
Learning Action-oriented

Perceptual Features for Robot

Navigation

LS{8 Report 3

Katharina Morik

Anke Rieger

Univ. Dortmund, LS VIII

D-44221 Dortmund 1

Dortmund, April 26, 1993

1This work is partially funded by the European Community under the project B-Learn II (P7274) and
the Ministry for Sciences and Research of the German federal state Nordrhein-Westfalen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46901791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Machine learning can o�er an increase in the exibility and applicability of robotics at

several levels of control. In this paper, we characterize two symbolic learning tasks in the

�eld of robotics. We outline an approach for learning features from sensory data and for

using these features to learn more complex ones. We illustrate our approach with �rst

experiments in the �eld of navigation.

1

1 Introduction

One of the major cost factors in robot applications is the impossibility of automatically

transferring the experience from one application to the next (similar) one. The inexibility

of robot programs makes it a costly process to start a new application. A lot of preparation

is necessary before a robot can be utilized successfully. This preparation is not yet well

enough supported by systems.

The interaction between the robot and its user is oriented towards the robot's needs. A

user-friendly level of interaction has not yet been achieved. Teaching a robot is done using

manual guidance techniques or simply by programming (preprogramming). Commanding

the robot requires very precise orders. To navigate the robot, the orders refer either

to points on the environmental map, or to points relative to the robot's position. Of

course, particular objects can be represented by their positions on the map. For this

particular environment, the user may use the names of these objects when inputting a

navigational task. If, for instance, it is known that a cupboard is in a particular area in

a room, an abstract command can be formulated: "move to cupboard". This command

can be mapped one-to-one into the move-command with the absolute position. However,

in a di�erent environment with a cupboard in another position, the command "move to

cupboard" cannot be interpreted. This would require the recognition of cupboards in

general, or, in other words, the general concept of a cupboard.

One approach to ease robot applications is to integrate machine learning techniques

into robotics. There are three levels of control where learning abilities can be put to good

use:

1. the subsymbolic level of reexes where the robot learns to enhance the immediate

reaction to sensory input

2. the symbolic level of concepts where the robot learns

� to recognize objects in di�erent environments

� to enhance a map of the environment

� which actions are appropriate for easing an object's recognition

3. the planning level where the robot learns to enhance a sequence of actions because

of experience with prior actions.

We assume a hierarchical robot architecture where several learning techniques are

applied at all levels [Knieriemen, 1991]. At all levels, perception-oriented and action-

oriented processing is related (see �gure 1). Regarding concepts within this framework,

the representation of relations between operational concepts is at the highest level, the

operational concepts themselves are at the second level, and their execution, i.e. sensing

and performing elementary operations, is at the lowest level. Operational concepts inte-

grate perception-oriented and action-oriented features. Moreover, the perceptual features

are constructed with respect to actions and the actions are described with respect to the

perceptual features. The relations between operational concepts are used for planning at

a higher level. Concepts are related by sharing features and being discriminated by other

features. Features may refer to perceptions or to actions. The most typical situation is

2 2 TWO LEARNING TASKS

that some concepts share perceptual features and are discriminated by an action which

leads to other perceptual features. There are some features which trigger the recognition

of an object. Most often, these are perceptual features. For instance, a particular sensor

pattern indicates that the sensed object could be a cupboard, a table, or a projection

on a wall, e.g., a column. Some of the objects can be discriminated by an action. For

instance, one can put something under a table but not under the projection on a wall be-

cause columns are straight upright from top to bottom. There are actions that distinguish

objects. The result of the action needs to be veri�ed again by sensor patterns (e.g., has

the object been pushed under the table?). The trigger-action-veri�cation cycle is used for

planning on the highest level.

oriented towards

levels of
control

planning

navigation

path, motion
sensor control

reflexes

operational concepts

concept structure

perception action

sensors effectors

Figure 1: Levels of control

In this paper, we discuss the integration of learning into robotics only with respect to

the second level, the symbolic level of concepts. In particular, we discuss the �rst step,

the representation and learning of the action-oriented perceptual features for operational

concepts. In section 2 we describe two particular learning tasks and present our view of

features for operational concepts. In section 3, we describe how the data, from which we

learn, are gathered. Section 4 describes the experimental preprocessing of sensory data

and the representation of features and concepts. Section 5 gives an example of learning

an operational concept. The conclusion evaluates our approach and relates it with other

work.

2 Two learning tasks

In arti�cial intelligence, concept learning refers to learning the description of a target

concept that covers the extension of that concept. The description consists of features

and is expressed by a formula which is true or false for a particular object. If the formula

3

is true for an object, the object is a member of the concept, otherwise it is not a member.

This view of concept learning needs to be quali�ed if we want to integrate learning into

robotics. Two questions point to the weakness of the classical view of concepts for robotics

applications of learning.

The �rst question is "Where do the features come from?"

In most machine learning applications, the features are given. In robot applications,

sensory data are given. This is what the robot perceives from the environment. However,

sensory data are too speci�c to apply to more than one object perceived during one

operation of the robot. Because of this, features have to be calculated from the sensory

data. This feature construction1 is a di�cult task. Depending on the features, concept

learning may become more or less e�cient. Up to the present, there is no theory of

representation that tells us which features to construct. Usually, the application developer

programs the construction of a set of features. He then calls up a learning algorithm

which learns concept descriptions. The concept description uses some of the constructed

features. The application developer then evaluates the quality of the learning result. If the

evaluation is not good enough, the developer tries out the next way of calculating features

from the sensory data. The process continues until the evaluation produces a satisfactory

result. This time-consuming preprocessing of data should be supported by a system. We

may view it as a learning task in its own right.

Learning basic features Several ways of abstracting basic features from sensory data

are prepared and partially ordered. The �rst variant is selected and concept learning

is tried using the abstracted sensory data. The learning result is evaluated. If the

evaluation is not good enough, the next variant of abstracting features from data is

chosen, and concept learning is called again. This loop goes on forever. If appropriate

ways of calculating features are available, the appropriate degree of granularity of

the features should be learned.

A similar idea was proposed by Wrobel as an answer to symbol grounding problems

[Wrobel, 1991]. In Wrobel's paper, however, learning features from sensory data was

modeled as a direct segmentation task of a stream of real-valued sensory input. In contrast,

we provide the algorithm with more complex calculations such as, for the gradient of two

values measured consecutively, or for the di�erence of two angles. We do not aim at

learning such functions. What we do want to learn is the appropriate degree of granularity

of the abstraction result, and that means which function to choose.

The second question which points out de�ciencies of the classical view of concepts is

"How do we verify that a particular object is a member of a concept?"

Most often, if all features de�ning a concept are true for an object, it is concluded that

the object is a member of the concept. This means that a concept is completely determined

by its features. Think, for instance, of a representation for the everyday concept "cup".

The at bottom, the concave form, and the handle could be features of the concept "cup",

but features alone are not su�cient to de�ne a cup. A particular object could be described

by these three features without actually being a cup. DeJong and Mooney have shown

the example of a receptacle with a handle bridging over the opening of the concave form

1Sometimes, the euphemistic term "feature extraction" is used. It is a misleading term, as the features
are not a subset of sensory data.

4 2 TWO LEARNING TASKS

[De Jong and Mooney, 1986]. You cannot drink from such a receptacle. Therefore, it

cannot be a cup. Of course, one can add a feature stating that the handle must be on

the side. In an in�nite number of ways, however, a given receptacle can be such that

it is impossible to drink from it. All these ways cannot be excluded by features in the

concept and object descriptions. Presumably, for any list of features that a cup cannot

have, we could construct an additional exceptional feature which hinders drinking from a

receptacle. This is the frame problem [McCarthy and Hayes, 1969].

The frame problem indicates that observational features alone are not adequate. What

is most important about a cup is that one can drink from it. Drinking is a verifying action

for a cup. Even a baby cup which does not have a at bottom (but a ball �lled with

heavy material so that it stands upright) is a cup because one can use it for drinking.

As many ways as there are to disturb the functionality of a cup, there are to preserve

its functionality even if the features are not true. A concept description should not only

consist of perceptual features but also of a verifying action. If the action is successful for

a particular object, it belongs to the concept. If the action is not successful, it does not

belong to the concept. In this way, actions are integrated into concept descriptions and

into their application as recognition functions.

Similarly, Giordana has proposed to use executable features (executable predicates) in

concept descriptions [Giordana et al., 1990] . These features are true for an object if a

particular handling of this object is successful. For instance, the feature "movable" for

a concept can be veri�ed by moving that object. We want to go one step further and

propose that even the perceptual features should be oriented towards action and action

features should be oriented towards perceptions.

The perceptual features describe patterns which are perceived while the robot performs

an action. Even features that seem to be purely observational without any link to an action

are, in fact, action-oriented. The perception of a at bottom, for instance, is only possible

when looking from a particular angle with respect to the object. Looking straight down

upon the receptacle does not allow one to determine whether the bottom is at or not.

A perceptual feature (e.g, at bottom) is constructed with reference to an action (e.g.

looking from the side). Action features, in turn, require perceptual features. Actions are

represented in terms of the following sensor patterns: what is sensed before a particular

action can be performed, what is sensed during successful performance of the action, and

what is sensed as the outcome of the action. Hence, perception and action are closely

interrelated at all levels of abstraction.

If we had a robot that could drink, there would be features constructed from sensory

data such as full receptacle and empty receptacle. The operational concept of a

drinking receptacle would look roughly like this:

full receptacle(Obj, T1, T2, lifting) &

at lips(Obj, T2, T3, slurping) &

... &

empty receptacle(Obj, Tn-1, Tn, lowering)

! drinking receptacle(T1, Tn, drinking)

Of course, this is an unrealistic example. We describe our experiments in the navigation

task in 5.

5

Learning more abstract features

Given basic features which describe sensory data which were measured during a

particular action (result of the �rst learning task), and given the interval of time in

which an object was measured by some sensors, learn higher-level action-oriented

perceptual features.

Note, that the higher-level features need not be expressed by just one rule. An

inference chain may lead from the lowest feature to the highest one.

Before we describe in detail our experiments in learning action-oriented perceptual

features at several levels of abstraction, we want to introduce the navigational task and

the data that we have.

3 Data from a navigation scenario

Our learning tasks are embedded in enhancing the exibility of autonomous vehicle navi-

gation. A hierarchical architecture of the navigation system is assumed [Kaelbling, 1987].

Whereas reinforcement learning is applied to low-level learning tasks such as obstacle

avoidance [Millan and Torras, 1991] and learning macro-operators is applied to the plan-

ning level [Spandl and Pitschke, 1991] we investigate learning operational concepts from

sensory data. The data are gathered by a vehicle while moving through a room. The

vehicle, PRIAMOS, has been developed at the University of Karlsruhe. The vehicle is

able to turn around 360 degrees at the same point and can move in every direction with

every orientation. The vehicle is equipped with 24 sonar sensors, all of which are loccated

at the same height all around the vehicle. The aim is to enable the navigation system to

perform high-level tasks such as "pass through the door, turn left, move to the cupboard"

in various environments. This requires the learning of operational concepts such as "pass

through door" from several training traces. Each training trace consists of the following

data for each point of time and each sensor:

trace number, point of time, sensor number, measured distance, sensor ori-

entation, sensor position in the global coordinate system, orientation of the

robot, robot position in the global coordinate system, object number and edge

number of what is sensed by the distance signal.

Currently, we have 28 traces, each with 27 time points. Therefore, there are 18144

measurements from which we can learn. Most paths are movements through a door with

di�erent distances from the doorframes, and with or without a cupboard at the wall close

to the door. A room with its edge numbers is shown in �gure 2. Most edges represent walls

of the room. The edge numbers of the cupboard (0 to 3) are printed in italics. In order to

obtain examples for learning, we have grouped together all measurements with the same

orientation of the robot and all measurements which sensed the same edge. Particular

constellations of edges, such as two walls being linked by a right angle, are also gathered.

These constellations are called "concave" and "convex". For instance, edges 7 and 6 in the

room of �gure 2 form a concave constellation with respect to the robot's position (hatched

area). Edge 7 alone is just a "line", be it measured from parallel, straight towards the

6 4 THE REPRESENTATION

1

2
3

4

5

6

7

8
9

0

10

11

0
1

2
3

Figure 2: Room with traces and edge numbers

edge, straight away from the edge, or diagonal position. Two parallel edges, e.g. edge 9

and 7 or 3 and 1, are named "jump". The paths of the robot are indicated by the arrows.

From the traces, we have derived 23 examples for concave edges, 57 examples for convex

edges, 206 for jump, and 718 for line.

4 The representation

The representation formalism we use is the one of the system MOBAL2. It is a restricted

�rst order logic with explicit negation, only one conclusion, and all arguments of the

conclusion occurring in at least one premise. The representation formalism is capable of

expressing higher-order constructs3. Among other representation items, MOBAL o�ers:

Facts Facts are used to state relations, properties of objects, and concept membership.

Facts are represented as function-free literals without variables. A derived or in-

put fact without explicit negation is interpreted as true. Every fact which is

to be interpreted as false must be explicitly negated. An example for a fact is

s jump(7,5,11,26,diagonal), where 7 is the trace number, 5 is the sensor num-

ber, 11 is the starting point, 26 the end point of the time interval, and diagonal is

the orientation of the robot towards the sensed edge.

2MOBAL is developed at the German National Research Center for Computer Science.
3Formal properties of the formalism have been proved in [Wrobel, 1987]. A description of the system

including detailed chapters about the representation formalism is [Morik et al., 1993].

7

Rules We may view the rules in MOBAL as Horn clauses. If the premises can be in-

stantiated by positive facts, the conclusion is derived. An example for a rule is the

following

stable(Trace,SAlpha,S,T1,T2,Value1) &

incr peak(Trace,SAlpha,S,T2,T3,Value2) &

stable(Trace,SAlpha,S,T3,T4,Value3)

! s jump(Trace,S,T1,T4,parallel).

This rule expresses a sequence of sensor patterns. First, in the time interval from T1

to T2, about the same gradient holds for any subsequent measurements. From T2 to

T3, there is a much higher gradient, and the higher gradient is stable from T3 to T4.

This sequence of features concludes in a more abstract feature, namely s jump.

Rule schemata Rule schemata express the structure of rules to be learned. They provide

the user of MOBAL with an explicit control over the hypothesis space for learning. A

rule schema is a rule in which predicate variables are used instead of actual predicates

of the application domain. A predicate variable can be instantiated by a predicate

symbol of the same arity. There is a substitution � for predicate variables. Let

RS be a rule schema, then RS� is an (partially) instantiated one. If all predicate

variables in RS are substituted by predicate symbols, RS� is a rule.

P1(Trace,SAlpha,S,T1,T2,Value1) &

P2(Trace,SAlpha,S,T2,T3,Value2) &

P1(Trace,SAlpha,S,T3,T4,Value3)

! P3(Trace,S,T1,T4,M).

According to Kietz and Wroble [Kietz and Wrobel, 1991], rule schemata are ordered

with respect to their generality such that the generality of fully instantiated rule

schemata is given by theta-subsumption [Plotkin, 1970].

Within the representation formalism, the representation language for our application

has to be declared. MOBAL supports the declaration of predicates or acquires the dec-

larations automatically. We have developed a hierarchy of predicates. The lowest level is

given by the measure predicate. It expresses a sensor measurement as a logical fact in the

following form:

measure(Tr, Ti, S, Dist, SAlpha, SX, SY, SZ, PX, PY, PZ, Oi, Ei)

where

Tr: trace number,

Ti: point of time, for instance, T1 and T2 are points of time,

S: sensor number,

Dist: measured distance,

SAlpha: sensor orientation,

SX,SY,SZ: sensor position in the global coordinate system,

PX,PY,PZ: position of the sensed point in the global coordinate system,

Oi: object number, and

Ei: edge number of what is sensed by the distance signal.

8 4 THE REPRESENTATION

The next higher level is given by the following predicates which express sensor pat-

terns: no measurement, increasing, incr peak, decreasing, decr peak, single peak,

stable, straight to, straight away. They all have the arguments, Tr, SAlpha, S, T1,

T2, Grad, where Grad is the calculated value of the chosen function for abstracting data

and all other abbreviations are as above. It need not be the gradient, but right now, the

function is the gradience. Several gradients are abstracted into one qualitative predicate

by a tolerance function. The �rst learning task, introduced in section 2, is about adjusting

these functions to get the proper calculation of these sensor patterns.

From these sensor patterns, our basic features, more abstract features are learned.

There is an inferential hierarchy of features. The basic features occur in the premises of

rules where the conclusion is a more abstract feature. These more abstract features occur

in premises of rules where the conclusion is an even more abstract feature. This inferential

hierarchy can be viewed as a hierarchy of features, but it can as well be considered a

hierarchy of simple concepts. Because we do not use propositional logic, no principle

distinction need be made between features and concepts. The interesting point is that

from the lowest inferential level on sensor patterns are de�ned with respect to robot

actions, and this interrelation is continued at all inferential levels.

Predicates concluded from sensor patterns of one sensor are: s jump, s line, s convex,

s concave. The predicate arguments are Tr, S, T1, T2, M, where M means one of

the following movements (relative orientation): diagonal, parallel, straight away,

straight towards. All other abbreviations are as above. These groupings were cho-

sen to represent the next level of abstraction because on one hand they can be derived

from a geometric description of the map de�ned with respect to a global coordinate sys-

tem. On the other hand they can be perceived by the robot yielding a description de�ned

with respect to the robot's reference system. Thus they support the transformation from

robot reference system to the global one and vice versa.

The relative orientation of the robot with respect to a group of edges is de�ned iden-

tically for s line and s jump: If the direction of the robot's movement is parallel to the

edge(s) it is labeled parallel. If the angle between the robot's direction of movement and

the edge orientation is a right angle it is labeled straight away or straight towards. All

other cases are labeled diagonal. For convex and concave corners, respectively, the rel-

ative orientation is considered parallel if the robot orientation is parallel to one of the

edges of the corner. The relative orientation is called straight towards or straight away if

the robot's orientation is not parallel to each of the two edges and it moves towards or

away from the point, which both edges share. All other cases are labeled diagonal. From

these predicates one can conclude more general features for a group of sensors: sg jump,

sg line, sg convex, sg concave with the same arguments as their corresponding fea-

tures for one sensor. In this way it can be expressed that all sensors at one side of the

robot perceive the same sensor pattern.

From these features we can conclude simple operational concepts, such as

move through door(Tr, T1, T2, M). As the meanings of the features or concepts are

learned, the rules are described in section 5.

9

5 Learning what it means to pass through a doorway

Referring to �gure 2 we illustrate what happens when the robot goes through a doorway 4.

Consider the traces where the robot moves through the doorway parallel to the doorframes.

When approaching the door, the sensors at the front right corner of the robot perceive

the convex corner produced by edges 10 and 9. The sensors on the right side perceive

the jump caused by edges 9 and 7. Then the sensors on the right back corner perceive

the convex corner caused by the pair of edges 9 and 8. Correspondingly, the sensors on

the front left corner �rst perceive the convex corner caused by edges 2 and 3, and then

the concave corner produced by edges 5 and 6. Meanwhile, the sensors on the left side

perceive the jump caused by edges 3 and 1, and the jump caused by edges 1 and 5. The

sensors at the front constantly measure the back wall of the room, edge 6. This is what

human inspectors of the sensory data realize. The issue now is to have the system detect

these relations by machine learning.

The learning module of the MOBAL system, RDT [Kietz and Wrobel, 1991], is applied

to solve this complex learning task. RDT is a model-based inductive learning algorithm

which learns instantiations of rule schemata. RDT learns from most general rules to more

special rules. In contrast to learning algorithms that learn most speci�c generalizations,

RDT learns most general rules that obey the user given evaluation criterion. In contrast

to systems that stop after having found a good rule, RDT learns as many most general

rules as possible5 .

In this application, RDT learns the following three types of rules:

� Rules for patterns for single sensors (see section 5.1)

� Rules for patterns for groups of sensors (see section 5.2)

� Rules for going through a door in terms of patterns for sensor groups (see section

5.3)

For each type of rule, a set of rule schemata is prepared. With the sensor data prepared

as described in section 3, rules of all types are learned. We illustrate the learning step by

step in the next sections. Note, however, that MOBAL is able to learn many rules and

rules at di�erent inferential levels in the same run.

5.1 Learning rules for single sensors

To illustrate the �rst type of rules, we consider how a single sensor perceives a

jump, i.e. two parallel edges at di�erent distances relative to the robot. The

following literals represent the features perceived in trace 19 by sensor 5 during

time interval [9,26]: stable(19,180,5,9,10,-1), incr peak(19,180,5,10,11,85),

stable(19,180,5,11,26,0). Sensor 5 is located at the right side of the robot. Trace 19

4In the following we use going through a door as synonym for going through a door way. Only when

talking with a native speaker of the American language we realized that the German concept of "door"

which has as a crucial point of its meaning that one can pass through a door does not correspond to the

American concept of a "door" which has as part of its meaning that one cannot pass through it. We de�ne

the German concept of a door in this paper.
5Of course, RDT does not further specialize rules which have been accepted already.

10 5 LEARNING WHAT IT MEANS TO PASS THROUGH A DOORWAY

is one of the traces where the robot moves through the door parallel to the doorframes (see

�gure 2). In the preprocessing step, we calculated the fact s jump(19,5,9,26,parallel).

This literal represents the fact that in trace 19, sensor 5 perceived a jump during time

interval [9,26], when moving parallel to the two edges. This fact was derived using the

knowledge about pairs of edges which produce an s jump. In addition we used knowledge

about edges which were measured by certain sensors during certain time intervalls. For

the cases where the robot moves diagonally through the door, e.g. traces 7 and 8, we

have the features incr peak(7,213,5,11,12,86), increasing(7,213,5,12,26,29) and

incr peak(8,326,5,11,12,86), increasing(8,326,5,12,26,29). The corresponding

jump-predicates are s jump(7,5,11,26,diagonal) and s jump(8,5,11,26,diagonal).

The other sensors on the right side of the robot, which are located behind sensor 5,

perceive the same features at successive time points. Overall 206 examples for s jump are

available for RDT. In addition, RDT is given 30 rule schemata. Two of them are listed

here for illustration:

P1(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

P2(Trace, Orientation, Sensor, Time2, Time3, Grad2)

! Q(Trace, Sensor, Time1, Time3, parallel).

and

P1(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

P2(Trace, Orientation, Sensor, Time2, Time3, Grad2) &

P1(Trace, Orientation, Sensor, Time3, Time4, Grad3)

! Q(Trace, Sensor, Time1, Time4, diagonal).

In the rule schemata capital letters refer to variables (predicate variables and argument

variables), and parallel and diagonal refer to constants. The rule schema can only be

instantiated such that the last argument of the concluding predicate has the constant as

its last argument. In this way, the hypothesis space for learning is further focused on our

learning goal. 28 rules were learned for s jump, for instance:

incr peak(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

increasing(trace, Orientation, Sensor, Time2, Time3, Grad2)

! s jump(Trace, Sensor, Time1, Time3, diagonal).

and

stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &

stable(Trace, Orientation, Sensor, Time3, Time4, Grad3)

! s jump(Trace, Sensor, Time1, Time4, parallel).

In tables 1 and 2 we have summarized the results of learning rules for patterns for single

sensors. Table 1 shows the number of examples for each grouping and relative orientation

of the robot towards the grouping. Table 2 shows the number of learned rules for each

grouping and relative orientation.

5.2 Learning rules for groups of sensors

In the next step, we tried to learn rules which de�ne patterns for groups of sensors. The

following ideas motivated our approach. The fact that a group of sensors belonging to

the same class (e.g. sensors on the right side of the robot) perceived the same pattern

yields more evidence than the fact that only a single sensor perceived the same pattern.

5.2 Learning rules for groups of sensors 11

s line s jump s convex s concave

parallel 200 103 44 16

diagonal 383 89 13 4

straight towards 75 6 0 1

straight away 60 8 0 2

total 718 206 57 23

Table 1: Number of examples for patterns for single sensors

s line s jump s convex s concave

parallel 14 11 16 3

diagonal 25 15 5 3

straight towards 16 2 0 1

straight away 13 0 0 2

total 58 28 21 9

Table 2: Number of learned rules for patterns for single sensors

In addition we get the information to which class a sensor belongs. In this way we get a

representation independent of particular sensor numbers.

In each of our example traces for moving through a door, all the sensors on the right

side of the robot perceive the jump caused by edges 9 and 8 at successive time points.

This is expressed by the three groups of literals:

s jump(7,5,11,26,diagonal), s jump(7,6,12,26,diagonal),

s jump(7,7,13,26,diagonal) and

s jump(8,5,11,26,diagonal), s jump(8,6,12,26,diagonal),

s jump(8,7,13,26,diagonal) and

s jump(19,5,9,26,parallel),s jump(19,6,10,26,parallel),

s jump(19,7,11,26,parallel).

The fact that these sensors belong to the class "right side" is expressed

with the predicate sclass(<trace>,<sensor>,<tmin>,<tmax>,<sensor class>),

where <tmin> and <tmax> denote the time interval for which the membership is

valid. For trace 7 and sensors 5, 6, and 7 we have sclass(7,5,1,26,right side),

sclass(7,6,1,26,right side), and sclass(7,7,1,26,right side). To express the

fact that a time point is the direct successor of another time point we use the predicate

succ(<time>,<time>).

In this learning step, we use rule schemata which focus the search in the hypothesis

space of RDT on hypotheses which constrain the required number of sensors of a speci�c

class. These sensors have to perceive the same pattern. We consider groups with one, two,

and three sensors. Via the rule schemata, we also put constraints on the time intervals

during which the same pattern has to be perceived by the sensors. The sensors in the

grouping have to perceive the same pattern in the same time interval or in time intervals

12 5 LEARNING WHAT IT MEANS TO PASS THROUGH A DOORWAY

with successive starting or ending points. Examples for rule schemata are:

S Pattern(Trace,Sensor,Start,End,Movement) &

sclass(Trace,Sensor,Time1,Time2,Class) &

Const Class(Class) & Const Move(Movement) &

Time1 � Start & End � Time2

! SG Pattern(Trace,Class,Start,End,Movement).

and

S Pattern(Trace,Sensor1,Start,End,Movement) &

S Pattern(Trace,Sensor2,Start,End,Movement) &

sclass(Trace,Sensor1,T1,T2,Class) & T1 � Start &

sclass(Trace,Sensor2,T1,T2,Class) & End � T2 &

Const Class(Class) & Const Move(Movement) &

Sensor1 6= Sensor2

! SG Pattern(Trace,Class,Start,End,Movement).

and

S Pattern(Trace,Sensor1,Start1,End1,Movement) &

S Pattern(Trace,Sensor2,Start2,End2,Movement) &

S Pattern(Trace,Sensor3,Start3,End3,Movement) &

succ(Start1,Start2) & succ(Start2,Start3) &

sclass(Trace,Sensor1,T1,T2,Class) & T1 � Start1 &

sclass(Trace,Sensor2,T1,T2,Class) & End3 � T2

sclass(Trace,Sensor3,T1,T2,Class) &

Const Class(Class) & Const Move(Movement) &

! SG Pattern(Trace,Class,Start1,End3,Movement).

The question is why we have included rule schemata for sensor "groups" that have

one sensor. In this way we have found that convex and concave corners are almost always

perceived by a single sensor positioned at a corner of the robot. In this case the rules

determine the class of the sensor. An example for a learned rule for a group with one

sensor is

s concave(Trace,Sensor,Start,End,Movement) &

sclass(Trace,Sensor,T1,T2,Class) &

corner back left(Class) & diagonal(Movement) &

T1 � Start & End � T2

! sg concave(Trace,Class,Start,End,Movement).

This rule tells us, that a sensor on the back left corner of the robot perceives a concave

corner when the robot moves diagonally along this concave corner. The following rules

show more examples for those rules that have been learned:

s line(Trace,Sensor1,Start,End,Movement) &

s line(Trace,Sensor2,Start,End,Movement) &

sclass(Trace,Sensor1,T1,T2,Class) &

sclass(Trace,Sensor2,T1,T2,Class) &

front middle(Class) & straight towards(Movement) &

T1 � Start & End � T2 &

Sensor1 6= Sensor2

! sg line(Trace,Class,Start,End,Movement).

and

5.3 Learning the meaning of moving through a doorway 13

s jump(Trace,Sensor1,Start1,End1,Movement) &

s jump(Trace,Sensor2,Start2,End2,Movement) &

s jump(Trace,Sensor3,Start3,End3,Movement) &

succ(Start1,Start2) & succ(Start2,Start3) &

sclass(Trace,Sensor1,T1,T2,Class) &

sclass(Trace,Sensor2,T1,T2,Class) &

sclass(Trace,Sensor3,T1,T2,Class) &

right side(Class) & parallel(Movement) &

T1 � Start1 & End3 � T2

! sg jump(Trace,Class,Start1,End3,Movement).

The former rule tells us that the sensors on the front of the robot perceive a line during

the same time interval, when the robot moves straight towards an edge. The latter rule

tells us that if the robot moves parallel along a jump on its right side, three sensor on the

right side perceive the jump in time intervals whose starting points follow each other.

These kind of rules enable the robot to focus its attention on speci�c sensors in order

to detect a certain grouping and to gather evidence for it.

5.3 Learning the meaning of moving through a doorway

In the last step, we learn rules for going through a door by using patterns for sensor groups.

In the beginning of this section we described which groupings of edges (jumps, concave

and convex corners, lines) the robot perceives while moving parallelly through a doorway.

The question to be asked is which subset of these features is su�cient to discriminate

between going through a doorway on one hand, and on the other hand, passing by a door,

or moving towards a corner of the room, etc.

We have used rule schemata which reected the symmetry of the doorframes, which

could be detected by classes of sensors opposite to each other. By this we mean the classes

"left side" and "right side", for example. The sensors in these classes perceive the jump

caused by edges 9 and 7 on the right side and the jump caused by edges 3 and 1 (3 and

5), respectively. An example for a rule schema is

SG Pattern(Trace,right side,T1,T2,Movement) &

SG Pattern(Trace,left side,T1,T2,Movement) &

Const Move(Movement) & Start � T1 & T2 � End

! Q(Trace,Start,End,Movement).

In this case, the constants right side and left side focus RDT's search on rules asso-

ciated with these sensor classes.

Depending on the orientation of the robot, with respect to the doorframes, the time

intervals for the left and right side are either the same or have a short time delay. This is

reected in the learned rules for moving parallelly through a door versus moving diagonally

through a door. The learned rules for moving parallelly through a door are:

sg jump(Trace,right side,T1,T2,Movement) &

sg jump(Trace,left side,T1,T2,Movement) &

parallel(Movement) & Start � T1 & T2 � End

! move through door(Trace,Start,End,Movement).

and

14 6 CONCLUSION

Number of examples Number of learned rules

parallel 6 2

diagonal 4 2

total 10 4

Table 3: Number of examples and rules for moving through a doorway

sg jump(Trace,right side,T1,T2,Movement) &

sg jump(Trace,left side,T3,T4,Movement) &

parallel(Movement) & succ(T1,T3) & Start � T1 & T2 � End

! move through door(Trace,Start,End,Movement).

The rules for moving diagonally through a door are the following

sg jump(Trace,right side,T1,T2,Movement) &

sg jump(Trace,left side,T3,T4,Movement) &

diagonal(Movement) & succ3(T1,T3) & Start � T1 & T4 � End

! move through door(Trace,Start,End,Movement).

and

sg jump(Trace,right side,T1,T2,Movement) &

sg jump(Trace,left side,T3,T4,Movement) &

diagonal(Movement) & succ3(T3,T1) & Start � T1 & T4 � End

! move through door(Trace,Start,End,Movement),

where succ3(<t1>,<t2>) expresses the fact that the time di�erence between t1 and the

following time point t2 is 3. The results of this learning step are summarized in table 3.

6 Conclusion

In this paper we have described one step towards automatically constructing higher and

hence more user-friendly notions for human-robot interaction. In contrast to previous

approaches to learning in robotics, such as Explanation Based Learning [Segre, 1988],

[Zercher, 1992], or subsymbolic techniques [Millan and Torras, 1991], we apply inductive

logic programming to robot navigation. Bratko and his colleagues apply inductive logic

programming to descriptions of real-world processes, too [Bratko et al., 1992]. Our aim of

automatically building up higher and more qualitative levels of describing events is similar

to their qualitative modeling of physical systems in very general ways only. Whereas they

have used about ten examples and a �xed background knowledge in order to learn one

clause that describes a physical system, we constructed many times more examples based

on real sensory data in order to learn a hierarchy of action-oriented features. Each learned

feature is represented by several clauses. Our application of RDT di�ers from the heuristic

relational learner FOIL [Quinlan, 1990] in that RDT is capable of learning many rules

in one run. FOIL selects the best covering and discriminating rule. In our navigation

application, however, we want as many rules as possible that could match a new situation.

The training phase in which we know the sensed edges should yield rules that can be used

in the performance phase, where this knowledge is not available.

15

Our main results are:

� identi�cation of learning tasks in a framework for learning in navigation;

� representation of action-oriented perceptual features at several levels of abstraction;

� learning action-oriented perceptual features at di�erent levels of abstraction.

Further work is needed concerning the two learning tasks identi�ed in this paper. We

chose one way of constructing the basic features (stable, increasing, etc.) from the sensory

data. These features are used in the �rst learning step (cf. 5.1). This learning step resulted

in two rules for deriving the same sensor pattern, one rule being a more detailed version

of the other one:

stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &

stable(Trace, Orientation, Sensor, Time3, Time4, Grad3) &

! s jump(Trace, Sensor, Time1, Time4, parallel).

and

stable(Trace, Orientation, Sensor, Time1, Time2, Grad1) &

incr peak(Trace, Orientation, Sensor, Time2, Time3, Grad2) &

incr peak(Trace, Orientation, Sensor, Time3, Time4, Grad3) &

incr peak(Trace, Orientation, Sensor, Time4, Time5, Grad4) &

stable(Trace, Orientation, Sensor, Time5, Time6, Grad5) &

! s jump(Trace, Sensor, Time1, Time6, parallel).

The �rst learning task should adjust the tolerance function for gradience such that the

gradients Grad2, Grad3, Grad4 are considered to be the same and incr peak no longer

appears three times. Some ambiguities in the data can be handled in this way.

Concerning the second learning task, a complete and systematic exploration of action-

oriented perceptual features can be undertaken now that we have shown the feasibility of

our approach.

An interesting research issue is to de�ne perception-oriented action features corre-

sponding to our action-oriented perceptual features. Both types of features will then

be integrated into operational concepts. The structure of concepts then require further

investigation. Look for instance, at the following four rules for the concepts c1 or c2:

r1) p1(X,Y1) & p2(Y1,Y2) & p3(Y2,Y3) ! c1(X,Y1,Y3)

r2) p1(X,Y1) & p2(Y1,Y2) ! c1(X,Y1,Y2)

r3) p1(X,Y1) & p4(Y1,Y2) & p3(Y2,Y3) ! c1(X,Y1,Y3)

r4) p1(X,Y1) & p2(Y1,Y2) & p3(Y2,Y3) ! c2(X,Y1,Y3)

where the third rule represents the case of a missing feature, i.e. p4 expresses

no measurement. The premises of r2 are a subset of those of r1. Should the subset

relation between premise sets indicate a subset relation between concepts? Or, should the

rule with more premises result in a more evidence for the concept membership of X to

c1? Or should each premise be interpreted as referring to a point in time where r1 covers

the whole time interval, and r2 refers to a part of the interval? Another interpretation

of partial information is associated with r3. There, the sensors failed to measure feature

p2. In addition to the problems with partial information, we have to deal with conicting

information. The disjoint concepts c1 and c2 are derived from the same premises. This

16 REFERENCES

may indicate that a distinguishing feature is missing. If, however, there is no discriminat-

ing feature, and it cannot even be constructed during the course of our �rst learning task,

then a probablistic approach may help to decide what to do. The formal analysis of such

problems is the subject of current ongoing investigation.

References

[Bratko et al., 1992] Bratko, I., Muggleton, S., and Varsek, A. (1992). Learning qualitative

models of dynamic systems. In Muggleton, S., editor, Inductive Logic Programming,

chapter 22, pages 437 { 452. Academic Press.

[De Jong and Mooney, 1986] De Jong, G. and Mooney, R. (1986). Explanation-based-

learning: A alternative view. Machine Learning, 2(1):145{176.

[Giordana et al., 1990] Giordana, A., Roverso, D., and Saitta, L. (1990). Abstraction

- a framework for learning. In Procs. AAAI-Workshop on Automatic Generation of

Approximations and Abstractions.

[Kaelbling, 1987] Kaelbling, L. (1987). An architecture for intelligent reactive systems.

Technical report, CSLI, Stanford, Ca.

[Kietz and Wrobel, 1991] Kietz, J.-U. and Wrobel, S. (1991). Controlling the complexity

of learning in logic through syntactic and task-oriented models. In Muggleton, S., editor,

Inductive Logic Programming, chapter 16, pages 335 { 360. Academic Press, London.

Also available as Arbeitspapiere der GMD No. 503, 1991.

[Knieriemen, 1991] Knieriemen, T. (1991). Autonome Mobile Roboter - Sensordatenin-

terpretation und Weltmodellierung zur Navigation in unbekannter Umgebung. BI Wis-

senschaftsverlag, Mannheim.

[McCarthy and Hayes, 1969] McCarthy, J. and Hayes, P. (1969). Some philosophical prob-

lems from the standpoint of arti�cial intelligence. In Michie, D. and Meltzer, B., editors,

Machine Intelligence, volume 4. Edinburgh University Press.

[Millan and Torras, 1991] Millan, J. and Torras, C. (1991). Learning to avoid obstacles

through reinforcement. In Birnbaum, L., editor, Machine Learning - Procs. of the 8th

International Workshop, pages 298 { 302. Morgan Kaufmann.

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge

Acquisition and Machine Learning - Theory, Methods, and Applications. Academic

Press, London. to appear.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer,

B. and Michie, D., editors, Machine Intelligence, chapter 8, pages 153{163. American

Elsevier.

[Quinlan, 1990] Quinlan, J. (1990). Learning logical de�nitions from relations. Machine

Learning, 5(3):239 { 266.

REFERENCES 17

[Segre, 1988] Segre, A. (1988). Machine Learning of Robot Assembly Plans. Kluwer,

Boston.

[Spandl and Pitschke, 1991] Spandl, H. and Pitschke, K. (1991). Lernen von Makro-

Trajektorien f�ur einen autonomen Roboter. KI, pages 12 { 16.

[Wrobel, 1987] Wrobel, S. (1987). Higher-order concepts in a tractable knowledge repre-

sentation. In Morik, K., editor, GWAI-87 11th German Workshop on Arti�cial Intelli-

gence, pages 129 { 138, Berlin, New York, Tokyo. Springer Verlag.

[Wrobel, 1991] Wrobel, S. (1991). Towards a model of grounded concept formation. In

Proc. 12th International Joint Conference on Arti�cial Intelligence, pages 712 { 719,

Los Altos, CA. Morgan Kaufman.

[Zercher, 1992] Zercher, K. (1992). Wissensintensives Lernen f�ur zeitkritische technische

Diagnoseaufgaben. in�x, Sankt Augustin.

