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Abstract

This paper explores the use of Support Vector Machines (SVMs) for learning text classi-

�ers from examples. It analyzes the particular properties of learning with text data and

identi�es, why SVMs are appropriate for this task. Empirical results support the theoret-

ical �ndings. SVMs achieve substantial improvements over the currently best performing

methods and they behave robustly over a variety of di�erent learning tasks. Furthermore,

they are fully automatic, eliminating the need for manual parameter tuning.
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1 Introduction

With the rapid growth of online information, text categorization has become one of the

key techniques for handling and organizing text data. Text categorization is used to

classify news stories [Hayes and Weinstein, 1990] [Masand et al., 1992], to �nd interesting

information on the WWW [Lang, 1995] [Balabanovic and Shoham, 1995], and to guide a

users search through hypertext [Joachims et al., 1997]. Since building text classi�ers by

hand is di�cult and time consuming, it is desirable to learn classi�ers from examples.

In this paper I will explore and identify the bene�ts of Support Vector Machines

(SVMs) for text categorization. SVMs are a new learning method introduced by V. Vap-

nik [Vapnik, 1995] [Cortes and Vapnik, 1995] [Boser et al., 1992]. They are well founded

in terms of computational learning theory and very open to theoretical understanding and

analysis.

After reviewing the standard feature vector representation of text (section 2.1), I will

identify the particular properties of text in this representation in section 2.3. I will ar-

gue that support vector machines are very well suited for learning in this setting. The

empirical results in section 5 will support this claim. Compared to state-of-the-art meth-

ods, SVMs show substantial performance gains. Moreover, in contrast to conventional

text classi�cation methods SVMs will prove to be very robust, eliminating the need for

expensive parameter tuning.

2 Text Classi�cation

The goal of text categorization is the classi�cation of documents into a �xed number of

prede�ned categories. Each document d can be in multiple, exactly one, or no category at

all. Using machine learning, the objective is to learn classi�ers from examples which do the

category assignments automatically. This is a supervised learning problem. To facilitate

e�ective and e�cient learning, each category is treated as a separate binary classi�cation

problem. Each such problem answers the question, whether a document should be assigned

to a particular category or not.

2.1 Representing Text

The representation of a problem has a strong impact on the generalization accuracy of a

learning system. Documents, which typically are strings of characters, have to be trans-

formed into a representation suitable for the learning algorithm and the classi�cation task.

IR research suggests that word stems work well as representation units and that their or-

dering in a document is of minor importance for many tasks. The word stem is derived

from the occurrence form of a word by removing case and ection information [Porter,

1980]. For example \computes", \computing", and \computer" are all mapped to the

same stem \comput". The terms \word" and \word stem" will be used synonymously in

the following.

This leads to an attribute-value representation of text. Each distinct word wi corre-

sponds to a feature with TF (wi; d), the number of times word wi occurs in the document

d, as its value. Figure 1 shows an example feature vector for a particular document. To
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Figure 1: Representing text as a feature vector.

avoid unnecessarily large feature vectors words are considered as features only if they oc-

cur in the training data at least 3 times and if they are not \stop-words" (like \and", \or",

etc.).

Based on this basic representation it is known that scaling the dimensions of the feature

vector with their inverse document frequency IDF (wi) [Salton and Buckley, 1988] leads

to an improved performance. IDF (wi) can be calculated from the document frequency

DF (wi), which is the number of documents the word wi occurs in.

IDF (wi) = log

�
n

DF (wi)

�
(1)

Here, n is the total number of training documents. Intuitively, the inverse document

frequency of a word is low if it occurs in many documents and is highest if the word occurs

in only one. To abstract from di�erent document lengths, each document feature vector
~di is normalized to unit length.

2.2 Feature Selection

In text categorization one is usually confronted with feature spaces containing 10000 di-

mensions and more, often exceeding the number of available training examples. Many

have noted the need for feature selection to make the use of conventional learning meth-

ods possible, to improve generalization accuracy, and to avoid \over�tting" (e.g. [Yang

and Pedersen, 1997][Moulinier et al., 1996]).

The most popular approach to feature selection is to select a subset of the available fea-

tures using methods like DF-thresholding [Yang and Pedersen, 1997], the �2-test [Sch}utze

et al., 1995], or the term strength criterion [Yang and Wilbur, 1996]. The most commonly

used and often most e�ective [Yang and Pedersen, 1997] method for selecting features is

the information gain criterion. It will be used in this paper following the setup in [Yang

and Pedersen, 1997]. All words are ranked according to their information gain. To select

a subset of f features, the f words with the highest mutual information are chosen. All

other words will be ignored.
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Figure 2: Learning without using the \best" features.

2.3 Why Should SVMs Work Well for Text Categorization?

To �nd out what methods are promising for learning text classi�ers, we should �nd out

more about the properties of text.

High dimensional input space: When learning text classi�ers on has to deal with very

many (more than 10000) features. Since SVMs use over�tting protection which does

not necessarily depend on the number of features, they have the potential to handle

these large feature spaces.

Few irrelevant features: One way to avoid these high dimensional input spaces is to

assume that most of the features are irrelevant. Feature selection tries to determine

those. Unfortunately, in text categorization there are only very few irrelevant fea-

tures. Figure 2 shows the results of an experiment on the Reuters \acq" category

(see section 5.1). All features are ranked according to their (binary) mutual infor-

mation. Then a naive Bayes classi�er (see 4.1) is trained using only those features

ranked 1-200, 201-500, 501-1000, 1001-2000, 2001-4000, 4001-9947. The results in

�gure 2 show that even features ranked lowest still contain considerable information

and are somewhat relevant. A classi�er using only those \worst" features has a per-

formance much better than random. Since it seems unlikely that all those features

are completely redundant, this leads to the conjecture that a good classi�er should

combine many features (learn a \dense" concept) and that feature selection is likely

to hurt performance due to a loss of information.

Document vectors are sparse: For each document di, the corresponding document

vector ~di contains only few entries which are not zero. Kivinen et al. [Kivinen

et al., 1995] give both theoretical and empirical evidence for the mistake bound

model that \additive" algorithms, which have a similar inductive bias like SVMs,

are well suited for problems with dense concepts and sparse instances.

Most text categorization problems are linearly separable: All Ohsumed categories



4 3 SUPPORT VECTOR MACHINES

are linearly separable and so are many of the Reuters (see section 5.1) tasks. Insep-

arability on some Reuters categories is often due to dubious documents (containing

just the words \blah blah blah" in the body) or obvious misclassi�cations of the

human indexers. The idea of SVMs is to �nd such linear (or polynomial, RBF, etc.)

separators.

These arguments give evidence that SVMs should perform well for text categorization.

3 Support Vector Machines

Support vector machines are based on the Structural Risk Minimization principle [Vapnik,

1995] from computational learning theory. The idea of structural risk minimization is to

�nd a hypothesis h for which we can guarantee the lowest true error. The true error of

h is the probability that h will make an error on an unseen and randomly selected test

example. The following upper bound connects the true error of a hypothesis h with the

error of h on the training set and the complexity of h [Vapnik, 1995].

P (error(h)) � train error(h) + 2

s
d(ln2n

d
+ 1)� ln�

4

n
(2)

The bound holds with probability at least 1 � �. n denotes the number of training

examples and d is the VC-Dimension (VCdim) [Vapnik, 1995], which is a property of the

hypothesis space and indicates its expressiveness. Equation (2) reects the well known

trade-o� between the complexity of the hypothesis space and the training error. A simple

hypothesis space (small VCdim) will probably not contain good approximating functions

and will lead to a high training (and true) error. On the other hand a too rich hypothesis

space (high VCdim) will lead to a small training error, but the second term in the right

hand side of (2) will be large. This situation is commonly called \over�tting". We can

conclude that it is crucial to pick the hypothesis space with the \right" complexity.

In Structural Risk Minimization this is done by de�ning a structure of hypothesis

spaces Hi, so that their respective VC-Dimension di increases.

H1 � H2 � H3 � ::: � Hi � ::: and 8i : di � di+1 (3)

The goal is to �nd the index i� for which (2) is minimum.

How can we build this structure of increasing VCdim? In the following we will learn

linear threshold functions of the type:

h(~d) = signf~w � ~d+ bg =

(
+1; if ~w � ~d+ b > 0

�1; else
(4)

Instead of building the structure based on the number of features using a feature

selection strategy1, Support vector machines uses a re�ned structure which acknowledges

the fact that most features in text categorization are relevant.

1Remember that linear threshold functions with n features have a VCdim of n+ 1.
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Figure 3: Support vector machines �nd the hyperplane h, which separates the positive and

negative training examples with maximummargin. The examples closest to the hyperplane

are called Support Vectors (marked with circles).

Lemma 1. [Vapnik, 1982] Consider hyperplanes h(~d) = signf~w � ~d+ bg as hypotheses.

If all example vectors ~di are contained in a ball of radius R and it is required that for all

examples ~di
j~w � ~di + bj � 1, with jj~wjj = A (5)

then this set of hyperplane has a VCdim d bounded by

d � min([R2A2]; n) + 1 (6)

Please note that the VCdim of these hyperplanes does not necessarily depend on the

number of features! Instead the VCdim depends on the Euclidean length jj~wjj of the

weight vector ~w. This means that we can generalize well in high dimensional spaces, if

our hypothesis has a small weight vector.

In their basic form support vector machines �nd the hyperplane that separates the

training data and which has the shortest weight vector. This hyperplane separates positive

and negative training examples with maximum margin. Figure 3 illustrates this. Finding

this hyperplane can be translated into the following optimization problem:

Minimize: jj~wjj (7)

so that: 8i : yi[~w � ~di + b] � 1 (8)

yi equals +1 (�1), if document di is in class + (�). The constraints (8) require that

all training examples are classi�ed correctly. We can use the lemma from above to draw

conclusions about the VCdim of the structure element that the separating hyperplane

comes from. A bound similar to (2) [Shawe-Taylor et al., 1996] gives us a bound on the

true error of this hyperplane on our classi�cation task.

Since the optimization problem from above is di�cult to handle numerically, Lagrange

multipliers are used to translate the problem into an equivalent quadratic optimization

problem [Vapnik, 1995].

Minimize: �

nX
i=1

�i +
1

2

nX
i;j=1

�i�jyiyj ~di � ~dj (9)
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so that:
nX

i=1

�iyi = 0 and 8i : �i � 0 (10)

For this kind of optimization problem e�cient algorithms exist, which are guaranteed

to �nd the global optimum2. The result of the optimization process is a set of coe�cients

��i for which (9) is minimum. These coe�cients can be used to construct the hyperplane

ful�lling (7) and (8).

~w� ~d = (
nX

i=1

��i yi
~di) � ~d =

nX
i=1

��i yi(
~di � ~d) and b =

1

2
(~w� ~d+ + ~w� ~d�) (11)

Equation (11) shows that the resulting weight vector of the hyperplane is constructed

as a linear combination of the training examples. Only those examples contribute for

which the coe�cient �i is greater than zero. Those vectors are called Support Vectors. In

�gure 3 the support vectors are marked with circles. They are those training examples

which have minimum distance to the hyperplane. To calculate b, two arbitrary support

vectors ~d+ and ~d� (one from the class + and one from �) can be used.

3.1 Non-linear Hypothesis Spaces

To learn nonlinear hypotheses, SVMs make use of convolution functions K( ~d1; ~d2). De-

pending on the type of convolution function, SVMs learn polynomial classi�ers, radial

basis function (RBF) classi�ers, or two layer sigmoid neural nets.

Kpoly( ~d1; ~d2) = ( ~d1 � ~d2 + 1)d (12)

Krbf( ~d1; ~d2) = exp(( ~d1� ~d2)
2) (13)

Ksigmoid( ~d1; ~d2) = tanh(s( ~d1 � ~d2) + c) (14)

These convolution functions satisfy Mercer's Theorem (see [Vapnik, 1995]). This means

that they compute the inner product of vectors ~d1 and ~d2 after they have been mapped

into a new \feature" space by a non-linear mapping �:

�( ~d1) ��( ~d2) = K( ~d1; ~d2) (15)

To use a convolution function, simply substitute every occurrence of the inner product

in equations (9) and (11) with the desired convolution function. The support vector

machine then �nds the hyperplane in the \non-linear" feature space, which separates the

training data with the widest margin.

3.2 Finding the Best Parameter Values

With the use of convolution functions, parameters are introduced. For the polynomial

convolution this is the degree d, for RBFs it is the variance , etc. How can we pick

appropriate values for these parameters automatically? The following procedure [Vapnik,

2For the experiments in this paper a re�ned version of the algorithm in [Osuna et al., 1997] is used.

It can e�ciently handle problems with many thousand support vectors, converges fast, and has minimal

memory requirements.
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1995] can be used, which is again inspired by bound (2). First train the support vector

machine for di�erent values of d and/or . Then estimate the VCdim of the hypotheses

found using (6) and pick the one with the lowest VCdim.

To compute the length of the weight vector one can use the formula

jjwjj2 =
X

i;j2SupportV ectors

�i�jyiyjK( ~d1; ~dj) (16)

And since all document vectors are normalized to unit length, it is easy to show that the

radius R of the ball containing all training examples is tightly bound by

Polynomial: R2 � 2d � 1 RBF: R2 � 2(1� exp(�)) (17)

Please note that this procedure for selecting the appropriate parameter values is fully

automatic, does not look at the test data, and requires no expensive cross-validation.

3.3 Non-Separable Problems

So far it was assumed that the training data is separable without error. What if this is not

possible for the chosen hypothesis space? Cortes and Vapnik [Cortes and Vapnik, 1995]

suggest the introduction of slack variables. In this paper a simpler approach is taken.

During the optimization of (9) the values of the coe�cients �i are monitored. Training

examples with high �i \contribute a lot to the inseparability" of the data. When the value

of an �i exceeds a certain threshold (here �i � 1000) the corresponding training example

is removed from the training set. The SVM is then trained on the remaining data.

4 Conventional Learning Methods

This paper compares support vector machines to four standard methods, all of which have

shown good results on text categorization problems in previous studies. Each method

represents a di�erent machine learning approach: density estimation using a naive Bayes

classi�er, the Rocchio algorithm as the most popular learning method from information

retrieval, an instance based k-nearest neighbor classi�er, and the C4.5 decision tree/rule

learner.

4.1 Naive Bayes Classi�er

The idea of the naive Bayes classi�er is to use a probabilistic model of text. To make

the estimation of the parameters of the model possible, rather strong assumptions are

incorporated. In the following, word-based unigram models of text will be used, i.e. words

are assumed to occur independently of the other words in the document.

The goal is to estimate Pr(+jd0), the probability that a document d0 is in class +. With

perfect knowledge of Pr(+jd0) the optimum performance is achieved when d0 is assigned

to class + i� Pr(+jd0) � 0:5 (Bayes' rule). Using a unigram model of text leads to the

following estimate of Pr(+jd0) (see [Joachims, 1997]):

Pr(+jd0) =
Pr(+) �

Q
i Pr(wij+)

TF (wi;d
0)

Pr(+) �
Q

iPr(wij+)TF (wi;d0) + Pr(�) �
Q

i Pr(wij�)TF (wi;d0)
(18)
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The probabilities P (+) and P (�) can be estimated from the fraction of documents

in the respective category. For Pr(wij+) and Pr(wij�) the so called Laplace estimator is

used [Joachims, 1997].

4.2 Rocchio Algorithm

This type of classi�er is based on the relevance feedback algorithm originally proposed by

Rocchio [Rocchio, 1971] for the vector space retrieval model [Salton, 1991]. It has been

extensively used for text classi�cation.

First, both the normalized document vectors of the positive examples as well as those

of the negative examples are summed up. The linear component of the decision rule is

then computed as

~w =
1

j+ j

X
i2+

~di � �
1

j � j

X
j2�

~dj (19)

Rocchio requires that negative elements of the vector w are set to 0. � is a parameter that

adjusts the relative impact of positive and negative training examples. The performance

of the resulting classi�er strongly depends on a \good" choice of �.

To classify a new document d0, the cosine between ~w and ~d0 is computed. Using an

appropriate threshold on the cosine leads to a binary classi�cation rule.

4.3 k-Nearest Neighbors

k-nearest neighbor (k-NN) classi�ers were found to show very good performance on text

categorization tasks [Yang, 1997] [Masand et al., 1992]. This paper follows the setup in

[Yang, 1997]. The cosine is used as a similarity metric. knn(d0) denotes the indexes of the

k documents which have the highest cosine with the document to classify d0.

Hknn(d
0) = sign(

P
i2knn(d0)

yi cos(d
0; di)

P
i2knn(d0)

cos(d0; di)
) (20)

Further details can be found in [Mitchell, 1997].

4.4 Decision Tree Classi�er

The C4.5 [Quinlan, 1993] decision tree algorithm is used for the experiments in this paper.

It is the most popular decision tree algorithm and has shown good results on a variety of

problem. It is used with the default parameter settings and with rule post-pruning turned

on. C4.5 outputs a con�dence value when classifying new examples. This value is used

to compute precision/recall tables (see section 5.2). Previous results with decision tree

or rule learning algorithms are reported in [Lewis and Ringuette, 1994] [Moulinier et al.,

1996].

5 Experiments

The following experiments compare the performance of SVMs using polynomial and RBF

convolution operators with the four conventional learning methods.
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5.1 Test Collections

The empirical evaluation is done on two test collection. The �rst one is the Reuters-21578

dataset (http://www.research.att.com/ lewis/reuters21578.html) compiled by David Lewis

and originally collected by the Carnegie group from the Reuters newswire in 1987. The

\ModApte" split is used leading to a corpus of 9603 training documents and 3299 test

documents. Of the 135 potential topic categories only those 90 are used for which there is

at least one training and one test example. After stemming and stop-word removal, the

training corpus contains 9947 distinct terms which occur in at least three documents. The

Reuters-21578 collection is know for a rather direct correspondence between words and

categories. For the category \wheat" for example, the occurrence of the word \wheat" in

a document is an very good predictor.

The second test collection is taken from the Ohsumed corpus (ftp://medir.ohsu.edu

/pub/ohsumed) compiled by William Hersh. Here the connection between words and

categories is less direct. From the 50216 documents in 1991 which have abstracts, the �rst

10000 are used for training and the second 10000 are used for testing. The classi�cation

task considered here is to assign the documents to one or multiple categories of the 23

MeSH \diseases" categories. A document belongs to a category if it is indexed with at

least one indexing term from that category. After stemming and stop-word removal, the

training corpus contains 15561 distinct terms which occur in at least three documents.

5.2 Performance Measures

Despite theoretical problems and a certain arbitrariness, the Precision/Recall-Breakeven

Point is used as a measure of performance to stay (at least to some extend) compatible

with previously published results. The precision/recall-breakeven point is based on the two

well know statistics recall and precision widely used in information retrieval. Both apply

to binary classi�cation problems. Precision is the probability that a document predicted

to be in class \+" truly belongs to this class. Recall is the probability that a document

belonging to class \+" is classi�ed into this class.

Between high recall and high precision exists a trade-o�. All methods examined in

this paper make category assignments by thresholding a \con�dence value". By adjusting

this threshold we can achieve di�erent levels of recall and precision. The PRR method

[Raghavan et al., 1989] is used for interpolation.

Since precision and recall are de�ned only for binary classi�cation tasks, the results

of multiple binary tasks need to be averaged to get to a single performance value for

multiple class problems. This will be done using microaveraging [Yang, 1997]. In our

setting this results in the following procedure. The classi�cation threshold � is lowered

simultaneously over all binary tasks3. At each value of � the microaveraged precision

and recall are computed based on the merged contingency table. To arrive at this merged

table, the contingency tables of all binary tasks at � are added componentwise.

The precision/recall breakeven point is now de�ned as that value for which precision

and recall are equal. Note that there may be multiple breakeven points or none at all. In

the case of multiple breakeven points, the lowest one is selected. In case of no breakeven

3Since cosine similarities are not comparable across classes, the method of proportional assignment

[Wiener et al., 1995] is used for the Rocchio algorithm to come up with improved con�dence values.
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SVM (poly) SVM (rbf)

d =  =

Bayes Rocchio C4.5 k-NN 1 2 3 4 5 0.6 0.8 1.0 1.2

earn 95.9 96.1 96.1 97.3 98.2 98.4 98.5 98.4 98.3 98.5 98.5 98.4 98.3

acq 91.5 92.1 85.3 92.0 92.6 94.6 95.2 95.2 95.3 95.0 95.3 95.3 95.4

money-fx 62.9 67.6 69.4 78.2 66.9 72.5 75.4 74.9 76.2 74.0 75.4 76.3 75.9

grain 72.5 79.5 89.1 82.2 91.3 93.1 92.4 91.3 89.9 93.1 91.9 91.9 90.6

crude 81.0 81.5 75.5 85.7 86.0 87.3 88.6 88.9 87.8 88.9 89.0 88.9 88.2

trade 50.0 77.4 59.2 77.4 69.2 75.5 76.6 77.3 77.1 76.9 78.0 77.8 76.8

interest 58.0 72.5 49.1 74.0 69.8 63.3 67.9 73.1 76.2 74.4 75.0 76.2 76.1

ship 78.7 83.1 80.9 79.2 82.0 85.4 86.0 86.5 86.0 85.4 86.5 87.6 87.1

wheat 60.6 79.4 85.5 76.6 83.1 84.5 85.2 85.9 83.8 85.2 85.9 85.9 85.9

corn 47.3 62.2 87.7 77.9 86.0 86.5 85.3 85.7 83.9 85.1 85.7 85.7 84.5

84.2 85.1 85.9 86.2 85.9 86.4 86.5 86.3 86.2
microavg. 72.0 79.9 79.4 82.3

combined: 86.0 combined: 86.4

Figure 4: Precision/recall-breakeven point on the ten most frequent Reuters categories and

microaveraged performance over all Reuters categories. k-NN, Rocchio, and C4.5 achieve

highest performance at 1000 features (with k = 30 for k-NN and � = 1:0 for Rocchio).

Naive Bayes performs best using all features.

point it is de�ned to be zero.

5.3 Results

Figures 4 and 5 show the results on the Reuters4 and the Ohsumed corpus. To make sure

that the results for the conventional methods are not biased by an inappropriate choice of

parameters, extensive experimentation was done. All four methods were run after selecting

the 500 best, 1000 best, 2000 best, 5000 best, (10000 best,) or all features (see section ??).

At each number of features the values � 2 f0; 0:1; 0:25; 0:5; 1:0g for the Rocchio algorithm

and k 2 f1; 15; 30; 45; 60g for the k-NN classi�er were tried. The results for the parameters

with the best performance on the test set are reported.

On the Reuters data the k-NN classi�er performs best among the conventional methods

(see �gure 4). This replicates the �ndings of [Yang, 1997]. Slightly worse perform the

decision tree method and the Rocchio algorithm. The naive Bayes classi�er shows the worst

results. Compared to the conventional methods all SVMs perform better independent of

the choice of parameters. Even for complex hypotheses spaces, like polynomials of degree

5, no over�tting occurs despite using all 9947 features. This demonstrates the ability of

SVMs to handle large feature spaces without feature selection. The numbers printed in

bold in �gure 4 mark the parameter setting with the lowest VCdim estimate as described

in section 3.2. The results show that this strategy is well suited to pick a good parameter

setting automatically. Computing the microaveraged precision/recall-breakeven point over

the hypotheses with the lowest VCdim per class leads to a performance of 85.6 for the

polynomials and 86.3 for the radial basis functions. This is a substantial improvement

over the best performing conventional method at its best parameter setting. The RBF

4The results for the Reuters corpus are revised. In the experiments for an earlier version of this report

the articles marked with \UNPROC" were parsed in a way that the body was ignored.
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SVM (poly) SVM (rbf)

d =  =

Bayes Rocchio C4.5 k-NN 1 2 3 4 0.6 0.8 1.0

Pathology 52.7 50.8 47.6 53.4 50.3 54.9 57.2 58.2 56.7 57.4 58.1

Cardiovascular 72.4 70.1 70.5 72.6 71.1 76.2 77.6 77.3 77.2 77.5 77.6

Immunologic 61.7 58.0 58.8 66.8 69.7 73.2 73.5 73.2 73.3 73.5 73.5

Neoplasms 63.6 64.1 58.7 67.2 64.1 69.4 70.1 70.6 70.5 70.6 70.7

Digestive System 65.3 59.9 59.0 67.1 70.3 73.3 74.5 73.7 74.3 74.1 73.8

60.7 64.7 65.9 65.9 65.7 66.0 66.1
microavg. 57.0 56.6 50.0 59.1

combined: 65.9 combined: 66.0

Figure 5: Precision/recall-breakeven point on the �ve most frequent Ohsumed categories

and microaveraged performance over all Ohsumed categories. k-NN, Rocchio, and Bayes

achieve highest performance using all features (with k = 45 for k-NN and � = 1:0 for

Rocchio). C4.5 performs best using 500 features.

Support Vector machine is better than k-NN on 62 of the 90 categories (20 ties), which is

a signi�cant improvement according to the binomial sign test.

The results for the Ohsumed collection are similar (�gure 5). Again k-NN is the best

conventional method. C4.5 fails on this task and heavy over�tting is observed when using

more than 500 features. Again the SVMs perform substantially better than all other

methods. The RBF support vector machine outperforms k-NN on all 23 categories, which

is again a signi�cant improvement. On both the Reuters and the Ohsumed collection the

RBF convolution performs slightly better than the polynomial convolution.

Comparing training time, SVMs are roughly comparable to C4.5, but they are more

expensive than naive Bayes, Rocchio, and k-NN. Nevertheless, current research is likely to

improve e�ciency of SVM-type quadratic programming problems. SVMs are faster than

k-NN at classi�cation time, especially when using the reduced set [Burges and Sch�olkopf,

1997] method.

6 Conclusions

This paper introduces support vector machines for text categorization. It provides both

theoretical and empirical evidence that SVMs are very well suited for text categorization.

The theoretical analysis concludes that SVMs acknowledge the particular properties of

text: (a) high dimensional feature spaces, (b) most of the features are relevant (dense

concept vector), and (c) sparse instance vectors.

The experimental results show that SVMs consistently achieve good performance on

categorization tasks, outperforming existing methods substantially and signi�cantly. With

their ability to generalize well in high dimensional feature spaces, SVMs eliminate the

need for feature selection making the application of text categorization considerably easier.

Another advantage of SVMs over the conventional methods is their robustness. SVMs show

good performance in all experiments avoiding catastrophic failure like observed for the

conventional methods on some tasks. Furthermore, SVMs do not require any parameter

tuning, since they can �nd good parameter settings automatically. All this makes SVMs

a very promising and easy to use method for learning text classi�ers from examples.
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