (EWF, FFT,
FDCT, FIR-Filter, Bandpass Filter, Edge Detection) we
could achieve a considerable reduction of the critical path
and/or the area.

References

[1] T. Bäck and F. Hoffmeister. Global Optimization by
Means of Evolutionary Algorithms. in: A. N. Ant-
amoshkin (Ed): Random Search as a Method for Ad-
aption and Optimization of Complex Systems, pages
17-21, Divnogorsk, UdSSR, March 1991, Krasnojarsk
Space Technology University, 1991.

[2] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler
Transformations for High-Performance Computing.
ACM Computing Surveys, Vol. 26, No. 4, pages 345–
420, 1994.

[3] A. P. Chandrakasan, M. Potkonjak, R. Mehra, J. Ra-
baey, and R. W. Brodersen. Optimizing Power Using
Transformations. IEEE Transactions on CAD, Vol.
14, No. 1, pages 12–31, 1995.

[4] L. Davis. Handbook of Genetic Algorithms. Van
Nostrand Reinhold, 1991.

[5] K. O: Geddes, G. H. Gonnet, and B. W. Char. MAPLE
User’s Manual (2nd ed.). Technical Report CS-82-40,
University of Waterloo, 1982.

[6] R. Hartley and A. E. Casavant. Tree-Height Min-
imization in Pipelined Architectures. Proceedings
of the International Conference on Computer-Aided
Design, pages 112–115, 1989.

[7] R. Hartley and A. E. Casavant. Optimizing Pipelined
Networks of Associative and Commutative Operators.
IEEE Transactions on CAD, Vol. 13, No. 11, pages
1418–1425, 1994.

[8] S.-H. Huang and J. M. Rabaey. Maximizing the
Throughput of High Performance Applications Us-
ing Behavioral Transformations. Proceedings of the
EDAC, pages 25–30, 1994.

[9] Design Automation Standards Subcommittee of the
IEEE. IEEE Standard VHDL Language Reference
Manual (IEEE Std. 1076-87). IEEE Inc., New York,
1988.

[10] Z. Iqbal, M. Potkonjak, S. Dey, and A. Parker. Crit-
ical Path Optimization Using Retiming and Algebraic
Speed-Up. Proceedings of the 30th Design Automa-
tion Conference, pages 573–577, 1993.

[11] S. Y. Kung, H. J. Whitehouse, and T. Khailath. VLSI
and Modern Signal Processing. Prentice Hall, 1985.

[12] B. Landwehr, P. Marwedel, and R. Dömer. OSCAR:
Optimum Simultaneous Scheduling, Allocation and
Resource Binding Based on Integer Programming.
Proceedings of the EURO-DAC, pages 90–95, 1994.

[13] D. A. Lobo and B. M. Pangrle. Redundant Oper-
ator Creation: A SchedulingOptimization Technique.
Proceedings of the 28th Design Automation Confer-
ence, pages 775–778, 1991.

[14] P. Marwedel. Matching System and Component Be-
haviour in the MIMOLA Synthesis Tools. Proceed-
ings of the EDAC, pages 146–156, 1990.

[15] P. Marwedel, B. Landwehr, and R. Dömer. Built-in
Chaining: Introducing Complex Components into Ar-
chitectural Synthesis. Proceedings of the ASP-DAC,
1997.

[16] M. C. McFarland, A. C. Parker, and R. Camposano.
The High-Level Synthesis of Digital Systems. Pro-
ceedings of the IEEE, Vol. 78, No. 2, pages 301–318,
1990.

[17] M. Potkonjak and S. Dey. Optimizing Resource Util-
ization and Testability using Hot Potato Techniques.
Proceedings of the 31st Design Automation Confer-
ence, pages 201–205, 1994.

[18] M. Potkonjak and J. Rabaey. Optimizing Resource
Utilization by Transformations. IEEE Transactions
on CAD, Vol. 13, No. 3, pages 277–292, 1994.

[19] A. Sharma and R. Jain. Estimating Architectural Re-
sources and Performance for High-Level Synthesis
Applications. IEEE Transactions on VLSI Systems,
Vol. 1, No. 2, June 1993, 1993.

[20] VLSI Technology Inc. Library Manuals, 1993.

[21] S. Wolfram. Mathematica, A System for Doing Math-
ematics by Computer. Addison Wesley, 1988.

[22] W. Zhao and C. A. Papachristou. An Evolution Pro-
gramming Approach on Multiple Behaviors for the
Design of Application Specific Programmable Pro-
cessors. Proceedings of ED & TC, 1996.

8

