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Chapter 1

Computational Intelligence

1.1 Outline of the Field

Computational Intelligence (CI) comprises three biologically inspired paradigms,
neural networks (NNs), fuzzy logic (FL), and evolutionary algorithms (EAs), that
have their origin in the Forties and early Sixties. Research on these methods pro-
ceeded almost independently until the late Eighties and early Nineties when the
respective scienti�c communities started to employ each other's methods to solve
diÆcult problems in their own domains. In those years research started in the area
of evolutionary neural network design [68, 1], fuzzy logic and neural network com-
binations [12] as well as hybrid methods with classical arti�cial intelligence (AI)
methods like rule-based expert systems [89] and logical reasoning [91]. Although
classical AI methods are based on symbolic rather than sub-symbolic, numeric
computation like CI methods, they should not be neglected, since hybridization
can yield synergetic e�ects regardless of paradigm-speci�c demarcation lines.

Since 1994 when the �rst World Congress on Computational Intelligence (Or-
lando, Florida) took place CI became a popular term covering those three para-
digms. Among the huge number of scienti�c publications and books available
today, the handbooks of Neural Computation [17], Evolutionary Computation
[4] and Fuzzy Computation [70] document the state-of-the-art in each �eld.

1.2 Scope and Structure of the Thesis

Evolutionary algorithms and neural networks have been successfully used to solve
diÆcult problems in various domains. Researchers and practitioners have applied
them as single paradigms or in combination with each other.
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6 CHAPTER 1. COMPUTATIONAL INTELLIGENCE

Contributions of the thesis are:

� A compact introduction to neural networks and evolutionary algorithms.

� An investigation of evolution strategies (ESs, a subclass of EAs) as an
alternative to gradient-based neural network training.

Based on an empirical comparison of population- and gradient-based search,
we will derive hints for parameterization and draw conclusions about the
usefulness of evolution strategies for this purpose. We will see that ESs can
only compete with gradient-based search in case of small problems and that
ESs are a good method for training neural networks with a non-continuously
di�erentiable activation function.

� From the viewpoint of ESs, we will gain insights in how evolution strategies
behave in search spaces generated by neural networks. Here, we will see
that for this class of objective functions, the dimensionality of the problem
is critical. With increasing numbers of decision variables, the learning be-
comes more and more diÆcult for ESs, and the \eÆcient" parameterization
becomes crucial.

� The thesis shows how to solve diÆcult real-world problems from the �eld
of chemical engineering with the aid of neural networks and evolution-
ary algorithms. The problems originate from the Collaborative Research
Center "Computational Intelligence" (SFB-531 "Design und Management
komplexer Prozesse und Systeme mit Methoden der Computational Intel-
ligence").

In this context various neural, evolutionary and thermodynamics-based ap-
proaches will be compared with respect to their performance and usefulness
for the given problems.

This thesis is structured as follows. Chapters 2 and 3 give a brief introduction into
neural networks and evolutionary algorithms, respectively. The fundamentals of
both paradigms are reviewed and advanced techniques introduced. Chapter 4 in-
vestigates evolution strategies as an alternative to gradient-based neural network
training while chapter 5 is concerned with the application of neural networks
and evolutionary algorithms in chemical engineering. The thesis concludes with
a summary and outlook in chapter 6. The appendix A gathers subsidiary ex-
periments and comprises results (charts, tables) from experiments reported in
chapters 4 and 5.



Chapter 2

Neural Networks

The human brain consists of assemblies of neurons which are highly structured
and interconnected by synapses. Arti�cial neural networks are gleaned from
nature but are far less complex and powerful compared to their natural paragon.

We will look at supervised neural networks and introduce advanced techniques
to improve learning which will be used throughout this thesis. Section A.2 will
be concerned with the complexity of learning and choosing topologies.

2.1 Basic De�nitions

This section introduces the notation for neural networks and some basic de�ni-
tions that will be used throughout this thesis. The focus will be on supervised
learning in feed-forward networks.

2.1.1 Notation

From the computer science view the structure of an arti�cial neural network can
be de�ned as a graph.

De�nition 2.1.1 (Network structure, order)
The structure of a neural network is given by a graph G = (U;W ) with U as a
set of units (neurons) and W � U �U as a set of weighted edges (weights). The
total number of units in the network jU j is called network order.

For two units uj; ui 2 U let wi;j 2 IR be called the weight from unit uj to unit ui.

This de�nition does not fully describe a neural network. The following sections
deal with other functional parts of networks such as unit types and training
algorithms.

7



8 CHAPTER 2. NEURAL NETWORKS

2.1.1.1 Units

A network unit can be described by the following components: An activation
range, an activation function, a transfer function and a bound function. Ad-
ditionally, there is a distinction between deterministic and stochastic activation
schemes.

De�nition 2.1.2 (Activation range, transfer function)
Let A � IR be the activation range, U a set of units, g : IRn ! IR a transfer
function and h : IR! A a bound function. The activation function f : IRn ! A
can then be de�ned as f : hÆg. Here, n denotes the number of incoming weights,
also called fan-in of the unit.

The threshold behavior of biological neurons can be modeled with a dedicated
bias value and a bounded activation range.

De�nition 2.1.3 (Threshold, activation, bias, state)
We de�ne that every unit ui 2 U should have a threshold si 2 IR, and at time t,
an activation ai(t) 2 A. Let m := jU j, then the vector Zt := (a1(t); � � � ; am(t)) is
called state of the network at time t.

Throughout this thesis the transfer function (neti : IR
n ! IR) of a unit is called

netinput and de�ned by:

neti := bi +
nX
j=1

wi;j � aj (2.1)

with bi as bias for unit i.

McCulloch and Pitts [54] �rst modeled the threshold behavior of biological neu-
rons. This leads to the following de�nitions.

De�nition 2.1.4 (Threshold unit)
A unit is called threshold unit or McCulloch-Pitts unit, if the activation range
is given by the set A := f�1;+1g (sometimes A is also chosen to be f0; 1g) and
the activation of the unit is:

ai = f(neti) =

(
+1 if neti � si;

�1 if neti < si
(2.2)
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Such a unit with n inputs calculates a binary function f : IBn ! IB. Functions
that can be calculated by a threshold unit1 are called linear separable.

Units that approximate an S-shape are called sigmoid units. A typical sigmoid
activation function is the logistic function with a usual activation range of A =
[0; 1].

De�nition 2.1.5 (Logistic unit)
The logistic unit is de�ned as:

f(neti) =
1

1 + e�
�neti
+ Si (2.3)

where 
 is the slope (or 1


the temperature) of the activation function and Si the

threshold which can be used to shift the function.

The 
 value controls the degree of non-linearity of that unit. Large 
 modulate
the logistic function to a step function like the McCulloch-Pitts units while small

 produce an almost linear behavior. In �gures 2.1 and 2.2 the e�ect of varying

 on the logistic function and its �rst derivative is illustrated.
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The in
uence of the activation function slope on the network training should not
be underestimated. For some problems the right choice can make a signi�cant
di�erence in learning speed. This can be observed in two experiments that are
documented in the appendix A.1.2.

1Threshold units have been extensively investigated. If the fan-in of a unit is �nite, which
is always the case in computer simulations, then one can ask what precision the weights must
have to warrant linear separability? In the early sixties Muroga, Toda and Takasu showed that
n � logn bits for each weight of the threshold unit are suÆcient. For a long time it remained
unclear whether this many bits were needed. In 1992 Hastad constructed a function which
needed exactly n � logn bits. A detailed overview of this work can be found in [71].
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2.1.1.2 Update Schemes

A network changes its internal states in response to input values. The successive
network state Zt+1 is determined by the activation functions of a subset V of units.
This subset is chosen according to a given update scheme. Following [90] we can
distinguish parallel, serial, synchronous and deterministic and non-deterministic
schemes.

De�nition 2.1.6 (Update schemes)
Let V � U be the set of units to be updated at time t. An update scheme is
called:

� serial update scheme , jV j = 1: at time t only one unit changes its
activation.

� parallel update scheme, jV j > 1: more than one unit changes its activa-
tion at a time.

� synchronous update scheme, V = U : the activities of all units change at
the same time.

An update scheme is called deterministic if the subset selection of V is ruled by
a deterministic process, otherwise the scheme is called non-deterministic.

2.1.1.3 Topology of a Network

A network topology can be de�ned in terms of graph properties. The main
distinction can be made between layered versus non-layered and undirected versus
directed network graphs.

De�nition 2.1.7 (Layered network graphs)
A network with structure (U;W ) is called layered, if each unit ui 2 U can be
assigned a unique number layer(i) 2 IN such that:

layer(i) =

(
0 if :9(ui; uj) 2 W

maxflayer(j) j 8(ui; uj) 2 Wg+ 1 else
(2.4)

The number of layers in a network is given by k = maxflayer(i) j 1 � i � jU jg.
If a network graph consists solely of undirected edges (weights), then the network
is called undirected or symmetric, otherwise it is called directed. Other properties
of a network graph are its size (order of the network) and the number of edges
(weights) and the interconnection structure.

There are basically two di�erent operation modes in neural networks: feed-
forward and relaxation.
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De�nition 2.1.8 (Feed-forward, relaxation )
An operation mode is called feed-forward if:

� the network is layered and

� the input values are propagated from the input layer through the hidden
units to the output layer.

The activation of the units is done according to the layered structure of the
network and the activations of the units in the output layer are considered as
response or result of the network.

An operation mode is called relaxation if:

� starting with an initial state Z0, the network iterates through several states
Z1; : : : ; Zn�1 according to its update scheme and

� the network settles in a stable state, that is, the network does not change
its state after updating, or it oscillates between a (small) set of states. The
�nal state (or set of states) is considered the result.

A more detailed de�nition is given for the architecture of a network.

De�nition 2.1.9 (Architecture)
A network architecture can be described by a 5-tuple A = (U;H; I;O;DE) with

� U as set of all units,

� H as set of h units: H := fu1; u2; ::; uhg � U ,

� I as set of n input units: I := U �H,

� O as set of output units: O � H and

� DE as set of directed edges: DE � f(ui; uj)juj 2 H;ui 2 U; j < ig.

If not speci�ed the units of the networks are logistic units as de�ned in de�nition
2.1.5.

2.1.2 Learning in Networks

Learning in neural networks is accomplished through weight changes. We can
distinguish between methods with an explicit learning goal and methods without
an explicit learning goal. Methods of the �rst type are called supervised learning
algorithms and methods of the latter type which usually have their learning goal
incorporated into the learning algorithm are called unsupervised.
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De�nition 2.1.10 (Supervised and unsupervised learning)
A learning algorithm is called:

� supervised if the quality of the network's output can be measured by an
explicit learning goal and the learning goal is used for learning.

� unsupervised if structural properties, such as distributions or regularities
of the input space are used by the learning algorithm to adapt the weights.

Unsupervised learning algorithms are often used to �nd statistical properties of
the input space, whereas supervised algorithms are mainly used for classi�cation
and prediction.

2.1.3 Backpropagation

Because of the relative ease of use and many successful applications, feed-forward
networks are the most common type of networks used today. These networks are
usually trained with the error-backpropagation training algorithm or variants of
it. The following section introduces the backpropagation principle which was �rst
proposed by Webros [92] and made popular by Rummelhart and McClelland in
the mid-Eighties [69].

The basis for the backpropagation algorithm is the delta rule. It is based on the
assumption that the correct output of every output unit is given for all training
patterns. One can de�ne the quality of the network's output by an error measure.
The most common error function is the sum of squared errors.

De�nition 2.1.11 (Squared error and mean sum of squared error)
Let � be the actual target vector with n elements for the output layer with size
n and ai the activation of unit ui then the squared error (se) for a given pattern
k can be de�ned as:

sek :=

nX
i=1

(�i � ai)
2 (2.5)

For the backpropagation algorithm the squared error is often multiplied by 1=2
in order to simplify the derivative. The mean sum of squared errors (msse) for
all patterns can then be de�ned as:

msse :=

PNpat

k=1 sek
Npat

(2.6)

with Npat as the number of patterns. To allow for an easier comparison the error
is often normalized and reported as squared error percentage (sep):
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sep := 100 � Omax �Omin

n
�msse (2.7)

where Omax and Omin are the minimum and maximumvalues of the output units.

2.1.3.1 The Delta Rule

The basis to all backpropagation-like algorithms is the delta rule [69]. The error
measure msse (2.6) shall be minimized through appropriate weight changes. We
therefore need a weight change �wi;j at unit ai that is proportional to the error
of the unit � ÆE

Æwi;j
(negative gradient)

wi;j(t+ 1) = wi;j(t) + �wi;j(t) (2.8)

If the netinput neti, the activation ai and the target activation �i are known
and the activation function f is di�erentiable, then the weight change is realized
through:

�wi;j = � ÆE

Æwi;j

(2.9)

ÆE

Æwi;j

= �(�i � ai) � f 0(neti) � aj (2.10)

= �Æi � f 0(neti) � aj (2.11)

If f is a linear function then the derivative f 0(neti) is a constant and the result
is the so-called delta rule.

De�nition 2.1.12 (Delta rule, learning rate)
According to the delta rule a weight change is accomplished through:

�wi;j = � � aj � Æi (2.12)

with � 2 IR as learning rate to control the size of the weight change.

Normally � is known only for the output units but not for inner (hidden) units
of a network. The problem of assigning an error to such units is called credit
assignment problem and cannot be solved by the delta rule. A possible solution
to this problem is the generalized delta rule and the backpropagation algorithm.
This algorithm delivers a way of assigning errors to hidden units and therefore
overcomes the limitations of simple one-layered perceptrons. If the activation
function f is di�erentiable then the generalized delta rule can be written as:
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�wi;j = � � Æi � f 0(neti) � aj (2.13)

with � 2 IR as learning rate. Thus, the backpropagation algorithm can be de�ned
as:

De�nition 2.1.13 (Backpropagation)
Let o 2 U be a unit of the output layer and �o the desired target value for o then,
according to the delta rule, the following holds:

�wo;i = � � Æo � ai (2.14)

Æo = (�o � ao) � f 0(neto) (2.15)

Let I be the set of input units, H the set of inner (hidden) units, O the set of
output units and IH = I [H be the set of units that receive input from a unit
i 2 IH. The internal error for this unit i is given by:

X
k2IH[O

Æk � wi;k (2.16)

Now we can calculate the internal error for all units of the same layer

Æi =
X

k2IH[O
Æk � wi;k � f 0(neti) (2.17)

and their weight change

�wi;j = � � Æi � aj (2.18)

= �
X

k2IH[O
Æk � wi;k � f 0(neti) � aj (2.19)

The backpropagation algorithm can be considered an iterativemethod for discrete
gradient descent which minimizes the error between the desired target values and
the actual output of a network (Eq. 2.5). The algorithm can be outlined as:

1. Initialization of weights wi;j with uniformly distributed random values2.

2. Presentation of an input vector at the input units.

2Other initialization procedures such as Gaussian random numbers and weight initialization
that depends on the number of weights connected to a unit can be used to �nd better starting
points in the search space.
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Figure 2.3: Architecture of a feed-forward network with a single hidden layer. Ac-
tivation of the input units is usually given by presenting an input vector to the units
while the activation of hidden and output units are computed through their activa-
tion functions. A forward activation is top-down while the error backpropagation is
bottom-up.

3. Forward propagation of the signals, through all layers until the output layer
is reached.

4. Presentation of the desired target vector and calculation of error signals.

5. Backward propagation of the error signals through all layers according to
the generalized delta rule.

6. Iterate steps 2 - 5 until a desired stopping criterion is met3.

The network architecture is illustrated in �gure 2.3. Input units do not perform
any computation on the input, they are merely used for presenting the training
patterns to the network. Hidden and output units normally are \functional"
units with sigmoid or other types of activation functions.

A presentation of all training patterns (target vectors �) and the weight change
is called epoch. We have two choices for changing weights. Adapting the weights
after each single pattern presentation is called online learning which is the normal
case. The second choice is the accumulation of error signals until all patterns are
presented followed by a single weight update according to the accumulated error.
This is called batch learning.

In chapter 4 we will see that the weights of a network can also be adapted by
means of an evolutionary algorithm. In this case no backpropagation of error
signals is needed and the necessity of di�erentiable activation functions can also
be relaxed.

3A common stopping criterion is the msse error (Eq. 2.6). More advanced stopping criteria
will be introduced in section 2.3.1.
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2.1.3.2 Variants of Backpropagation

Since its invention the popular backpropagation algorithm has undergone major
improvements. All of the improvements are used to speed up the learning process.
Modi�cations vary from the introduction of a simple momentum term to more
sophisticated changes of the algorithm like the very successful resilient propa-
gation and the cascade correlation algorithm which also constructs the network
structure during learning.

The momentum term introduces some sort of history into the gradient descent
algorithm. It improves learning in 
at areas of the search space and sometimes
stabilizes the learning process.

De�nition 2.1.14 (Momentum term)
The delta rule with momentum term is de�ned as:

�wi;j(t) := � � Æi � f 0(neti) � aj + � ��wi;j(t� 1) (2.20)

with � as new momentum parameter to control the in
uence the last gradient
has on the actual weight change.

The backpropagation algorithm is very sensitive to variation of the two learn-
ing parameters, so it seems natural to either eliminate them or to control them
through a proper heuristic. Amongst the possible improvements are the use of a
hyperbolic function to change the learning rate or dynamic momentum strategies
[33], [15].

2.1.3.3 Quickpropagation

Fahlman proposed a method to eliminate the momentum term and reduce the
in
uence of the learning rate. His quickpropagation algorithm is based upon the
second derivative of the activation function f and the assumption that the local
error surface is hyperbolic [16].

De�nition 2.1.15 (Quickpropagation update)
The quick propagation update is de�ned as:

�wi;j(t) :=
S(t)

S(t� 1) � S(t)
��wi;j(t� 1) (2.21)

S(t) := � ÆE

Æwi;j(t)
(2.22)

with S(t) and S(t� 1) as �rst derivatives of the activation function.
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According to this update strategy �w will grow with successive weight changes
in the same direction and decrease with alternating directions. This bears the
danger of a too large �w that might miss the minimum. The introduction of a
maximum weight change parameter helps.

2.1.3.4 Resilient Propagation

Another important variant is the Resilient Propagation (RProp) batch learning
algorithm. It introduces individual step sizes (learning rates) for each weight and
a new mechanism to adapt them. One problem with standard backpropagation
is that the step size control is directly based on the partial derivative of the units
activation function. If a unit is operating in its saturated area, that is, close to
the boundaries of its activation range, the derivative is small and the learning
progress is very slow. One solution to this problem is to use only the sign of the
derivative as gradient direction and determine the step size by other means.

The update rule for RProp [67, 65, 66] can be written as:

�wi;j(t) := ��i;j(t) � sign(ÆE(t)
Æwi;j

) with sign(x) =

8><
>:
1 if x > 0

0 if x = 0

�1 if x < 0

(2.23)

The mechanism for step size control is:

�i;j(t) :=

8><
>:
�+ ��i;j(t� 1) if ÆE(t�1)

Æwi;j
� ÆE(t)
Æwi;j

> 0

�� ��i;j(t� 1) if ÆE(t�1)
Æwi;j

� ÆE(t)
Æwi;j

< 0

�i;j(t� 1) else

(2.24)

with �+ > 1 and 0 < �� < 1.

The update rule can be described as follows: Whenever the last step was too
large and a local minimum was missed, the partial derivative of a weight wi;j

changes its sign and the step size �i;j is decreased by a factor �� and the weight
adaptation in the following learning step is omitted. This can be achieved by
setting ÆE(t�1)

Æwi;j
:= 0. 4 If the direction remains the same, the step size is slightly

increased by the factor �+. Usually �+ is �xed at 1:2 and �� is �xed at 0:5.
As a starting step size �0 := 0:1 is introduced and because of the potentially
exponential growth of the step size it makes sense to introduce a maximum value
�max := 50:0 for the step size as well.

4The original RProp algorithm performed a weight backtracking whenever a change in sign
occurred. Recent work of Igel [32] showed that a backtracking mechanism that is based on the
global instead of the local error is more successful. Omitting backtracking completely is better
than local backtracking and almost as good as the one based upon the global error.
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Because too large weights are usually the result of over-training, one might intro-
duce a penalty term on the output weights to improve the generalization behavior.
This weight penalty term can be added to the normal error term msse (Eq. 2.6)
and written as:

E := msse+ 10��
X

w2
i;j (2.25)

with � as parameter to control the ratio of normal error and weight penalty. If
� = 4 the ratio is 1 : 104:

A recent work of Schraudolph [72] proposed a new technique for adapting the
step sizes for weight updates. He compared his method (ELK1) with four other
stochastic gradient decent methods, and concludes that his algorithm is superior
to others in terms of convergence speed as well as computational e�ort, while
eliminating the momentum term.

Another important issue is the sensibility of the learning parameters. A parame-
ter study of Braun [13] showed that the average number of training epochs needed
to solve problems does not vary much over a wide range of potential parameter
settings. In other words, RProp is not sensitive to learning parameter changes.

2.1.4 Complexity Issues

This section brie
y discusses some complexity issues in neural networks on an
informal basis. A more thorough coverage of the matter is given in appendix A.2.

The theorems of Judd [36] [37] and, based on them, the work of Lin and Vitter
[47], show that learning as well as the problem of topology determination are
NP-complete. By use of his theorems and their proofs Judd showed that the
problem of �nding a neural network architecture with the common logistic ac-
tivation function that realizes a given function is NP-complete [34]. Restricting
the activation function to subclasses does not help as the theorem even holds for
simple linear threshold functions.

The question arises whether other restrictions might relax the problem. Placing
constraints on the network architecture is a straightforward approach. Only for
a very restricted class of \tree-like" architectures, Judd could show that learning
can be accomplished in polynomial time.

His theorems are independent of the used training algorithm. They show that
no training algorithm exists which can solve a given learning task in P-time if
P 6= NP . Note that it also holds for training NNs with evolutionary algorithms.

Lin and Vitter [47] carried on the work of Judd. Their research is concerned with
the complexity of learning speci�c mappings and the complexity of �nding an
optimal architecture for speci�c problems. Their work has shown that comparing
the functionality of two given networks with more than one hidden unit is not
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feasible in the general case and that the problem of �nding an equivalent or
optimal network for a given network is NP-complete as well. Mandischer [51, 52]
took this as one motivation for using an evolutionary algorithm as a heuristic
search procedure for good architectures.

2.2 Data Preprocessing

The following sections deal with the problem of data preprocessing. The main
focus will be on the introduction of scaling techniques that play a crucial role for
the success of learning.

2.2.1 Scaling Techniques

An important issue in applying neural networks to a given dataset is the scaling of
input and output vectors. For the desired target vectors, it is necessary to reside
within the range of the output activation function in order to propagate a correct
error signal. For input variables the range does not matter that much, because
properly adjusted weights might perform a linear scaling, but input variables with
very di�erent input ranges make very di�erent contributions to the error signal
and weight change. Therefore it is desirable to rescale all variables to the same
range.

De�nition 2.2.1 (Scaling techniques)
Let V := fv1; ::; vng denote a set of values, v the mean of the set with standard

deviation �V and ~Vmax; ~Vmin the new range.

� Linear scaling

This simple scaling method can be used, if the data is uniformly distributed5

within the given range. Rescaling a value v 2 V can be done by:

v0 :=
v �min(V )

(max(V )�min(V ))
� ( ~Vmax � ~Vmin) + ~Vmin (2.26)

� Logarithmic Scaling

This method can be used if max(V ) > exp(V ) and if larger values which
will be squashed do not carry much information.

v0 :=
log v � log min(V )

log(max(V )�min(V ))
� ( ~Vmax � ~Vmin) + ~Vmin (2.27)

5A criterion for checking the distribution is to look for outliers that can be speci�ed by the
parameter �. If max(V ) < v + ��V or min(V ) > v � ��V then linear scaling can be applied.
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� Hyperbolic scaling

This method can be used when values at the limits of the range can be
neglected.

v0 = 4v(1� v) (2.28)

For a more thorough overview of scaling methods see [84] and [29].

2.2.2 Choosing Target Values

Setting target values at the bound of the activation range sometimes has several
drawbacks [45]. During training the network tries to push its output values as
close as possible to the desired target values. As this is only possible with very
large weights which cause the units to operate in their saturated areas where the
sigmoid derivatives are close to zero, there is no weights change anymore and the
weights may become stuck. In classi�cation tasks, large weights also tend to force
all outputs to the boundaries of the activation function, pretending a con�dence
that does not allow to di�erentiate between typical and untypical examples of
the class.

As a solution to this problem, one can scale the input values to the range of the
\active" part of the sigmoid instead to the boundaries of the activation function.
For an activation range of [0; 1] typical values for the output range are [0:1; 0:9].

2.2.3 Dimensionality Reduction

The reduction of the input space is of some relevance for real-world applica-
tions, where not much is known about the data. Removing variables with few
or no in
uence on the rest of the data means reducing the network's complexity
and training time. High correlations between input values can be used to iden-
tify redundant inputs. Information theoretical measures like mutual information
between each input variable [8] or statistical methods like principal component
analysis [29] might be used.

2.3 Generalization

Minimizing the error of a network on a set of given training patterns does not
necessarily mean minimizing the generalization error. When the training of a
network starts, the network's error on the training set usually decreases while
the weights adapt to �t the data. If the network has too many free parameters
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Figure 2.4: Overtraining and generalization loss (P genLoss) during neural network
training. Errors of two disjunct data sets are shown. The error on the training data
(P train) decreases while the error on unseen validation data (P val) starts to increase
after a few epochs.

(weights) and training continues to reduce the error for too long a time, over-
�tting occurs. This means the network memorizes the data instead of developing a
model of the input/output relation. The network's performance on unseen data,
that is generalization ability, decreases. This tradeo� between generalization
ability and accuracy can easily be observed in �gure 2.4.

Achieving a good generalization ability still remains an open issue in training
neural networks. Several techniques have been proposed to tackle this problem.
The \correct" number of hidden-units plays a crucial role in this. Too many units
make the network prone to over-�tting the data and too few result in a poor
�tting of the data. Other methods which are independent of the architecture of
a network are cross-validation, early-stopping and regularization.

White, Stinchombe, and Hornik [31] have shown that feed-forward networks are,
in principle, capable of arbitrary exact function approximation given an in�nite
number of weights or units. In the context of this work Stinchombe [83] reca-
pitulates some theoretical aspects of choosing a network architecture. He tries
to answer the question how one can actually lean such arbitrary input/output
relations and how well such a learning generalizes.
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2.3.1 Cross-Validation and Early-Stopping

Cross-validation is a standard tool in statistics which is used to select good model
parameterizations from a set of candidate parameterizations. Transfered to the
neural network domain it is used as a means of improving the generalization of
neural networks through partitioning of the available data, testing the perfor-
mance on the di�erent partitions, and selecting the best network parameteriza-
tion, which is, in this context, the best set of weights.

First, the available data is divided into three disjunct and randomly sampled sets,
the training, validation and test set. The idea is to use only the training set for
the actual learning phase of the network and estimate its �nal performance by
the unseen data from the validation set. The test set is held back and only used
to evaluate the �nal performance of the network.

To clarify the terminology used throughout the experiments a few technical terms
have been proposed by [62]. All data we have is simply called data. It will at
least be divided into two disjunct sets. The �rst set, training data, is used for
training and validating the network, the second set, the test set, is only used
for testing the networks performance. The training data can be divided into a
training set and a validation set so that we end up with three distinct data sets.

� Training set (50% of all data):
This set is only for training the network. Weights are adjusted according
to the error on this set only.

� Validation set (25% of all data):
The validation set is part of the training data and it is usually not used
to adjust the networks weights but to validate the results achieved on the
training set. It is used during training to measure the expected generaliza-
tion error.

� Test set (25% of all data):
The test set is used to estimate the network's error on unseen data. The
generalization error is measured. No weights are adapted to �t the test set.

Early-stopping is a so-called \non-convergent method" and is usually used in
combination with cross-validation. The training process is stopped before it 
uc-
tuates around a minimum. When the error on the validation set starts to increase,
the network is over�tting the training data and the �nal performance on unseen
data decreases. The question arises when exactly one should stop the training.
Prechelt proposed three classes of stopping criteria and evaluated several stopping
criteria from these classes [62, 63].

Let Etraining; Evalidation; andEtest, be the msse errors (Eq. 2.6) on the correspond-
ing data sets, then the lowest validation error Eopt(t) up to epoch t is de�ned as
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Eopt(t) := min
t0�t

Evalidation(t0). Thus the loss of generalization during training can

be de�ned as:

GL(t) = 100 �
�
Evalidation(t)

Eopt(t)
� 1

�
(2.29)

The training can be stopped as soon as the generalization loss GL exceeds a
certain threshold �.

In most cases overtraining does not begin before the training error starts decreas-
ing slowly. This leads to a measure which includes progress over a certain number
of epochs, called training strips of length k.

Pk(t) := 100 �
 Pt

t0=t�k+1 Etraining(t0)

k �mintt0=t�k+1 Etraining(t0)
� 1

!
(2.30)

The quotient of generalization loss and progress, GL(t)
Pk(t)

, can be used to stop train-
ing if it exceeds the threshold �. Examples of stopping criteria are:

� GL�: stop after �rst epoch t with GL(t) > �

� PQ�: stop after �rst end-of-strip epoch t with GL(t)
Pk(t)

> �

� UPs: stop after epoch t if UPs�1 stops after epoch t� k and Evalidation(t) >
Evalidation(t� k)
UP1: stop after �rst end-of-strip epoch with Evalidation(t) > Evalidation(t�k)

A third type of criteria relies only on the sign of the validation error. Here the
training stops when the generalization error increased in s successive training
strips.

An extensive parameter study6 of the above stopping criteria allows to draw some
conclusion for the best trade-o� between training time and resulting network
performance [63]. If the expected network performance of a single training run
has to be improved, the stopping criteria UP3; UP4; and UP6 are fast and robust.
If the best network can be picked from a series of several runs, one can use GL
as criterion.

Other techniques for improving the generalization ability are adding noise to the
input data or using a regularization term on the weights so that larger weights
produce a larger error [84]. This prevents the network from memorizing speci�c
patterns. Both methods are proven to be equivalent under certain assumptions
[10]. A way of integrating a regularization term is to de�ne an error which
penalizes larger weights more than smaller once.

6In this study, 12 di�erent network architectures had to solve 12 di�erent learning tasks.
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Such regularization terms do not take into account the cross-correlation between
hidden units and the distribution of the data in the input units. Information-
theoretic regularization methods may be more appropriate in this case [14].

2.3.2 Choosing the Optimal Number of Units

As we have seen in the previous section, a good generalization ability depends
on the training time of the network. Another parameter is the number of hidden
units and thus the number of weights. The optimal number of hidden units
depends on several factors:

� the amount of available training data,

� the complexity of the task to be learned,

� the number of input and output units,

� the architecture (node functions and structure),

� the training algorithm (training with weight decay, regularization, early-
stopping).

With too few units one gets high training and high generalization errors, and with
too many hidden units and without early stopping one may get a low training
error but high generalization error. There is no reliable way to determine how
many hidden units are needed without trial and error. There are some rules of
thumb on how to choose the number of hidden units to achieve a good general-
ization. Rules that derive the number of hidden units solely from the number of
inputs and outputs can easily be disproved by counterexamples7.

Other rules are derived from theoretical considerations of lower and upper bounds
of the number of patterns needed for good generalizations in a given architecture.
These rules do not take into account the complexity of the task to be learned.

The complex interdependencies between the factors do not allow simple rules to
be applied. An interesting aspect is that it must not be the goal to achieve a
minimal number of units in the network but to create a network that �nally gives a
good generalization regardless of the number of units used. If good generalization
can be achieved by means of early stopping, then there is no objection against a
large number of hidden units.

7The rule: \Never choose h to be more than twice the number of input units." [84] p. 55,
can be proven wrong by the two-spirals benchmark (see section 4.3.5 for a network that needs
more than 20 hidden units while having 2 inputs and 1 output.)



Chapter 3

Evolutionary Algorithms

In this chapter an outline of evolutionary algorithms is given. The focus is on
techniques which are later on employed to evolve neural network weights. A
valuable source of information and the state-of-the-art is the \Handbook of Evo-
lutionary Computation" [4].

The basis of arti�cial evolution is a set of individuals which establishes a pop-
ulation. The better an individual is adapted to its environment, the greater is
its chance to survive and produce o�spring. Each individual can be seen as a
point in the search space which is, in our case, the space of possible networks or
the weight space of a single network. Each individual is evaluated and assigned
a �tness value which re
ects its ability to survive in the given environment. An
evolutionary algorithm can be seen as an iterative search procedure, where each
iteration is called generation. During each iteration the three biologically inspired
principles of selection, mutation, and reproduction are applied to the population.
In general the selection mechanism determines which individuals are considered
for the next generation but the role of selection is somewhat di�erent for di�erent
evolutionary algorithms.

Another di�erence between EAs lies in their representation. In nature the prop-
erties of an individual are determined by its genes and ontogenesis, that is, the
mechanism that uses their contents to build up an individual. Genetic informa-
tion is coded in chromosomes and de�ned by sequences of four nucleotide bases:
adenine (A), cytosine (C), guanine (G), and thymine (T). The carrier of this
information is a molecular structure called DNA (deoxyribonucleic acid). The
bases can be seen as nature's alphabet for coding the building plan of an or-
ganism. The genes are short strands of triplets of bases (A,C,G,T) that code
amino acids. The DNA of an organism is a long linear molecule structured as a
double helix that is composed of sequences of nucleotide bases and contains all
information to build an individual. In evolutionary algorithms the alphabets are
much simpler and the DNA is often reduced to linear sequences.

25
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While the \traditional" versions of evolutionary algorithms like evolution strate-
gies, genetic algorithms, and genetic programming [7] were usually associated
with their own native representations1, real-valued, binary or expressions in a
programming language, nowadays strict boundaries or �xed problem domains
vanish. Problems are solved using techniques and representations from all types
of EAs, and a cross-fertilization between the formerly disjunct algorithms can be
observed.

A fairly general and informal algorithmic view is given by the following pseudo
code:

Algorithm 1 (Outline of an evolutionary algorithm)

t := 0
initialize P (0)
evaluate P (0)
while (terminate(P (t)) 6= true) do

recombine: P 0(t) := rec(P (t))
mutate: P 00(t) := mut(P 0(t))
evaluate P 00(t)
select: P (t+ 1) := sel(P 00(t) [Q)
t := t+ 1;

end

� with t as generation counter,

� P (t) = f~a1; : : : ;~a�g 2 I� as an initial population of � individuals ~ai 2
I, where the structure of the individual space I might range from simple
boolean spaces IBn to complex data structures,

� mut and rec as mutation and recombination operators that are de�ned on
populations,

� Q � f; [ P (t)g as an additional set of individuals which is used to model
individuals surviving more than one generation,

� sel as operator that selects individuals for the next generation.

The recombination operator often comprises another selection mechanism, the
mating-selection, which determines which individuals are chosen to produce o�-
spring together. The mating-selection can be either seen as an integral part of
the recombination operator or explicitly modeled as an operator. The evolution
cycle can then be characterized by �gure 3.1.

1In the past such associations were often done to allow for theoretical investigations. The
ES for example was �rst de�ned and used for discrete problems.
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Figure 3.1: Iteration scheme of a general EA (from [77]).

In the next sections evolution strategies (3.1) and genetic algorithms (3.3) will
be introduced using a general and informal notation that is gleaned from B�ack
[2].

3.1 Evolution Strategies

The old notation for evolution strategies (ESs) introduced by Schwefel in the
early Seventies is the (�+; �){ES notation which means that � parents create �
descendants by recombination and mutation. The � parents for the next gener-
ation are either chosen from a union of parents and descendants in case of the
(�+�){ES with � � 1 or only from the descendants in case of the (�,�){ES with
� > �.

Newer variants of evolution strategies relax the strict distinction between \+"
and \;" selection by introducing the concept of aging [79, 78]. This (�; �; �; �)-ES
introduces two new parameters. The parameter � controls the maximum number
of reproduction cycles an individual is allowed to live. With a value of � = 1
one gets the classical (�,�){ES while a value of � =1 yield the (�+�)-strategy.
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With the parameter � one can control the number of parents that contribute to
the creation of one o�spring.

The operators of an ES work on entire populations. It is left to the operator how
many individuals are chosen for processing. In general it can be distinguished
between asexual, sexual and global operators. Asexual operators work on a single
individual, while sexual ones pick two individuals to produce o�spring in contrast
to the global operators that might use any number of individuals2.

3.1.1 Representation

For the class of real-valued or discrete parameter optimization problems, evolution
strategies work directly on their representation, and in this case no mapping
function between genotype and phenotype is needed, or it is included in the �tness
function. Search points in ESs are, for example, n-dimensional vectors ~x 2 IRn of
object variables. Hence, the �tness function is, in principle, identical to a given
objective function f : IRn ! IR. If the optimization problem is not naturally
de�ned on IRn, which is often the case in structure optimization where one might
face a mixture of binary, integer and real-valued vectors of varying sizes, mapping
functions or problem speci�c representations and operators are needed. To allow
for a better adaptation to the objective functions topology, the object variables
are accompanied by a set of so-called strategy parameters.

De�nition 3.1.1 (ES-individual)
An individual ~a = (~x; ~�; ~�) 2 I of an ES consists of three components, the object
variables ~x and up to n di�erent standard deviations3 �i to control the step sizes
and up to n � (n� 1)=2 rotation angles �j;i 2 [��; �], where

I = IRn �A (3.1)

A = IRn�
+ � [��; �]n� (3.2)

n� 2 f1; : : : ; ng (3.3)

n� 2 f0; (2n � n�)(n� � 1)=2g: (3.4)

In case we have 1 < n� < n, the standard deviations �1; : : : ; �n��1 are used for
the corresponding object variables x1; : : : ; xn��1, and the last �n� is used for the
remaining variables xn� ; : : : ; xn.

2Sometimes global recombination is also called panmictic recombination [2] which might
lead to confusion with panmictic population structures.

3The number of strategy parameters can be up to n � (n + 1)=2.
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3.1.2 Mutation

Mutation is an asexual operator that involves only a single individual in contrast
to recombination where up to � individuals can be used to form a new individual.
The mutation operator mut : I ! I is applied to a triple (~x; ~�; ~�) 2 I and yields
a new triple (~x0; ~�0; ~�0) 2 I. Object variables as well as the strategy parameters
of an individual undergo mutation.

The notation N(0; 1) denotes a realization of a standard normally distributed
one-dimensional random variable having expectation zero and standard devia-
tion one4. Instead of a normal distribution the more slowly decaying Cauchy
distribution might be used [38].

De�nition 3.1.2 (ES-mutation)
The mutation operator is de�ned as follows: 8i 2 f1; : : : ; ng, 8j 2 f1; : : : ; n � (n�
1)=2g

�0i = �i � exp(� 0 �N(0; 1) + � �Ni(0; 1)) (3.5)

�0j = �j + � �Nj(0; 1) (3.6)

~x0 = ~x+ ~N(~0;C(~�0; ~�0)) : (3.7)

� with exp(� 0 �N(0; 1)) as a global factor which allows an overall change of
the mutability,

� exp(� �Ni(0; 1)) allowing for individual changes of the \mean step sizes" �i
and

� � � 0:0873 which equals 5Æ rotation angle.

Before the object variables are changed, the standard deviations are mutated
using a multiplicative, logarithmic normally distributed process. The rotation
angles are then varied by an additive, normally distributed process. Finally, the
resulting vectors ~�0 and ~�0 are used to create a random vector for mutation of
the object variable vector ~x.

Rotation angles are not used in this thesis so that an individual consists of only
the object parameters and the standard deviations. The space of individuals for
the ES in this thesis is reduced to I = IRn � IRn and the above equations can be
reduced to:

4The notation Ni(0; 1) indicates that the random variable is sampled anew for each i. The

notation ~N (~0;C) is used to denote a realization of a random vector distributed according to
the generalized n-dimensional normal distribution with expectation ~0 and covariance matrix
C
�1 = C�1(~�; ~�). For further details see [2], [75].
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�0i = �i � exp(� 0 �N(0; 1) + � �Ni(0; 1)) (3.8)

x0i = xi + �0i �Ni(0; 1) (3.9)

The parameters � 0 and � can also be interpreted in the sense of \global learning
rates" as in neural networks. From a somewhat di�erent perspective one can see
the standard deviations �i as \local learning rates" when they are coupled to the
object parameters during recombination. Often they are set as follows (see [73]):

� 0 � '�p
2n

(3.10)

� � '�p
2
p
n

(3.11)

with '� as expected rate of convergence. As the convergence rate is only known
for theoretical or empirical well researched objective functions like the sphere
function, it is usually set to 1 for unknown functions. If we consider the case of
only one step size n� = 1, the global and the individual factor for the modi�cation
of the �i merge into one common factor � 0 where � 0 � (

p
n)�1.

�0 = � � exp(� 0 �N(0; 1)) (3.12)

x0i = xi + �0 �Ni(0; 1) (3.13)

Recent parameter studies of Kursawe [43] showed that there is a complex inter-
dependence between the recombination operators, the objective function and the
selection pressure and that no single \correct" parameter setting of an ES exists,
that holds for all problems.

The logarithmic normal distribution for the variations of standard deviations �i
can be motivated as follows (see Schwefel [73]):

� The multiplicative modi�cation of �i ensures positive values of standard
deviations.

� To guarantee the neutrality (on average) of the process without selective
pressure, a multiplication by a certain value must occur with the same
probability as a multiplication by its reciprocal value.

� Smaller modi�cations must occur more often than larger ones.
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Practically it is possible for the standard deviations to become almost zero by
the multiplicative process. Therefore a minimum value must be maintained to
guarantee a measurable change in the object variables.

An alternative mechanism for the self-adaption of strategy parameters has been
proposed by Ostermeier et al. [60]. They employed a derandomized scheme
for the mutation of step sizes that uses information accumulated over previous
generations. An overview of self-adaption methods is given by B�ack [3].

3.1.3 Recombination

Recombination in ESs can be either sexual, where only two parents are involved
in the creation of an o�spring, or global, where up to the whole population con-
tributes to a new o�spring. Sexual recombination of just two individuals is often
called local while the contribution of all individuals is called global recombination.
Traditional recombination operators are discrete recombination, intermediate re-
combination5, and geometric recombination, all existing in a sexual and global
form. Another form of recombination, the global average, where the components'
mean over the entire population is calculated, is also called global intermediate
recombination [64, 9].

Beside the global and local version of the operators, one has to decide if object
variables and strategy parameters are coupled to each other. Traditionally, both
parameter sets are treated independently of each other, and recombination sam-
ples genes from distinct pools of object variables and strategy variables so that
an o�spring might get its xi vector component from parent P1 and its �i compo-
nent from a di�erent parent P2. Nevertheless, many implementations of ESs let
object and strategy variables travel together, which will then be called coupled
recombination.

De�nition 3.1.3 (ES-recombination)
The recombination operator creates an individual ~a0 = (~x0; ~�0) from a population
P (t) 2 I�, i.e. rec : I� ! I. In case of the sexual form we have rec : I2 ! I.

For the object variables and strategy parameters (8i 2 f1; : : : ; ng):

x0i =

8>>>>>>><
>>>>>>>:

xS;i no recombination (n)

xS;i or xT;i discrete (d)

xSi;i global discrete (D)

(xT;i + xS;i)=2 intermediate (i)

(xTi;i + xSi;i)=2 global intermediate (I)

(
P�

K=1 xK;i)=� global average/intermediate (A)
5Schwefel [78, 79] proposed to generalize intermediate recombination by introducing weight

factors from the interval [0; 1] instead of the value 0:5 and furthermore by choosing the weight
factor anew for each component in case of global intermediate recombination.
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�0i =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�U;i no recombination (n)

�U;i or �Q;i discrete (d)

�Ui;i global discrete (D)

(�Q;i + �U;i)=2 intermediate (i)

(�Qi;i + �Ui;i)=2 global intermediate (I)p
(�Q;i � �U;i) geometric (g)p
(�Qi;i � �Ui;i) global geometric (G)

(
P�

K=1 �K;i)=� global average/(intermediate) (A)

with S and T denoting two randomly selected individuals from the parent pop-
ulation. In case of a coupled recombination we claim S = U , Si = Ui, Ti = Qi.
Otherwise, it may or may not be assured that S 6= U , Si 6= Ui, Ti 6= Qi.

The index i in Ti, Si, Ui and Qi indicates that they are newly sampled for each
component i, so that a child that is created via global recombination gets its
information from two newly chosen parents for each component. In B�ack [2]
we �nd a somewhat di�erent notation where S is used instead of Si, which is
equivalent to holding one parent �xed and choosing only the second parent anew
for each component.

Throughout the thesis a recombination operator will be denoted by (rec~xrec~�),
where rec~x 2 fn; d;D; i; I;Ag and rec~� 2 fn; d;D; i; I; g;G;Ag (according to the
notation in the last column of 3.14) indicate recombination mechanisms used on
the two components of individuals. If not mentioned otherwise the sexual and
coupled recombination is used. Table 3.1 summarizes the di�erent recombination
operators.

3.1.4 Selection

The environmental selection operator employed in evolution strategies is com-
pletely deterministic - and there exist two basic selection methods, the (�+�)-
selection and the (�,�)-selection - while the mating selection operator is com-
pletely (uniformly) random.

De�nition 3.1.4 ((�+�)-selection)
The selection operator sel(�+�) : I

�+� ! I� forms the next generation by selecting
the � best individuals from the union of � parents and � o�spring. Here, � � 1
and independent of �.

De�nition 3.1.5 ((�,�)-selection)
The selection operator sel(�;�) : I

� ! I� forms the next generation by selecting
the � best individuals from the � o�spring. Thus, � > � is a necessary condition.
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sexual (local) recombination global recombination

discrete Select two arbitrary parents,
choose each component of
an o�spring at random from
one of the two parents.

For each component of the
o�spring randomly select a
parent from the whole pop-
ulation.

intermediate Select two arbitrary parents,
for each component of an
o�spring calculate the arith-
metic mean of both parents.

For each component of the
o�spring randomly select
two parents from the whole
population, calculate the
arithmetic mean of both
parents.

geometric
(only allowed on
� which are al-
ways positive)

Select two arbitrary parents,
for each component of an
o�spring calculate the geo-
metric mean of both par-
ents.

For each component of the
o�spring randomly select
two parents from the whole
population, calculate the ge-
ometric mean of both par-
ents.

global average
global interme-
diate

Each component of an o�spring is built by calculating
the arithmetic mean of the entire population for that
component.

Table 3.1: Recombination types in ESs.

The (�+�)-selection guarantees the survival of the �ttest individual and is there-
fore a so-called elitist selection: once a (local) optimum is found, it will be kept
until a better optimum is found. This selection mechanism has several draw-
backs in comparison to the (�,�)-selection that restricts the lifetime of every
individual to one generation. In changing environments it keeps outdated so-
lutions and cannot follow a moving optimum. In case of multimodal objective
functions, the strategy may get practically stuck6 in local optima. Also, the
self-adaptation mechanism for the strategy parameters might be hindered, be-
cause poorly adapted strategy parameters may survive when they cause a �tness
improvement by chance.

According to [2], the conditions for a successful self-adaptation of strategy pa-
rameters can be summarized as follows:

� Use a (�,�)-strategy in order to prevent survival of individuals with poorly
adapted internal parameters.

6The logarithmic normal distribution allows arbitrarily large or small changes such that the
strategy can in theory escape from local optima and alway �nd the global optimum for t!1

as long as �t > 0 and
P
1

t=0
�t !1.
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� The selective pressure should not become too strong, which means that the
number of parents � is required to be signi�cantly larger than one. A ratio
of �=� � 1=7 is recommended.

� Recombination on strategy parameters is necessary and intermediate re-
combination usually gives best results.

The ratio �=� is called selection pressure and allows for the characterization of
the search process. A small � emphasizes a more local search (path-oriented),
while a large � leads to a more global search (volume-oriented) [2].

Another rather old selection mechanism is the (�+1)-selection [64, 5] or, in
GA terminology, steady-state selection [93]. It is often discarded because is does
not o�er an appropriate method for self-adapting the strategy variables [76, 81].
However, it might be useful when the evaluation of a �tness function is done in
parallel and the computational e�ort for a single �tness evaluation varies a lot.
In such a case a generational approach wastes time while waiting for the �tness
value of the slowest individual.

Algorithm 2 ((�+1) or steady-state evolutionary algorithm)

t := 0
initialize P (0) + f~a1; : : : ;~a�g 2 I�

evaluate P (0)
while (terminate(P (t)) 6= true) do

recombine: ~a0 := rec(P (t))
mutate: ~a00 := mut(~a0)
evaluate ~a00

select: P (t+ 1) := sel(P (t) [ ~a00)
t := t+ 1;

end

Other selection methods like tournament selection [11] and rank-based selection
[26] are not covered here. A comparison of di�erent selection methods can be
found in [28].

3.1.5 Convergence Measures

When doing parameter studies the question of how to evaluate a single run or a
set of runs and when to stop because of premature stagnation arises. Close to
a minimum, either the global or some other local one, optimization procedures
tend to reduce their step size towards the minimum to approach it even further.
In a very 
at area, which is similar to a constant objective function, intermediate
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recombination of the step sizes causes them to grow. In both cases the search
practically stagnates.

In the neural network domain, the technique of early-stopping exists (see section
2.3.1) that is used to prevent over-adaptation of parameters . An ES run can, for
example, be stopped if a certain di�erence between the best and the average or
the worst individual becomes smaller then a given " or when the step sizes begin
to vanish below a very small value.

The following two convergence measures can be used to evaluate the speed of
convergence.

C1 =
n

#generations
� 1
2
(log fstart � logfbest) (3.14)

This measure is in
uenced by the number of generations and favors quick runs,
even if they get stuck at local optima. The next measure is independent of the
number of generations:

C2 = log
fstart
fbest

: (3.15)

3.2 Encapsulated Evolution Strategies

Encapsulated evolution strategies (EESs) [64] belong to the class of meta strate-
gies. They are successfully applied to non-linear regression problems in chemical
engineering [42, 87]. Within the scope of this thesis (see chapter 5) they are used
to �t physical models to experimental data in order to yield good models of the
underlying process [53].

The main characteristic of an EES is its sequential and isolated search strategy
on several (usually two) levels. The isolation leads to a higher locality of the
search which turned out to be useful in complex search spaces.

EESs use the standard (� ; �)- and (� + �)-ES [75] with step size adaptation
and correlated mutations, if necessary, on both search levels. All mutation and
recombination operators are identical to those described earlier. Accordant with
the above notation, Geyer [21] proposed an extended notation for EESs which is
based on Rechenberg's notation ([64], page 92 and 158):

h
rec~x;1rec~�;1rec~�;1 �1+; �1 (rec~x;2rec~�;2rec~�;2 �2+; �2)


2

i
1 � ES (3.16)

with 
2 as number of generations for the subpopulations and 
1 as number of
generations on the meta level. The triplet code rec~x;irec~�;irec~�;i of the notation
denominates the recombination type used on each of the search levels. Recombi-
nation is de�ned for
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[µ1 , λ1 ( µ2 , λ2)
γ2]+ +

Lower  l evel :
λ1 subpopu l ati ons evo l ve 

γ2 gener ati ons i ndependent  

of  eac h ot her

Upper  l evel : 
µ1 par ent  spec i es gener at e λ1 succe ss or  

spec i es whi ch est abli sh λ1 subpopu l ati ons

wit h µ2  i ndi vi dual s eac h

Figure 3.2: Search levels of an encapsulated evolution strategy.

� object variables ~x,

� step sizes ~� (standard deviations), and

� the rotation angles ~�, if correlated mutations are used.

Again, recombination types can be chosen from the standard set of recombination
operators rec~x;i; rec~�;i; rec~�;i 2 fn; d;D; i; I; g;G;Ag. The working principle of an
encapsulated evolution strategy without explicitly given recombination types is
illustrated in �gure 3.3.

Each of the newly generated �1 children on the upper level is the basis for a
new subpopulation that evolves for 
2 generations within 
1 generations in the
outer loop. On the lower level every subpopulation evolves independently of the
others. Every child �1, which is the founder of a new subpopulation and comes
from the upper level, is duplicated �2 times and functions as a starting point for
the lower level subpopulation. Each subpopulation starts with the same object
variable vector ~x as its ancestor but with newly initialized strategy parameters ~�
and rotation angles ~�.

After 
2 iterations the object variable vector of the best individual of each subpop-
ulation is returned to the upper (meta) level. This means that every individual
on the upper level copies itself into subpopulations which evolve for some time.
Each individual on the upper level is then replaced by the best individual of it's
subpopulation. Due to this process each individual changes it's position in the
search space. After the evolution of the subpopulations and transfer of the best
individuals to the upper level, the selection process continues on the upper level
as usual.
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Figure 3.3: Example of an encapsulated evolution strategy.

3.3 Genetic Algorithms

3.3.1 Representations

A classical genetic algorithm [25] works on a binary search space I = IBn, hence
individuals are bitstrings of �xed length n. In most cases the objective function
is not a boolean function and we have a clear distinction between the geno-
type and the phenotype of an individual. Hence, a transformation mechanism,
a \genotype-phenotype mapping" from the binary coded genotype of an individ-
ual to its phenotypic representation, is needed to evaluate an individual. The
space of phenotypes shall not be speci�ed. It can range from IRn as in evolution
strategies to arbitrarily complex structures in the case of neural networks.

An individual in GA notation can be de�ned as follows:

De�nition 3.3.1 (GA-individual, search space, population)
Let IB be the alphabet for encoding, then let the search space I := IBn, and we
de�ne an individual (or string) as s := (x1; � � � ; xn) 2 IBn with length jsj := n.
A set P := fs1; � � � ; spg � IBn is called population.

3.3.2 Operators

Holland described three di�erent genetic operators in 1975: inversion, mutation
and crossover [30].
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De�nition 3.3.2 (GA-inversion)
Let s := (x1; � � � ; xn) 2 IBn be a string and p1; p2 2 IN with 1 � p1 < p2 � n two
positions within the string. A mapping inv : IBn � IN � IN ! IBn with:

s0 = inv(s; p1; p1) :, (3.17)

s0i =

(
si , 8i < p1 ^ 8i > p2

sp2+p1�i , 8p1 � i � p2
(3.18)

is called inversion operator.

The inversion operator reverses the order between the string positions p1 and p2.
Figure 3.4 illustrates this.

1 0 1 1 1 0 0 0 1 1 0

p1 p2

inversion 1 0 1 0 0 1 1 0 1 1 0

Figure 3.4: GA-inversion operator.

The role of mutation in GAs is somewhat di�erent from that of mutation in
ESs. The rate at which mutations occur is usually very low � 0:001 (on average
every 1=1000 bit is 
ipped) in a GA. The mutation operator is often seen as a
\background" operator which does not operate on individual strings but on the
whole population.

De�nition 3.3.3 (GA-mutation)
Let P := fs1; : : : ; spg be a population of strings si 2 IBn and S = s1s2 : : : sp a
concatenation of all strings. A mapping mut : IBn�p ! IBn�p with

S0 = mut(S) :, (3.19)

S0i =

(
:Si with probability pmut

Si else
(3.20)

is called mutation operator with pmut(0 � pmut � 1) as mutation rate.

For every position in the population, the mutation operator realizes a bit 
ip
with probability pmut. With a low mutation rate, it is the main purpose of
the operator to reestablish lost bits in the gene pool. Properties that were lost
because of selection can be reintroduced by mutation. In �gure 3.5 the mutation
operator is illustrated.
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1 0 1 1 1 0 0 0 1 1 0 mutation 1 0 0 0 0 1 1 0 1 1 0

Figure 3.5: GA-mutation operator for an individual.

In GAs recombination is thought to be the most crucial mechanism for diversity
creation and it is realized via sexual crossover operators. Two parent individuals s
and t are selected with probability p each and information from both is transfered
to their o�spring by crossover. With probability (1 � p) the individual remains
unchanged. The classical operator is the one-point crossover.

De�nition 3.3.4 (GA-one-point crossover)
Let s and t be two strings of length n, and p1 (1 < p1 < n) be a crossover point.
A mapping cross1 : IB

n � IBn � f1; � � � ; n� 1g ! IBn � IBn with

(s0; t0) = cross1(s; t; p1) :, (3.21)

(s0i; t
0
i) =

(
(si; ti) 8i < p1

(ti; si) 8i � p1
(3.22)

is called one-point crossover operator with pcross1(0 � pcross1 � 1) as crossover
probability for this operator.

The one-point crossover exchanges parts of two strings which lay beyond the given
crossover position, which is identical for both strings. Two parents of length n
yield two o�spring with the same length (see �gure 3.6).

1 0 1 0 1 0 0 0 0 0 0

0 0 1 1 1 0 1 0 1 1 1

1 0 1 0 1 0 0 0 1 1 1

0 0 1 1 1 0 1 0 0 0 0

crossover

p1

Figure 3.6: GA-one-point crossover operator.

The following two-point crossover is an extension which exchanges information
between two crossover points (see �gure 3.7).

De�nition 3.3.5 (GA-two-point crossover)
Let s and s0 be two strings of length n and p1, p2 (1 < p1 < p2 < n) two crossover
points. A mapping cross2 : IB

n�IBn�f1; � � � ; n�2g�f2; � � � ; n�1g ! IBn�IBn

with:
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(s0; t0) = cross1(s; t; p1; p2) :, (3.23)

(s0i; t
0
i) =

(
(si; ti) if 8i : p1 < i < p2

(ti; si) if 8i : i � p2 _ i � p1
(3.24)

is called two-point crossover operator with pcross2(0 � pcross2 � 1) as crossover
probability for this operator.

1 0 1 0 1 0 0 0 0 0 0

0 0 1 1 1 0 1 0 1 1 1

1 0 1 1 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0 1 1 1

crossover

p2p1

Figure 3.7: GA-two-point operator.

3.3.3 Selection and Fitness Scaling

The selection is an important principle in evolutionary algorithms as it deter-
mines which individuals form or contribute to the next generation. In a GA the
selection operator is probabilistic and determines the frequency with which an
individual is allowed to mate. The number of o�spring is based upon its rela-
tive �tness, while in ESs a deterministic selection mechanism chooses the best
individuals for the next generation. According to [6] two phases of selection can
be identi�ed. First, every individual is assigned a �tness value. In the second
phase individuals are drawn for mating according to their �tness. The higher the
�tness of an individual, the greater is the expected number of its o�spring in the
next generation. The �tness of an individual in a GA can be determined by the
so-called proportional selection method [30].

De�nition 3.3.6 (Proportional �tness, expected number of o�spring)
Let s and si be strings and � the constant number of individuals in the population,
then proportional �tness of an individual string is de�ned for fit > 0 as:

propfit(s) =
fit(s)P�

i=1 fit(si)
(3.25)

With this method every individual is evaluated relatively to the sum of �tnesses
of the population. This scheme is illustrated by �gure 3.8.
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Figure 3.8: Roulette-wheel selection.

Since this measure requires positive �tness values and in order to compensate
for possibly low �tness variation at the end of an optimization process, scaling
methods are needed. Such methods are window scaling, linear dynamic scaling,
logarithmic scaling, exponential scaling, and sigma scaling [25]. Other methods
like linear ranking [6] determine the �tness by the absolute rank of an individual
within the population and avoid scaling.

De�nition 3.3.7 (Linear ranking �tness)
Let s be a string and � the constant number of individuals in the population and
1 � max � 2 and min = 2 �max, then the linear rank �tness of an individual
string is de�ned as:

rankfit(s) =
1

�
�
�
min+ (max�min) � rank(s)� 1

�� 1

�
(3.26)

with rank(s) as absolute position of s in the descendingly ordered population.
The parameter max can be used to control the selection pressure.

Both methods assume a constant population size such that the number of ex-
pected o�spring equals the actual population size (

P�

i=1 fit(si) = �).

After the individuals have been assigned a �tness value, they can actually be
selected for mating by the roulette-wheel selection method. According to their
�tness the individuals receive a certain amount of space on the wheel. By spinning
the wheel for each needed o�spring and selecting the winning individual the
mating pool is �lled for creating the next generation.
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Chapter 4

Evolution of Weights in Neural

Networks

The search for training algorithms for NNs is as old as the research �eld itself.
Many methods have been invented and improved to train networks. Most of these
methods rely on gradient-based techniques and may therefore stagnate in local
minima that are not globally optimal [95]. Methods to cope with such situations
are multi-starting, adding noise to the training patterns, perturbing weights, and
weight decay to name a few.

In contrast to gradient-based techniques, EAs do not rely on knowledge about
�rst- or second-order derivatives, thus it is assumed that EAs are less a�ected
by the problem of getting stuck in non-global local minima. In recent years
EAs have been explored as training methods, and there are strong hopes that
they might overcome the limitations of classical gradient-based training, but a
thorough comparison of neural versus evolutionary learning is still missing.

This chapter is devoted to an investigation of evolutionary learning (ES) and an
empirical comparison with classical neural network learning (backpropagation).
Its contribution to the research in neural network and evolutionary algorithms
will be:

� From the viewpoint of neural networks, the usefulness of ESs as an alter-
native non-gradient based training mechanism is investigated. Here, we
will see that ESs cannot compete with gradient-based search, except for
small problems. We will further see that networks with non-continuously
di�erentiable activation functions can be useful and ESs are good means
for training them.

� From the viewpoint of ESs, we will gain insights into the functioning of
ESs on a new class of objective functions. Countermeasures to cope with
the speci�c diÆculties of the search in weight spaces are proposed and
compared. With a growing number of problem dimensions the learning

43
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becomes more diÆcult for an ES and the \correct" parameterization gets
crucial.

In section 4.1 a brief overview of the di�erent approaches for evolving weights is
given. Section 4.2 poses questions that will be answered throughout this chapter,
it discusses and characterizes possible search spaces spanned by neural networks
and gives criteria for evaluation and comparison. Each of the subsections in sec-
tion 4.3 presents results for ESs and backpropagation as learning algorithms on
a given learning task. In section 4.4 the scaling properties of ESs and BP are
researched while section 4.5 investigates the bene�ts of non-continuously di�er-
entiable activation functions.

4.1 Related Work

There has not been any thorough parameter study that explored EA based learn-
ing on a variety of NN learning problems so far. Of the �rst two who employed an
EA to train NNs were Montana and Davis who used a very specialized GA with
additional gradient-based operators [55]. There were other GA based approaches
as well but our focus is on ES. Some authors have already experimented with
ES and concluded that they are superior search strategies for neural networks.

In [94] Wienhold used a non-standard ES. As basic algorithm, he used a �xed
(2; 20)-ES with averaging recombination for the step sizes, a step size mutation of
either 1.5 or 1=1:5 by tossing a coin, no recombination of the object variables x,

mutation of xnewij = xoldij +
�newijp

n
�N(0; 1). The initialization of the object variables

xi is done with uniform distributed random numbers from the interval [�0:5; 0:5]
and the initialization of the step sizes �i with

1
6
. In some experiments he used

weights and biases while other experiments include the slope of the activation
function as well.

His argument that ESs have no parameters to adjust whereas backpropagation
strongly depends on the learning rate � and the momentum term � does not hold.
He incorporated critical and application speci�c parameters like recombination
and population size into his �xed algorithm and pretended that none of themwere
free parameters. Nevertheless, to allow for a comparison of results, his learning
task, the 6-bit parity network, was investigated.

The results and claims of Goerick and Rodemann [24] could not be con�rmed by
our experiments. Their �rst claim that a gradient-based search could not solve
a 9-bit parity problem is false. Their feed-forward architecture with backprop-
agation learning solved the problem in 10 of 10 runs in our experiments (table
4.5). Possible reasons why their backpropagation algorithm could not solve the
problem might be a poor choice of learning parameters, the absence of bias units
or too few training epochs. Their results with an ES could not be veri�ed as
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critical parameters (i.e., �, �, recombination scheme, and initialization) are not
given.

Another approach to use ESs for �nding optimal weights is to use an evolutionary
algorithm for weight perturbation. Ng and Leung and Luk [57] proposed a method
to help backpropagation escape from local minima. If the error of a network did
not improve for a given time, its weights underwent an evolution cycle with a
population generated by random mutations of the actual network. The best
network at the end of the evolution was used for further backpropagation cycles.
Fogel [61] compared the performance of backpropagation, simulated annealing
and evolutionary programming on some test problems. The EP approach uses
weights and biases of the network. Each weight is perturbed by a Gaussian
random variable with zero mean and a variance equal to the parental mean square
error. They concluded that all three methods give reasonable results on their
problem. Kitano [39, 40] proposed an integrated framework of structure evolution
and learning. Starting from his earlier work on matrix rewriting rules similar to
graph grammars, he initialized weights from a pre-speci�ed matrix. This matrix
was used to lookup initial weights from which the gradient-based search started.

4.2 Evolution Strategies for Network Training

The problem of getting trapped in non-global local minima presented itself in
the applications of this thesis. In case of the chemical engineering application
(chapter 5) we have a failure rate of 20% for backpropagation, the diÆcult two-
spirals problem (section 4.3.5) exhibits 70% failures, and even the simple XOR
problem (section 4.3.2) su�ers from 4% failed runs, which might be caused by
such minima.

This leads to the following questions that will be answered throughout the rest
of this chapter:

1. Can evolution strategies be used for the training of neural networks?

2. Can ESs overcome the problem of being trapped in non-global local min-
ima?

3. How do ESs and BP scale with the problem dimension?

4. How do ESs and backpropagation compare in terms of computational e�ort?

5. What is the best parameterization for an ES as a training algorithm?

6. Which are the advantages and disadvantages of ESs in neural network train-
ing?
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From the viewpoint of evolution strategies the neural network can be seen as
an objective function, that is, the mean sum of squared errors over all training
patterns (Eq. 2.6). In principle, the object variables can consist of one of the
following neural network parameter sets.

1. Only the weights wij. This yields jIj � jHj+ jHj � jOj object variables.
2. The weights plus biases. This yields jIj� jHj+ jHj� jOj+ jHj+ jOj object

variables.

3. The weights, biases and slopes of the units activation function with jIj �
jHj+ jHj � jOj+ 2jHj + 2jOj object variables.

As most NN training algorithms adapt weights and biases they are used here as
well. If we assume a standard network architecture with fully connected input,
hidden, and output layers then the object variable vector consists of the weights
from input to the hidden layer, the weights from the hidden to the output layer,
the bias weights for all hidden units, and the bias weights for the output units1.

x := (wi;j; wk;i; bi; bk); i 2 H; j 2 I; k 2 O (4.1)

In this context the strategie parameters � can be seen as local \learning rates"
for the weights.

4.2.1 Characteristics of the NN Weight Space

To explain the success and failure of backpropagation and di�erent evolution
strategies a characterization of the search space, that is the weight space of a
network, will be given.

Local but not globally optimal minima can occur in even the simplest network2

as is can be seen from �gure 4.1 and in more complex ones as it can be seen from
�gure 4.2.

1Due to the nature of ES search operators, the ordering of weights and biases in the object
variable vector can be chosen arbitrarily.

2A network with one input, one sigmoid hidden, and one sigmoid output unit that should
learn the identity mapping of 1! 1 and 0! 0.
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Figure 4.1: The error surface of a
simple (1-1-1) network exhibiting a local
non-global minimum at (w1; w2) � (4; 1).
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Figure 4.2: The error surface of the
9-bit parity network exhibiting a local
non-global minimum at (w621; w684) �
(40;�2).

The following error landscapes were extracted from the 9-63-1 architecture for
solving the 9-bit parity problem. Weights were selected to represent di�erent
functional areas, input-hidden, hidden-output, and bias of the network. In �g-
ure 4.3 the weight space (two-dimensional subspaces) at the beginning of the
search with randomly initialized weights is shown, while �gure 4.4 shows the
same weights close to an optimum.

To illustrate the di�erent microscopic and macroscopic characteristics of the
weight space, each error landscape is given at three di�erent scales. The fol-
lowing observations can be made:

� Di�erent problem subspaces exhibit very di�erent characteristics.

� The microscopic and macroscopic behavior are di�erent from each other.

� In some subspaces the error function is multi-modal.

� In other subspaces it is convex and bowl-shaped.

� Some surfaces are smoothly sigmoid-shaped.

� Large 
at planes can be found at all levels.

� Narrow corridors that are not parallel to any axis can be found.
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Figure 4.3: Random: The �gures show two-dimensional subspaces of a neural net-
work's weight space with random weights. Weights are selected to represent di�erent
functional areas, input-hidden, hidden-output, and bias of the network (row 1 weight
i9; h62 vs. weight i9; h63, row 2 weight i9; h62 vs. bias out, row 3 weight h1; out vs.
bias h1, row 4 weight h1; out vs. weight h2; out). From the top to the bottom 4 typical
error surfaces of a total of 24012 are shown. To illustrate the di�erent microscopic and
macroscopic characteristics of the weight space, the scale changes from left (2 � 104) to
right (2 � 100).
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Figure 4.4: Optimum: The �gures show two-dimensional subspaces of a neural
network's weight space near an optimal solution. Weights are selected to represent
di�erent functional areas, input-hidden, hidden-output, and bias of the network (row
1 weight i9; h62 vs. weight i9; h63, row 2 weight i9; h62 vs. bias out, row 3 weight
h1; out vs. bias h1, row 4 weight h1; out vs. weight h2; out). From the top to the
bottom 4 typical error surfaces of a total of 24012 are shown. To illustrate the di�erent
microscopic and macroscopic characteristic of the weight space, the scale changes from
left (2 � 104) to right (2 � 100).
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4.2.2 Criteria for Evaluation and Comparison

Several benchmark problems with varying dimensions (tables 4.2 and 4.8) are cho-
sen to investigate the capabilities of ESs as training algorithms: Three arti�cial
classi�cation problems, 2-bit, 6-bit and 9-bit parity, the well-known two-spirals
approximation problem and a real-world problem from chemical engineering that
is thoroughly covered in chapter 5.

The criteria for evaluation and comparison will be:

� the computational e�ort to reach a certain error limit,

� the convergence reliability, and in some cases,

� the quality of the solution.

The ES and backpropagation are rather di�erent in their working principles, so
that one has to establish a relation between generations and training epochs. If we
neglect the algorithmic details3 and assume that the backpropagation phase and
the application of ES operators in one generation produce a similar computational
overhead, then we only have to account for the forward phase which is the same
for both algorithms. The computational e�ort for one generation cycle and �
epochs are approximately the same which means that the number of function
evaluations and the number of epochs can be compared directly.

4.3 Experiments and Results

When conducting experiments with di�erent methods one has to adjust crucial
parameters of the methods. The parameter setting is often considered a \black
art" or done by \educated guessing". As the focus is on ES rather than BP learn-
ing the two crucial backpropagation parameters, learning rate � and momentum
term �, are adjusted according to the \educated guess" principle in combination
with some preliminary experiments. Here, one can expect better results with
optimal settings and even better results with sophisticated training algorithms
like Quickpropagation or RProp.

For ES recent work of Kursawe [43] showed that there is no single correct choice of
parameters for all problems and a complex interdependence between parameters

3The backpropagation algorithm can be divided into two phases. The forward propagation
phase in which the input activations are propagated through the network and the error is
computed at the output units and the backward phase in which the error is propagated back
to the input units and weights changes are performed (see def. 2.1.13 for further details). The
forward pass is the same for both algorithms, only that the ES performs it for each individual in
the population. Instead of a backward phase with weight adaptation the ES uses recombination,
mutation and selection.
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exits. An \optimal" parameterization of an ES depends on the objective function
and a \suitable" setting of all parameters. For larger problem sizes (i.e. 100
dimensions) he presented simulation results where an ES could be forced by a
poor parameter setting to fail on the simple sphere model (see [43], p. 51 and
the appendix A.7 p. 151 of this work).

We are left with the problem of exploring the parameterization of an ES with the
hope of �nding an optimal or at least \good" parameter set for training neural
networks.

There are several possible candidate parameters: population size, selection type,
recombination scheme, mutation rates, number of strategy variables, and some
minor choices like local or global recombination and coupled or decoupled param-
eters sets. In order to keep the parameter study feasible we kept the population
and selection type constant.

Preliminary experiments that are documented in the appendix A.5 suggested to
always use n step sizes, coupled and local recombination. For all experiments
a (15,100){ES with n step sizes was used and the following 12 recombination
schemes as well as an ES without recombination were investigated.

Recombination matrix step sizes �

discrete intermediate average geometric

obj. vars. x
(weights)

discrete x x x x

intermediate x x x x

average x x x x

Table 4.1: Recombination matrix.

For details on ESs and recombination types see def. 3.14. All other parameters,
i.e. the mutation rates � and � 0, were set according to the heuristics in section
3.1.2. Table 4.2 gives the problem dimensions with the corresponding mutation
factors.

Problem XOR Chem. Eng. 6-bit Spirals 9-bit

Dimensions 9 25 91 252 694

� 0 0.235 0.141 0.074 0.044 0.026

� 0.408 0.316 0.228 0.177 0.137

Table 4.2: Problem dimensions and mutation factors for all problems.

If not mentioned otherwise all runs were performed 10 times and only those
runs that were able to reach a speci�ed error limit were taken into the average.
Weight initialization was done according to a uniform distribution within the in-
terval [�0:5; : : : ; 0:5], and as error function the mean sum of squared errors was
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used (Eq. 2.6). Each parameter setting was run for 10,000 generations (1,000,000
function evaluations). The results of each experiment are summarized by a ta-
ble and three �gures. The table shows the success of all backpropagation and
ES runs. It gives the success rate, which allows conclusions about the reliabil-
ity, the minimal (min), maximal (max), and average4 (mean) number of function
evaluations5 needed to meet the termination criterion.

The �rst two �gures allow for a comparison of the training of a typical backprop-
agation run and an ES with the best recombination scheme. The graph of the
ES training progress shows the best (Best) and average (Avrg) individual network
(weight vector) in the population and the smallest (SigMin) and largest (SigMax)
step size � in the population, thus allowing conclusions about the behavior of ESs.
Very large � are an indicator for too large weights that might cause saturated
units, while very small � account for weights that cannot undergo signi�cant
changes. In both cases the learning process is hindered or at least slowed down.
The bottom �gure summarizes results for each of the 10 ES runs. Depicted are
the best individual, the smallest and largest step size in the population. For each
run the number of generations needed to reach the error limit (left y-axis) and
the smallest (S min) and largest (S max) step size (right y-axis) are given. Runs
are sorted by the number of generations to detect correlations between running
time and step sizes.

4.3.1 Parity Problems

Parity problems are arti�cial benchmarks that were widely used to explore the
capability of neural networks. One of the historical benchmarks is the XOR
problem (2-bit parity) that gained its popularity because of the fact that it is non-
linear and not learnable by training algorithms known in the Sixties. Arti�cial
benchmarks are purely synthetic and usually have strong regularities in their
structure. One can question if the results obtained on them can be transfered
to real-world problems. However, the optimal solution of a synthetic problem
is known in advance which makes it easy to evaluate the success of a training
algorithm. The n-bit parity problem is, for larger n, a diÆcult to solve learning
problem.

Here, three sizes of parity problems are investigated. Other authors reported
results on two of the parity problems. In Wienhold's work [94], a network with
2 fully connected hidden layers of 6 units each (6-6-6-1) was used to learn the
6-bit parity task with an ES as training algorithm. The third parity problem
for which Goerick and Rodemann [24] reported that it could not be solved by

4It should be noted that a large standard deviation (sd) and, in many cases, a too small
number of successful runs prohibit a proper interpretation of average values.

5Due to the evaluation of the initial population of � = 15 individuals a constant of 15 must
be added to the number of function evaluations for all ES runs.
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gradient-based methods is a 9-bit parity problem that had to be learned by a
9-63-1 network.

4.3.2 2-bit parity (XOR)

� Network: 2-2-1, fully connected (9 weights, 4 patterns)

� Algorithm 1 (BP): � = 0:8, � = 0

� Algorithm 2 (ES): (15,100)-ES with all recombination types

� Termination: error below 10�3 (0% classi�cation error) or 10,000 epochs
(BP), 100,000 function evaluations (ES)

This rather easy task can be learned by BP and all ES variants as well. From
table 4.3 we see that BP solves the problem in 48 of 50 runs within 1434 func-
tion evaluations on average. The performance of the various ES recombination
schemes is diverse. The most successful ones are those with intermediate or aver-
aging recombination of step sizes. The two best recombination schemes (di, dA)
solve the problem in all 50 runs yielding a better success rate then backprop-
agation. The high standard deviation and the distribution of runs (�gure 4.5)
forbids the comparison of averaged values. When we fall back upon the minimum
number of function evaluations as criterion then BP is 2-3 times faster than the
best four ES variants.

One could object that most ES solved the problem in fewer than 50 generations
and an inappropriate population size accounts for the large number of function
evaluations. Thus, a smaller (2,20)-ES (ii) was tested as well and for such small
problems this can reduce the number of needed function evaluations.

An interesting observation about the behavior of the ES can be made when
looking at the step sizes of �gure 4.5. In the bottom �gure all runs are sorted
by the number of generations needed to reach the optimum. For each run the
number of generations and �nal step sizes in the population are given. There is a
clear correlation between large step sizes in a population and long running times.

All runs that successfully solved the problem in fewer than 50 generations (50%)
ended with their step sizes being within a range of 10�2 and 102. In connec-
tion with the error landscapes of �gure 4.3 (row 2 and 3), we see that this is
a \reasonable" range for mutations6 in which the sigmoid units of the network
are not likely to be saturated. Larger step sizes can force one or more units into
saturation and the evolution process might get caught on the planes caused by
saturated units.

When such a plane is reached an ES behaves as if the underlying objective func-
tion is a constant function. In this case, intermediate or averaging recombination

6The probability of a mutation step of the same absolute value as the corresponding step
size is approximately 0.32.
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on the step sizes in combination with mutation causes them to grow exponentially.
See section A.6 in the appendix for an illustration of this e�ect.

This observation leads to the idea of restricting the minimally and maximally al-
lowed step size and weights in the population. In appendix A.5.4 several counter-
measures to prevent large weights and vanishing weight changes are investigated.
Neither the bounding of weights and step sizes to \reasonable" ranges nor a step
size correction leads to an increase of the success rate. In fact, the opposite can
be observed. A closer look reveals that some runs with relatively large step sizes
in the population can still be successful and that such large step sizes are needed
to escape from the planes. An example is run number 47 in �gure 4.5 (bottom)
that solved the problem with the largest step size above 1013.

suc. rate min max mean sd

BP 48:50 1,169 1,777 1,434 278

ES (dA) 50:50 2,100 31,000 6,492 6,481

ES (di) 50:50 2,200 76,600 12,624 15,955

ES (ii) 48:50 3,000 74,700 19,068 21,738

ES (iA) 48:50 3,000 87,400 13,435 21,100

ES (AA) 48:50 3,100 66,200 15,572 20,606

ES (Ai) 45:50 4,000 97,700 19,640 29,008

ES (dd) 27:50 2,600 44,600 6,962 10,737

ES (nn) 31:50 2,500 22,400 5,880 5,470

ES (ig) 33:50 4,700 23,200 7,348 3,326

ES (id) 27:50 2,800 27,900 5,211 4,744

ES (Ag) 35:50 5,200 17,600 9,637 3,297

ES (Ad) 26:50 3,100 10,400 5,626 1,801

ES (dg) 32:50 3,300 12,700 5,400 1,584

ES (Ag) 35:50 5,200 17,600 9,637 3,297

(2,20)-ES (ii) 46:50 560 19,800 3,224 5,069

Table 4.3: XOR: Comparison of backpropagation and evolution strategy. Success rate
and number of function evaluations needed to reach the error limit.
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Figure 4.5: XOR: (Top) Typical BP learning learning rate � = 0:8 and no momentum.
Success after 1,847 function evaluations (epochs). (Middle) An example (15,100){ES
run with \ii" recombination. Success after 3,100 function evaluations (31 generations).
(Bottom) Results of all runs with smallest (S min) and largest (S max) step sizes.
Runs are sorted by the number of generations and one can observe a clear correlation
between large step sizes in a population and a large number of generations.
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4.3.3 6-bit parity

� Network: 6-6-6-1, fully connected (91 weights, 64 patterns)

� Algorithm 1 (BP): � = 0:1, � = 0

� Algorithm 2 (ES): (15,100)-ES with all recombination types

� Termination: error below 10�4 (0% classi�cation error) or 1,000,000 epochs
(BP) 10,000,000 function evaluations7 (ES)

This task is more diÆcult than the 2-bit parity problem, but it can still be learned
by BP and some ES variants. Both learning curves in �gure 4.6 are dominated
by long periods of stagnation and occasional sharp drops in error.

From table 4.4 we see that BP solves the problem reliably in 10 of 10 runs but with
a large standard deviation. From the 13 recombination schemes only 5 are able
to solve the task and the most successful ones are again those with intermediate
or averaging recombination of step sizes (ii, Ai). A high standard deviation
and the exponential distribution of runs in �gure 4.6 forbids the comparison of
averaged values. When we fall back upon the minimum and maximum number
of generations as criterion then BP is 3 to 4 times faster in the best case and 5
times in the worst case. Some of the strategies with geometric recombination are
also able to solve the problem but not as reliably as BP or the other ES variants.

The correlation between large step sizes and long running times in the bottom
�gure is even more obvious than before. In combination with the ES run where
we see exponentially increasing step sizes, this indicates the presence of large 
at
planes in the weight space. Both observations suggest that the ES spends most
of the time on the planes of saturated units.

suc. rate min max mean sd

BP 10:10 17,913 739,277 437,534 274,484

ES (ii) 8:10 55,900 4,007,900 1,015,590 1,379,480

ES (ig) 1:10 218,500 - - -

ES (dg) 4:10 68,000 489,300 277,075 172,667

ES (AA) 2:10 468,600 3,008,000 - -

ES (Ai) 9:10 76,200 3,560,200 952,722 1,228,420

ES Wienhold best 10 of 20 - - 1,509,600 -

Table 4.4: Parity-6: Comparison of backpropagation and evolution strategy. Success
rate and number of function evaluations needed to reach the error limit.

7As we now have to cope with 91 parameters instead of 9, the number of allowed function
evaluations was increased by a factor of 10. Additional results with RProp and bootstrapping
can be found in the appendix A.1.3.
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Figure 4.6: Parity-6: (Top) Typical BP learning with learning rate � = 0:1 and no
momentum. Success after 231,410 function evaluations (epochs).(Middle) An example
(15,100){ES run with \ii" recombination. Success after 482,900 function evaluations
(4,829 generations). (Bottom) Results of all runs with smallest and largest step sizes.
Runs are sorted by the number of generations and one can observe a clear correlation
between large step sizes in a population and a large number of generations.
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4.3.4 9-bit parity

The 9-bit parity problem is the largest problem here in terms of weight space.
Instead of 9 or 91 parameters we now have to cope with 694 parameters.

� Network: 9-63-1, fully connected (694 weights, 512 patterns)

� Algorithm 1 (BP): � = 0:1, � = 0

� Algorithm 2 (ES): (15,100)-ES with all recombination types

� Termination: error below 10�4 (0% classi�cation error) or 1,000,000 epochs
(BP) 10,000,000 function evaluations (ES)

Even though this task is the most diÆcult of our parity problems, it can still
reliably be learned by BP in 10 of 10 runs, whereas none of the ES runs succeeded
in reaching the error limit. As is typical for parity problems, the learning curves
in �gure 4.7 are dominated by long periods of stagnation and occasional sharp
drops in error indicating saturated units.

In �gure 4.3 a small part of the weight space at the beginning of the search with
randomly initialized weights is shown, while �gure 4.4 shows the same weights
close to an optimum. The weights were selected to represent di�erent functional
areas of the 9-63-1 architecture.

The example ES run with exponentially increasing step sizes and the largest step
sizes (> 1012) at the end of all ES runs suggest that the ES wanders on the planes
of saturated units. This is even more likely with a growing number of parameters
because a single too large weight causes saturation of the corresponding unit.
Even though no solution was found by an ES �gures 4.6 and 4.7 suggest that a
larger number of function evaluations (i.e. 108 or 109) might lead to a solution.
Such a large number was beyond our computing capabilities and would also yield
a dramatic performance gap between ESs and BP.

suc. rate min max mean sd

BP 10:10 71,342 596,712 295,748 226,453

Table 4.5: Parity-9: Success rate and number of function evaluations needed to reach
the error limit. There were no successful runs with an ES.



4.3. EXPERIMENTS AND RESULTS 59

0.0001

0.001

0.01

0.1

0 10000 20000 30000 40000 50000 60000

E
rr

or

  Epochs

Backpropagation

1e-25

1e-20

1e-15

1e-10

1e-05

1

100000

1e+10

1e+15

1e+20

0 2000000 4000000 6000000 8000000 10000000

E
rr

or

Function evaluations

(15,100)-ES

SigMin
SigMax

Avrg
Best

10000

100000

1,00E−24

1,00E−19

1,00E−14

1,00E−09

1,00E−04

1,00E+01

1,00E+06

1,00E+11

1,00E+16

1,00E+21

1,00E+26

1,00E+31

S_min S_max Generations

Run 1 − 10

Figure 4.7: Parity-9: (Top) Typical BP learning with learning rate � = 0:1 and
no momentum. Success after 556,600 function evaluations (epochs). (Middle) An
example (15,100){ES run with \ii" recombination. No success after 10,000,000 function
evaluations. (Bottom) Results of all runs with smallest and largest step sizes.
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4.3.5 Two Spirals

The two-spirals problem is an arti�cal benchmark problem in which the network
has to learn to discriminate between two inter-twined spirals in the 2-D plane.
Each spiral consists of 97 points and cycles three times around the origin without
overlapping (see �gure 4.8) [44]. For this problem the number of hidden units
plays a crucial role for the classi�cation and generalization quality of the network.
While a 100% correct classi�cation of a �xed number of patterns can be achieved
relatively easily, it is rather diÆcult to achieve a perfect generalization. The more
units a network has, the better the generalization and the easier the classi�cation
task. Thus, two network sizes were investigated and compared with respect to
their classi�cation and generalization ability: one moderate-sized network with
50 hidden units and one network with as few as 25 hidden units.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Figure 4.8: Spirals: Task of learning to tell two inter-twined spirals apart. Each spiral
consists of 97 data points.

� Network-A: 2-25-2, fully connected (127 weights, 194 patterns)

� Network-B: 2-50-2, fully connected (252 weights, 194 patterns)

� Algorithm 1 (BP): � = 0:2, � = 0:1

� Algorithm 2 (ES): (15,100)-ES with all recombination types

� Termination: error below 10�3 (0% classi�cation error) or 100,000 epochs
for BP and 10,000,000 function evaluations for ES
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On the very diÆcult task to teach the small network A, backpropagation achieved
only a success rate of 3 out of 10. The ES was even worse with only a single
successful run that needed about 100 times the number of function evaluations.
ESs with other than intermediate or averaging recombination (ii, Ai) did not
succeed at all.

For the larger network B backpropagation solved the problem reliably in 10 out
of 10 runs and achieved a perfect classi�cation within 11,443 epochs on average
(table 4.6). The ESs were able to solve the task but not as reliably as BP and,
on average, 175 to 250 times slowlier than BP.

suc. rate min max mean sd

NN-A-BP 3:10 14,006 63,056 43,336 25,910

NN-B-BP 10:10 6,298 22,801 11,443 5,751

NN-A-ES (ii) 1:10 1,438,900 - - -

NN-B-ES (ii) 4:10 1,206,900 5,509,000 2,880,500 1,960,630

NN-B-ES (Ai) 3:10 1,682,300 2,183,500 2,009,070 283,204

Table 4.6: Spirals: Comparison of backpropagation and evolution strategy. Success
rate and number of function evaluations needed to reach the error limit.

A correlation between failed runs (network B) and large step sizes can be seen
in the bottom �gure 4.10. All failed runs ended with the smallest step size �min

above a value of 1030 suggesting that those runs su�er from the saturation of
hidden units. With a large number of hidden units the network can compensate
for saturated units as the task can be solved with fewer still functional units.
The fewer hidden units a network has, the more diÆcult it is to compensate for
saturated units, since the task gets more diÆcult with fewer units.

The plots in �gure 4.9 show the typical classi�cation and generalization capabili-
ties for the two network architectures both trained by BP (left) or an ES (right).
The surface in the background of the two spirals is the response surface. It gives
the network's response to an input at the speci�c (x; y)-coordinate. A network
with perfect generalization would yield two neatly inter-twined spiraling areas
with the original training patterns in the middle of them.

No signi�cant visual di�erence of the response surfaces can be seen between
BP or ES-trained networks. The surfaces of other successful runs exhibit very
similar surfaces for ES and BP. A di�erence can be seen between the two network
architectures. The smaller network exhibits a better generalization than the
larger one independently from the used training algorithm. The generalization
capabilities of both training algorithms are similar in case of the two-spirals
problem.
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Figure 4.9: Spirals: Classi�cation and generalization capabilities of two di�erent
network architectures (25 and 50 hidden units) trained with BP and an ES.
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Figure 4.10: Spirals: (Top) Typical BP learning with learning rate � = 0:1 and no
momentum. Success after 8,220 function evaluations (epochs). (Middle) An example
(15,100){ES run with \ii" recombination. Success after 3,185,500 function evaluations
(31,855 generations). (Bottom) Results of all runs with smallest and largest step sizes.
Runs are sorted by the number of generations, and one can observe a correlation be-
tween large step sizes in a population and a large number of generations.
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4.3.6 Chemical Engineering

The following problem stems from chemical engineering where a neural network
was used to acquire an internal model of a chemical process and predict certain
properties of chemical compounds. Further details can be found in chapter 5.
The performance of the ES on this problem was thoroughly studied because of
its practical application.

In addition to the variation of the recombination scheme, the number of mutation
step-sizes �i, either 1 or 25, the number of recombination partners, local or global,
and coupled or decoupled recombination were included in the parameter study.

� Network: 4-4-1, fully connected (25 weights, 214 patterns)

� Algorithm 1 (BP): � = 0:8, � = 0:2

� Algorithm 2 (ES): (15,100)-ES with all recombination types.

� Termination: error below 5 � 10�5 or 250,000 epochs for BP and 10,000,000
function evaluations for ES.

suc. rate min max mean sd

BP 8:10 22,202 176,210 80,488 54,376

ES (ii) 3:10 2,718,000 4,158,000 3,314,000 751,351

ES (Ai) 3:10 4,430,400 6,011,600 5,462,130 894,139

Table 4.7: Chemical Engineering: Comparison of backpropagation and evolution
strategy. Success rate and number of function evaluations needed to reach the error
limit.

Here, backpropagation succeeds in 8 of 10 runs with an average of 80,488 epochs
(table 4.7). Again, only ESs with intermediate or averaging recombination (ii,
Ai) are able to solve the task. With only 3 successful runs they are less reliable
and 41 to 67 times slower than BP. Unlike the other problem, this one does not
exhibit a correlation between running time and step sizes (�gure 4.11). At the
end of all runs the step sizes are still within a \reasonable" range and there is
also some variation in the population which can be concluded from the di�erence
between best and average individuals. Results might improve with longer running
time.

A look at the prediction quality of the network (see chapter 5, �gure 5.10) reveals
that only one out of all ES-trained networks performs comparably to backprop-
agation. All other networks give rather poor results.
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Figure 4.11: (Top) An example (15,100){ES run with \ii" recombination. Success
after 4,158,000 function evaluations (41,580 generations). (Bottom) Results of all runs
with smallest and largest step sizes. Runs are sorted by the number of generations.

With only one overall step size all runs got stuck at high error levels with small
variances. In all runs the populations collapsed around a single individual. This
holds for all recombination schemes. All experiments are documented in the
appendix A.5.

With the intermediate recombination, one can observe a signi�cant di�erence
between global and local recombination. Both variations are able to �nd a good
solution, but the local recombination delivers better results on average. Local
recombination on the object variables combined with global recombination on
the step sizes is comparable to local recombination on both parameter sets. All
experiments are documented in the appendix A.4.
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4.4 Scaling Properties of Evolution Strategies

and Backpropagation

In the previous experiments we have seen a decreasing performance of ESs with
a growing problem dimension. The 9-dimensional 2-bit parity problem can easily
solved by an ES while larger problems exhibited a reduced success rate and a
drastic increase in the number of function evaluations needed. The following
experiments investigate the scaling properties of backpropagation and evolution
strategies. The general n-bit parity problem can easily be used to gradually
increase the network size with the number of bits used. Thus, the problem
dimension can be scaled with the number of bits and used hidden units. We
generated network architectures to solve the parity problem for n bits by using
n2 � n hidden units. This yields (n + 2) � (n2 � n) + 1 numbers of weights and
biases (problem dimension) in the network.

Problem 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit 9-bit

Patterns 4 8 16 32 64 128 256 512

Hidden units 2 6 12 20 30 42 56 72

Dimensions 9 31 73 141 241 379 561 793

Table 4.8: n-bit parity problems: Network architecture and the corresponding prob-
lem dimensions.

All experiments were performed with the following settings:

� Network: n-(n2 � n)-1, fully connected ((n + 2) � (n2 � n) + 1 weights, 2n

patterns)

� Algorithm 1 (BP): � = 0:6, � = 0:1

� Algorithm 2 (ES): (15,100)-ES with (ii) recombination

� Termination: error below 10�3 for all problems except for 9-bit parity where
10�4 was used (0% classi�cation error) or 1,000,000 epochs (BP), 10,000,000
function evaluations (ES)

The scaling behavior of both algorithms is shown in �gure 4.12. Up to 141
dimension (5-bit parity) the number of function evaluations needed to solve the
problem increases for BP and ES alike. However, the ES needed about 2.8 to
13 times more function evaluations. For problem dimensions larger than 141
the learning gets easier for BP while it gets more diÆcult for the ES. The
number of needed function evaluations increases while the success rate (�gure
4.13) decreases. An exception is the 5-bit parity problem where the ES is slightly
better than BP.
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Bits suc. rate min max mean median sd

2 10:10 1,175 236,152 24,923 1,595 174,218

3 10:10 1,593 5,681 4,129 3,619 1,297

4 10:10 1,999 59,262 27,798 7,593 24,233

5 10:10 29,587 486,739 209,488 96,561 139,134

6 8:10 22,135 339,638 131,780 76,948 93,476

7 10:10 15,435 974,613 225,041 47,093 330,552

8 10:10 19,380 299,195 103,849 63,389 77,104

9 10:10 14,346 121,326 51,340 33,368 33,085

Table 4.9: Scaling behavior of backpropagation on the n-bit parity problems.

Bits suc. rate min max mean median sd

2 10:10 3,500 135,200 35,170 7,230 51,189

3 10:10 9,100 11,500 10,220 10,148 912

4 10:10 18,500 49,200 31,530 28,711 10,563

5 10:10 42,700 584,600 177,000 89,469 184,442

6 6:10 236,400 1,129,000 612,593 689,967 341,552

7 2:10 637,800 1,024,000 1,338,840 830,900 273,085

8 0:10

9 0:10

Table 4.10: Scaling behavior of the evolution strategy on the n-bit parity problems.
All runs for the 8- and 9-bit problems failed.
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Figure 4.12: n-bit parity: Scaling behavior of backpropagation and ES. The x-axis
gives the number of bits used and the corresponding problem dimension while the y-axis
shows the median number of needed function evaluations.
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Figure 4.13: n-bit parity: Failure rate for backpropagation and ES. The x-axis gives
the number of bits used and the corresponding problem dimension while the y-axis
shows the number of failed runs from a total of 10 runs.
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The above results suggest that an ES is muchmore likely to su�er from a large di-
mensionality than backpropagation. While backpropagation solved all problems
without any change to the algorithm or parameter settings in almost all cases,
a (15,100)-ES worked �ne for small problem dimensions but failed for very large
search spaces. This observation is supported by the �ndings of Kursawe who
presented simulation results where a poorly parameterized (15,100)-ES could be
forced to fail on the simple sphere model ([43], p. 51). This is illustrated by
�gure A.42 in the appendix.

Ostermeier assumes that the population size must be much larger than the prob-
lem dimension to enable the step size adaption [60]. For the simple and theo-
retically well understood sphere model, it is known that the population should
grow with the number of problem dimensions [9] for optimal progress, but these
results cannot be transfered easily to more complex objective functions. Hence,
the optimal population size is not known in advance for a new problem. As the
population size was not investigated in this parameter study, it might well be the
case that larger populations and longer running times lead to successful train-
ing. This might also lead to a further increase in the number of needed function
evaluations which would widen the performance gap. As the backpropagation
algorithm does not su�er that much from the curse of dimensionality it should
be preferred at higher problem dimensions.

The above results do not allow the conclusion that ESs generally fail for large
problem dimensions8, but they identify the problem size as problematic. The
optimization seems to become more diÆcult and a \correct" parameterization is
more important. The population size might be a critical parameter here, that
should be scaled with the problem dimension. Whether this result is only valid
for the weight space of a neural network or more generally remains open.

8During the research that lead to this chapter several problems with more than 300 param-
eters (7-bit parity) could be solved by ESs.



70 CHAPTER 4. EVOLUTION OF WEIGHTS IN NEURAL NETWORKS

4.5 Training without Gradient Information

It is well known that sigmoid functions are not the only possible choice as activa-
tion functions for units. It was shown that other non-linear activation functions
can be used as well [82]. Several di�erentiable activation functions and their
in
uence on the performance of the network have been investigated by [27, 46].

Due to the lack of derivatives non-continuously di�erentiable activation func-
tions have not been used in feed-forward networks. For a network with such
an activation function the backpropagation algorithm cannot be used as gradient
information is not easy to get. To explore the capabilities of such activation func-
tions other means of training had to be found. Here, ESs as training algorithms
can be very useful.

As the two-spirals and parity problems are non-linear classi�cation problems they
can, in principle, also be learned by networks with other non-linear activation
functions. In the following experiments we took the two di�erent sizes of the
two-spirals problem and the 2- to 9-bit parity problems and replaced the sigmoid
function with the non-linear threshold function (see def. 2.2). All experiments
were performed with the same settings as described in the previous sections.

n-bit parity problems

Bits suc. rate min max mean median sd

2 10:10 200 2,700 1,000 491 926

3 10:10 500 16,100 5,480 2,288 4,448

4 10:10 14,000 201,000 66,780 32,819 65,717

5 9:10 82,400 477,300 344,311 226,673 152,702

6 1:10 579,600 579,600 579,600 579,600 0

Table 4.11: n-bit parity: Results for ES-trained networks with threshold functions.
All runs for the 7-, 8-, and 9-bit problems failed.

In �gure 4.15 the success rates for ES-trained networks with sigmoid and thresh-
old units are compared. The higher failure rates on the 5-, 6-, and 7-bit parity
problems suggest that the problem becomes more diÆcult with threshold func-
tions.

For the two smaller 2- and 3-bit parity problems a network with threshold func-
tions even outperforms the same network with sigmoid functions (�gure 4.14)
while it needs more function evaluations for the larger problems. Except the
7-bit parity problem all parity problems that could be solved by networks with
sigmoid units were also solved by networks with threshold units.
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Figure 4.14: n-bit parity: Classi�cation with threshold functions. Comparison of
function evaluations of BP (sigmoid), ES (sigmoid), and ES (threshold). The x-axis
gives the number of bits used and the corresponding problem dimension while the y-axis
shows the number of needed function evaluations.
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Figure 4.15: n-bit parity: Comparison of failures rates for ES-trained networks with
sigmoid and threshold functions. The x-axis gives the number of bits used and the
corresponding problem dimension while the y-axis shows the number of failed runs.
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Two-spirals problems

The parity problems were purely binary problems with binary inputs and outputs,
which made them an ideal candidate for threshold functions. The two-spirals
problem instead has real-valued inputs that form smoothly inter-winded struc-
tures which are, intuitively, better approximated by smooth activation functions.
Thus, the diÆculty is increased with the usage of threshold functions.

suc. rate min max mean sd

NN-A-ES (25, sigmoid) 1:10 1,438,900 - - -

NN-A-ES (25, threshold) 1:10 3,993,300 - - -

NN-B-ES (50, sigmoid) 4:10 1,206,900 5,509,000 2,880,500 1,960,630

NN-B-ES (50, threshold) 1:10 7,562,000 - - -

Table 4.12: Spirals: Results for ES-trained networks with threshold functions. Success
rate and number of function evaluations needed to reach the error limit.

For both problem sizes solutions can be found by ESs. Due to the poor success
rate of only 1 out of 10 for both problem sizes, a direct performance comparison
is not permitted. Only in the case of the larger problem, it can be concluded
from the higher success rate that networks with sigmoid units can be trained
more easily than networks with threshold units.

The response surfaces in �gure 4.16 show the classi�cation and generalization
capabilities for the two networks with threshold activation functions trained with
an ES and for the same network with sigmoid activation functions trained by BP.

Despite the fact that the success rate is signi�cantly lower and the number of
needed function evaluations is higher than for networks with sigmoid functions,
the generalization measured by the visual image of the response surfaces is better
for networks with threshold functions.

The diverse results on the n-bit parity problem and the two-spirals problem do
not allow a general conclusion about the diÆculty of training networks with
threshold units, but the above results show that ESs can be used successfully
to train networks with non-linear and non-continuously di�erentiable activation
functions. For smaller problem sizes and purely binary tasks, they do not only
outperform ESs with sigmoid activation functions but also outperform BP-trained
networks with sigmoid units.
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Figure 4.16: Spirals: Classi�cation and generalization capabilities of two di�erent
network architectures with threshold functions trained with ES.
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4.6 Discussion and Conclusions

Experiments show that ESs are, in principle, capable of successful weight tuning
in neural networks. This also holds when the network consists of non-continuously
di�erentiable activation functions. Nevertheless, they are much less eÆcient in
terms of computational e�ort and not as reliable as properly tuned backpropa-
gation. The following table 4.13 summarizes the success and failure of varying
recombination types. Intermediate recombination of object variables and step
sizes is the best choice closely followed by global-averaging recombination of step
sizes.

�

d i A g n

x

d failed failed failed O -

i failed X X failed -

A failed X O failed -

n - - - - failed

Table 4.13: The success of varying recombination types for network training. Here,
\failed" means that only the very easy XOR problem could be solved, \X" denotes at
least one successful run in all other problems excluding the 9-bit parity, \O" denotes
at least two successful runs for one more problem, while \-" denotes no experiments.

Explanations why a certain recombination scheme fails or succeeds might be
derived from the structure of the search space and probably improper values for
� 0 and � . When training neural networks equipped with sigmoid units, diÆcult
regions of the search space are planes caused by saturated units together with
narrow and not axis parallel valleys in those planes.

A closer look at the initial error surfaces given in �gure 4.3 reveals that in some
dimensions (row 2) a step size larger than 10 is suÆcient to reach a plane with
0.32 probability9. Even close to the optimum such planes can easily be reached
with large � (see �gure 4.4 row 1).

Why is intermediate/averaging recombination successful despite the exponen-
tially growing step sizes on the planes? Exponentially growing step sizes should
not be mistaken for exponentially growing weights. Weights start oscillating
around their center with growing orders of magnitude and are either caught on a
plane or jump from one plane to another. Due to the averaging e�ect of recombi-
nation there is still a diminishing chance of getting back into the sensitive areas
of the sigmoid units.

9With the normal distribution, more than 99.99 percent of all mutations lie within the range
of 3� � [29], and the chance for a mutation larger than � is approximately 0.32.
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When caught on a plane with large step sizes, discrete recombination only re-
samples the weights from too large positive or too large negative weights, so
that the search performs a random walk on the planes. Here, the only chance of
compensating for too large or too small values is to have a weight connected to
the same unit with the same absolute value but an opposite sign. This is called
epistasis. With the averaging e�ect of intermediate recombination the ES still
has a chance of leaving a plane.

Within narrow corridors it is necessary to have one very small step size in one
direction in order not to leave to corridor and a large one to make progress in
one direction. If the corridor is not parallel to an axis, such as that in �gure 4.3,
the situation is even worse. Here, progress is rather slow due to the necessarily
small step sizes in two directions that are needed to remain within the corridor.

Another reason for the failing of most recombination schemes might be the �xed
population size. In this context Ostermeier points out problems that might be
caused by adaptation mechanism of the step sizes. \The problem is that to
enable step-size adaptation the resulting population sizes have to be much larger
(: : : about 10 � problem dimension : : :) than necessary concerning the object
parameter optimization" [60]. For the 2, 6 and 9-bit parity problems we would
have needed a population of 90, 910 and 6940 according to his suggestion. The
large two-spirals problem and chemical engineering problem would need � to be
2520 and 250.

An open question is: If large step sizes cause premature stagnation, then why
does geometric recombination, which does not su�er from exponential growth,
fail?

The investigation on the scaling properties of both algorithms suggest that ESs are
much more likely to su�er from a large dimensionality than backpropagation.
While BP solved all problems without any change to the algorithm or parameter
settings in almost all cases, an (15,100)-ES worked for small problem dimensions
but failed more often in case of large search spaces.

To explore the capabilities of non-continuously di�erentiable activation functions
other means of training than backpropagation are needed. This chapter has
shown that ESs can be used successfully as training algorithms for networks with
such functions. Small networks with threshold functions that are trained by an
ES can even outperform the same network with sigmoid functions trained by
backpropagation.

The following results and advices were gained from one or two problems only and
should be considered with care:

� Local (sexual) recombination always yields better results than global re-
combination. In most cases results are very similar, but in no case global
recombination outperformed the local one. See section A.5.3.
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� Imposing \reasonable" upper and lower bounds on the step sizes and weights
and a weight dependent correction of step sizes does not help to increase
the overall success rate and should be avoided. See section A.5.4.

� The overall mutability � 0 is an application speci�c parameter. Increasing
it yields better performance for some problems and worse for others. See
section A.5.5.

� Strategy parameters and object variables should be coupled during recombi-
nation. The coupling was always bene�cial in network training and caused
no signi�cant di�erence with classical ES test functions. See section A.5.2.

Questions revisited:

1. Can ESs be used for the training of neural networks?
Yes - but only for small and moderate problems sizes. The best recombi-
nation scheme in almost all cases is local (sexual), that is, two parents10,
intermediate recombination of x and � with coupled object variables and
strategy parameters, and n step sizes. The second-best choice is global
averaging recombination of x and intermediate recombination of �.

2. Can ESs overcome the problem of being trapped in non-global local minima
like backpropagation?
It is not clear whether local minima are problematic but except for the
very small 2-bit parity problem the failure rates of the best ESs are always
higher than for backpropagation. Here, ESs su�er from 
at areas caused
by saturated units.

3. How do ESs and BP scale with the problem dimension?
Without parameter adjustments an ES is more likely to su�er from a large
dimensionality than BP.

4. How do ESs and BP compare in terms of computation e�ort?
For the easiest task an ES needs more than a factor of 2 function evaluations
and several orders of magnitude for larger tasks than BP.

5. Which are there advantages and disadvantages of ESs as training algo-
rithms?
A clear advantage over gradient-based training is that ESs can be used
in networks with non-continuously di�erentiable activation functions. A
disadvantage is that ESs have much more parameters to adjust (recombi-
nation scheme, population size, selection pressure, selection type "+" or \,"
, mutation factors � and � 0), and those parameters are sensitive to changes
[43].

10Note that two parents should not be mistaken for a population of � = 2. See section 3.1.3.
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This chapter has empirically shown that the backpropagation algorithm outper-
forms ESs with respect to all our criteria in almost all cases. All previous claims
that ESs, at least in their traditional variations, outperform neural network learn-
ing algorithms are proven wrong either by counter examples or by extensive pa-
rameter studies. With a growing number of problem dimensions the learning
becomes more diÆcult for ESs and the \correct" parameterization is crucial.

\Nobody should make use of EC in case where good old methods like Linear
and Dynamic Programming, quasi-Newton, or theoretically well underpinned
methods work. None of the EAs would do the job better nor even as good as
those" (H.-P. Schwefel, 1994 [74]). If such methods are not applicable as it is the
case in neural networks with non-continuously di�erentiable activation functions,
EAs are feasible methods.
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Chapter 5

CI Methods in Chemical

Engineering

This chapter investigates the utility of CI methods in one area of Chemical En-
gineering. It will compare the performance of neural networks and evolutionary
algorithms and combinations of them on real engineering problems. An encoding
of chemical compounds is proposed that allows the application of both paradigms
and establishes a basis for comparisons.

Solutions found by CI methods are presented that compare to the best physically
motivated methods known so far and even outperform them in several ways.

5.1 Motivation

In chemical engineering the simulation of chemical plants and the design processes
are important tasks. To simulate and design such plants chemical engineers need
to know about certain properties like, how chemicals react with each other or how
they behave under in
uence of heat or pressure. The knowledge of such proper-
ties, which can be gained during real experiments, is a necessity to simulate and
build such plants. The problem is that there are millions of chemical compounds
known yet and experimental data are often not available.

For this reason there is a need for calculation methods which are able to predict
those thermodynamic properties. Such methods are often physically motivated
models based upon measurements of real experiments (see �gure 5.1).

In this work, properties under consideration concern either pure components
where the heat of vaporization has to be predicted or mixtures where the heat of
mixing should be predicted.

79
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Thermodynamic
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chemical plant

Figure 5.1: Motivation: Process design relies on chemical properties that have to be
measured or predicted.

Usually models are developed that have a physical background and where the
model parameters have to be �tted with the aid of experimental data. This often
leads to nonlinear regression models with a multi-modal objective function where
evolution strategies are successfully used [22, 21, 23].

There are more than 13 million known organic compounds and each year approx-
imately another 1.000.000 can be added. The impossibility of measuring such
large data leads to group contribution models, where molecules are divided into
so-called functional groups. Physical interactions are no longer speci�ed on the
molecular level but on the level of function groups. Each functional group of
a molecule gives a contribution to the thermodynamic property and the sum of
all contributions has to be calculated. One gains a small number of functional
groups instead of a large number of existing molecules. Hence, the number of in-
teractions is signi�cantly reduced. The group contribution principle is illustrated
in �gure 5.2.

CH3

CH2

CH2

CH3

CH2OH

CH2OH CH3 CH2 CH2OH

Group
 contribution
principle

Molecules Functional groups

CH3 CH2 CH2OH

Figure 5.2: The group contribution principle. Functional groups within molecules
contribute to chemical property instead of the whole molecule.

A new way for the calculation and prediction of thermodynamic properties is
the use of neural networks in various ways. First, descriptors have to be derived
from the molecular structure of chemical compounds. Given the descriptors,
experimental data for a speci�c thermodynamic property can be used to generate
training data for a neural network. Predictions of this thermodynamic property
are then possible by using the molecular structure for a chemical compound
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without the need for experimental data. In a �rst investigation the enthalpy of
vaporization was used.

In section 5.2 a brief overview of the models used is given followed by a section 5.3
describing the data. Section 5.4 continues with an experimental comparison of
physical models, networks trained with backpropagation, networks trained with
evolution strategies and a combination of the latter two.

5.2 Models for the Enthalpy of Vaporization

5.2.1 Physical Models

The physical background for the enthalpy of vaporization �Hv consists of elec-
trostatic interactions forced by the atoms of the molecules. Equations can be
derived from statistical thermodynamics in order to describe the interactions be-
tween molecules (�rst level) and between functional groups of these molecules
(second level). Physical models, such as UNIFAC (UNIversal Functional Activ-
ity CoeÆcient) [18] were developed in order to describe the real behavior of liquid
mixtures. The part of the UNIFAC model, which summarizes the interactions
between functional groups of the molecules within a pure liquid were taken as a
basis for the development of the so-called UNIVAP model (UNIversal enthalpies
of VAPorization) [41, 88, 86]. This model consists of sums of exponential terms,
which include the interaction parameters and the temperature. In contrast to
UNIFAC an extended temperature dependence was used in order to describe the
behavior of the enthalpy of vaporization in principle. For the UNIVAP model
it was diÆcult to reach the critical point, where the enthalpy of vaporization
reaches zero. Therefore a modi�ed temperature dependence was used in this
investigation (UNIVAP).

The interactions are weighted by the surface fractions of functional groups of a
molecule. The interaction parameters have to be �tted to experimental data of
enthalpies of vaporization. This leads to a non-linear regression problem of which
the objective function consists of the mean absolute error (MAE Eq. 5.1) over
all N experimental data points between the calculated values �Hcalc:

v (physical
model) and the experimental data �Hexp:

v :

MAE =
1

N

X
N

���Hcalc:
v ��Hexp:

v

�� (5.1)

Other error functions like the mean relative error (MRE Eq. 5.2) or the root
mean squared relative error (RMSRE Eq. 5.3) might also be used, but especially
the RMSRE is not very expressive because it puts too much emphasis on data
points close to the critical value.
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Figure 5.3: Multimodality in a physical model (2 of 27 dimensions, parameters P1

and P6 varied and all others held constant).
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Due to the complex structure of the physical model, especially the exponential
terms, multimodality usually occurs. In �gure 5.3 the multimodality of a physical
model is illustrated. To cope with the diÆculty of the corresponding optimization
problem, [22, 21, 87, 86] propose an encapsulated evolution strategy (see section
3.2 for further details) for solving this problem.

Another theoretical approach is the so-called EBGCM (Enthalpy Based Group
Contribution Model) [42, 86] in order to describe the enthalpy of mixing of binary
liquid mixtures. This model is similar to UNIFAC, but has a slightly di�erent
background. It was used to derive an equation for the enthalpy of vaporization,
which is similar to the UNIVAPmodel. This so-called EBGVAPmodel (Enthalpy
Based Group contribution model for enthalpies of VAPorization) was used in
our investigation, too. For UNIVAP and EBGVAP three parameters for the
interactions between functional groups of the same type have to be �tted by non-
linear regression. For interactions between di�erent kinds of functional groups
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six parameters have to be estimated. In principle the enthalpy of vaporization of
a molecule i can be calculated as follows:

�Hv =
X
k

�
(i)
k "

(i)
k = kJ=mol (5.4)

R is de�ned as the universal gas constant of 8.314 J/(mol�K) and �
(i)
k is the

number of groups of kind k within the molecule i. The term "
(i)
k / kJ/mol is

called group enthalpic factor of group k. This factor can be written for UNIVAP
(Eq. 5.6) and for EBGVAP (Eq. 5.7):
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with Qk de�ned as the relative van der Waals surface of group k, and the surface
fraction of a group m within a molecule i can be calculated with:

�(i)
m =

�
(i)
m QmP

p

�
(i)
p Qp

(5.8)

The interaction parameter 	mk between the groups of kind m and k is de�ned
as:

	mk = exp

���umk

RT

�
(5.9)

The equations for the temperature dependence for UNIVAP (Eq. 5.10) and EBG-
VAP (Eq. 5.11) are:

�umk = R � (amk + bmkT + exp(cmkT
2) �K) (5.10)
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�umk =
�
bmkT + exp

�
cmkT

2
� � J=mol

�
(5.11)

Here amk, bmk and cmk are the interaction parameters, which have to be �tted.
Considering Eq. 5.6 and 5.7, the heat of vaporization in Eq. 5.4 should have the
unit J=mol. Usually, heats of vaporization extend over a range between 0 J/mol
and > 105 J/mol. This leads to diÆculties in the optimization procedure, because
exponential terms describing the temperature dependence as given in Eq. 5.10
and 5.11 cannot correlate data within this large range with satisfying results. A
factor of about 1000 is introduced and therefore the output of Eq. 5.4 is set to
kJ/mol.

5.2.2 Neural Networks

Neural networks are able to acquire an internal model of a process by learning
from examples. After successful training the network will be a model for the
process which led to the experimental data. Theoretical results show that feed-
forward networks are capable of arbitrarily exact function approximation, given
an unlimited number of free parameters or in�nite precision [31].

In these experiments simple feed-forward networks with sigmoid activation func-
tions (Eq. 2.3) are used. The network model can be written as:

out =
1

1 + e
�
��

nP
i=1

wout;i�hidi
�
+wou;bias

� (5.12)

hidi =
1

1 + e
�
  

mP
j=1

Ij�wi;j)
!
+wi;bias

! (5.13)

with n as the number of hidden units, m as the number of input units and Ij as
input value for unit j.

As training algorithms for the network weights wi;j we employed the standard
backpropagation algorithm, RProp (Resilient Propagation) and various (�,�) evo-
lution strategies.

5.3 Description and Preparation of the Data

Before the models can be �tted to experimental data, descriptors had to be de-
rived from the molecular structure of chemical compounds. Using the descriptors,
data for the enthalpy of vaporization can be used to generate training data for
the neural network.
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5.3.1 Selection of Descriptors

The question arises which descriptors should one choose to describe the process
itself. There are several possibilities for the de�nition of descriptors [22]:

� number of atoms

� molar mass

� single bonds

� topological parameters describing the connectivity between atoms.

� dipole moment

� surface fractions

� temperature

In the following experiments we used surface fractions of the functional groups
and the temperature as descriptors which are also used by group contribution
models. Experimental data was gathered for several functional groups, and dif-
ferent problem sizes (number of functional groups) were generated to evaluate the
scaling behavior of the models. In table 5.1 we see the dimension and number of
model parameters for three di�erent datasets.

3 groups 5 groups 20 groups

Data points 429 645 1549

Dimensions 4 6 21

Model parameters 25 41 390

Table 5.1: Three di�erent datasets with growing number of functional groups involved
and the related problem dimensions.

5.3.2 Selection of Data

The experimental data concerning the enthalpy of vaporization (table 5.2) were
taken from di�erent data handbooks [49, 85, 80]. Data for three di�erent classes
of chemical compounds were used: normal alkanes, 1-alcohols, and branched
alcohols. These data were chosen for the investigation of three (3MG), �ve (5MG)
and twenty (20MG)1 functional groups, the so-called main groups: CH3, CH2 and

1Due to the complexity of the task, only very few experiments were made with 20 main
groups. Those experiments were also restricted to neural network learning because the problem
size was intractable for the physical models.
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CHnOH. The group CHnOH contains the functional groups CH3OH, CH2OH and
CHOH. The experimental data for all data sets cover a temperature range from 92
K to 776 K. The number of carbon atoms in the n-alkanes ranges from 2 (Ethane)
to 19 (Nonadecane), for the 1-alcohols from 1 (Methanol) to 14 (Tetradecanol)
and for the branched alcohols from 4 (2-Methyl-2-propanol) to 6 (2-Methyl-2-
pentanol). The preprocessing steps and experimental settings were the same for
the 3MG and 5MG data sets.

Group interaction for 3 main groups np ndata;total ndata;training

CH3 CH3/CH3 CH2/CH2 CH2 12 248 128 (51.61 %)

CHnOH CHnOH/CH3 CHnOH/CH2 CHnOH 15 181 86 (47.51 %)

total: 27 429 214 (49.88 %)

Group interaction for 5 main groups np ndata;total ndata;training

CH3 CH3/CH3 CH2/CH2 CH2 12 248 130 (52.42 %)

CH CH/CH CH2/CH CH3 15 133 58 (43.94 %)

C C/C CH/C CH2/C CH3 21 52 28 (53.85 %)

CHnOH CHnOH/CH3 CHnOH/CH2 CHnOH 15 181 89 (49.17 %)

CH CHnOH/C CHnOH 12 40 22 (55.00 %)

total: 75 654 327 (50.00 %)

Table 5.2: Number of experimental data for the di�erent group interactions.

5.3.3 Partitioning for Cross-Validation

After generating a data set (either 3MG or 5MG) it was subdivided into 3 classes:
training (50%), validation (25%) and test (25%) set. Only the training set was
used to adapt the parameters for all our models. The validation set could be
used during the adaptation process to evaluate the algorithm's performance on
unknown data and stop the adaptation process if the error on the validation
set increases. The validation set does not have any in
uence in the learning
procedure of the NN or the adaptation process of the physical models UNIVAP
and EBGVAP. Validation and test set therefore measure the generalization ability
of all models. In this context it was important to choose the partitioning of the
data so that all group interactions are equally present in all partitions. The
distribution of the data in the 3MG and 5MG data sets can be seen in table 5.2.
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5.3.4 Transformations

For the use with the neural network the data has to be normalized to be used as
input values to the neurons. Several normalization techniques were investigated:

� Linear scaling (Eq. 5) over all inputs (unit activation range [0:0 : : : 1:0] and
[�1:0 : : :1:0]).

� Separate linear scaling of main-groups, temperature and enthalpy (unit
activation range [0:0 : : : 1:0] and [�1:0 : : :1:0])

� Linear and separate linear scaling to the interval [0:1 : : : 0:9] and a unit
activation range [0:0 : : : 1:0].

� Separate hyperbolic scaling (Eq. 2.28) to the interval [0:1 : : :0:9] and a unit
activation range [0:0 : : : 1:0].

In all of the following experiments the data was normalized via separate lin-
ear transformations of main-groups, temperature and enthalpy to the interval
[0:1 : : : 0:9] with a unit activation range of [0:0 : : : 1:0]. Network responses outside
of this interval were mapped onto the boundaries and then re-transformed to the
original scale. This scaling technique delivered the best results in preliminary
experiments.

5.4 Experiments and Results

There was one basic question which was the starting point of these experiments:
\Can neural networks be used to model chemical processes?" Throughout the
experiments several other questions arose which also had to be answered: \How
does a neural network compare to physical models?", \How good is the scaling
behavior of the di�erent methods?" \What is the best architecture, training
algorithm and parameter setting for such a network?", \If evolution strategies
are good at optimizing physical models, can they also be used to optimize the
neural network's weights?"

All these questions and their answers lead to a rather complex experiment struc-
ture. Figure 5.4 illustrates the main structuring of the experiments and results.

Comparing di�erent methods or models is at least two-fold. On the one hand a
fair comparison should allow all models the same number of free parameters to
adjust to the problem. On the other hand, one can say that it is suÆcient if a
model performs well on formerly unseen data regardless of the number of param-
eters it needed. In both cases our main concern is the generalization capability.
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Figure 5.4: Di�erent CI approaches under investigation.

Some of these experiments were designed to �nd good neural models under the
most similar conditions for the calculations as the physical models. In these
experiments the number of adjustable parameters was approximately the same
for all models. Experiments of this type are tagged as \�xed".

The other type of experiments (tagged as \free") was designed to search for good
results independent of the number of free network parameters (weights) used.
In this case we are not restricted to a certain number of weights in the neural
network and the diÆculty is to �nd the optimal structure of the network2.

Figure 5.5 illustrates the usage of the physical and neural network model. In the
physical model interaction parameters between the functional groups have to be
adapted in order to approximate the actual heat of vaporization �Hv. In case
of the neural network the weights have to be adjusted to re
ect the correlation
between the functional groups and their heat of vaporization �Hv.

2Another important issue that is not addressed here is the problem of �nding a good model
equation for the temperature dependency of the physical model. Here, only the structure of
the network is under investigation.
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Figure 5.5: Physical model (left) with 27 interaction parameters between functional
groups, and neural network (right) with 25 weight parameters.

5.4.1 Physical Model Experiments

Only the training set was used for the non-linear regression of the interaction
parameters. Two di�erent �tting methods were investigated: sequential �tting
(seq) and simultaneous �tting (sim). With the sequential methods the parame-
ters were computed successively, i. e. �rst the 12 parameters for the interactions
CH3 $ CH3, CH3 $ CH2 and CH2 $ CH2 were �tted to the training data
set. After this optimization process (corresponding to 3MG in table 5.2), these
12 parameters are used in the �tting procedure of the remaining 15 parameters
of the interactions CHnOH $ CHnOH, CH3 $ CHnOH, and CH2 $ CHnOH,
because data points of substances are used, which contain the main groups CH3

and CH2, too. The advantage of a sequential �tting procedure is to keep the
dimension space as small as possible. These sequential experiments for the phys-
ical models were done with the aid of a repeatedly started encapsulated evolution
strategy [21] by using a multidimensional but non-correlated step-length control
and a global averaging recombination of the objective and the strategic variables:
[AA 4+8(AA 7+19) 300]30 (see section 3.2). The encapsulated evolution strategies
were run �ve times with � 13:6 � 106 objective function evaluations each, in order
get a fairly good local minimum, at least.

The determined results were optimized by a multi-start simplex-algorithm [56]
with 50 di�erent runs of 2500 iterations each. The best result for UNIVAP (seq)
and EBGVAP (seq) can be found in tables 5.3 and 5.4.

In contrast to this sequential regression of the model parameters a simultaneous
regression (sim) of all 27 (3MG) respectively 75 (5MG) parameters was investi-
gated by using the same encapsulated ES as for the sequential experiments. The
determined errors (MAE Eq. 5.1) of these runs were improved by a multi-start
simplex-method as well by using 50 di�erent runs of 3000 iterations each.
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5.4.2 Neural Networks Experiments (Backpropagation)

The learning rate � and the architecture of the network (number of hidden units
and connections) have the strongest in
uence on the performance of the network
[52]. In case of the �xed experiments we only have to �nd a good learning rate �.
The learning rate was varied with a �xed architecture which had approximately
the same number of free parameters (weights) as the UNIVAP respectively as the
EBGVAP model.

In case of the free experiments a limited parameter study was carried out. With
the best learning rate found, we searched for a good network architecture through
variation of the number of hidden units3. All runs were performed 10 times. For
a documentation of the results see the appendices A.4.3 and A.4.4.

5.4.2.1 Variation of the Learning-Rate

The architecture of the network was �xed at 4 input, 4 hidden and 1 output units
(4-4-1) for the 3MG data and at 6 input, 5 hidden and 1 output units (6-5-1)
for the 5MG data, to have approximately the same number of free parameters
(25 = 4 � 4 + 4bias + 4 + 1bias) as the UNIVAP and EBGVAP methods.

For both data sets (3MG and 5MG) the learning rate was varied between � =
0:001 and � = 10:0, the momentum term � was �xed to 0.2. A training run
was stopped after it reached the error limit (msse � 5 � 10�5) or exceeded a
maximum number of 100,000 pattern presentations (epochs). None of the runs
showed an excessive over�tting of the data. The error on the validation set very
seldom increased with a decreasing error on the training set. Because of this
observation the stopping criterion was only de�ned on the training set.

The �gures 5.6 and 5.7 show the error curves for 10 di�erent runs (3MG) with
the best learning rate which was used throughout all other experiments. The
left-hand side �gure gives the error on the training set, and on the right-hand
side we see the validation error. If an error curve reaches the base of the graph it
satis�ed a speci�ed error limit for the whole training set. Networks with very low
learning rate never reached the speci�ed error limit, due to the very slow learning
progress. A rate too high resulted in oscillating error curves. The �gures look
similar for the 5MG data set.

5.4.2.2 Variation of the Number of Hidden Units

After the variation of the learning rate � we used the best rate as a constant
for the hidden unit search. The number of hidden units varied between 1 and
40. Networks with less then 3 units failed to learn the task. Up to 40 units

3This does not mean that both parameters are independent of each other. We consider this
value to be a �rst estimate to start with.
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Figure 5.6: 3MG: training set errors at
learning rate � = 0:8. The �gure shows
the error (Eq. 2.6) of the networks (y-
axis) over 100,000 training epochs (x-axis)
for all 10 runs (z-axis). Only every 50th
epoch is shown.

Figure 5.7: 3MG: validation set errors
at learning rate �=0.8. The �gure shows
the error (Eq. 2.6) of the networks (y-
axis) over 100,000 training epochs (x-axis)
for all 10 runs (z-axis). Only every 50th
epoch is shown.

the results on training as well as validation data were almost independent of the
number of units employed. We therefore used our initial 4-4-1 (NN-A) and a
4-6-1 (NN-B) network for the 3MG data and a 6-5-1 (NN-A) and a 6-9-1 (NN-B)
network for the 5MG data. In some cases networks with slightly more or slightly
less units perform a little better. These networks are included in the comparison.
All networks were trained with backpropagation as well as RProp. For the �nal
training runs 250,000 epochs were used instead of the 100,000 of the parameter
study.

5.4.3 Neural Networks Experiments (Evolution Strategy)

In this experiment we substituted the backpropagation algorithm with an evolu-
tion strategy. Some authors [94] reported good results when training a network
with an ES. Again we systematically searched for a good parameterization of
the (15,100){ES. Parameters under consideration were the number of mutation
step-sizes �i and the recombination scheme used on the object variables xi (the
network weights) and the step sizes. Each parameter setting was run for 100,000
generations (10,000,000 function evaluations) and repeated 10 times to have some
statistical validity. All of the 12 possible combinations (see table 4.1) of discrete,
intermediate, global averaging and geometric recombination of object variables
and step size variations as well as a variant without recombination were done
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with either n� = 1 and n� = 25, local and global recombination. See appendix
A.5.1 for detailed results of the parameter study.

None of the parameter settings lead to good and reliable results. Only one out
of all ES trained networks performed comparably to backpropagation. All other
networks give rather poor results. The quality of the average result did slightly
improve when using backpropagation as local search procedure (an additional
training of 250,000 epochs) after ES optimization but was not as good as back-
propagation alone. Figure 5.8 shows the best run, which can be regarded as
a very rare event, with a (15,100){ES. Because of the poor performance no
ES experiments were performed on the 5MG data set. Typical results for other
recombination schemes are given in the appendix A.5.1.
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Figure 5.8: 3MG: (15,100){ES with n step sizes and intermediate recombination of
weights and step sizes. Depicted are the best (Best) and average (Avrg) individual as
well as the minimal (SigMin) and maximal (SigMax) step size in the population over
10,000,000 function evaluations.

5.4.4 Results and Comparison

5.4.4.1 The 3 Main Groups Data Set (3MG)

For a comparison between the physical models and NN, the two network archi-
tectures with learning rates gained by the previous experiments are used. Archi-
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tecture A has 4 hidden units and nearly the same number of free parameters (25
weights) as the UNIVAP respectively the EBGVAP model (27). Architecture B
performs alike and has 6 hidden units (37 weights).

List of experiments and their parameters:

1. Parameters for NN-A (4-4-1): epochs=250,000
a) with backpropagation (NN-A-BP), �=0.8
b) with RProp (NN-A-RP) , �0 = 0:2, �max = 50:0

2. Parameters for NN-B (4-6-1): epochs=250,000
a) with backpropagation (NN-B-BP), �=0.8
b) with RProp (NN-B-RP), �0 = 0:2, �max=50.0

3. Parameters for NN-A-ES (4-4-1): best (15,100){ES, n� = n, intermediate
recombination of xi and �i (100,000 generations)
a) best network of all experiments
b) average network

Table 5.3 and �gure 5.9 give an overview of all experiments. In the �rst place, the
results determined by the physical models UNIVAP and EBGVAP show, that the
newer group contribution model EBGVAP is more suitable than UNIVAP for the
correlation and prediction of heats of vaporization because of its better physical
background. On the other hand the results show a superiority of a sequential
�tting procedure. The neural network with plain backpropagation performs even
slightly better than the best physical model. Trained with RProp the network
clearly outperforms all physical models. Similar results are achieved by a network
with a linear instead of a sigmoid output unit.

From the errors of the validation and test set we can derive the generalization
capabilities of the di�erent models. The best generalization is given by network A
(backpropagation and RProp) very closely followed by EBGVAP (seq), whereas
the worst generalization is delivered by the same network trained with an evo-
lution strategy and the UNIVAP (sim) model. For a more detailed view of the
errors see appendix A.4.1.

As an additional test for the generalization ability, all data of an ethane molecule
in a range from 92 K to 305 K was used. In �gures 5.10 and 5.11 we compare
all models on the enthalpy prediction for ethane. It can be seen that the phys-
ical model EBGVAP and the neural network perform equally well on this task,
except for the critical regions near T ! Tcr and �Hv(Tcr) � 0 J/mol, where
the network outperforms all other models. The prediction by using the network
that was trained with an ES is however characterized by a discontinuity near
T � 105 K, which is not interpretable thermodynamically. The prediction of this
neural network model can therefore be only used over a part of the temperature
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UNIVAP (seq) EBGVAP (seq) UNIVAP (sim) EBGVAP (sim)

Train 0.681 0.617 0.881 0.720

Valid 0.941 0.750 0.966 0.829

Test 0.557 0.576 1.003 0.766

All 0.716 0.640 0.933 0.759

NN-A-BP NN-B-BP NN-A-ES (best) NN-A-ES (avrg)

Train 0.652 0.570 0.612 1.143

Valid 0.566 0.878 0.876 1.536

Test 0.686 0.703 0.747 1.357

All 0.638 0.679 0.711 1.292

NN-A-RP NN-B-RP NN-A-BP (lin)

Train 0.425 0.464 0.559

Valid 0.604 0.690 0.818

Test 0.560 0.600 0.641

All 0.504 0.555 0.645

Table 5.3: 3MG: Mean absolute error (Eq. 5.1) per pattern for di�erent data sets and
models.

range. The network trained with backpropagation su�ers from a very small dis-
continuity at T � 160 K while RProp does not show any discontinuity and is
therefore plausible from a thermodynamic viewpoint.

Almost all networks trained with an ES only give a poor approximation of the
enthalpy curve. In comparison to table 5.3 the superiority of EBGVAP over
UNIVAP can be also seen in the �gures 5.10 and 5.11 because of the smaller
deviation at temperatures smaller than T = 150 K and at temperatures near the
critical temperature of Tcr(Ethane)= 305:4 K.
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Figure 5.9: 3MG: Performance comparison of all methods. Methods are sorted in
ascending order with respect to their overall error. The best three ranks on the left-
hand side are held by neural network models.
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Figure 5.10: 3MG: Several well performing models (EBGVAP (seq), NN-A-BP, NN-
A-ES (best), NN-A-RP) predicting the enthalpy of ethane over the whole temperature
range. Discontinuity of NN-A-ES at T � 105 K and of NN-A-BP at T � 160 K.
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5.4.4.2 The 5 Main Groups Data set (5MG)

As in the 3MG experiments, we took two network architectures with learning
rates gained by the previous experiments. Architecture B has 5 hidden units (41
weights), architecture A has 9 hidden units (73 weights) that is nearly the same
number of free parameters of the physical models UNIVAP and EBGVAP (75
parameters).

1. Parameters for NN-A (6-9-1): epochs=250,000
a) with backpropagation (NN-A-BP), �=0.9
b) with RProp (NN-A-RP), �0 = 0:2, �max=50.0

2. Parameters for NN-B (6-5-1): epochs=250,000
a) with backpropagation (NN-A-BP), �=0.9
b) with RProp (NN-A-RP), �0 = 0:2, �max=50.0

Table 5.4 and �gure 5.12 give on overview of all 5MG experiments. Again we
see that the EBGVAP model is superior to the UNIVAP model but both neural
networks perform better than the best physical model. Network B has only 55 %
of the free parameters of the models UNIVAP and EBGVAP but gives slightly
better results, whereas network A with nearly the same number of parameters
is signi�cantly better. With the increased problem size the simultaneous adap-
tation method of parameters loses even more ground compared to the sequential
method. The results concerning the physical models show the need of decreasing
the dimension of the variable space. It is obvious, that a simultaneous optimiza-
tion (sim) of 75 parameters in all did not lead to satisfying results. To split the
optimization procedure of all 75 parameters into several sequential optimizations
(seq) by using already �tted parameters as constants leads to the best results
which can be seen in the �gures A.14 and A.15 in the appendix.

In �gures 5.13 we again compare all models on the enthalpy prediction for ethane.

When we take a closer look at the performance of the sequential and the simul-
taneous adaptations of the physical model, we clearly see that the sequential
method outperforms the other on both problem sizes. A detailed comparison of
both �tting methods is given in the appendix A.4.2.

5.4.4.3 Larger Data Sets

This experiment was mainly designed to show the scaling behavior of all methods.
Here, we only have one network architecture and one physical model. The number
of parameters to adapt is 390 for the EBGVAP model and 392 for the neural
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UNIVAP (seq) EBGVAP (seq) UNIVAP (sim) EBGVAP (sim)

Train 0.667 0.609 1.764 1.275

Valid 1.050 0.805 2.077 1.579

Test 1.180 0.939 2.013 1.707

All 0.891 0.740 1.904 1.459

NN-B-BP NN-A-BP NN-B-RP NN-A-RP

Train 0.702 0.564 0.684 0.412

Valid 0.649 0.589 0.614 0.396

Test 0.904 0.744 0.841 0.514

All 0.737 0.614 0.705 0.433

Table 5.4: 5MG: Mean absolute error (Eq. 5.1) per pattern for di�erent data sets and
models.

network. The network was trained with backpropagation and RProp. For the
EBGVAP model only the better sequential adaptation method was investigated
and, in contrast to the 3MG and 5MG experiments, all available data was used.
For the networks models, results are given for training with all available data and
for training only with training data. In both cases the errors are given for all
three data sets.

1. Parameters for NN-A (21-17-1): epochs=100,000
a) with backpropagation (NN-A-BP), �=0.8
b) with RProp (NN-A-RP), �0 = 0:2, �max=50.0

Table 5.5 gives an overview of all 20MG experiments, and �gure 5.14 compares
models for all data sizes. Again, the neural networks perform better than the
physical model. The neural network's outperform the physical model by almost
a factor of 3. Even a network that has only seen 50% of the data performs twice
as good as the physical method.

The following two �gures summarize the performance of the best models for all
problem sizes. We can clearly see that the neural network models scale very
well with the growing problem size, whereas even the best physical model with
sequential adaptation of parameters su�ers from decreasing performance.
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Figure 5.12: 5MG: Performance comparison of all methods. Methods are sorted in
ascending order with respect to their overall error. The best four ranks on the left-hand
side are occupied with neural network models.

NN-A-BP (all) NN-A-RP (all) EBGVAP (seq)

Train 0.627 0.779 -

Valid 0.668 0.813 -

Test 0.670 0.889 -

All 0.648 0.695 1.902

NN-A-BP NN-A-RP

Train 0.737 0.650

Valid 0.998 0.900

Test 1.049 0.820

All 0.880 0.755

Table 5.5: 20MG: Mean absolute error (Eq. 5.1) per pattern for di�erent data sets
and models.
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Figure 5.13: 5MG: Several well performing models (EBGVAP (seq), UNIVAP (seq),
NN-A-BP, NN-A-RP) predicting the enthalpy of ethane over the whole temperature
range.

3MG 5MG 20MG

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0,504
0,433

0,650,64
0,74

1,39

Neural Network

Physical Model

E
rr

or
 (

M
A

E
)

Figure 5.14: Performance comparison of the best neural network and the best physical
model on varying problem sizes.



5.4. EXPERIMENTS AND RESULTS 101

5.4.5 Run-Time Comparison of Di�erent Approaches

Another evaluation criterion for the neural network and the physical model ap-
proach is the computational e�ort that is needed to achieve approximately the
same level of performance. Both approaches are complex and di�erent in their
algorithmic nature. Hence, a formal runtime analysis is not feasible, instead the
CPU-time per model evaluation and the total number of evaluations needed to
achieve the same error level are used4. We compare the best physical model
EBGVAP with simultaneous and sequential adaptation with two neural network
architectures. The sequential adaptation of parameters is much more time con-
suming than the simultaneous adaptation. Depending on the number of main
groups involved, the time consumption grows approximately by a factor equal to
the number of sequential adaptation steps5.

In case of the physical model a single evaluation corresponds to one objective
function evaluation plus the fraction of time that is consumed by the ES for this
single evaluation. Here, most of the time is spent during the calculation of the
objective function (the physical model). For the neural network one evaluation
is equivalent to a learning epoch.

Table 5.6 lists the time in CPU-milliseconds for a single evaluation and the total
number of evaluations needed. For the two smaller problems 3MG and 5MG the
physical models need � 3 times as much CPU-time as the neural networks. For
the larger 20MG problem the factor is only � 1.2.

problem
size

EBGVAP
(sim)

EBGVAP
(seq)

evaluations NN-A NN-B evaluations

3MG 6.72 13.44 1,368,244 2.38 2.75 250,000

5MG 13.99 69.95 1,368,244 4.22 5.61 250,000

20MG 84.19 2,525.7 1,368,244 70.90 100,000

Table 5.6: Time consumption of physical and neural network models for various
problems sizes. The �gures give the number of CPU-milliseconds for a single model
evaluation and the total number of evaluations needed.

When we multiply these �gures by the total number of evaluations needed to
achieve the results of this chapter, we end up with a drastically changed relation.
In table 5.7 and �gure 5.15 these �gures are given in CPU-minutes. Compared

4A MIPS-R10000 250 MHz processor was used in all tests. All �gures were gained by
averaging the time consumption of both methods over 10,000 evaluations

5For the 3MG problem the factor was 2, for the 5MG problem the factor was 5, and for the
large 20MG problem the factor could only be estimated to be between 20 and 40 (30 was used
in these calculations). See section 5.4.1 for further details.
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problem
size

EBGVAP
(sim)

EBGVAP
(seq)

NN-A

3MG 153 306 10

5MG 319 1,595 18

20MG 1,920 57,596 118

Table 5.7: Total time consumption for various problems sizes. The �gures give the
number of CPU-minutes for the whole optimization.
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Figure 5.15: Comparison of time consumption for neural networks and physical mod-
els on all problem sizes.

to the simultaneous adaptation method, which is the one that is most similar in
terms of the working principle, the neural network is at least 15 times faster than
the physical model. A fairer comparison with the better sequential adaptation
method gives a speed-up between 30 and nearly 500. The performance relation
for the simultaneous adaptation method and the neural network seems to be
constant with growing problem size, while it grows by a factor depending on the
problem size for the sequential method. The time needed for the evolutionary
training of the neural network is 24 times higher than that of backpropagation.

The largest 20MG problem can be solved in just two hours by the neural network
approach, while the physical model, with the rather poor performing simultane-
ous adaptation, needs 32 hours. The sequential method cannot be used for this
problem size because of its time consumption. It would have required approxi-
mately 40 days computing time.



5.5. DISCUSSION AND CONCLUSIONS 103

5.5 Discussion and Conclusions

The most important result of this investigation is the good ability to correlate as
well as to predict the enthalpy of vaporization with neural and physical methods.
Neural networks with simple backpropagation or RProp training are as good as
the physically based group contribution methods UNIVAP and EBGVAP and
especially at critical temperatures even slightly better. Trained with RProp the
network outperforms all other models. Predictions by networks, however, are
sometimes characterized by discontinuities within the thermodynamically signi�-
cant temperature range, which is shown in the �gures 5.10, 5.11, and 5.13. These
points are not thermodynamically interpretable, so that a prediction that exhibits
such a discontinuity should only be used with care. None of the networks trained
with RProp su�ered from discontinuity.

The results concerning the sequential versus simultaneous parameter optimization
of the 3MG and the 5MG data sets show the need of a relatively small dimension
of variable space by carrying out a sequential optimization, where thermody-
namic information is included as much as possible. Optimization of interaction
parameters by using already �tted parameters as constants can lead to incom-
patibilities during the �tting procedure [42], but the results are obviously better
in terms of mean absolute errors, which is shown in the �gures A.14 and A.15.
Neural networks, instead, have no need for a sequential adaptation method and
do therefore not su�er from incompatibilities. During the training all parameters
(weights) are adapted simultaneously.

The comparison of the results for UNIVAP and EBGVAP shows the in
uence of
the structure of the model itself. Further investigations could use evolutionary
algorithms to optimize the structure of the models with regard to the tempera-
ture dependence. For the neural networks it can be stated that the use of surface
fractions of functional groups as descriptors for a neural network leads to good
results for both correlation and prediction. The big advantage of this new pro-
cedure is, that the molecules can easily be divided into functional groups, which
makes it easy to use in engineering applications and allows the direct comparison
of neural networks and physical models, due to the same input information. The
investigations concerning the architecture of the neural networks show, that a
simple network structure is suÆcient and a more complex network with short-
cut connections or additional hidden layers does not give better results. In this
context evolution strategies as training algorithms and combinations of ES with
backpropagation failed to deliver good models in almost all experiments. It is
worth to notice that ESs did not fail completely on the task, but, given the best
possible parameter setting, they perform like a mediocre physical model.

From a thermodynamic point of view, it is interesting that a simple method like
a neural network can give similar and even much better results in comparison
with much more complicated, physically motivated models. If a physical model
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gives results with a quality less than a neural model, the physical model should
be improved. However, in chemical engineering there are many thermophysical
properties, which are usually not described by physical methods, but by incre-
mental methods. These methods, for example, for critical data i.e. normal boiling
points and so on, could be replaced by neural networks. However, these results
are �rst steps in developing eÆcient network structures for our purpose and es-
pecially investigations with more functional groups will give a better comparison
between physical models and neural networks.

An additional advantage of the neural models over the physical models is that
their computational e�ort is much lower, and they exhibit a much better scaling
behavior. While the physical models are, in terms of computational e�ort, only
feasible up to a certain small number of dimensions (5 main groups with 41 model
parameters), the neural models also perform well at a higher problem dimension
(20 main groups with 390 model parameters). From the viewpoint of computation
time, neural networks clearly outperform the best physical models.



Chapter 6

Summary

This thesis analyzed evolution strategies as an alternative to gradient-based neu-
ral network training. It investigated two CI methods, neural networks, evolution
strategies, and a combination of both for solving diÆcult problems in the �eld of
chemical engineering.

In chapter 4 it was shown that evolution strategies are, in principle, capable of
successful weight-tuning in neural networks. This also holds when the network
consists of non-continuously di�erentiable activation functions. Here, EAs are
feasible means as backpropagation cannot be applied because of the not so easy
to get gradient information.

A clear advice of how to recombine the weights of a neural network could be
found. The best recombination scheme is: two parents (local), intermediate
recombination of the object variables x and step sizes �. It can further be said
that the coupling of object variables and strategy parameters is bene�cial when
training networks and that it is not a critical parameter for other problems.
Despite the capability of ESs to optimize the weights of a neural network, it
must be said that except for small problems they are less eÆcient in terms of
computational e�ort. For the easiest task an ES needs more than twice as many
function evaluations and several orders of magnitude more for larger tasks.

In comparison with backpropagation ESs have more parameters to adjust (re-
combination scheme, population size, selection pressure, selection type (� +, �),
mutation factors � and � 0), and those parameters are often sensitive to changes.

The investigation of the scaling properties of both algorithms suggest that ESs are
much more likely to su�er from a large dimensionality than backpropagation.
With a growing number of problem dimensions the learning becomes more diÆ-
cult for ESs and the \correct" parameterization is crucial.

The hope that the evolutionary search might overcome the problem of getting
trapped in non-global local minima like gradient-based methods do should be
abandoned. This work suggests to recur to evolution strategies for neural network
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training only when no gradient information is available in the network. In this
case ESs deliver promising results on small and moderate binary classi�cation
tasks.

In chapter 5 diÆcult real-world problems from the �eld of chemical engineering
were solved with the aid of neural networks and evolutionary algorithms. The
most important result of this investigation is the good ability to correlate as well
as to predict the enthalpy of vaporization with neural and physical methods.
It could be shown that neural networks with simple backpropagation or RProp
training outperformed the best physical group-contribution methods.

The novel use of surface fractions of functional groups as descriptors for a neural
network leads to good results for both correlation and prediction. A big advan-
tage of this new procedure is that molecules can be divided easily into functional
groups, which makes it easy to use in engineering applications. From a ther-
modynamic point of view, it is interesting that a simple method like a neural
network can give similar and even much better results in comparison with much
more complicated, physically motivated models. If a physical model gives results
with a quality less than a neural model, the physical model should be improved.

An additional advantage of the neural models over the physical models is that
their computational e�ort is much lower, and they exhibit a much better scaling
behavior. While the physical models are, in terms of computational e�ort, only
feasible up to a certain small number of dimensions, the neural models can also
be employed for higher problem dimensionalities.

In chemical engineering there are many thermophysical properties, which are
usually not described by physical methods but by incremental methods. Such
methods for the prediction of critical data, normal boiling points and so on, could
also be replaced by neural networks. A �rst investigation into the prediction
of critical values (appendix A.3) delivered promising results. Compared to an
incremental method a neural network trained on half of the available data is only
slightly worse in terms of prediction quality. If a network has all data available
it outperforms all other methods. From the viewpoint of chemical engineering
this is a very promising result. Given the molecular structure and the surface
fractions of the functional groups, a single model is suÆcient to predict all three
critical values.
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Appendix

The following sections will document subsidiary results mentioned in earlier chap-
ters or deal with more technical issues. They should be read with their context
in the main text corpus in mind.

A.1 Factors that In
uence Learning

A.1.1 Activation Functions

Experiments with di�erent activation functions show that the logistic function is
not always the right choice (see [46] and section 4.5). Decomposable problems
with linear parts might bene�t from linear activation functions, whereas oscillat-
ing time series are in some cases better modeled with trigonometric functions.

A.1.2 Slope of the Activation Function

The following two learning experiments illustrate the in
uence of the slope of
the sigmoid activation function. In the �rst experiment the 2-bit parity prob-
lem (XOR), that needs non-linear activation functions, is used while the second
experiment employs a digit classi�cation problem [48, 50]. For each value of
the activation functions slope 
 10 runs where performed and averaged. Only
those runs that reached a �xed error-limit were considered successful and used
for averaging.

From �gure A.1 we learn that the speed as well as the success rate increases
with larger 
. A slope of 
 = 4:0 yields a highly non-linear activation function
(see 2.1) and results in fastest training. Almost linear activation functions with

 = 0:1 lead to stagnation of the learning in all runs.

107



108 APPENDIX A. APPENDIX

A di�ering observation can be made for the digit classi�cation task. Figure A.2
shows the same variations of 
 with a di�erent outcome. A slope of 
 = 1:0 leads
to the fastest and most reliable learning.

From those two experiments it can be seen that the slope parameter 
 has a
signi�cant in
uence on the speed as well as on the success rate of the neural
network training. A \good" setting of the slope parameter is highly application
speci�c. These facts make 
 an ideal candidate to be included in an evolutionary
search for good networks.

In this context some work has been done by Han, Moraga, and Sinne [27]. They
investigated the e�ect of di�erent activation functions and their parameteriza-
tion (slope, dynamic range, and symmetry) in di�erent layers of a feed-forward
network. To �nd a good initial setting of the parameters they employed a genetic
algorithm. It could be shown that properly parameterized networks exhibit faster
learning and good generalization.
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Figure A.1: XOR: Training (� = 0:8; � = 0:2) with di�erent activation function
slopes. The averaged training errors over 10 runs and, in parentheses, the success rates
are depicted.
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Figure A.2: Digit: Training (� = 0:8; � = 0:2) with di�erent activation function
slopes. The averaged training errors over 10 runs and, in parentheses, the success rates
are depicted.
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A.1.3 Pattern Presentation

When presenting patterns to the network, one has to choose between random
pattern presentation, where the sequence of all patterns is sampled anew for each
epoch, and normal presentation, where the sequence remains the same over the
whole training process.

Sometimes it can be advantageous to \pre-train" a network with a subset of pat-
terns and continue the training with the whole the training data. This technique
is called bootstrapping and can signi�cantly reduce the training time as it can be
seen in the following experiments.

� Problems: 6- and 9-bit parity

� Network 1: 6-6-6-1, fully connected (91 weights)

� Network 2: 6-63-1, fully connected (694 weights)

� Algorithm (BP): � = 0:1, � = 0

� Termination: error below 10�4 (0% classi�cation error) or 1,000,000 epochs.

� Runs: 10 runs. Only successful runs are averaged.

Here, bootstrapping was only explored for the parity problems of section 4.3.1.
For the 6-bit parity problem the same network architecture (6-6-6-1) was trained
with randomized presentation of all 64 patterns and with bootstrapping where
the network was \pre-trained" with 6 (� 10%) randomly chosen patterns for
10,000 epochs. In both cases 10 runs where performed and a maximum number
of 1,000,000 epochs was allowed to reach the error limit of 10�4. Only those runs
that succeeded to reach 0% classi�cation error were used for averaging.

In case of the 9-bit parity problem the architecture (6-63-1) was trained with
randomized presentation of all 512 patterns and with bootstrapping where the
network was \pre-trained" with 51 (� 10%) randomly chosen patterns for 10,000
epochs. Again 10 runs where performed with a maximum of 1,000,000 epochs
and an error limit of 10�4.

suc. rate min max mean sd

(6-bit) normal training 10:10 17,913 739,277 437,534 274,484

(6-bit) bootstrapping 10:10 17,103 63,578 32,017 13,647

(9-bit) normal training 10:10 71,342 596,712 295,748 226,453

(9-bit) bootstrapping 10:10 19,585 53,709 35,211 11,844

Table A.1: Comparison of normal training and bootstrapping. Given are the number
of epochs to reach the error limit.
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With bootstrapping the training time is signi�cantly reduced. In case of the 6-
bit parity problem normal training needed about 13.6 times more epochs than
bootstrapping and about 8.4 times more epochs are needed in case of the 9-
bit parity problem. In �gures A.3 and A.4 typical learning curves for the 6-bit
problem are shown with and without bootstrapping.
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Figure A.3: Learning with randomized presentation of all 64 patterns.
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The 6-bit parity experiment was repeated with RProp as training algorithm to
see whether bootstrapping works in this case as well.

� Algorithm 1 (RPprop): �0 = 0:2, �max = 50:0

� Algorithm 2 (RPprop): �0 = 0:2, �max = 50:0, with weight decay � = 8:0

suc. rate min max mean sd

BP: normal 10:10 17,913 739,277 437,534 274,484

BP: bootstrapping 10:10 17,103 63,578 32,017 13,647

RProp: normal 1:10 3,500 - - -

RProp: bootstrapping 1:10 2,400 - - -

RProp: weight decay 7:10 1,820 9,215 3,727 2,361

RProp: weight decay boot. 2:10 4,540 29,822 - -

Table A.2: Comparison of normal training and bootstrapping for RProp training
(6-bit parity). Given are the number of epochs to reach the error limit.

For this task RProp is much more likely to get trapped in a non-global local op-
timum than backpropagation. Due to the small number of successful RProp runs
no conclusions can be drawn about the e�ect of bootstrapping. If we introduce
a weight decay term RProp becomes much faster than backpropagation but it's
success rate is 30% lower. When using bootstrapping with the more successful
weight decay RProp gets stuck is most cases.



A.2. COMPLEXITY ISSUES IN NEURAL NETWORKS 113

A.2 Complexity Issues in Neural Networks

The following section introduces some basic de�nitions from the complexity the-
ory. These are necessary to understand the theorems about learnability and
topology determination in feed-forward networks. The following theorems of
Steven Judd [36] [37] and, based on them, the work of Jyh-Han Lin and Je�rey
Scott Vitter [47], show that learning as well as the problem of topology determi-
nation are NP-complete in general. This is one motivation for using an EA as a
heuristic search procedure for good architectures [51, 52].

A.2.1 Computational Complexity Theory

A basic concept in complexity theory is the termNP-completeness [19]. It denotes
decision problems that can be solved by a non-deterministic Turing machine
within polynomial time bounds. When considering the complexity of an problem
the most important question is whether it belongs to the class P or NP.

De�nition A.2.1 (Class NP, class P, decision problem)
Given a language L and a word x, then the task of deciding if x 2 L or x 62 L is
called a decision problem.

The class NP comprises all decision problems that can be solved by a non-
deterministic Turing machine within polynomial time.

Problems that can be solved by a deterministicTuring machine within polynomial
time belong to the class P.

De�nition A.2.2 (Polynomial reducible, NP-complete )
Let

P
1 and

P
2 be alphabets. A language L1 �

P�
1 is polynomial reducible to

another language L2 �
P�

2 if a polynomial transformation f :
P�

1 !
P�

2 exists
and the following holds:

8x 2
X�

1
: x 2 L1 , f(x) 2 L2 (A.1)

The notation L1 �P L2 means that L1 is polynomial reducible to L2. A decision
problem L2 �

P�
2 is called NP-complete if and only if L2 2 NP and 8L1 2 NP :

L1 �P L2.

The NP-completeness of a problem was �rst proven by Cook for the satis�ability
problem (SAT) [19]. With SAT a �rst representative of the class of NP-complete
problems was found. To prove the NP-completeness of a new problem one has to
reduce a known problem (i.e. SAT) to the new problem.
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A.2.2 Loadability in Feed-Forward Networks

The work of Steven Judd [34] [35] [36] [37] has shown that learning in feed-forward
networks is NP-complete in general. Judd does not use the term learning, instead
he coins the new term loadability, which is more general in his context. In contrast
to learning, loading a network does not only mean changing weights but assigning
activation functions and weights to the nodes of the network.

This section will give some results concerning the loadability of mappings with re-
spect to classes of activation functions, followed by complexity issues with respect
to di�erent network architectures.

First, Judd proposes a classi�cation of activation functions in order to use this
classes instead of single functions throughout his argumentation [34].

De�nition A.2.3 (LSF, BF, QLF, LF)
Activation functions from the binary domain, that is f:IBn ! IB, are divided into
two classes.

� Let LSF be the set of all linear threshold functions.

� Let BF be the set of all binary functions.

Activation functions from the real domain IRn ! A can be divided into the
following classes.

� Let QLF be the set of all monotonous functions that are based on linear
combinations of the inputs (quasi linear functions).

� Let LF be the set of all logistic functions. f(x) = 1
1�e�x

It is necessary to extend the formal description of a network architecture if we
want to use it along with Judds formalism.

De�nition A.2.4 (Con�guration)
A network architecture A is given as the 5-tupel A = (U;H; I;O;DE) (see def.
2.1.9) . The activation functions are linear threshold units f 2 LSF and the
input units are given by:

pred(ui) = fukj(ui; uk) 2 DEg (A.2)

A network con�guration is de�ned as assignment of activation functions to each
unit K : H ! LSF such that fi = K(ui) is the activation function of unit i.
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De�nition A.2.5 (Loadable)
Let F be a feed-forward network with architecture A and f : D ! IRm a mapping
with D � IRn that has to be learned. Let FA : IRn ! IRm be the function
which is realized by the network F . Then the mapping f is loadable by FA if a
con�guration K exists such that 8x 2 D holds FA(x) = f(x).

Theorem A.2.1 (Loading with LF is NP-complete)
The task of �nding a feed-forward network FA with logistic activation functions
from LF such that a given mapping f : D ! IRm is loadable by FA is NP-
complete.

With the proof of this theorem [36] Judd showed that the problem of �nding a
neural network architecture, with the common logistic activation function that
realizes a given function is NP-complete in the general case [34] [36].

Restricting the activation function to subclasses does not help. The theorem also
holds for the class of quasi linear functions QLF as well as for the binary functions
BF. Even for the simple linear threshold functions LSF the loading problem is
NP-complete. The theorem is rather general and independent of the training
algorithm used. It shows that no training algorithm exists which can solve the
learning task in P-time if P 6= NP . Note that it also holds for training NNs with
evolutionary algorithms.

Now the question arises whether other restrictions might relax the problem. Re-
searching constraints on the network architecture is a straight forward approach.
With the aid of graphs classes of network architectures can be distinguished and
for these classes it can be proven if the loading problem is in P or NP.

The following section will focus on the loading of mappings of the type IBn ! IB
and less the 2n mappings. As activation functions linear threshold functions
f 2 LSF are used. To specify architecture classes we need some de�nitions.

De�nition A.2.6 (Support cone of a unit)
Let O := fu1; u2; ::; umg � U be the set of output units of a feed-forward network,
then the support cone of a unit ui 2 O can be de�ned as:

sc(ui) := fuig [ fsc(uj)juj 2 pred(ui) \Hg (A.3)

The support cone of a unit contains all predecessor units that potentially in
u-
ence the output of that unit. Based on this de�nition architectures with certain
restrictions on unit support cones can be de�ned.

De�nition A.2.7 (Shallow architecture)
Let O be the set of output units then

Fp(ui) := f activation function for sc(ui)jui 2 Og (A.4)
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de�nes the set of all activation functions in the support cone of the output unit
ui. A feed-forward network has a shallow architecture if

9c > 0 : 8ui 2 O holds: jFp(ui)j � c (A.5)

A constant c is given as bound for the support cone of that unit.

The limitation of shallow architectures therefore has a bounding e�ect on the
number of layers, that is the depth of the network, the number of predecessor
units, called maximum fan-in, and the number of possible activation functions
and weights of a network.

Theorem A.2.2 (Loading in shallow architectures is NP-complete)
Let FA be a feed-forward network with shallow architecture A and f : D � IRn

the mapping to be loaded. The problem of loading f into FA is NP-complete.

The proof can be done by reduction of the NP-complete 3SAT problem to the
loading problem [35], [36].

De�nition A.2.8 (Support cone interaction graph)
Let O := fu1; ::; umg be the set of output units of a network. The graph G :=
(O;E) with E := f(ui; uj) : sc(ui) \ sc(uj) 6= ;g as edge set is called support
cone interaction graph.

Such a graph de�nes details about the interaction between the support cones of
all output units and can be used to further restrict network architectures.

Theorem A.2.3 (Loading in #P)
Loading shallow architectures whose support cone interaction graphs are trees
can be accomplished in #P.

The proofs of Judd [35], [36] make clear that the learning of mappings in feed-
forward networks is NP-complete for most architectures in the general case. For
some very limited classes of architectures it has been proven the learning can be
accomplished in polynomial time.

Restrictions on architectures play a key role in theoretical research. Other im-
portant restrictions on the mappings that might be learned in #P by a neural
network remain to be researched.

A.2.3 Complexity of Finding Optimal Topologies

Jyh-Han Lin and Je�rey Scott Vitter [47] carry on the work of Judd. Their
research is considered with the complexity of learning speci�c mappings and the
complexity of �nding an optimal architectures for speci�c problems. This section
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will recapitulate those results that show that the problem of �nding an optimal
architecture for a given mapping is NP-complete with respect to the size of the
network.

We will consider networks with threshold functions from LSF and binary classi-
�cations f : IBn ! IB that have to be learned. First of all some formalism on the
comparability of di�erent networks and an optimality criterion shall be given.

De�nition A.2.9 (Functional size of a network)
Let F be a network given by a 5-tuple according to de�nition 2.1.9, then the
functional size of a network jF j is de�ned as the number of units jHj that are
not input units.

We now consider networks with a functional size k � 2. The following theorems
consider networks that have 2 or more hidden units.

De�nition A.2.10 (Equivalent network, optimal network)
Two networks F1 and F2 are equivalent, written as F1 = F2, if they compute the
same set of functions.

One can write F1 � F2 if all functions computed by F1 are also computed by F2.

A network F is said to be optimal if, for all F2 with F1 � F2, jF1j � jF2j holds.
According to this de�nition a network can be considered optimal if it has the
smallest functional size to perform the computation of a given mapping. No
other network exists with fewer non-input units that computes the same set of
functions.

A simple decision problem is the question whether a network's output is di�erent
from 0.

Theorem A.2.4 (Decision of output 6= zero)
The set of non-zero networks shall be given by NZ := fF j9x : F (x) 6= 0g. Then
the decision problem F 2 NZ is NP-complete.

Proof A.2.1 (Sketch of proof)
The proof can be performed by reduction of 3SAT. Starting from a boolean
expression B a network FB can be constructed that realizes B. The boolean
expression B is satis�able if and only if F 2 NZ. Due to the NP-completeness
of 3SAT the problem F 2 NZ is also NP-complete.

Another theorem deals with the question whether two networks produce di�erent
output when given the same input.

Theorem A.2.5 (Decision of inequality)
The set of pairs of networks with di�erent output behavior is given by DO :=
f(F1; F2)j9x : F1(x) 6= F2(x)g. The problem of deciding whether a network pair
(F1; F2) 2 DO is NP-complete.
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Proof A.2.2
The proof follows immediately from the fact that F 2 NZ is a special case of
(F1; F2) 2 DO. We can construct F2 as a network with output 0 for all inputs.

It is an important question, given a network F , if an equivalent and optimal
network Fopt exists.

Theorem A.2.6 (Optimal equivalent network)
Given a network F with size k := jF j and k � 2. The set of optimal equivalent
networks is de�ned as OEN := f(Fopt; k)j8x : F (x) = Fopt(x) ^ jFoptj � kg.
Then, the decision problem (F; k) 2 OEN is NP-complete.

Proof A.2.3 (Sketch of proof)
The theorem can by proven by reduction of the output problem (A.2.4). Starting
with a network F1 2 NZ we can construct a network F2 with additional input
and output. Now F2 2 NZ if and only if (F2; 0) 62 OEN .

With these theorems it is shown that comparing the functionality of two given
networks with more than one hidden unit is not feasible in the general case. The
problem of �nding an equivalent or optimal network is also NP-complete. We
can conclude that no algorithm exists that, given a network, can �nd an optimal
network with the same functionality in polynomial time.
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A.3 Prediction of Critical Values in Chemical

Engineering

A.3.1 Motivation

In chemical engineering the access to data for critical values for substances is of
importance for the development of physical models for the calculation of thermo-
dynamic properties (see chapter 5). Gaining such values by experiments is very
costly, often inaccurate and because of thermodynamic instabilities very often not
even feasible. There is a growing need for the development of suitable methods
to correlate and to predict critical values like critical temperatures Tc, critical
pressures pc, and critical molar volumes vc.

Two di�erent kinds of methods are distinguished by Geyer [20]: Correlation
methods and incremental methods. Both approaches achieve good results only
through specialization on certain substances or certain critical values. They trade
o� accuracy against universality and su�er from specialization. A comparison of
the best correlation and incrementalmethods yields the following results: Critical
temperatures Tc < 1%, critical pressures 1% < pc < 2%, and critical molar
volumes 2% < vc < 6%.

In this section promising experiments motivate the usage of neural networks as
an accurate and universal method for the predication of critical values. First,
networks are used to learn one of the three critical values at a time, later these
networks are compared to networks that had to learn all three critical values at
a time. Three networks with varying size were explored for each task.

A.3.2 Data Preprocessing

In the �gures A.5 through A.7 the degree of coverage for main groups used is
shown. From a total of 403 di�erent substance, 197 substances covered the criti-
cal temperature Tc, 141 substances covered the critical pressure pc, and 116 sub-
stances covered the critical mol volume vc. The di�erent weighting is caused by
the availability of experimental data. Main groups in the diagram without data
do not matter during training because in the actually used group representation,
such groups are subsumed under the CHn group.

Networks trained with one critical value at a time receive all available data of
the speci�c value while networks trained with all three values receive only data
of 104 substances for which all values are known. As in the previous section the
data was divided into a training set (50%), a validation set (25%), and a test set
(25%). Table A.3 gives an overview of the partitioning of the data with respect
to the critical value.
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Figure A.5: Coverage of main groups for the 197 Tc-data points.
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Figure A.6: Coverage of main groups for the 141 pc-data points.
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Figure A.7: Coverage of main groups for the 116 vc-data points.

critical value training test+validation total

Tc 99 98 197
pc 71 70 141
Vm;c 58 58 116

Tc; pc; Vm;c 52 52 104

Table A.3: Partitioning of data for training and generalization with respect to the
critical value.
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A.3.3 Networks Architectures and Experiment Design

One set of experiments was designed to explore the capabilities of neural networks
to function as a model for the prediction of a single critical value (�gure A.8).
For each of the three critical values, three di�erent network architectures with
a varying number of hidden units (6, 10, 20) were explored. The second set of
experiments used networks that were designed to learn all three critical values at
a time (�gure A.9). Again, three networks with varying number of hidden units
(6, 10, 20) were explored for each task. As training algorithm backpropagation
with a learning rate � = 0:2 and a momentum term � = 0:2 was used and given a
�xed number of 200; 000 learning epochs. Each network architecture was trained
10 times and the network with the smallest generalization error was chosen for
comparison.

1

CHCH2 CHnOHCH3 aCHnCHn=cCHn

(CH3)m(CH2)n(CH)tC

Tc

Figure A.8: Architecture of the 8-6-1
network for one critical value (Tc).

1

CHCH2 CHnOHCH3 aCHnCHn=cCHn

(CH3)m(CH2)n(CH)tC

Tc pc vc

Figure A.9: Architecture of the 8-6-3
network for all critical values (Tc; pc; vc).

A.3.4 Results

Table A.4 presents the mean relative error (Eq. 5.2) of the training and vali-
dation+test1 set for the networks trained with one critical value. All networks
exhibit approximately the same errors regardless of the number of hidden units
used. The smallest network with 6 hidden units seems to be suÆcient for this
problem. The error on the validation+test set is slightly higher but does not vary
much with the number of hidden units. Only networks with 20 hidden units show
an signi�cant over-�tting e�ect due to the large number of weights available.

With a mean relative error of approximately 1.4% (Tc), 3.0% (pc), and 3.4% (vc)
on data sets that have not been used for training the results are promising. A
direct comparison with classical methods would be miss-leading because of their
specialization on certain substance and is therefore omitted here.

1This is the joint set of validation and test set.
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critical value training validation+test all
network MRF/% MRF/% MRF/%

(8-6-1) 1.19 1.42 1.31
Tc (8-10-1) 1.15 1.42 1.29

(8-20-1) 1.20 1.51 1.36

(8-6-1) 1.94 2.90 2.42
pc (8-10-1) 2.13 3.03 2.58

(8-20-1) 2.15 3.15 2.65

(8-6-1) 2.10 3.38 2.74
vc (8-10-1) 1.96 3.35 2.66

(8-20-1) 2.06 3.51 2.79

Table A.4: Results of neural networks with one output.

Table A.5 presents the mean relative error (Eq. 5.2) of the training and valida-
tion+test set for the networks trained with all three critical values. The critical
value under consideration is underlined in the table. The two larger networks
with 10 and 20 hidden units exhibit a 20% - 30% less training error for Tc than
the previous networks but their validation+test set error is 40% - 60% larger.
There is an overall increase in error for this two networks of 10% - 20%.

critical value training validation+test all
network MRE/% MRE/% MRE/%

(8-6-3) 1.16 2.96 2.06
T

c
; pc; vc (8-10-3) 0.90 2.23 1.57

(8-20-3) 0.82 2.12 1.47

(8-6-3) 0.01 2.58 1.30
Tc;p

c

; vc (8-10-3) 0.01 2.62 1.32
(8-20-3) 0.01 3.08 1.55

(8-6-3) 1.42 2.91 2.17
Tc; pc;vc (8-10-3) 1.19 2.98 2.09

(8-20-3) 1.10 3.15 2.13

Table A.5: Results of neural networks with three outputs.

This e�ect can be seen with the other critical values pc and vc as well. The most
dramatic over-�tting can be observed with pc where the training error is two
orders of magnitude smaller than the generalization error. Despite this immense
di�erence the generalization error is still slightly better than that of the previous
networks with only a single critical value. The over-�tting e�ect can be seen in
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Figure A.10: Overtraining of the pc data (8-20-3 network).

�gure A.10 where the error (Eq. 2.6) on the critical pressure pc over 200,000
learning epochs is given. After about 11,000 epochs the validation error starts
to increase and the training was stopped to achieve a good generalization. The
same network was also trained with all available data to incorporate the maximum
possible information. The training time for this run was increased to 1,000,000
epochs. Although no statement about generalization can be made for such a
network, the results might indicate how well a network could perform if there
were enough data.

Table A.6 compares all neural networks with an incremental method. The �rst
row gives the errors of the 8-20-1 network from table A.4, the second row gives
the errors of the 8-20-3 network from table A.5, the third row shows the errors
of the same network with early-stopping, the fourth row depicts the errors of a
network trained with all available data and prolonged training time. The early-
stopping method results in 2 to 5 times larger errors for all values. With mean
relative errors of approximately 0.6% (Tc), 1.2% (pc), and 1.2% (vc) the networks
trained with all data perform best of all methods2.

In �gure A.11 the results of all methods are compared and we can draw some
conclusions: If we leave aside the generalization capabilities of the methods and
focus only on their overall performance, measured by the mean error of training,
validation and test data, then the clear winner is the neural network approach.
Compared to the incremental method a network trained on half of the available

2Only the error of the critical pressure pc is much larger indicating an ill partitioning of the
data with respect to this value.
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training set validation+test set all
method MRE/% MRE/% MRE/%

Tc pc vc Tc pc vc Tc pc vc

NNtrain(1) 1.20 2.15 2.06 1.51 3.15 3.51 1.36 2.65 2.79
NNtrain(3) 0.82 0.01 1.10 2.12 3.08 3.15 1.47 1.55 2.13
NNstopped(3) 3.32 5.72 6.02 4.14 6.50 7.02 3.73 6.11 6.52
NNall(3) 0.62 1.69 1.33 0.57 1.15 1.17 0.60 1.42 1.25
Inc. method (3) 1.49 14.28 4.37 1.30 12.01 2.99 1.40 13.5 3.68

Table A.6: Comparison of neural networks with an incremental method.
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Figure A.11: Comparison of all methods on the critical values Tc, pc, vc.

data is only slightly worse on the critical temperature Tc, more then 8 times
better on the critical pressures pc, and 1.7 times better on the critical volumes.
The same network with early-stopping is 2 to 3 times worse on Tc and vc and 2
times better on pc. This allows the conclusion that early-stopping does not always
help to improve the overall performance. If a network has all data available it
outperforms all other methods.

With a mean relative training error of 1% critical values can be predicted with
2-3% uncertainty. Form the viewpoint of chemical engineering this is a very
promising result. Given the molecular structure and the surface fractions of the
functional groups, a single model is suÆcient to predict all three critical values.
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A.4 Experiments in Chemical Engineering

This section gives subsidiary results and further illustrating �gures on the exper-
iments in chemical engineering from chapter 5.

A.4.1 Errors on Di�erent Datasets

Figure A.12 shows the sorted errors of the backpropagation-trained network (NN-
A-BP) on all data sets in case of the 3MG problem. Except for the critical
regions close to �Hv(Tcr) = 0 J/mol, the network comes very close to the desired
values. In �gure A.13 we see the errors for the same network trained with an
evolution strategy. The errors are slightly higher for all three data sets and
increase drastically near the critical regions.

A.4.2 Adaptation Methods for Physical Models

A closer look at the performance of the sequential versus the simultaneous adap-
tation of the physical model (�gures A.14 and A.15) reveals that the sequential
method outperforms the other on both problem sizes.

The superiority of the sequential �tting procedure can be explained by the nega-
tive in
uence of increasing numbers of parameters for the optimization process.
A number of 27 simultaneously �tted parameters in all makes the adaptation of
the strategic variables used by encapsulated evolution strategies more diÆcult
in contrast to sequential �tting procedures, which result in smaller dimensions.
With the increased problem size from 3MG to 5MG the simultaneous adaptation
methods is 2 - 3 times worse than the sequential one and the generalization per-
formance is even worse. The neural network instead is not sensitive to an increase
in the number of free parameters.
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Figure A.12: 3MG: NN-A-BP (backpropagation) errors on training, validation, and
test set.
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Figure A.13: 3MG: NN-A-ES (evolution strategy) errors on training, validation, and
test set.
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Figure A.14: 3MG: Physical models predicting the enthalpy of ethane over the whole
temperature range. Comparison of sequential versus simultaneous adaptation.
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Figure A.15: 5MG: Physical models predicting the enthalpy of ethane over the whole
temperature range. Comparison of sequential versus simultaneous adaptation.
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A.4.3 Variation of the Learning Rate

The following �gures were gained by a limited parameter study. The learning rate
of the network was studied over a wide range to �nd out which learning rates can
be considered as a starting point for good network learning. The architecture of
the network was �xed at 4-4-1 to have approximately the same number of free
parameters (5 � 4 + 5 = 25) as the physical methods for the 3MG data set and
�xed at 6-9-1 (6 � 9 + 10 = 73) for the 5MG data set. Because the error curves of
the training and validation set are very similar only �gures and interpretations
for the 3MG data set are given.

The learning rate � was chosen from the set f0:001; 0:01; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6;-
0:7; 0:8; 0:9; 1:0; 2:0; 3:0; 4:0; 5:0; 6:0; 7:0; 8:0; 9:0; 10:0g, the momentumterm � was
�xed at 0.2. Experiments started with a very low learning rate (� = 0:001) and
ended with a far to high rate of (� = 10:0). Half of the 21 learning rates where
chosen from the \normal" interval of learning rates ([0:1; : : : ; 1:0]).

A training run was stopped after it reached an error limit (tss � 5 � 10�5) or
exceeded a maximum number of 100,000 epochs in case of the 3MG data and
because of the larger data set 200,000 epochs in case of the 5MG data set.

The following �gures show the msse error of the networks (y-axis) over the train-
ing epochs (x-axis) for all 10 runs (z-axis). Only every 50th epoch is shown.
The lefthand-side �gure always gives the error on the training set, whereas the
righthand-side �gure shows the error on the validation set.
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Figure A.16: Training error (�=0.001) Figure A.17: Validation error (�=0.001)

Too small learning rate: The surfaces of A.16 and A.17 are very smooth, due
to the smoothness of each single run. The learning progress is very slow but
steady. None of the training runs reached the speci�ed error-limit within the
given time. The error curves of training and validation sets are very similar and
no over-training is observed.

Figure A.18: Training error (�=0.2) Figure A.19: Validation error (�=0.2)

Moderate small learning rate: The surfaces of A.18 and A.19 are smooth.
The learning progress is slow but steady. Only 1 of 10 runs reached the speci�ed
error-limit within the given time. In 2 of 10 runs we observe a very small increase
in validation error.
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Figure A.20: Training error (�=0.7) Figure A.21: Validation error (�=0.7)

Good learning rate: The surfaces of A.20 and A.21 are smooth with some
small perturbations in the validation set. The learning progress is good and
steady. Here 4 of 10 runs reached the speci�ed error-limit within the given time.
In 1 of 10 runs we observe a very small increase in validation error.

Figure A.22: Training error (�=8.0) Figure A.23: Validation error (�=8.0)

Far to high learning rate: The surface of the training errors A.22 is rough.
Two runs reached the error limit very fast but most runs got stuck at a high
error level. The surface of the validation errors A.23 is covered with high peaks,
resulting from large oscillations during training.
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A.4.4 Variation of the Number of Hidden Units

After variation of the learning rate the best rate was used as a as constant for the
hidden unit search. The number of units was varied between 1 and 40. Networks
with too few units, less than 3, were not able to solve the task while networks
with too many units did not gain anything from the additional units but su�er
from prolonged training time because of their size. The performance of networks
with more than 6 hidden units did not improve any more.

The following �gures show the msse error (Eq. 2.6) of the networks (y-axis)
over the training epochs (x-axis) for all 10 runs (z-axis). The lefthand-side �gure
always gives the error on the training set, whereas the righthand-side �gure shows
the error on the validation set.
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Figure A.24: Training error (U=1) Figure A.25: Validation error (U=1)

Too few units: The two 
at surfaces A.24 and A.25 show that there is no
learning progress. All runs got stuck at a high error level. Networks with only 1
hidden unit could not solve the problem.

Figure A.26: Training error (U=4) Figure A.27: Validation error (U=4)

SuÆcient number of units: The surfaces of A.26 and A.27 are smooth with
some bumps in the validation set. The learning progress is good and steady. Here
2 of 10 runs reached the speci�ed error-limit within the given time.
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Figure A.28: Training error (U=6) Figure A.29: Validation error (U=6)

Best number of units: The surfaces of A.28 and A.29 are smooth with some
bumps in the validation set. The learning progress is good and steady. Here 10
of 10 runs reached the speci�ed error-limit within the given time. None of the
runs showed on over-training.

Figure A.30: Training error (U=40) Figure A.31: Validation error (U=40)

Too many units: The surfaces of A.30 is smooth but the surface A.31 of the
validation error shows larger error changes throughout learning. The learning
progress is good and 10 of 10 runs reached the speci�ed error-limit within the
given time. None of the runs showed on over-training.
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A.5 ES Parameter Studies on NN Training

This section presents results mentioned in earlier chapters. These parameter
studies were made because the setting proposed in the literature [2] (local dis-
crete recombination of object variables and global intermediate recombination of
strategy parameters) for the ES did not deliver useful results.

A.5.1 Chemical Engineering: Recombination and Strat-
egy Parameters

The initial motivation of this parameter study was to improve the quality of
the neural network as a model for the prediction of chemical properties, and if
successful, replace the backpropagation algorithm for training by an evolutionary
approach.

This section will present experimental results for di�erent recombination schemes
of a (15,100){ES on 25 parameters of the 3 main group problem. Every scheme
was given 100,000 generations (10,000,000 pattern presentations) and repeated
10 times to gain statistical validity. In almost every experiment none of the 10
runs showed promising results, so no more runs were performed.

All of the following variations were done with either one step size or n step sizes.
For all runs local (sexual) recombination was used. The more successful runs
with n step sizes were also done with global recombination.

The �gures on the right-hand side give a typical example run of a recombination
scheme. It shows the best (Best) and average (Avrg) individual network (weight
vector) in the population and the smallest (SigMin) and largest (SigMax) step size
� in the population. The error (y-axis) and the number of generations (x-axis)
are both on a logarithmic scale.

The �gures on the left-hand summerize the �nal results for all 10 runs. The
runs are sorted by the number of generations and the graph shows the �nal
best individual, the smallest and largest step size in the population for each
run. A run is considered successful if it reached an error comparable to that of
backpropagation (� 5� 10�5). The error (MSSE Eq. 2.6) of the best individual
is aligned at the left y-axis and values for the step sizes are aligned at the right
y-axis. Both are on a logarithmic scale and often di�er by several orders of
magnitude.

The table below the �gures allows conclusions about the diversity of the �nal
results for all 10 runs. It gives the mean (mean), the minimum (best), the maxi-
mum (worst) and the standard deviation (sd) of the best and average individual
at the end of each run. Additionally, the di�erence between the best and average
individual can be seen as an indicator for the diversity of the population. A small



A.5. ES PARAMETER STUDIES ON NN TRAINING 135

di�erence between the best and average individual indicates a collapsed popula-
tion and a stagnation, either premature or close to the optimum. In some cases
the step sizes allow conclusions about whether progress is still likely or prema-
ture stagnation happened. If the maximum step size in a population is above a
certain very large value then at least one unit of the network is saturated and not
functional anymore. If the maximum step size is too small then the probability
for signi�cant weight changes becomes too small as well. In both cases it is likely
that the strategy fails to �nd the optimum.

The following table A.7 allows a direct comparison with backpropagation learn-
ing.

best of 10 worst of 10 mean sd suc. rate

Backpropagation 2.20e-05 6.10e-05 3.93e-05 1.68e-05 8:10

Evolution Strategy 2.40e-05 1.70e-04 6.65e-05 4.14e-05 3:10

Table A.7: 3MG: Final results for 10 backpropagation (250,000 function calls) and
10 ES runs (10,000,000 function calls).
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Recombination with one and n Step Sizes

The �gures throughout this section always show the slightly better local recombi-
nation scheme with n step sizes, while the results for one step size and the results
for global recombination are only summarized in the tables below the �gures.
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Figure A.32: (Left) all sorted runs of an (15,100){ES without recombination. De-
picted are the �nal best individual, the smallest and largest step size in the population
for each run. (Right) A typical example run with the best (Best) and average (Avrg)
individual network (weight vector) in the population and the smallest (SigMin) and
largest (SigMax) step size � in the population.

#� individual best worst mean sd

1
best 0.000209 0.000275 0.000237 1.78e-05

average 0.000209 0.000275 0.000237 1.78e-05

n
best 0.000211 0.000352 0.000258 4.24e-05

average 0.000211 0.000352 0.000258 4.24e-05

Table A.8: Results for an ES without recombination. The success rates for all varia-
tions are 0:10.

No recombination: All runs without recombination got stuck at a high error
level. In most runs the smallest and largest step size in the population went
below 10�5 quite early (after 10%-20% of the total generation time). This can be
seen as an indicator for the fact that no more or at most only very small progress
can be made because of the too small weight changes3. The �tness distance to
the average individual is zero in all runs, which indicates a collapsed population.

3See section A.5.4 for a further discussion of limiting and forcing of weight changes.
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Figure A.33: (Left) all runs of an (15,100){ES (\dd" recombination) and an example
run (right).

#� recombination individual best worst mean sd

1 local
best 0.000260 0.001432 0.000398 0.000364

average 0.000260 0.001432 0.000398 0.000364

n local
best 0.000199 0.000384 0.000278 6.373e-05

average 0.000199 0.000384 0.000278 6.373e-05

n global
best 0.000213 0.000317 0.000250 2.915e-05

average 0.000213 0.000317 0.000250 2.915e-05

Table A.9: Results for an ES with \dd" recombination. The success rates for all
variations are 0:10.

Discrete recombination of weights and discrete recombination of step
size: Same behavior as without recombination. All runs got stuck at a high
error level. In most runs the smallest and largest step size in the population
went below 10�5 quite early (after 10% - 20% of the total generation time). The
�tness distance to the average individual is 0 - 3 � 10�7 indicating a collapsed
population. There is no signi�cant performance di�erence between local and
global recombination.
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Figure A.34: (Left) all runs of an (15,100){ES (\di" recombination) and an example
run (right).

#� recombination individual best worst mean sd

1 local
best 8.80e-05 0.000171 0.000130 2.85e-05

average 8.80e-05 0.000171 0.000130 2.85e-05

n local
best 5.90e-05 0.051730 0.036319 0.024814

average 5.90e-05 0.232913 0.186416 0.098024

n global
best 0.23291 0.232913 0.232913 0.0

average 0.23291 0.232913 0.232913 0.0

n local/global
best 0.00143 0.232913 0.060495 0.106426

average 0.00148 0.232913 0.060509 0.106418

Table A.10: Results for an ES with \di" recombination. The success rates for all
variations are 0:10.

Discrete recombination of weights and intermediate recombination of
step size: Most runs got stuck at a very high error level. In 7 out of 10 runs
the smallest and largest step size in the population drift apart by more than 100
orders of magnitude. With the local recombination scheme, the smallest step
sizes in the populations went above 105 and the error got stuck at a �xed value
in most runs. The global recombination worsens these problems. After 10% of
the total number of generations the smallest step sizes went above 10200 for all
runs. With only one step size the results are better but all runs got stuck at a
similarly high error level.

Additional 10 runs with local recombination on the object variables and global
recombination of the step sizes were not successful.
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Figure A.35: (Left) all runs of (15,100){ES (\id" recombination) and an example run
(right).

#� recombination individual best worst mean sd

1 local
best 0.000277 0.001425 0.000626 0.000547

average 0.000277 0.001425 0.000626 0.000547

n local
best 0.000141 0.000385 0.000239 7.06e-05

average 0.000141 0.000385 0.000239 7.06e-05

n global
best 0.000178 0.000357 0.000237 5.31e-05

average 0.000178 0.000357 0.000237 5.31e-05

Table A.11: Results for an ES with \id" recombination. The success rates for all
variations are 0:10.

Intermediate recombination of weights and discrete recombination of
step size: This recombination scheme delivers almost the same results and runs
exhibit the same behavior as with \dd" recombination. All runs got stuck at a
high error level. In most runs the smallest and largest step size in the population
went below 10�5 quite early (after 10% - 20% of the total generation time). Other
runs exhibit a behavior where the step sizes vary by several orders of magnitude.
The �tness distance to the average individual is 0 in all runs indicating a collapsed
population. There is no signi�cant performance di�erence between local and
global recombination.
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Figure A.36: (Left) all runs of (15,100){ES (\ii" recombination) and an example run
(right).

#� reco. indiv. best worst mean sd s. rate

1 local
best 0.000186 0.000226 2.12e-04 1.18e-05

0:10
average 0.000186 0.000226 2.12e-04 1.18e-05

n local
best 2.40e-05 0.000170 6.65e-05 4.14e-05

3:10
average 2.50e-05 0.000171 6.70e-05 4.16e-05

n global
best 2.40e-05 0.000547 1.30e-04 1.52e-04

3:10
average 2.40e-05 0.000547 1.30e-04 1.52e-04

n local/global
best 2.70e-05 0.000142 7.26e-05 3.45e-05

3:10
average 2.70e-05 0.000142 7.26e-05 3.45e-05

n geometric
best 0.000252 0.000363 3.10e-04 4.09e-05

0:10
average 0.000252 0.000363 3.10e-04 4.09e-05

Table A.12: Results for an ES with \ii" and \ig" recombination. Given are the success
rates and the errors.

Intermediate recombination of weights and intermediate/geometric re-
combination of step size: This recombination scheme delivers successful runs
and results that are comparable to other methods. The step sizes are still within
a \reasonable" range and there is also some variation in the population. The
�tness distance to the average individual is 3 � 10�7 - 1 � 10�6 indicating that even
further progress is possible.

With \ii" recombination one can observe a signi�cant di�erence between global
and local recombination. Both variations are able to �nd a good solution, but
the local recombination delivers better results on average with a much smaller
standard deviation. Local recombination on the object variables combined with
global recombination on the strategy variables is comparable to local recombina-
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tion on both parameter sets. None of the runs with geometric recombination of
step sizes succeeded. Here, it seems as if all runs got stuck in a local optimum.

In the case of only one step size all runs got stuck at a higher error level with
no di�erence between the average and the best individual indicating a collapsed
population.

From the fact that none of the recombination schemes with only one step size
was successful one can conclude that this problem needs more than a single step
size.

A.5.2 Coupled versus Decoupled Strategy Parameters

In an ES the recombination of the strategy parameters can either be coupled to
the object variables or decoupled. To �gure out which variant performs better, the
experiments with the most promising parameter setting (n step sizes and interme-
diate recombination of object variables and strategy parameters) were repeated
with strategy parameters decoupled from the object variables. An o�spring may
now get its step sizes from other parents than it got the object variables from.
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Figure A.37: All runs of (15,100){ES (intermediate/intermediate recombination) de-
coupled (left) and coupled parameter sets (right).

Decoupled weights and step sizes: If we look at the mean individual, the
results are similar to the experiment with coupled parameter sets, but on average,
the best individual has almost twice the error (table A.14). The �tness distance
to the average individual is 0 for all 10 runs which indicates collapsed populations.

The decoupling of strategy parameters and object variables during recombination
seems to cause a loss of diversity and we see a slightly degraded performance in
comparison with the coupled variant. This observation is con�rmed by experi-
ments on the 2-bit parity problem (table A.14).

This result might be plausible if we reconsider the application. In the context
of neural networks training algorithms one can think of the strategy parameters
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coupled object variables and strategy parameters

individual best worst mean sd suc. rate

best 2.4e-05 0.000170 6.65e-05 4.14e-05
3:10

average 2.5e-05 0.000171 6.70e-05 4.16e-05

decoupled object variables and strategy parameters

individual best worst mean sd suc. rate

best 4.6e-05 0.000123 7.06e-05 2.43e-05
2:10

average 4.6e-05 0.000123 7.06e-05 2.43e-05

Table A.13: Results for an ES with coupled and decoupled parameters.

as local learning rates for the weights. When training a network with backprop-
agation like algorithm such a local learning rate is semantically coupled to the
corresponding weight. Ripping apart a weight and its associated learning rate
does not seem to make much sense here.

chemical engineering

suc. rate min max mean sd

coupled 3:10 27,180 41,580 33,140 7,513

decoupled 2:10 46,190 85,250 65,720 -

2-bit parity (XOR)

suc. rate min max mean sd

coupled 48:50 3,000 74,700 19,068 21,738

decoupled 46:50 3,100 98,600 17,567 24,366

Table A.14: Comparison of coupled and decoupled evolution strategies with \ii"
recombination. Given are the success rates and the number of function evaluations
needed to reach the error limit.

To see whether a coupling of object and strategy parameters is bene�cial in
general, two classical ES test functions were used as well. The sphere model and
the Rastrigin function:

Spehre:

nX
i=1

x2i (A.6)

Rastrigin: 3 � n+
nX
i=1

(x2i � 3 � cos(2 � � � xi)) (A.7)
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Again a (15,100)-ES with both \di" and \ii" recombination was run for 5000
generations. In �gure A.38 we see the performance on the sphere model with
coupled and decoupled parameters. Depicted are 50 averaged runs. For both
recombination schemes, there is only a very small di�erence between coupled and
decoupled recombination. The same can be observed for the Rastrigin function.
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Figure A.38: Sphere model: 50 ES runs with coupled and decoupled object and
strategy parameters. No signi�cant di�erence can be observed.
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A.5.3 Local versus Global Recombination

All experiments documented in section A.5.1 showed that local recombination
always yields better results than global recombination. In most cases results are
very similar, but in no case global recombination outperformed local one. This
observation is con�rmed by experiments on the 2-bit parity problem (section 4.3).

reco. suc. rate min max mean sd

ES (ii)
local 10:10 3,100 109,300 33,280 43,151

global 10:10 3,800 59,200 14,030 17,099

ES (di)
local 10:10 2,300 71,100 17,740 26,649

global 10:10 3,400 47,600 15,620 15,038

ES (dd)
local 8:10 2,500 60,500 11,750 19,818

global 4:10 3,000 3,600 3,350 400

ES (id)
local 6:10 2,700 749,900 127,867 304,733

global 4:10 57,800 833,400 591,450 363,407

ES (nn)
local 8:10 3,300 11,900 5,350 2,858

global 7:10 3,600 8,800 5,714 2,099

ES (ig)
local 8:10 5,300 16,700 8,200 3,879

global 8:10 5,000 8,600 6,000 1,355

Table A.15: XOR: Local versus global recombination. Given are the success rates
and number of function evaluations needed to reach the error limit.

A.5.4 Bounded Weights and Step Sizes

One can observe that with growing step sizes in the population the number of
generations needed to achieve a given learning task increases. Another observa-
tion is that most ES runs that failed ended with the largest and smallest step
size in the population drifted far apart from each other.

When we take a closer look at the weight changes over time we can observe two
e�ects. The most obvious one is that too large step sizes cause to large weights.
Also, some weights get stuck at a certain value because of too small step sizes.
A straight forward countermeasure is to impose bounds (constraints) on the step
sizes or on the weights. Another measure that ensures weight changes is a step
size correction that forces the step sizes to be at least a fraction of the weights
values, such that �i � " � jxij > S min (see [75], p. 150).

Here, the following approaches were investigated on the two parity problems 2-bit
(section 4.3.2) and 6-bit parity (section 4.3.3):

a) Upper and lower bounds on the step sizes.



A.5. ES PARAMETER STUDIES ON NN TRAINING 145

b) Upper and lower bounds on weights and step sizes.

c) Step size correction with " = 0:05.

a) Upper and lower bounds on the step sizes: Restricting the minimum
(S min) and maximum (S max) allowed step size in the population does not help
to increase the overall success rate. In fact, the opposite can be observed.

For the 2-bit parity problem, the step sizes were bounded to the range where 2/3
of the successful runs ended. The following two �gures illustrate the di�erence
between an ES with unbounded step sizes (�gure A.39) and bounded step sizes
(S min < 0.0001, S max < 10) (�gure A.40). A larger upper bound of S max
< 100 delivered the same results. The termination criterion was an error of 10�3

or 1000 generations (100,000 function evaluations).

In case of the bounded step sizes the success rate decreases from 48 to 42 (table
A.16). A closer look reveals that some runs with relative large step sizes in the
population can still be successful and that they might need such large step sizes
to escape from local minima or get o� the 
at spots at the boundaries of the
activation functions.

If the success rate is of importance then imposing \reasonable" upper and lower
bounds on the step sizes should be avoided.

b) Upper and lower bounds on the weights and step sizes: When im-
posing bounds on the weights, several countermeasures can be taken to prevent
weights from leaving the bounds. Three di�erent bounding strategies are ex-
plored:

1. Reset weight and step size to their upper bounds (limitXS):
xi := X max; �i := S max

2. Reset weight to upper bound and initialize step size (initS):
xi := X max; �i := rand(0; S max)

3. Initialize weight and step size (initXS):
xi := rand(X min;X max); �i := rand(S min; S max)

None of the bounding methods lead to a higher success rate than an unbounded
ES. Among the bounding strategies the results are diverse. In case of the XOR
problem (table A.16) limiting step sizes (limitS) and limiting weights as well
(limitXS) performed best, while the latter can be clearly favored in case of the
6-bit parity problem (table A.17).
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c) Step size correction: A step size correction was introduced as an additional
measure to b). In case of the XOR problem (table A.16) it clearly improves the
results of the bounding strategies, while it worsens them drastically for the 6-
bit parity problem (table A.17). Again, the best results are those gained by an
unbounded ES.

Restricting step sizes and weights to \reasonable" bounds or the coupling of
step sizes to the weight with the sigma correction does not help to increase the
overall success rate when training neural networks. In fact, the opposite could
be observed for the two test problems.

method suc. rate min max mean sd

normal 48:50 3,000 74,700 19,068 21,738

limitS 42:50 2,900 70,000 11,969 14,172

b) weights bound to (�20; 20), step sizes bound to (0:0001; 10)

limitXS 41:50 3,100 53,900 7,285 8,991

initS 34:50 3,300 12,900 5,135 2,097

initXS 38:50 3,200 57,400 8,255 10,754

c) step size correction of " = 0:05 plus b)

limitXS 43:50 3,400 78,800 13,241 17,121

initS 44:50 3,100 65,700 7,093 10,691

initXS 44:50 4,100 86,300 9,556 15,513

Table A.16: Parity-2 (XOR): ES-learning with upper and lower bounds and step size
correction. Given are the success rates and the number of function evaluations.

method suc. rate min max mean sd

normal 8:10 55,900 4,007,900 1,015,590 274,484

b) weights bound to (�20; 20), step sizes bound to (0:0001; 10)

limitXS 8:10 80,700 4,231,000 1,582,760 1,753,570

initS 7:10 53,000 1,378,800 339,260 581,655

initXS 8:10 48,600 3,434,000 642,450 1,159,780

c) sigma correction of " = 0:05 plus b)

limitXS 5:10 732,600 5,587,800 2,789,080 2,347,170

initS 7:10 957,700 4,247,800 2,501,940 1,334,090

initXS 1:10 3,081,600 3,081,600 3,081,600 0

Table A.17: Parity-6: ES-learning with upper and lower bounds and step size correc-
tion. Given are the success rates and the number of function evaluations.
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Figure A.39: XOR: 50 ES run with unbounded step sizes. Depicted are the number
of generations needed, the minimum step size (S min), and the maximum step size
(S max) in the population. The success rate is 48 of 50 runs.
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Figure A.40: XOR: 50 ES run with bounded step sizes (S min < 0.0001, S max <
10). Depicted are the number of generations needed, the minimum step size (S min),
and the maximum step size (S max) in the population. The success rate is 42 of 50
runs.
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A.5.5 Variations of the Overall Mutability

In the following experiment the overall mutability was increased from � 0 =
1=
p
(2n) to � 0 = 1=

p
(n). The in
uence of the parameter � has not been re-

searched in this parameter study, but the diverse results on the 2-bit and 6-bit
parity problems suggest that � is a relevant and application speci�c parameter
and supports the �ndings of [43].

In case of the 2-bit parity problem the overall success rate as well as the number
of generations needed to reach the error limit improves (table 4.3 and table A.18)
with � adjusted according to the common heuristic (section 3.1.2). The opposite
can be observed in case of the 6-bit parity problem (table 4.4 and table A.19),
where most recombination schemes fail to achieve the task with the suggested
� 0 and signi�cant improvement can be made choosing a higher mutability of
� 0 = 1=

p
(n).

suc. rate min max mean sd

ES (ii) 8:10 4,100 954,800 142,675 330,332

ES (di) 10:10 3,800 82,400 29,590 28,000

ES (dd) 5:10 3,200 4,900 3,900 872

ES (id) 4:10 3,700 5,000 4,375 585

ES (nn) 7:10 2,700 29,800 13,671 11,830

ES (ig) 6:10 4,000 10,300 8,100 2,194

Table A.18: Parity-2 (XOR): Success rate and number of function evaluations needed
to reach the error limit. With � 0 set to 1=

p
(n) instead of 1=

p
(2n).

suc. rate min max mean sd

ES (ii) 8:10 88,500 3,994,600 887,562 1,313,640

ES (di) 8:10 111,900 7,115,400 1,874,620 2,410,130

ES (dd) 3:10 116,700 3,843,300 1,362,330 2,148,590

ES (id) 1:10 155,400 155,400 155,400 -

Table A.19: Parity-6: Success rate and number of function evaluations needed to
reach the error limit. There were no successful runs with \nn" and \ng" recombination.
With � 0 set to 1=

p
(n) instead of 1=

p
(2n).

suc. rate min max mean sd

ES (ii) 7:10 2,433,500 5,469,700 3,394,200 1,052,000

Table A.20: Spirals: Success rate and number of function evaluations needed to reach
the error limit. With � 0 set to 1=

p
(n) instead of 1=

p
(2n).



A.6. ESS ON A CONSTANT OBJECTIVE FUNCTION 149

A.6 ESs on a Constant Objective Function

The error surfaces in the neural networks weight space are characterized by large
and very 
at planes that are caused by saturated activation functions. Caught on
such a plane an ES behaves as if the underlying objective function is a constant. In
this case intermediate and averaging recombination on the step sizes together with
mutation causes them to grow exponentially. Accordingly, the object variables
perform a random walk with growing order of magnitude. Figure A.41 illustrates
this.
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Figure A.41: The behavior of an ES on a constant 30 dimensional objective function.
(Above) intermediate recombination of the step sizes together with mutation causes
them to grow exponentially. (Below) the corresponding object variables perform a
random walk with growing order of magnitude.

The median of the log normal distribution used for the mutation of step sizes (see
Eq. 3.5) is 1 (e0) and guarantees the neutrality of the process in the absence of se-
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lection and averaging recombination. Together with intermediate recombination
and without selection, this is no longer the case.

Even though the median of each distribution is 1, the median of the joint distri-
bution of two or more averaged mutations is larger than 1. Thus, intermediate
recombination of step sizes together with mutation introduces a drift into the
process. This e�ect has also been observed by Obalek [58]. In the absence of
selective pressure this leads to the observed growth of the step sizes.

When using discrete, geometric or no recombination of step sizes at all, we do
not observe an exponential growth of the step sizes.
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A.7 Progress on the Sphere Model

Kursawe presented simulation results where a poorly parameterized ES failed on
the simple sphere model ([43], p. 51) for larger problem dimensions. This e�ect
is illustrated by the following �gure A.42. A (15,100)-ES with n step sizes, global
discrete recombination of object variables, global intermediate recombination of
step sizes, and coupled step sizes was used. The starting point was: xi = �109
with �i = 2 � 107.
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Figure A.42: Sphere model with varying problem dimensions (10, 30, 50, 100, 150):
(15,100)-ES with n step sizes, global discrete recombination of object variables, and
global intermediate recombination of step sizes.

This does not mean that ESs generally fail for large problem dimension4, but
the optimization becomes more diÆcult and the \correct" parameterization gets
more important.

4In chapter 4 several problems with more than 300 parameters could be solved by ESs.
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