
To appear at the SDPS Journal of Design & Process Science, Vol 5, 2001.

Experiences in
3-Dimensional Visualization of

Java Class Relations ∗

Klaus Alfert
Alexander Fronk

Chair for Software-Technology
Dortmund University

D-44221 Dortmund
email: {alfert,fronk}@ls10.cs.uni-dortmund.de

Frank Engelen
Java Competence Center

SerCon Düsseldorf
40474 Düsseldorf

email: Frank.Engelen@sercon.de

October 24, 2001

Abstract Java software provides a vast
amount of information about class and
interface relations. Inheritance- or uses-
relations of large software systems lay
great demands on being able to overview
the scene. Class browsers may help to
master the information, although visual-
ization is usually limited to two dimen-
sions.

We analyze the benefits of 3D presen-
tation and discuss experiences with our vi-
∗Remark: Should be viewed on color printouts or

on color screens.

sualization tool J3Browser . The tool real-
izes these benefits and some selected visu-
alization techniques within the Java con-
text.

This paper leads a step towards a
CAD-like design of Java software in 3D
space.

1 Introduction and Related
Work

Visualization and graphic-oriented meth-
ods are common in software engineering.

1



In most cases these methods use 2D graph-
ics. The use of 2D drawings is inherited
from traditions in engineering, where they
are working well. The great advantage
of 2D drawings is that they only require
paper and pencil. This fact is so impor-
tant, that more complex notations like the
Booch Method (Booch, 1993) have been
abandoned now, and its successor, UML
(Scott and Fowler, 1997), uses a much sim-
pler notation instead.

Today, engineering sciences often use
3D CAD systems, but three dimensions are
rarely used in the visualization of large
computer software systems. In contrast to
the products constructed in classical engi-
neering, the software artefacts are abstract
as they do not have a substantial physical
corpus. No natural 3D appearance of soft-
ware artefacts exists, thus making it diffi-
cult to find suitable visual concepts. In ad-
dition, the visualization of large systems
raises many problems due to the limita-
tions of the display in space and resolu-
tion.

3D is sometimes used in visual lan-
guages and in program visualization.
In the tradition of the Balsa System
(Brown, 1988) for algorithm visualiza-
tions, some approaches exist. For example
SAM (Geiger et al., 1998) supports visual
programming in 3D, Seity (Chang et al.,
1995) employs a 3D direct manipulation
interface of SELF objects. They primarily
focus on programming-in-the-small and
the visualization of dynamic sequences of
events in the running program.

An additional aspect is shown in
VRCS (Koike and Chu, 1998). This system
presents the history of a software system
in terms of versions, variants and configu-
rations in 3D. But neither static structures
nor dynamic properties, except for the sys-
tem’s decomposition into files, are consid-

ered.
In ArchView (Feijs and Jong, 1998), the

software architecture, i.e. the structure be-
tween modules, is presented in 3D. Each
module is realized as a cube or cylin-
der. Typical relations like uses or calls are
pipes with arrows depicting the direc-
tion of the relation. The reduction to rela-
tions between modules allows ArchView
to present large software systems written
in a procedural language. Just a few re-
lations suffice to build the module struc-
ture of such a software system, but ex-
pressing the structure of an object-oriented
software system requires many more rela-
tions.

This fact is put to use in NestedVi-
sion3D (Ware et al., 1993). Object-oriented
software is three-dimensionally displayed
as a graph of related cubes the nodes of
which may be refined by further graphs
and are thus nested within the cubes.
Edges relate arbitrary software constructs
and can be faded out. This approach fea-
tures the idea of hypergraphs, a well-
known construction from graph theory.
In contrast to our approach, NestedVi-
sion3D uses nested cubes in form of di-
rected graphs only. Integration of different
visualization techniques to enhance struc-
tural comprehension of information does
not take place.

One formal model regarding the struc-
ture of a system is the syntax graph.
Graph-based languages like UML con-
sider some parts of this syntax graph and
visualize them in two dimensions. In our
approach we combine this kind of visual-
izing syntax graphs and the benefits of 3D
visualization for large software systems’
structures. As a starting point, we consider
the prevailing static class relationships. We
chose Java (Gosling and Arnold, 1996) as
an example language because its object-

2



oriented properties are well-designed and
the language is well known. As we are in-
terested in a software engineering point of
view, we do not consider algorithmic de-
tails and aspects of programming-in-the-
small. Thus, we propose a more abstract
look at software systems than is usual for
software visualizations, yet our approach
still retains comparability to other design
notations.

We aim at making 3D capability more
convenient by supporting viewer com-
prehension and overview of Java soft-
ware. We do not merely convert a syn-
tactical UML-like notation into 3D icons.
As the main emphasis, we analyze some
properties of 3D-modeling and show, how
the third dimension can be employed
efficiently to solve our problem. Koike
(1993) used this idea to build a C++ class
browser, but he only arranges 2D planar
graphs in 3D. Unfortunately, this does not
exploit the full range of the 3D possibili-
ties.

For the sake of this paper, we se-
lect a few properties of 3D spaces. They
cover the motion of objects and their
transparency covering or revealing other
objects behind them. Positioning objects
and the effect of depth are on focus as
well. In section 2.1 we discuss these as-
pects of three-dimensional visualization.
Section 2.2 looks at several recent tech-
niques, which translate the aspects consid-
ered into action.

Java offers different class relations like
inheritance, association, local classes or
packages, all worth to be visualized. Un-
fortunately, these relations require differ-
ent properties and techniques in three-
dimensional space to be visualized appro-
priately. Section 3.1 and 3.2 discuss some
Java concepts and show, how the above-
mentioned techniques can be combined

soundly and properly integrated into the
Java context. Section 3.3 discusses our
tool for visualization of Java software, fol-
lowed by a discussion of the used spring
model in sec. 3.4.

We finish our paper with a conclusion
and a short look on future work.

2 Analyzing 3D Space

We want to sketch how we combine
requirements of a proper visualization
of Java software with three dimensional
properties focusing on efforts to find pos-
sible combinations of these two worlds.

2.1 Properties of 3D Space

Discussion of 3D space leads to mathemat-
ical and geometrical topics; physical asser-
tions can also be stated. For us, none of
these issues were sufficiently convincing
to make 3D really work, failing to capital-
ize on real benefits of 3D space. We were
too beguiled into attempting an imitation
of “real” physical space. All experiments
ended in the assertion that 2D would have
done equally well. The only exception was
a spring model of how to fix and move
objects in space, which turned out to pro-
duce renderings with less intersections of
elements in 3D. So, we wanted to find out
how one can make specific use of 3D in
a way which is not, or at least much less,
available in 2D. Therefore, we abandon
paper and pencil freeing ourselves from
the restriction of producing flattened 3D,
a somewhat dead still life.

We decided to concentrate on the dif-
ferences between 2D and 3D, homing in
on specific 3D aspects of displays or (non)-
euclidian projection spaces, generating a
virtual landscape. To make things clear, we

3



pick out some aspects and show their ef-
fect in 3D, which is much weaker in 2D.

Those aspects were found in

• transparency of objects, revealing
the notion of “inside” contrasting
strongly to uncolored things in 2D
(see figures 1 and 2).

Figure 1: Transparency in 3D space

Figure 2: Transparency in 2D space

• the effect of depth, which we found
more suitable to use in a 3D space
(see figures 3 and 4).

• ordering in space, a specific meaning
of which can be expressed and com-
prehended much better than in 2D
(see figures 5 and 6).

Figure 3: Effect of depth in 3D space

Figure 4: Effect of depth in 2D space

• motion, which we attach great im-
portance to. Examples are rotation of
cone trees (see sec. 2.2), or chang-
ing the observer’s viewpoint contin-
uously.

In contrast to motion, animation in the
sense of program visualization by Brown
(1988) renders dynamical changes of pro-
gram states within an execution, but we do
not focus on this topic. Animation as a spe-
cial effect highlighting some information
is nice to have but can be done in 2D as
well. Therefore, we do not regard anima-
tion in any sense as an essential 3D prop-
erty.

Next, we look at possibilities to struc-
turally order objects in 3D space.

4



Figure 5: Ordering in 3D space

Figure 6: Ordering in 2D space

2.2 Geometric Arrangement in
Three Dimensions

When we consider different objects in
a space, we can think about their ar-
rangement, i.e. their respective positions,
and their relations, i.e. their connections
to each other. One can find several ap-
proaches in the literature:

Cone Trees (Robertson et al., 1993) re-
late objects in a tree-like manner (see
figure 7). The root of each subtree
forms the top of a semi-transparent
cone. The root’s direct children are
arranged on a circle line building
the cone’s base. This structure is ap-
plied recursively. Individual rotation
of each cone allows focusing a cer-

tain information without losing its
context.

Figure 7: A cone tree

Information Cubes (Rekimoto and
Green, 1993) glue together related
information (see figure 8). Walls
as used in Koike and Chu (1998)
give chance to shape a room. Even
criteria concerning the content of
data can be chosen as a projection
base. Such cubes may contain ar-
bitrary visualizations, in particular
sub-cubes easily accessible through
transparent walls.

Information Landscapes use the meta-
phor of a landscape. As an example,
in figure 9 the file system navigator
(SGI Corp., 1992) shows file systems
as landscapes of pedestals connected
by wires. Such landscapes are char-
acterized by planarity, but perspec-
tive distortions allow a broad view
even without fully using 3D space.

5



Figure 8: A famous information cube

Figure 9: An information landscape

These are only a few techniques to
get order into a space. Of course, they
can be combined with each other, en-
deavored to use what we selected as as-
pects before. Several applications of these
techniques can be found in the literature,
Young (1996) gives a good overview.

3 Java and 3D Space

We will now apply the discussed proper-
ties and visualization techniques to Java
software after a short presentation of its
static structure. We close with a discussion
of our visualization tool J3Browser .

3.1 The Static Structure of Java
Software

Java software is statically structured by
packages, interfaces and classes (Gosling
and Arnold, 1996). A type in Java is under-
stood either as an interface, as a class or as
a simple type. The latter is not of interest
in this paper.

Packages combine sets of classes, inter-
faces and packages into a strict hierarchy.
Packages introduce namespaces for their
entities.

Interfaces define types and consist
only of signatures of methods and con-
stant attributes. As they do not have any
implementations, multiple subtyping be-
tween interfaces is allowed.

Classes implement types defined by in-
terfaces or other classes. As usual, classes
can be abstract, i.e. implementation can be
deferred to subclasses. Only simple inher-
itance is allowed between classes, but a
class can implement several interfaces at
once.

Inside a class, local classes can be de-
fined. The scope of a local class is restricted

6



to the embedding class. The use of a local
class outside of the scope of the defining
class is possible only if the local class ex-
tends or implements classes or interfaces
accessible outside. Additionally, it is pos-
sible to create anonymous classes without
a name.

Another static relation between classes
is association realized by attributes of a re-
lated type. Besides associations, the uses
relation may be established implicitly by
parameters, return values or local vari-
ables of methods as usual. More explicitly
(but only as syntactic sugar), there is the
need to import classes and interfaces from
other packages.

In Java, we have four different kinds of
accessibility modes for methods, attributes
and local classes, and two different kinds
for non-local classes and interfaces. These
modes restrict the possibility to connect
classes and interfaces with each other sim-
ilar to scoping rules.

In summary, we have two strict hi-
erarchies (packages, classes), an acyclic
directed graph (interfaces), two directed
graphs (association and uses relations),
and the restriction by accessibility modes.
These different relations are heavily inter-
twined in real world software systems.

3.2 Experiences using 3D

Our experiences are based on experimen-
tal visualizations of source code of some
non-trivial Java software systems. We an-
alyzed the Java API of JDK 1.1.8, the
J3Browser itself, and the AD1300 sys-
tem, a project at our chair (Alfert et al.,
1999). These systems are large enough to
serve as a good analysis basis for evalu-
ating the applied visualization techniques
(compare table 1).

The geometric arrangements pre-

sented in sec. 2 have in common that
every arrangement is only suited to show
one kind of relationship at a time. Some
of these arrangements can only present
tree-like relationships. In Java software
different kinds of relationships coexist and
are not generally tree-like. This shows that
it is impossible to select one arrangement
technique to depict simultaneously all
relationships in a given Java software. But
simultaneousness is desirable, because
separated views for different kinds of
relationships would burden the viewer
with mentally integrating them to an
overall picture. Thus, our approach for
visualizing Java software in 3D space
strongly focuses on concurrent display of
different kinds of relationship by using
different arrangement techniques in one
diagram. Even if the following discussion
is structured by different kinds of relation-
ship, simultaneousness stays a primary
concern.

Figure 10 shows an example of our
approach. The packages are arranged as
an information landscape. Following the
style of ArchView (Feijs and Jong, 1998),
we use a graph-like approach with nodes,
represented by boxes (for classes) and
spheres (for interfaces), and vertices, rep-
resented by pipes for relations. The pack-
age membership of these classes is pre-
sented by an information cube. In the fore-
ground, in package facade a class hierar-
chy is shown as a cone tree. In the back-
ground, additional packages are shown
to illustrate relationships between these
packages.

In the following we describe our expe-
rience in using different arrangement tech-
niques for different aspects of Java soft-
ware. We focus on techniques with a clear
relationship to 3D space. Engelen (2000)
discusses further experience with these

7



JDK 1.1.8 J3Browser AD1300
Source Files 679 190 82
Lines of Code 150,289 39,797 14,712
Elements (total) 767 260 98
Classes 609 232 80
Interfaces 134 17 9
Packages 24 11 9
Relations (total) 5,287 1,476 422
uses 2,243 611 132
inheritance 479 116 29
implements 178 40 10
other relations 2,387 709 251

Table 1: Properties of the used software systems

Figure 10: Exemplifying a software structure

8



and additional techniques not exclusively
related to 3D space.

3.2.1 Relations between Classes

In Java, inheritance is a strict hierarchy
suggesting the use of cone trees for its
rendering (see figure 11). Cone trees al-
low a more compact presentation than
traditional 2D trees. As an experiment,
we built an expressive visualization of a
class hierarchy containing all classes of
the two JDK packages java.lang and
java.awt . With 137 classes, it is cumber-
some to display this hierarchy with tradi-
tional 2D trees. But even representing 2D
trees in 3D is of benefit: the perspective
distortion can be used to enlarge a few
classes in focus, whereas the remaining
classes of the hierarchy although smaller
maintain overall context (see figure 12).

Showing additional relationships
while depicting a class hierarchy – e.g.
the uses relation between different classes
–, the cone tree approach may lead to
problems. Cone trees utilize space in such
a way that supplementary relations may
obfuscate visualization and thus destroy
its structure. To avoid this obfuscation, we
found it appropriate to layout the classes
of the entire hierarchy on exactly one cone
surface (see figure 13). The inside of this
cone can then for example be used for
additional classes and their relationships
to classes displayed on the cone surface.

This cone layout, however, does not
utilize space very well. Relaxing its lay-
out constraints leads to leveled or top-
down arrangements. With such arrange-
ments it is easier to display additional
kinds of relationships, but the class hierar-
chy is less emphatic. An alternative for de-
picting class hierarchies is the information
cubes technique. We found that it gives no

Figure 13: Cone surface ordering with an
interior element

benefits for simultaneousness and is much
less intuitive.

3.2.2 Relations between Interfaces

Subtyping of interfaces is not tree-like but
forms an acyclic directed graph. Here, ar-
ranging interface relation top-down or lev-
eled is a good choice.

Using 3D space for software visualiza-
tion offers the advantage of depicting mul-
tiple hierarchies one behind the other. In
figure 14, this arrangement is used to dis-
play implement relations between classes
(shown as cubes) and interfaces (shown as
spheres).

3D space helps to explicitely empha-
size orthogonality of class and interface hi-
erarchies as shown in figure 15.

3.2.3 Packages

The membership of types in packages is a
good starting point to segment the visual-
ization into multiple regions. Those can be

9



Figure 11: A class hierarchy as a cone tree

10



Figure 12: A class hierarchy as a wall

visited and comprehended separately. It is
quite obvious to use information cubes in
this context (see figure 16).

In contrast to 2D nesting, 3d has ad-
ditional advantages. The observers can
change their viewpoint and move into
the package of interest. The transition
from an overall view to a view focusing
on one package is natural and seamless.
In 2D systems, only zooming is offered
as such a transition, thereby losing con-
text information and orientation due to
the resulting abrupt change of view. Fig-
ure 16 shows a perspective distortion to
keep context information viable. To sup-
port clarity of visualization we give pack-
ages semi-transparent walls. Thus, the ob-
server can realize the context even if their
viewpoint is inside a package. Again, we
use information landscapes.

Java packages can be ordered into hi-
erarchies. We used information cubes and
realized, however, that it gives no clear im-

pression of the overall structure. If a pack-
age is located deeply within a hierarchy,
the observer has to dive into the nesting.
This causes packages on top of the hierar-
chy to get out of sight. First user tests with
our prototype tool indicate that cone trees
or top-down arrangements are much more
expressive in such a case.

3.2.4 Associated documents

It is hard to comprehend software and
its structure without additional documen-
tation. Examples are design documents
and in particular for Java HTML pages
of source code generated by javadoc . A
variety of tools exists to view such docu-
mentation. But with traditional window-
oriented user interfaces, it is necessary to
switch between at least two windows: one
showing the visualization and the other
displaying the documentation. A switch
of context may demand reorientation. A
closer integration of visualization and doc-

11



Figure 14: Hierarchies connected by interfaces

12



Figure 15: Orthogonal view on class and interface hierarchies

Figure 16: Nested structures

13



umentation is thus desirable.
We experimented with documents dis-

played directly onto the walls of graphi-
cal elements (see figure 17). This allows a
natural integration with the overall navi-
gation through 3D space: to achieve spe-
cific information of a class the viewer sim-
ply moves towards it and reads the doc-
umentation. This approach, however, has
a great disadvantage: the viewer has to
align their position to the text quite ex-
actly. Even little distortion makes the text
hard to read. It is more suitable to display
the documentation in front of the visual-
ization. It may simply be projected onto
a semi-transparent screen (see figure 18),
thereby the visualization remains visible.
Reorientation is not required.

3.3 Tool Support

As stated above, visualization in three
dimensions demands tool support, man-
ual drawings are no longer feasible.
We developed a visualization tool called
J3Browser described in detail by En-
gelen (2000). The tool consists of two
parts: the first part analyzes Java source
code and generates a structure model. The
second part is a Java applet, which in-
teractively allows applying visualization
techniques on the structure model and
thereby creates a 3D model represented
as a VRML scene. The scene is displayed
by the Cosmoplayer plugin (Computer
Associates International, 2001) within the
Netscape browser. Furthermore, the ap-
plet provides higher level control mecha-
nisms, such as setting specific parameters
of visualization techniques or hiding cer-
tain types of relationships, to manipulate
the scene. The entire tool is implemented
in Java.

We found 3D visualization particularly

useful for exploring unknown software.
On the one hand, it can be very moti-
vating to roam through information land-
scapes and act like an explorer. On the
other hand, it is very frustrating if much
effort is needed to bring up a visualization
from the scratch. Thus, our tool provides
an initial top-down visualization, which is
extracted from a Java source code and ren-
dered with a spring model based on the
works of Ryall et al. (1997). Based on our
experience, the spring constants are deter-
mined by weighted relations between el-
ements. The spring model is discussed in
more detail in section 3.4. In this way, the
tool provides an immediate and intuitive
first impression of the information struc-
ture.

The discussion in section 3.2 makes
clear, however, that individual interests
on displayed information demand an in-
dividual selection of visualization tech-
niques. Choosing the right technique for
the desired accentuation demands a lot
of creativity and thus cannot be fully for-
malized. Hence, our tool supports a vari-
ety of techniques an observer can simply
choose from and experiment with with-
out the need to calculate important param-
eters by hand. More over, the tool offers
useful and aesthetic renderings within the
selected techniques.

We visualized different Java software
systems including the Java JDK with more
than 5,000 relations (see table 1). But ex-
ploring such large systems has the draw-
back to get lost in the visualization eas-
ily, well known as lost-in-hyperspace espe-
cially in the WWW. Effective usage of large
visualizations demands both navigational
support and the possibility to reduce the
amount of information currently shown.
Beneath the usual operations to navigate
through a virtual landscape, such as mov-

14



Figure 17: Wall projected documentation

Figure 18: Screen projected documentation

15



ing the virtual camera, its viewing angle or
zooming, our tool features different kinds
of manipulations capable to reduce the in-
formation overkill. We allow selecting ob-
jects, fading them in and out, moving and
transforming them in size, shape, color.

Furthermore, we use transparency to
express a degree-of-interest. The scene
may be as follows: the user selects an ar-
bitrary type T . Each relation connecting T
transitively to any other type is rendered
with a transparency correlating to its dis-
tance to the selected type T . Thereby, types
may even be rendered as isolated due to
totally transparent relations if desired by
the user.

Another important feature can be ex-
plained within the following scenario: due
to relations within the entire system, a cer-
tain relation between types may be ob-
scured. In figure 10, for example, the inher-
itance-relation, r, between types in differ-
ent packages is not shown. To set the focus
on types connected by r, the user selects
any type T . Next, the spring model is ex-
ploited interactively to attract exactly the
types connected with T by r and thereby
concealing the desired relation temporar-
ily: as visual effect, the related types are
extracted from their packages and are ar-
ranged in near distance to T .

These features go far beyond the possi-
bilities of traditional 3D browsers such as
VRML browsers.

3.4 The Spring Model

As mentioned in the previous section, an
initial visualization is generated using a
spring model. The generation can be cus-
tomized in different ways. To group re-
lated elements the tool allows specifying
desired distances for related and unre-
lated elements. To achieve leveled visual-

izations, the level distance can be defined.
Furthermore, one can provide a weighting
between different kinds of relationships to
change accentuation of the drawing.

In our approach, these parameters are
set to values based on our experience and
mapped to two parameters generally con-
trolling the behavior of a spring model:

• the rest length of each spring to deter-
mine desired distances and

• the spring constants to determine the
weighting.

Elements are the main suspension points
of our spring model. Thus, we distin-
guish between three different types of
springs(see figure 19):

A

C

B

i Element

Center of
 Elements

Relationship

Spring Type 1a

Spring Type 1b

Spring Type 2

Spring Type 3

Figure 19: Structure of the spring model

16



1. Each relation between two elements
implies two springs of different type:
the first (type 1a) enforces the de-
sired distance between the two ele-
ments and has a constant according
to the weighting of the relationship.
The second (type 1b) enforces top-
down or leveled arrangement and
is therefor only active in a verti-
cal direction: A low constant ensures
top-down visualization, whereas a
high constant ensures leveled ar-
rangements.

2. A spring (type 2) between each pair
of elements ensures divergence of el-
ements.

3. We use the initially calculated cen-
ter of the elements as another sus-
pension point to tighten a spring
(type 3) to the element. Modifying
constants and rest length of these
springs allows building compact vi-
sualizations.

The model generated in this way is
simulated by an algorithm adopted from
Ryall et al. (1997). The algorithm receives
as input a set of nodes, N , and a set of
springs, S, and works in an iterative way:
all spring forces affecting a node n are cal-
culated and summed up for each node n ∈
N . Then, the resulting impulse on n is cal-
culated considering damping to prevent
the model from infinite oscillation. The im-
pulses on each n ∈ N are finally used to
calculate the time-depending position n(t)
for each node.

In our implementation, the visualiza-
tion is updated periodically, so the user
can stop the simulation if he is already sat-
isfied with the result or if he wants to re-
fine parameters.

We also implemented a 2D variant of
the described spring model in order to
compare the results in 2D and 3D: the
3D spring model produced results which
were far more aesthetic and clearly ar-
ranged. Disturbing edge-crossings were
almost totally avoided in 3D. Trees, cone
trees and other techniques can further en-
hance the quality of visualizations. But
even with top-down and leveled arrange-
ments only, the spring model is undoubt-
edly well suited for an initial overview
and helps to minimize the effort for build-
ing expressive visualizations.

4 Conclusion and Further
Work

In summary, we gave an impression of
how we combine and integrate three-
dimensional space and Java software.

Based on analyzing important proper-
ties of 3D space, we developed the 3D vi-
sualization tool J3Browser for static rela-
tionships in Java software systems.

The initial visualization provided by
the tool is well suited for a first overview
of the scene. Flexible modifications of vi-
sualization properties including our im-
plementation of a spring model allow the
observer to detect more concealed infor-
mation. Our experiences show that our
tool is also powerful enough to explore
and comprehend even large unknown
software systems quickly and easily.

Currently, we only consider sheer vi-
sualizations. Our future work aims at ex-
tending our tool towards an environment
for constructive CAD-like design of soft-
ware systems in 3D space. Therefore, vi-
sualizations must be made mutable. This
immediately demands a suitable seman-
tics for operations on visualizations. Our

17



results on abstraction levels proposed in
(Alfert and Fronk, 2000) of manipulations
seem to be a solid foundation for future
research on the following direction: it is
interesting to reveal collaboration issues
between classes which require not only
static but additionally dynamic relation-
ships. Design Patterns, as introduced by
Gamma et al. (1994), are a common lan-
guage to express a wide range of such
collaborations. Some reverse engineering
tools such as the FUJABA system (Niere
et al., 2001) are able to recover the use
of design patterns in Java software. But,
such systems use UML to visualize soft-
ware structures and do not consider 3D
models. Our current hypothesis is to give
the arrangement of classes in space a se-
mantics denoting roles in design patterns.
For example, in the abstract factory pat-
tern abstract factories and products are ar-
ranged on a level positioned above con-
crete ones. Thereby, we aim at a 3D nota-
tion for designs of software systems based
on design patterns.

Acknowledgments

We like to thank E.-E. Doberkat gratefully
for his helpful comments and suggestions
on this paper.

References

Klaus Alfert, Ernst-Erich Doberkat, and
Corina Kopka. Towards constructing
a flexible multimedia environment for
teaching the history of art. SWT-Memo
101, Chair for Software-Technology,
University of Dortmund, September
1999. Submitted for publication. Avail-
able online http://ls10-www.cs.
uni-dortmund.de/ .

Klaus Alfert and Alexander Fronk. 3-
dimensional visualization of java class
relations. In IDPT 2000 Conference - The
Fifth World Conference on Integrated De-
sign & Process Technology, June 2000.

Grady Booch. Object-oriented Analysis and
Design. With Applications. Benjamin
Cummings, 2nd edition, 1993.

Marc H. Brown. Algorithm Animation.
ACM Distinguished Dissertations. MIT
Press, 1988.

Bay-Wei Chang, David Ungar, and Ran-
dall B. Smith. Getting close to objects. In
Margaret M. Burnett, Adele Goldberg,
and Ted G. Lewis, editors, Visual Object-
Oriented Programming. Concepts and En-
vironments, chapter 9, pages 185–198.
Manning Publications, 1995.

Inc. Computer Associates Interna-
tional. URL: http://www.cai.
com/cosmo/ , 2001.

Frank Engelen. Conception and imple-
mentation of a 3D class browser for Java.
Master’s thesis, Chair for Software Tech-
nology, University of Dortmund, 2000.
In German.

Loe Feijs and Roel De Jong. 3D visualiza-
tion of software architectures. Communi-
cations of the ACM, 41(12):73–78, Decem-
ber 1998.

Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design
Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-
Wesley, Reading, MA, 1994.

C. Geiger, W. Mueller, and W. Rosenbach.
SAM - an animated 3D programming
language. In IEEE Symposium on Visual

18

http://ls10-www.cs.uni-dortmund.de/
http://ls10-www.cs.uni-dortmund.de/
http://www.cai.com/cosmo/
http://www.cai.com/cosmo/


Languages, Halifax, Canada, September
1998.

James Gosling and Ken Arnold. Java: The
Language. Addison-Wesley, 1996.

Hideki Koike. The role of another spa-
tial dimension in software visualization.
ACM Trans. on Information Systems, 11(3):
266–286, 1993.

Hideki Koike and Hui-Chu Chu.
How does 3-D visualization work
in software-engineering? Empiral study
of a 3-D version/module visualization
system. In Proceedings of 20th Internation
Conference on Software Engineering, pages
516–519, Kyoto, Japan, April 1998.

Jörg Niere, Jörg P. Wadsack, and Albert
Zündorf. Revocering uml diagrams
from java code using patterns. In Jens H.
Jahnke and Conor Ryan, editors, Pro-
ceeding of the 2nd Internation Workshop on
Soft Computing Applied to Software Engi-
neering (SCASE), Enschede, The Nether-
lands, February 2001.

Jun Rekimoto and Mark Green. The infor-
mation cube: Using transparency in 3D
information visualization. In Proceedings
of the Third Annual Workshop on Informa-
tion Technologies & Systems, pages 125 –
132, 1993.

G. G. Robertson, S. K. Card, and J. D.
Mackinlay. Information visualizing us-
ing 3D interactive animations. Commu-
nications of the ACM, 36(4), 1993.

K. Ryall, J. Marks, and S. Shieber. An
interactive constraint-based system for
drawing graphs. In Proceedings of UIST
’97, Banff, Alberta, Canada, 1997.

Kendall Scott and Martin Fowler. UML dis-
tilled. Applying the Standard Object Model-
ing Language. Addison Wesley, 1997.

SGI Corp. 3D File System Navigator
for IRIX 4.0.1+, 1992. available on-
line at http://www.sgi.com/fun/
freeware/3d_navigator.html .

C. Ware, D. Hui, and G. Franck. Visualiz-
ing object oriented software in three di-
mensions. In CASCON ’93 IBM Centre
for Advanced Studies Conference Proceed-
ings, pages 612 – 620, 1993.

Peter Young. Three dimensional infor-
mation visualisation. Technical Report
12/96, Department for Computer
Science, University of Durham, UK,
November 1996. Available online at
http://www.dur.ac.uk/~dcs3py/
pages/work/Documents .

19

http://www.sgi.com/fun/freeware/3d_navigator.html
http://www.sgi.com/fun/freeware/3d_navigator.html
http://www.dur.ac.uk/~dcs3py/pages/work/Documents
http://www.dur.ac.uk/~dcs3py/pages/work/Documents

	Introduction and Related Work
	Analyzing 3D Space
	Properties of 3D Space
	Geometric Arrangement in Three Dimensions

	Java and 3D Space
	The Static Structure of Java Software
	Experiences using 3D
	Relations between Classes
	Relations between Interfaces
	Packages
	Associated documents

	Tool Support
	The Spring Model

	Conclusion and Further Work

		2002-04-03T16:37:44+0200
	Universitaetsbibliothek Dortmund - Eldorado




