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Abstract

Modern information systems must respect certain restrictions in order to guarantee
the proper and desired functionality. Semantic constraints help to prevent incon-

sistencies in the stored data resulting from faulty updates. Security constraints are
to maintain integrity, secrecy and availability over updates and over queries. This

thesis designs a unifying framework for the specification of semantic constraints and
security constraints in information systems in order to study interactions between
them.

We consider an information system as a distributed, reactive system in which each
actor and each object acts autonomously and concurrently. Actors gain knowledge

by performing read operations on objects and they may update the content of an
object by performing update operations. To execute read or update operations,
actors need execute rights that can be granted or revoked by other actors.

This view of an information system is captured in a computational model. In this
model, we consider each component of the information system, actors as well as

objects, uniformly as a sequential agent that performs operations autonomously
and jointly with other sequential agents. Each agent is affiliated with a set of local

propositions and a set of local operations as well as with relations that capture the
agent’s knowledge and belief.

An agent’s knowledge is determined completely by its local state. Change in knowl-

edge of an agent is due to operations performed by the agent. Interaction between
knowledge and operations is captured by the requirement that the enabling and

the effect of an operation is completely determined by the knowledge of the act-
ing agents. Knowledge of agents can be changed only by operations in which they
participate.

We define a temporal and epistemic specification language with temporal and epis-
temic operators. The logic provides for each agent local next and until operators as

temporal operators and local knowledge and belief operators as epistemic operators.

We develop a modal tableau based proof system for a subset of the logic and show
its soundness. Completeness can be shown only for a smaller, but still reasonable

subset of the logic, decidability remains an open question. The main difficulty of
the tableau system arises from the interaction requirement between knowledge and

action.

In a detailed example we demonstrate how the framework can be used for specifying
semantic constraints and security constraints in information systems.
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Chapter 1

Introduction

An information system models a part of the “real world” while respecting certain

constraints in order to guarantee the proper and desired functionality. These con-
straints can be imposed by the real world as well as by the application context and

can be declared on the stored data in the information system as well as on the
behavior of the system and its users.

Semantic constraints help to prevent the information system to have data that is

incompatible to the real world. For example,

• a 25 years old employee cannot have a work history of 30 years,

• each employee has a social security number,

• an employee’s salary may not decrease,

• every person can either be male or female.

Since data incompatible to the real world may result from faulty updates, semantic

constraints are to be checked during the execution of update operations. They
restrict the possible (sequences of) updates in each state of the information system.

Security constraints help to maintain integrity, secrecy and availability over (se-
quences of ) updates as well as over queries. For example,

• an employee may not increase her own salary,

• an administration employee in a hospital may not alter laboratory data of a

patient,

• secret information may not be disclosed to an unclassified user,

• whenever a user queries the system, she must eventually get the requested

information,
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Chapter 1 Introduction

While semantic constraints are concerning the values of data in the information
system, security constraints are more concerning the circumstances under which the

data may be modified or disclosed.

Some years ago, information systems were mostly monolithic: We could assume that
data was stored centrally in one place that there was one schema for the database

which included all semantic constraints imposed on the data and thus that there
was a central and global control over the system.

Over time, the data stored in information systems has been dramatically increas-

ing, and the potentials of combining information systems over a network have been
growing. So, distributed systems with heterogeneous distributed components be-

came more and more important.

We can now consider an information system as a highly distributed system with
heterogeneous distributed components. In such systems, it seems unrealistic to as-

sume anything like a global schema or a centralized mechanism for updates with
enforcement of semantic constraints and for query evaluation. Instead, we have to

assume that each individual component has only a restricted view on the whole
system. Accordingly, security is considered as being concerned with the different

interests and views of the various components. Here, it seems to be rather unde-
sirable to assume anything like a global security policy or centralized supervising

mechanisms. Instead, whenever possible, security interests should be enforced by
the components autonomously. In the remainder of this thesis, whenever we con-

sider semantic constraints and security constraints, we will have to keep in mind that
these constraints are employed in a distributed environment. In particular, even if
an ideal observer thinks in terms of a global state, which, however, is questionable

because of the problem of synchronized time, in practice any component will have
only partial knowledge about that fictitious state.

Our goal is to provide a unifying framework for both kinds of constraints, seman-
tic constraints as well as security constraints declared for distributed information
systems in order to study interactions between these constraints on the conceptual

level at design time in a manageable way supported by an algorithmic tool.

In the following we review the basic features of the two kinds of constraints that we

have in mind to provide a unifying framework for both of them.

1.1 Various Types of Constraints for Information Systems

Let us first investigate the various types of constraints in information systems in
order to justify the required features of our framework.
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1.1 Various Types of Constraints for Information Systems

1.1.1 Semantic Constraints

Semantic constraints reflect properties of an outside “mini-world” that is modeled by

the information system. There are several possibilities to classify these properties:
We can distinguish between

• properties that can be found in the real world (like An employee of 25 years

age cannot have a work history of 30 years, A person cannot have two biological
mothers or A person has exactly one birth date) and

• properties that are be imposed by the application requirements (like Every
employee must have a social security number, A person may get her driving

license only after she is 18 years old or Every participant of the lab course
must be a student).

Another way to classify semantic constraints is to distinguish between

• static constraints, that are properties relative to one instance of the infor-

mation system (like the above constraints Every employee must have a social
security number, Every participant of the practical course must be a student or
A person may sign an invoice only if she holds the secret signature key) and

• dynamic constraints, that are properties regarding a sequence of instances over
time (like The salary of an employee may not decrease, Once a bank account

exists, it exists forever or A prescription can be used only once).

Semantic constraints are invariants that need to be maintained by the information

system whenever the current instance of the information system is changed by some
update operation. Further, semantic constrains are intended to support the users of

an information system when they interpret instances of a system in terms of a real
world.

1.1.2 Security Constraints

Security constraints reflect obligations and restrictions of human individuals in the
outside mini-world modeled by the information system. Their main purpose is to

maintain secrecy, integrity, and availability.

Maintaining secrecy means preventing the improper disclosure of data. Users may
access information directly by querying the information system or indirectly through
logical conclusions of their knowledge or belief. Thus, we can distinguish between

two types of confidentiality. The first type is “authorization confidentiality”, roughly
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Chapter 1 Introduction

meaning queries should be successfully invoked only by authorized users. The second
type of confidentiality roughly means that the users’ knowledge and belief should

comply with the task specific restrictions, they should not be able to infer informa-
tion they are not entitled to know.

Maintaining availability means avoidance of denial of service. Availability has two

aspects: Firstly, whenever information is requested by a user, the system should
eventually provide this information or, in other words, user knowledge should even-

tually comply with the task specific richness. Secondly, whenever a user submits an
(update) operation, this operation should eventually be executed.

Maintaining integrity means preventing the improper modification of data. In the

context of security requirements this can be seen as “authorization integrity”: up-
dates should be successfully invoked only by authorized users, e.g. in a company,

employees may not increase their own salary.

Security constraints are invariants that are to be maintained by the system whenever
some operation sequences are executed on behalf of an actor. Here, update opera-

tions (e.g. for maintaining integrity) as well as read operations (e.g. for maintaining
secrecy) are important. Further, security constraints are intended to support system

users when they employ the system as a communication tool, e.g. by controlling the
flow of information.

Often we cannot strictly distinguish among integrity in the context of security, in-

tegrity as semantic constraints, and integrity required by availability. However, in
all the three contexts, we sometimes have obligations concerning sequences of op-

erations: a user should eventually invoke a required operation, a collection of users
should eventually invoke required sequences of operations or stored data should

eventually reach required states. These obligations can be seen as weak obligations:
it is not required, that they always are always satisfied, or that they are satisfied

immediately after some checkpoint. It is only required that they will eventually be
satisfied.

Similarly, constraints in the context of availability can be seen as weak constraints:

again, it is only required that the system has to execute requested operations even-
tually and not necessarily immediately.

1.2 The Problem

There are subtle interactions of semantic constraints and security constraints in

information systems. For example, the semantic constraints may demand that if
some data a is modified, then data b needs to be modified accordingly, while the

security constraints allow the user to modify only data a but not data b. Another

10



1.3 Analysis of the Problem

example could be that the knowledge about semantic constraints reveals information
to a user that should be kept secret from her.

To guarantee the desired functionality of an information system, the specification
of the system and of the constraints should cover the requirements imposed by the

real world and the application context. It is essential to investigate the interactions
between the various types of constraints to ensure the correct design. The question

that arise are:

• Are the imposed constraints consistent?

• Does the system description ensure the desired constraints?

Interactions of semantic constraints and security constraints can be investigated only

if they are uniformly expressed in the same framework.

Our aim is to develop such a framework and to have an (at least semi-) automatic
proof tool to answer the above questions.

1.3 Analysis of the Problem

An information system models a part of the real world, often called “mini-world”.
The outside mini-world imposes certain restrictions on the data stored in its ob-

jects. Semantic constraints of an information system reflect these restrictions of the
modeled mini-world.

In section 1.1.1 we distinguished between two types of semantic constraints, namely

static semantic constraints and dynamic semantic constraints. Static constraints
restrict the possible states of the information system, whereas dynamic constraints

restrict possible updates and sequences of updates. Thus, our framework must be
able to deal with states and (sequences of) updates.

The outside mini-world imposes certain obligations and restrictions on its actors. Se-
curity constraints of an information system reflect these obligations and restrictions

of the modeled outside mini-world.

In section 1.1.2 we identified three main types of security constraints, namely secrecy,

integrity, and availability. Secrecy constraints restrict the flow of information by
keeping track of the actors’ knowledge and by restricting read access to data. Thus,

our framework must have a notion of actors’ knowledge and of execute
rights for read operations.

Integrity constraints restrict the possible updates and sequences of updates by re-
stricting the actors’ write access to objects. Thus, our framework must have a

notion of execute rights for write operations.

11



Chapter 1 Introduction

Availability constraints impose obligations on the system. In a weak sense, these
obligations can be modeled using temporal notions: If a user submits an operation,

the system should eventually execute it. Thus, our framework must have a
notion of time.

In the context of semantic constraints as well as in the context of security con-

straints we sometimes talk about sequences of operations. Such sequences can also
be modeled using temporal notions.

Further, the framework must be able to formalize actors, e.g. users, administrators

etc. These actors perform operations, thus we need a notion of operations.

Our framework must also be capable of formalizing stored data, e.g. by formalizing

objects whose current state represents the stored data. On these objects, opera-
tions are executable. Also, the current state of the objects may change over time
by the execution of operations, which means that the state of objects over time has

to be formalized.

As observed above, operations can be of various types:

• queries or read operations, which change the knowledge of users,

• update or write operations, which change the state of stored data, and

• authorization operations (like grant or revoke) by which actors can grant

or revoke other actors authorizations of operations.

If our framework is capable to express all the constraints we wish to formalize, then

it would be of great help to have an automated reasoning tool that decides for a set
of constraints expressed in this framework whether it is consistent or inconsistent.

So, we are looking for a framework that on the one hand is expressive enough to
encode all the desired constraints and on the other hand is restricted enough to be

decidable or at least semi-decidable.

1.4 Our Approach

In this work we develop a logical framework that is capable to uniformly formalize
semantic constraints and security constraints of information systems.

The framework consists of a computational model, a logical calculus the semantics

of which is defined over the computational model and a tableau based proof system.

The computational model represents each actor and each object of an information

system uniformly as agents. Each agent can perform operations and has her own
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1.4 Our Approach

operation alphabet. The data stored in objects is represented by propositions lo-
cal to the respective agent. The factual knowledge of an actor is represented by

propositions local to the respective agent.

We assume that each agent works autonomously of other agents and has her own
local time line. Agents synchronize with other agents by jointly performing syn-

chronization operations. Each agent has a local view on the system and a local
state.

Two states of the system are equivalent for agent i if they do not differ in the local

state of agent i, however, they can differ in the local state of some agent j other than
i. This means, if the system reaches a state c ′ from a state c through an operation

in which i has not participated, the states c and c ′ are equivalent for i.

To capture an agent’s knowledge in the model we define an indistinguishability
relation for knowledge for each agent i that describes for each state c, which states

are indistinguishable from c for agent i. Similarly, to capture an agent’s belief in
the model, we define an indistinguishability relation for belief for each agent i.

Apart from the computational model, our framework contains a temporal and epis-
temic logic the semantics of which is defined on the described computational model.
For each agent, the language provides local next operators labelled by operations, a

local until operator, a local belief and a local knowledge operator.

The temporal part of the logical calculus is a lightweight version of that presented

in [Nie97]. The key idea of the temporal part of the logic is that formulae “look” at
the configurations from a local point of view of either a single agent or of a group
of agents.

The epistemic part of the logical calculus is closely related to the work of Ramanujam
presented in [Ram96]. We will discuss this in detail later in chapter 2. The key idea

of the epistemic part of the logic is that knowledge of agents changes due to actions:
if an agent does not participate in an action, her knowledge remains unaffected and

also, the enabling of an action remains is independent of the knowledge of agents
that do not participate in the action.

The third component of our unifying framework is a sound and complete tableau

based proof system for a subset of this logic that does not contain belief operators.
In the computational model, change of knowledge of an agent is only due to perfor-

mance of operations by the agent. The enabling and the effect of an operation is
dependent only on the knowledge of participating agents. This seems to be a very
natural constraint. However, exactly this constraint makes the tableau system quite

involved. Our tableau system will explicitly represent the temporal relations and
epistemic indistinguishability relations in the tableau to have a kind of ’global view’

on the whole system under construction.
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Chapter 1 Introduction

1.5 Outline of the Thesis

In chapter 2 we try to get an overview over the various approaches of modal logics
available so far for the specification of the various types of constraints and discuss

in detail the approaches relevant for our framework.

In chapter 3 we describe our view of an information system. We define a com-
putational model and show how this model represents our view of an information

system.

In chapter 4 we formally define the syntax and semantics of the specification language

and investigate some properties of the language.

Chapters 5 and 6 present the tableau based proof system for the logic and prove
its soundness. The developed tableau system is not complete if we consider the full

logic. However, we show that the tableau system is complete for a reasonable subset
of the defined logic.

In chapter 7 we present a detailed example in which we show, how the developed

framework can be used to uniformly specify the various types of constraints in an
information system.

Finally, in chapter 8 we discuss open problems which we did not investigate in this
thesis.

A part of this work, namely our view of an information system captured in the

computational model in chapter 3 and the logical language defined in chapter 4
was published as [BS03]. At some points in this work, we use text passages from

the mentioned publication, if we find it appropriate and do not see the need of a
reformulation.
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Chapter 2

Related Work

In the past a lot of work concerning formalization of database constraints has been

done.

In the logical approach to information systems, it is assumed that the system admin-
istrator expresses the semantic constraints in a declarative style at design time. He

specifies formulae in an appropriately restricted formal language of a logic calculus.
The logic calculus is presumed to have a syntax for formulae and model-theoretic

semantics, i.e., there exists a definition of a formula is satisfied by some structure
(or some interpretation) and based on that a definition of a set of formulae implies

another formula. In the context of information system, instances of an information
system are considered as structures in the sense of the logic calculus.

In a policy oriented approach to security, a security administrator expresses the secu-

rity constraints in a declarative style. He specifies some formulae in an appropriate
formal language. It is assumed that besides a syntax for formulae, a semantics is

provided too, i.e. a definition of a formula is satisfied by a history that comprises,
possibly among others, a sequence of actual executions of operations, and based on

that, of a set of formulae implies another formula.

In this section we analyze various approaches for the logical formalization of in-
formation systems found in the literature. While semantical constraints have been

widely investigated, still a lot of work is required with regard to security constraints
and in particular with regard to the combination of both types.

In the introduction we have identified aspects that should be met by the framework:

The framework should be suited to model states of the information system, its
temporal behaviour and its epistemic behaviour in a distributed environment, in which

various components act autonomously and concurrently. In most papers only few
aspects of security constraints were investigated, other aspects were faded out.
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Chapter 2 Related Work

2.1 Temporal Aspects in Distributed Information Systems

Temporal logics have been successfully used for modeling temporal integrity con-
straints in information systems (see e.g. [CT98]): Updates and integrity constraints

can be formulated in an abstract, representation-independent way. Chomicki and
Toman give an overview of the development of temporal logics in information sys-

tems.

Information systems can be seen as open, reactive and usually distributed systems
that administrate persistent data. Each component (object, user, administrator,

etc.) carries out operations that change the state of the information system. It
is especially interesting for our aim to look for temporal logics that allow to model

distributed behaviour. A lot of work has been done in the field of modeling temporal
behaviour in reactive systems and multi-agent systems (see for example [MP92],

[Lam94], [LPRT93], [Wei99], [HS98], [Woo00]).

In the field of multi-agent systems a very common approach are BDI-models (belief-
desire-intention-models), [Wei99], [HS98], [Woo00]. Agents are seen as entities that

are capable of observing their environment and of reasoning about it and of indepen-
dently and autonomously performing actions based upon decisions made by these

agents dependent on their observations of the environment. In this perspective,
each agent is assumed to have its own belief, desires and intentions. In [Woo00],

Wooldridge introduces a very powerful first-order BDI-logic called LORA (Logic for
Reasoning Agents). LORA consists of several components: a first-order component,
a belief/desire/intention component and a temporal component. The temporal com-

ponent is based on CTL∗, a well known temporal logic with an interleaving semantics.

Reactive systems can be seen a bit wider than multi-agent-systems. In reactive

systems, not all components necessarily need to be agents in the sense described
above.

A very common model for reactive systems are so-called Mazurkiewicz traces, re-

fer [Maz95], [MOP89]. Mazurkiewicz traces are a semantic concept for modeling
concurrency. Unlike other semantic concepts, e.g. Kripke structures, the main char-

acteristic of such trace systems is to explicitly differentiate between concurrency and
nondeterministic choice. Another main feature of trace systems is the abstraction
of interleaving; modeling of true concurrency is possible. In a transition system,

a‖b (a parallel b) is modeled same as a, b2b, a (nondeterministic choice between
a followed by b and b followed by a). A trace system on the other hand differen-

tiates between these two operations. Although this model is not more expressive
than semantic concepts with interleaving, it can avoid the known (notorious) state

explosion problem.

Temporal logics for distributed systems based on Mazurkiewicz-trace systems have
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2.2 Epistemic Aspects in Distributed Systems

been developed by Penczek, Thiagarajan, Lodaya, Ramanujam, Niebert and oth-
ers [Thi94, Pen93, Nie97]. Thiagarajan develops TPTL (Trace based Propositional

Temporal Logic) in [Thi93] to express nonsequential behaviour directly without us-
ing interleaving. Nonsequential behaviour occurs in reactive systems with multiple

autonomous sequential agents. A more expressive logic was introduced by Niebert
in [Nie95, Nie97]. In addition to the usual logical connectors, TPTL contains a lo-
cal next and until, similar to the ones known from PTL (for a detailed description

see [Thi93]). νTrPTL contains fixpoint operators instead of until, thus νTrPTL is
strongly more expressive than TPTL.

TPTL as well as νTrPTL base upon traces seen as nonsequential runs of a distributed
system. Such a system consists of an arbitrary but fixed number k of sequential
agents which synchronize by performing actions jointly. Each agent i is assigned a

non-empty local alphabet Σi of actions , Σ̃ = (Σ1, Σ2, . . . , Σk), (k = number of agents
of the system) is called a distributed alphabet. Agent i must take part in each action

a ∈ Σi. Thus synchronization between individual agents is modeled by the joint
execution of actions. If two actions a and b are not contained in the same alphabet,

they can be executed independently. Infinite traces can be seen as Σ-labelled partial
orders (fulfilling certain characteristics), where Σ =

⋃

i∈{1,...,k}Σi.

[Thi93, NS97] prove the decidability of the satisfiability problem for TPTL as well

as for νTrPTL.

Inspired by this development of logics for distributed systems, Ehrich, Caleiro, Ser-

nadas and Denker presented in [ECSD98] two object-oriented logics capable of ex-
pressing communication among objects. In these logics, all objects of a database
system are seen as sequential agents and are thus components of the distributed

system.

2.2 Epistemic Aspects in Distributed Systems

There are several approaches in which a database is seen as a collection of knowledge

(see e.g. [Rei90] or [CD96, CD97]). If we follow this view, we can uniformly see
database objects, users, administrators etc. as reasoning agents in a distributed
environment. Over the last decade, modelling of knowledge has been a field of great

research interest, especially for multi-agent systems. [FHMV95] gives an excellent
overview of the state of the art in this topic.

Traditionally, modal logics of knowledge are interpreted over global states of the
distributed system. As motivated in the introduction, we cannot assume such a
global state: Every agent only has a local view on the system and when the system

changes due to an action by a group of agents, only agents of the acting group
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typically know the effect of that action. The knowledge of the non-participating
agents remains unchanged, and this fact is known by all agents.

Ramanujam analyses in [Ram96, Ram94, Ram99] the meaning of knowledge in dis-

tributed systems. A similar discussion carried out by Van der Hoek and Meyer in
[vdHM92] addresses the following questions:

1. What exactly is a knowledge state?

2. Is the knowledge that is logically implied by the available information actually
computable?

3. Given a knowledge state, can we decide, which other states are reachable?

4. Can the actions of one agent have influence on the knowledge of another?

Ramanujam develops an action based temporal and epistemic logic ([Ram94]), in

which knowledge changes caused by actions of agents can be expressed. This logic
is a natural extension of PDL (Propositional Dynamic Logic) with actions enriched

with the modal operator K as it is defined by Hintikka in the logic S5.

2.3 Deontic Aspects

We considered different types of constraints in the introduction. Security constraints
in a database system always deal with obligations and authorizations. The tendency

to formalize such constraints through deontic logic has been mainly followed by
Cuppens, Demolombe, Carmo and Jones. In this method, a database is considered

as a normative system and the corresponding security and semantic constraints are
seen as deontic constraints: It ought to be, that . . . , It is necessary, that . . . , It is

permitted, that . . . . The meaning of a normative system in this context is, that a set
of agents (software systems, humans etc.) interact according to some rules. It is not

explicitly mentioned, that the misconduct of the agents is impossible. Normative
systems rather suggest, how to handle the misconduct of an agent.

In these approaches, it is often distinguished between hard and soft deontic con-

straints (see [CJ94]). Hard deontic constraints are constraints, that may never be
violated, such as Every member of the department possesses an identification num-

ber. Soft deontic constraints, e.g. Books can only be issued to the members of the
department, must eventually be fulfilled, however, they might be violated for a cer-
tain period of time. Similar to this view is the distinction between ideal, sub-ideal

and prohibited states of such a system. This method of classification of states was
first introduced by [JP85]. Ideal states in databases are those situations, in which all
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constraints are fulfilled. In sub-ideal states, some weak constraints may be violated,
but the system must still be transformable in an ideal state, i.e. eventually fulfill

all constraints. Prohibited states correspond to situations which are not allowed to
occur. Logics suggested in this context (e.g. in [CJ94]) mainly focus on the deontic

aspects. Temporal features as we would need them for our framework are only very
basic (mainly simple transitions between states), strong temporal components like
until or eventually to capture larger periods of time are not provided.

In our view, authorizations for performing operations can be modeled by assigning
particular rights to the components of the information system. Then we can formal-

ize a temporal constraint, that roughly expresses the following: All operations that
are not explicitly allowed for a component, cannot happen. We could also formalize
a dual temporal constraint: All operations that are not explicitly forbidden, may

eventually happen. These rights are not static in the system but may be changed
by other components.

The distinction between soft deontic constraints (those, that must eventually be
fulfilled) and hard deontic constraints (those, that must always be fulfilled) can also
be done in a temporal way: Hard deontic constraints always have to be fulfilled,

whereas soft deontic constraints may be violated at some states but must eventually
be fulfilled.

As a consequence, in our approach deontic aspects are completely reduced to tem-
poral aspects and the added feature of explicit rights, or explicit forbiddances, re-

spectively.

Dignum et al have a somewhat different interpretation of deontic aspects in
[DMWK96]. This paper deals with the question, which obligations for individual

users of a database systems are born from the corresponding past of each user. The
logic developed in this paper consists of temporal operators (directed into past) and

deontic operators, dynamic (ought-to-do), as well as static (ought-to-be). Further,
the logic contains one more modal operator, which formalizes the intention of the
corresponding agent. This operator can be seen as a kind of Next-operator, which

only allows actions, which are ideal in sense of intended actions, as next actions.

2.4 Combination of Deontic and Epistemic Aspects

We look back to the epistemic aspects of security constraints. There are a lot

of works, mainly by Reiter [Rei90], Cuppens and Demolombe [CD96, CD97], but
also by MacEwen [GMP92, MCK96] in which a database is seen as a collection of
knowledge: the database knows or believes in a set of facts about the real world, users

of the database get to know the parts of these facts by querying the database. In
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association with inference control, the question arises, which knowledge is allowed
to be accumulated by a user? What is he unauthorized to know? In ([CD97]),

Cuppens and Demolombe define a modal logic with epistemic and deontic operators
and based on Kripke structures. They show, that this logic is axiomatisable. It can

be expressed in this logic, which contents of a database a user knows (KBi), or may
know (PKBi) as well as which contents a user in a particular role may or may not
know (PKBr, FKBr).

The knowledge, the prohibitions or permissions to know are always related to the
facts in the database. Knowledge about the knowledge of other users or the knowl-

edge about the actions performed in the database is however not formulatable.
Changes in the database, which lead to changes of knowledge of the users, were
also disregarded. It is assumed, that the contents of the database are fixed. In our

context we must assume, that users can gain knowledge not only about the data
stored in the information system but also about the behaviour of the system itself

as well as of the knowledge (or belief) of other users.
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Chapter 3

Our View of an Information System

In this chapter, we capture our view of an information system in a computational

model for the temporal and epistemic logic defined in the next section. The model
consists of three aspects: static aspects, dynamic aspects concerning control and dy-

namic aspects concerning knowledge and belief. In the first two aspects we roughly
follow the definitions in [Nie97] of a partial order model for a reactive system. We

then extend the model by an epistemic component. The epistemic definitions are
more or less standard: Situations (worlds) are related by indistinguishability rela-

tions. To capture interaction between knowledge and time, we define the indistin-
guishability relations dependent of the temporal definitions.

3.1 Static Aspects

We view a distributed information system as consisting of several components,

e.g. data objects, users, administrators, and security managers. If the informa-
tion system is viewed as a piece of software, then data objects lie inside the system

whereas users, administrators, etc. appear outside the system. If we provide a repre-
sentative user-agent inside the system for each outside actor, and a repository-agent
for each data object, then we can model all the components of an information system

uniformly as sequential agents. We call the finite set of all k agents of an information
system Ag. That is,

Ag := {1, . . . , k}.

The current state of each object, i.e. its data content, is represented by a set of

propositions local to the corresponding repository-agents. Similarly, the current
state of a user, i.e. what data she has read or which rights have been granted to her,

is represented by a set of propositions local to the corresponding user-agent.

Each agent i of our system is thus associated with a finite set of local propositions
Pi . Let

P̃ := (P1, . . . ,Pk)
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be the distributed set of propositions, such that Pi ∩ Pj = ∅ for i 6= j. Further, we
denote with P =

⋃

i∈AgPi the set of all propositions.

All agents can perform operations (read, insert, delete, grant rights, revoke rights,

etc.) partly autonomously, partly together with other agents as joint operations.

Seen as a whole system, all these components work concurrently: E.g. while ac-
tor a1 inserts some value x in object o, another actor a2 could at the same time

(concurrently) grant some execute right r to a third actor a3. However, each single
component performs its operations sequentially.

Thus, we equip each agent i with her own finite, non-empty operation alphabet Oi.
Let

Õ = (O1, . . . ,Ok)

be a distributed set of operations, and O =
⋃

i∈AgOi.

With ag(op) := {i ∈ Ag|op ∈ Oi} we refer to the set of agents which are involved

in the execution of a joint operation op. An operation op ∈ Oi ∩ Oj is called a
synchronization operation between agents i and j. Two operations op1 and op2 are

called independent iff ag(op1) ∩ ag(op2) = ∅.

The informal meaning of these operations will be represented by the changes of the
interpretation (see definition 3.3.4 below) of local propositions.

Summarizing the discussion above, we see the static declarations of a distributed

information system as a concurrent system of sequential agents, where each agent is
equipped with a set of operations and a set of local propositions.

Definition 3.1.1 (static declarations of an information system) Let the
static declarations of an information system be defined as a tuple (Ag, Õ, P̃),
consisting of a set of agents, their distributed set of operations and their distributed

set of local propositions.

3.2 Dynamic Aspects Concerning Control

Given the static declarations of an information system, we now describe the control

flow of its possible dynamic behaviours. Below, this control flow is formalized as
runs. Each occurrence of an operation within a behaviour is denoted by an event.

Thus a possible behaviour is captured by a set of events which should satisfy some
requirements in order to represent a reasonable control flow.

• It should be finite or at most denumerably infinite.
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• It should be partially ordered according to the relative occurrence of events in
time.

• It should distinguish some specific events as the explicit beginning of a be-
haviour. More precisely, each single event should have only a finite set of

predecessors according to the partial order.

• At each event, exactly one operation occurs.

• For each agent i, the set of events this agent is involved in is even totally
ordered according to the relative sequence in time.

Every occurrence of an operation in the control flow of a possible behaviour of an
information system is an event. The set of all events of a run is partially ordered.
And since we have an explicit beginning of the run of such an information system,

the downward closure of each subset of the set of events of a run is finite.

Definition 3.2.1 (downward closure) Let E be a set and ≤ ⊆ E× E be a partial

order on E. For M ⊆ E,

↓M := {e ∈ E | ∃e ′ ∈M : e ≤ e ′}

denotes the downward closure of M. For e ′ ∈ E we write ↓ e ′ instead of ↓ {e ′}.

Now we can formally define the control flow of a possible behaviour of an information

system as a run.

Definition 3.2.2 (run) A run F(Ag,Õ,P̃) = (E,≤, λ) of an information system with

the static declarations (Ag, Õ, P̃) is a partially ordered, labelled set of events E,

s.t. the following holds:

• E is finite or denumerably infinite.

• ≤ is a partial order on E.

• For all e ∈ E the downward closure ↓ e is finite.

• λ : E −→ O is a labelling function yielding the operation λ(e) occurred at event
e.

• For all i ∈ Ag, the reduction of ≤ on Ei := {e ∈ E | λ(e) ∈ Oi}, i.e. ≤
∩ (Ei× Ei), is a total order.
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We define F(Ag,Õ,P̃) as the set of all possible runs F(Ag,Õ,P̃) over the same static

declarations (Ag, Õ, P̃). We write F instead of F(Ag,Õ,P̃) and F instead of F(Ag,Õ,P̃)

where this does not lead to misunderstandings.

Ag2

Ag3

Ag1
e1

e3

e12 e13

e2

(F, c2) (F, c3)(F, c4)(F, c0) (F, c1)

c1 ≡Ag3 c2 ≡Ag3 c3 ≡Ag3 c4

Examples of configurations:

c0 = ∅, c1 = {e3}, c2 = {e1, e3}, c3 = {e1, e3, e12},

c4 = {e1, e3, e12, e2}

Ag3’s view of configuration c4: ↓ag3 c4 = c1 = {e3}

Figure 3.1: Example of a run and local configurations

See figure 3.1 for an illustration of a possible run: The example run is executed
by three agents Ag1, Ag2 and Ag3. Each agent is represented by her own (hori-
zontal) time line. The agents perform operations sequentially: Ag1 performs the

sequence of operations op1, op12, op13. Agent Ag2 performs the sequence of opera-
tions op12, op2. And agent Ag3 performs the sequence of operations op3, op13. Each

event, i.e. occurrence of an operation, is represented by a vertical bar with circles for
the participating agents. Though the events for each agent are totally ordered, the

set of all events of the system are only partially ordered: for example, operations
op1 and op3 are performed concurrently, no order is given between them.

A configuration c of a run F is a downward closed set of events, it contains all events
that are performed by agents up to a particular point in time. Each agent only has a
local view on the system. The local view on a configuration c of a run F for an agent

i is itself a configuration and consists of the downward closure of all events that
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agent i has performed in configuration c. It is thus the least configuration which
coincides with c on all i-events.

Formally, we define a configuration as follows:

Definition 3.2.3 ((local) configuration; i-view) Let F = (E,≤, λ) be a run. A
configuration c of F is a finite, downward closed set of events (i.e. c ⊆ E and ↓ c = c).

Let CF denote the set of all configurations of run F.

The localization of a configuration ↓i c := ↓ (c ∩ Ei) is called the i-view of con-
figuration c, i.e. the i-view is the least configuration that coincides with c on all

i-events.

Two configurations c, c ′ of F are said to be i-equivalent (c ≡i c
′), iff ↓i c =↓i c ′.

They are said to be A-equivalent (c ≡A c ′), iff they are i-equivalent for each i ∈ A.

On configurations of F we define a successor relation so that c
op
−→ c ′ iff c ′ = c∪ {e}

for some e ∈ E with λ(e) = op.

Two configurations of the same run that differ from each other only through events

in which agent i does not participate are equivalent from the point of view of agent
i. We call such configurations i-equivalent.

If a configurations c becomes a configuration d by execution of an operation op

and a configuration c ′ becomes configuration d ′ by execution of an operation op,
and if c ≡i c ′ for at least one i ∈ ag(op), then operation op is a synchronization

operation for all agents j ∈ ag(op) and thus, the resulting configurations d and d ′

are j-equivalent (d ≡j d ′) for all j ∈ ag(op).

Lemma 3.2.4 Let c, c ′, d, d ′ ∈ CF be configurations of the same run F, and let op

be an operation. It holds that

if c ≡i c
′ for any i ∈ ag(op) and c

op
−→ d and c ′

op
−→ d ′

then d ≡j d ′ for all agents j ∈ ag(op).

Proof:

Let F be a run and let c, c ′, d, d ′ ∈ CF be configurations of this run. Let op be an

operation. c ≡i c
′ for any agent i ∈ ag(op) and c

op
−→ d and c ′

op
−→ d ′.
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c ≡i c
′ for any agent i ∈ ag(op) and c

op
−→ d and c ′

op
−→ d ′.

=⇒ ↓ (c ∩ Ei) =↓ (c ′ ∩ Ei) and there exist events e, e ′ ∈ E with

c ∪ {e} = d with λ(e) = op and
c ′ ∪ {e ′} = d ′ with λ(e ′) = op

=⇒ (* by definition 3.2.2 item (5) *)
↓ (c ∩ Ei) =↓ (c ′ ∩ Ei) and there exists an event e ∈ Ei with

c ∪ {e} = d and c ′ ∪ {e} = d ′ with λ(e) = op

=⇒ (* by definition 3.2.3 d and d ′ are downward closed *)

c ≡j c
′ for all j ∈ ag(op)

=⇒ (* e ∈ Ej for all j ∈ Ag *)
d ≡j d ′ for all agents j ∈ ag(op)

2

Consider again figure 3.1. A configuration is indicated by a (more or less vertical)
line that crosses each agent’s time line at a box. The configuration contains all

events to the left of the line. The initial configuration c0 = ∅ contains no events.
In the figure it is denoted by a dashed line. The configurations c1, c2, c3 and c4
are equivalent from agent Ag3’s point of view, which is illustrated by the solid lines
through agent Ag3’s second box. In each of these configurations, agent Ag3 has
performed only event e3, the configurations differ only in events performed by other

agents. Configuration c1 represents the view of agent Ag3 on all the configurations
c1, c2, c3 and c4.

Sometimes, we need to talk about configurations of different runs. To make sure,
which configuration of which run we mean, we have to name both the configuration
and the run to which it belongs.

Definition 3.2.5 (situation) We call (F, c) a situation, when F = (E,≤, λ) is a
run and c ∈ CF is a configuration of this run.

On situations we define a successor relation so that (F, c)
op
−→ (F, c ′) iff c

op
−→ c ′ for

c, c ′ ∈ CF.

We define ↓i (F, c) as the localization of a situation (F, c) iff ↓i (F, c) = (F, c ′) and

c ′ =↓i c.
Two situations (F, c) and (F, c ′) are called i-equivalent ((F, c) ≡i (F, c ′)) iff c ≡i c ′.

For a set of runs A we define |A| := {(F, c) | F ∈ A, c ∈ CF} to be the set of all

situations of all runs in A.

Note, that our definition of situation mainly describes progress in time and leaves

propositions still uninterpreted.

26



3.3 Dynamic Aspects Concerning Knowledge and Belief

3.3 Dynamic Aspects Concerning Knowledge and Belief

In order to capture the agent’s knowledge and belief, we need a more general notion
of “indistinguishability” than is defined above.

An agent does not know the actual current configuration of the actual run of the
system. At all times, an agent i only sees a partial system, e.g. it can notice the
behaviour of other agents only via synchronization operations, other operations of

other agents are independent of and invisible for agent i. Apart from that, the agent
is not even aware of the actual run, she for example cannot distinguish between the

actual configuration of the actual run and a configuration of a different run, in which
she has acquired the same knowledge. Though we assume that an agent knows,

which operations other agents may in principle perform, i.e. though the agent is
aware about other agents’ operation alphabet, she does not know which operations

the other agents actually perform. Further, we do not require that the agents have
perfect recall, which means, we do not assume that each agent always remembers all

the operations she has already performed and always remembers all the knowledge,
she has already acquired. We allow that an agent i considers two situations as
indistinguishable, though they have a different history local to agent i. The agent

does not necessarily remember the way how she acquired some knowledge, she only
knows, that she has acquired the knowledge.

As already indicated above, since each agent only has a partial view on the whole
system, she does not know all facts that are true. As in the epistemic logic S5 we
require, however, that if an agent knows a fact, then this fact must be true. This

property is often called the Knowledge Axiom or the Truth Axiom.

Further, as in the epistemic logic S5 we require that agents can do introspection

regarding their knowledge. An agent should know, what she knows (this is typi-
cally called Positive Introspection) and she should know, what she does not know
(typically called Negative Introspection).

Later, in chapter 4.2 we define that an agent knows a fact if this fact is true in
all situations indistinguishable for this agent. (In terms of standard modal log-

ics such situations are called indistinguishable, the corresponding relation is called
indistinguishability relation.)

We now define an indistinguishability relation Rki for knowledge for each agent

i ∈ Ag. In the definition of the indistinguishability relation we follow the standard
approach of the modal logic S5 (KT45). As for example shown in [FHMV95], each

of the above requirements is directly reflected by properties of the indistinguishabil-
ity relation: Reflexivity of the indistinguishability relation reflects the truth axiom,
transitivity of the indistinguishability relation reflects the positive introspection ax-

iom and the Euclidean property reflects the negative introspection axiom. Hence,
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we require each relation RKi to be an equivalence relation:

• reflexive: the agent knows only true facts (truth axiom).

The relation RKi is reflexive, iff for every situation (F, c) with F ∈ A and c ∈ CF,
it holds that ((F, c), (F, c)) ∈ RKi .

• transitive: the agent knows, what she knows (positive introspection).

The relation RKi is transitive, iff for all situations (F1, c1), (F2, c2), (F3, c3) with

F1, F2, F3 ∈ A and c1 ∈ F1, c2 ∈ F2, c3 ∈ F3 it holds that if ((F1, c1), (F2, c2)) ∈
RKi and (F2, c2), (F3, c3)) ∈ RKi then ((F1, c1), (F3, c3)) ∈ RKi .

• Euclidean: the agent knows, what she does not know (negative introspection).

The relation RKi is Euclidean, iff for all situations (F1, c1), (F2, c2), (F3, c3) with
F1, F2, F3 ∈ A and c1 ∈ F1, c2 ∈ F2, c3 ∈ F3 it holds that if ((F1, c1), (F2, c2)) ∈
RKi and ((F1, c1), (F3, c3)) ∈ RKi then ((F2, c2), (F3, c3)) ∈ RKi .

The standard requirement for an equivalence relation is that it is reflexive, transitive

and symmetric. However, a relation is reflexive, transitive and Euclidean if and only
if it is reflexive, transitive and symmetric:

Proposition 3.3.1 Let S be a set. A relation R ⊆ S× S is reflexive, transitive and
Euclidean if and only if it is reflexive, transitive and symmetric.

Proof:

=⇒: Let R be Euclidean, reflexive and transitive.

Consider x, y ∈ S and suppose, R(x, y).
Because the relation R is reflexive, we have R(x, x). Then, because R is Eu-

clidean, we also have R(y, x), i.e. R is symmetric.

⇐=: Let R be symmetric, transitive and reflexive.
Consider x, y, z ∈ S and suppose, R(x, y) and R(x, z).

Because the relation R is symmetric, we have R(y, x). Then, because R is
transitive, we also have R(y, z), i.e. R is Euclidean.

2

Whenever agents perform an operation, we assume that at least one of the acting

agents is aware of the operation. We thus require that within a run two different
configurations must be distinguishable for at least one agent.

Further we want that in a run an agent i considers all configurations as possible that

are i-equivalent to the actual configuration. The difference between two i-equivalent
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configurations can only be a set of operations executed by an agent other than i
and thus invisible to agent i. Note, that this implies that agent i must consider all

operations of other agents as possible, which means, agent i must know that these
operations belong to the other agents’ operation alphabet.

Finally, we assume that changes of knowledge are due to operations. We require
that the “enabling” of an operation as well as the effect of that operation that is,

the changes in the truth values of local propositions (see definition 3.3.4 below), are
only dependent on the knowledge of the acting agents and not on any outside factor.

Additionally, the execution of an operation by a group of agents has no effect on
the knowledge of other agents that are not participating in this operation. This

requirement is met by item (4) of the following definition.

Definition 3.3.2 (indistinguishability relations (for knowledge)) Let A ⊆
F be a set of runs.

For each agent i ∈ Ag we define her indistinguishability relation for knowledge

RKi ⊆ {((F, c), (F ′, c ′)) | F, F ′ ∈ A, c ∈ CF, c
′ ∈ CF′}

such that the following properties hold:

1. RKi is an equivalence relation.

2. If ((F, c), (F, c ′)) ∈ RKi for all i ∈ Ag then c = c ′.

3. If for two situations (F, c), (F, c ′) ∈ |A| we have that (F, c) ≡i (F, c ′) then
((F, c), (F, c ′)) ∈ RKi .

4. If for two situations (F, c1), (F, c2) ∈ |A| holds, that (F, c1)
op
−→ (F, c2) and

there exists (F ′, c ′1) ∈ |A| such that for every i ∈ ag(op) it holds that

((F, c1), (F
′, c ′1)) ∈ RKi then there exists (F ′, c ′2) ∈ |A| such that (F ′, c ′1)

op
−→

(F ′, c ′2) and ((F, c2), (F
′, c ′2)) ∈ R

K
i for every i ∈ ag(op).

Sometimes it might be more appropriate not to talk about knowledge but about

belief of an agent. For example, we might want to model that some agent i “trusts”
some other agent j or that agent i ”believes” that agent j follows some protocol

faithfully. Often, an agent’s behaviour is dependent of her belief about other agents.
However, it might well be that the agent’s belief is false. In the literature, knowledge

is often seen as true belief: Although one might have false beliefs, one cannot know
something that is false. However, as in the standard logic for belief, KD45, we

require that an agents belief is at least not contradictory.

To model belief of an agent, we want to weaken the conditions of the indistinguisha-

bility relation in the sense that we no longer require the indistinguishability relation
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to be reflexive but serial, i.e. in each situation each agent must consider some situ-
ation as possible.

Following the standard approach of the modal logic KD45, the indistinguishability

relation RBi for belief should be

• serial: the belief of the agent may not be contradictory.

The relation RBi is serial, iff for all situations (F, c) there exists some situation
(F ′, c ′) such that ((F, c), (F ′, c ′)) ∈ RBi .

• transitive: the agent believes, what she believes (positive introspection).

The relation RBi is transitive, iff for all situations (F1, c1), (F2, c2), (F3, c3)

it holds that if ((F1, c1), (F2, c2)) ∈ RBi and (F2, c2), (F3, c3)) ∈ RBi then

((F1, c1), (F3, c3)) ∈ R
B
i .

• Euclidean: the agent believes, what she does not believe (negative introspec-
tion).

The relation RBi is Euclidean, iff for all situations (F1, c1), (F2, c2), (F3, c3) ∈
|A| it holds that if ((F1, c1), (F2, c2)) ∈ RBi and ((F1, c1), (F3, c3)) ∈ RBi then
((F2, c2), (F3, c3)) ∈ RBi .

We require that an agent i has the same belief in situations (F, c) and (F, c ′) that are
equivalent from her point of view ((F, c) ≡i (F, c ′)). This means that each situation

that is RBi -indistinguishable from (F, c) is also RBi -indistinguishable from (F, c ′).

Further we require that each agent at least believes, what she knows. That is,
we require that the indistinguishability relation for belief must be a subset of the

indistinguishability relation for knowledge.

These observations lead to the following definition:

Definition 3.3.3 (indistinguishability relations (for belief)) Let A ⊆ F be a

set of runs.

For each agent i ∈ Ag we define her indistinguishability relation for belief

RBi ⊆ {((F, c), (F ′, c ′)) | F, F ′ ∈ A, c ∈ CF, c
′ ∈ CF′}

such that the following properties hold:

1. • RBi is serial,

• RBi is transitive,

• RBi is Euclidean.
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2. If (F, c) ≡i (F, c ′) then for all (F̄, c̄) ∈ |A| we have that ((F, c), (F̄, c̄)) ∈ RBi iff
((F, c ′), (F̄, c̄)) ∈ RBi .

3. Each relation RBi is a subset of the corresponding indistinguishability relation
for knowledge RKi : R

B
i ⊆ RKi .

All agents are equipped with a set of local propositions. Agents that represent
data objects in an information system can be seen as repository-agents: They are

equipped with a set of local propositions the interpretation of which reflects their
current content. User-agents are equipped with a set of local propositions the in-

terpretation of which is something like “the information this user currently holds”,
e.g. as a printout on her desk.

More formally, treating the notion of current by situations, we consider an interpre-

tation as mapping each pair (situation, local proposition) to a truth-value.

The content (or state) of repository-agents and the information of user-agents can
be changed via operations, e.g. if a user inserts some fact into an object, then after

this operation the local proposition that represents this fact for her must be true.
If a user-agent reads some fact from the information system, then after the read

operation, the local proposition that represents this fact for her must be true. If a
user-agent grants another user-agent the right to do something, then after the grant
operation, the local proposition that represents the right for the other user-agent

must be true.

The informal meaning of operations will be represented by the changes of the inter-

pretation of local propositions:

Definition 3.3.4 (interpretation) An interpretation of a set of runs A ⊆ F is
a mapping I : {(F, c) | F ∈ A, c ∈ CF} × P −→ {⊤,⊥}, such that if p ∈ Pi and

((F, c), (F ′, c ′)) ∈ RKi then I((F, c), p) = I((F ′, c ′), p).

In definition 3.3.4 we have the requirement that in two situations that are indistin-
guishable for an agent i the interpretation of all propositions local to this agent must

be the same. In terms of our information system framework this means that each
user-agent is aware of all information she holds (on her desk) and all repository-

agents are aware of their content.

3.4 Summarized View

In section 3.1 we have defined the static part of an information system to consist of a
set of agents, their distributed set of propositions and their distributed set of opera-

tions. In section 3.2 we defined partially ordered runs as an underlying structure for
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dynamic aspects. In a run, each agent performs a sequence of operations. Some of
the operations she performs alone, others she performs together with other agents,

so that the overall structure for control flow is a partial order. Finally, in section
3.3 we introduced a notion of indistinguishable situations. These indistinguishable

situations together with interpretations are the basis for internal states of agents,
their knowledge and their belief.

This summarized view can be represented like in the example of figure 3.2. Figure

3.2 is an extension of figure 3.1. Both figures contain the same temporal model.
Additionally, figure 3.2 represents a part of the indistinguishability relation of agent

Ag3. Since Ag3 does not only consider the actual run F as possible but also other
runs, the figure shows runs F ′ and F ′′ next to the actual run.

An agent’s current state is represented by a box on the agent’s time-line. The truth-

value of a proposition local to an agent can change when this agent performs an
operation: for example, before agent Ag2 performs event e2, the value of proposition

p2 is false. After event e2 has happened, the value of proposition p2 is true. Since
agent Ag3 does not participate in event e2, the local propositions of agent Ag3 do
not change by event e2.

An agent i knows a fact if the fact is true in all situations agent i considers to be
possible. Let for example the local view of agent Ag3 on the actual situation be

(F, c1). Agent Ag3 considers all Ag3-equivalent configurations as possible. Further,
she considers some configurations of runs F ′, F ′′ as possible as well.

We now combine all these aspects to define a model of an information system.
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F’’:F’:
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(F, c0) (F, c1) (F, c2)

¬p3

p2

p3

(F, c4)(F, c3)

Which configuration?
Which run?

Figure 3.2: Illustration of an example model

Definition 3.4.1 (model) A model M = (A,RK,RB, I) of an information sys-
tem is a tuple consisting of

• a set A of runs over a fixed static part of an information system (Ag, Õ, P̃),

• a family RK consisting of an indistinguishability relation for knowledge RKi for

each agent i ∈ Ag,

• a family RB consisting of an indistinguishability relation for belief RBi for each
agent i ∈ Ag, and

• an interpretation I of A.

The set of all situations of a model M is denoted as |M|.
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Chapter 4

A Temporal and Epistemic Logic L(Ag,Õ,P̃)

In this chapter we introduce an action based temporal and epistemic logic for a
distributed system. Basically, the logic consists of three types of operators:

• the usual logical connectives ¬ and ∨

• a local next operator 〈op〉i and a local until operator Ui for each agent as

temporal operators and

• a local knowledge operator Ki as well as a belief operator Bi for each agent as

epistemic operators.

The temporal part of the language follows the definitions of Niebert ([Nie97]) in a

simplified way. The epistemic part of the language is closely related to the logic
introduced by Ramanujam in [Ram96].

4.1 Syntax of the logic L(Ag,Õ,P̃)

The key idea of our logic for the specification constraints of information systems is

that the formulae “look” at the configurations from a local point of view. Some
formulae look at the configuration of a run from the point of view of a single agent

(e.g. in the case of local propositions or epistemic operators), others may involve a
joint look from several agents (e.g. after a joint action of these agents). This idea

is reflected in the syntax by a family of sets of formulae ΦA where A ⊆ Ag is a set
of agents. Formulae φ ∈ ΦA are called of type A: type(φ) = A. Note, that every
formula has exactly one type, i.e. for two sets of agents A, B ⊆ Ag with A 6= B we

have ΦA∩ΦB = ∅.
As we will see in the following definition, these types are used for the syntactic

restriction of the construction of temporal formulae.

Definition 4.1.1 (Syntax of typed formulae of L(Ag,Õ,P̃)) Given a fixed static

part of an information system (Ag, Õ, P̃) as defined in section 3.
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We define a family of formulae, such that for each set A ⊆ Ag the set ΦA is the
least set satisfying the following properties:

propositions

⊥,⊤ ∈ Φ∅

for p ∈ Pi we have p ∈ Φ{i}

logical connectives

φ ∈ ΦA implies ¬φ ∈ ΦA

φ ∈ ΦA, ψ ∈ ΦB implies φ∨ ψ ∈ ΦA∪B

temporal operators

i ∈ ag(op), A⊆ ag(op), φ ∈ ΦA implies 〈op〉iφ ∈ Φ{i}

φ,ψ ∈ ΦA, A ⊆ {i} implies φ Uiψ ∈ Φ{i}

epistemic operators

Kiφ ∈ Φ{i}

Biφ ∈ Φ{i}

We define the language L(Ag,Õ,P̃) as the union of all sets ΦA with A ⊆ Ag:

L(Ag,Õ,P̃) :=
⋃

A⊆Ag

ΦA

In the following, we will write L instead of L(Ag,Õ,P̃) where this does not lead to
misunderstandings.

Note: In the following we will write φi instead of φ{i} where appropriate.

Definition 4.1.2 (type of a formula) Let φ ∈ L(Ag,Õ,P̃) be a formula. We define
the type of φ as follows:

type(φ) := A for φ ∈ ΦA

Note that for A, B ⊆ Ag with A 6= B we have that ΦA∩ΦB = ∅, i.e.,every formula
has a unique type.

The intuitive meaning of a temporal formula 〈op〉iφ is that from agent i’s point
of view the next operation is op and after the execution of op, φ holds. There

is a syntactic restriction on the construction of such temporal formulae: within a
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formula of form 〈op〉iφ (next-modality) the sub formula φ may only refer to agents
that participate in operation op. Also, agent i has to participate in operation op,

i.e. changing of the point of view of a temporal next-formula is only possible via a
joint operation of the “old” (before the execution of the operation) and the “new”

point of view (after execution of the operation). Consider for example a set of agents
Ag = {ag1, ag2}, with Pag1 = {p1}, Pag2 = {p2} and with Oag1 = {o1, o12},Oag2 =

{o12}. Then the formula 〈o12〉ag1p2 is well-formed whereas the formula 〈o1〉ag1p2
is not. In the first formula the view is changed from agent ag1 to agent ag2 via
a common operation o12, whereas in the latter formula the view is changed from

agent ag1 to agent ag2 via operation o1. However, o1 is only local to agent ag1
and after the execution of o1 the local configuration of ag2 could result from several

configurations differing for agent ag1.

Without this restriction, these temporal formulae could lead to “uncontrolled jumps
into the past”. (Further explanations are given in [Nie97]). A temporal formula of

kind φUiψ intuitively means that either ψ holds already in the current configuration
or the sub formula φ holds in the current configuration and in all following configu-

rations until at some point of time ψ holds. (In this context, until can be seen as a
strong until: At some point in the future ψ will hold.) The intuitive meaning of this

until operator is quite standard, however note, that in our logic we have imposed
the syntactic restriction, that both the formulae φ and ψ have to be local to agent

i.
The epistemic operators are quite standard again. The intuitive meaning of Kiφ is
that agent i knows φ, i.e. in all situations, that agent i considers to be possible φ

holds, in particular we have that φ holds in the current configuration. The intuitive
meaning of Biφ is similar, i.e. again φ holds in all situations agent i considers to

be possible with respect to belief. However, when talking about belief, agent i need
not consider the actual configuration to be possible.

4.2 Semantics of the logic L(Ag,Õ,P̃)

We will now give the formal semantics of the logic introduced above.

Definition 4.2.1 (semantics) Given a model M = (A,RK,RB, I), a run F ∈ A
and a configuration c ∈ CF of run F. The semantics of a formula φ is then inductively
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defined by:

(F, c) |=M ⊤

(F, c) 6|=M ⊥

(F, c) |=M p :iff I((F, c), p) = true

(F, c) |=M ¬φ :iff not (F, c) |=M φ

(F, c) |=M φ∨ψ :iff (F, c) |=M φ or (F, c) |=M ψ

(F, c) |=M 〈op〉iφ :iff there exists c ′, r ∈ CF, such that

c ≡i c
′ and c ′

op
−→ r and (F, r) |=M φ

(F, c) |=M φ Uiψ :iff there exists c ′ ∈ CF such that

↓i c ⊆↓i c ′ and (F, ↓i c ′) |=M ψ and for all

c ′′ ∈ CF with ↓i c ⊆ ↓i c ′′ ⊂ ↓i c ′

it holds that (F, ↓i c ′′) |=M φ

(F, c) |=M Kiφ :iff for all (F ′, c ′) with ((F, c), (F ′, c ′)) ∈ RKi
it holds that (F ′, c ′) |=M φ

(F, c) |=M Biφ :iff for all (F ′, c ′) with ((F, c), (F ′, c ′)) ∈ RBi
it holds that (F ′, c ′) |=M φ

Definition 4.2.2 (satisfiability, validity) A formula φ ∈ L is satisfiable iff
there exists a model M and a situation (F, c) ∈ |M| such that (F, c) |=M φ.

A set of formulae Φ ⊂ L is satisfiable, iff there exists a model M and a situation

(F, c) ∈ |M| such that (F, c) |=M φ for all φ ∈ Φ.

A formula φ ∈ L is valid iff ¬φ is not satisfiable.

Note, that the semantics of logical connectives and of local propositions is dependent
on a single configuration of a single run.

We have already stated the intuitive semantics of the temporal formulae. The seman-
tics of temporal formulae involves several configurations, but is, however, dependent

only on a single run.

Further note, that formulae of form 〈op〉iφ are local to a single agent. 〈op〉iφ does
not mean, that the next operation of the run is op, but the next operation of agent i.

It might well be, that some other agent which is involved in operation op performs
operations other than op first.

The semantics of the knowledge/belief operators are classical: An agent i knows in

a situation whatever is true in all situations the agent considers possible, including
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the actual situation. An agent i believes that a formula φ holds, Biφ, if φ is true
in all situations which i cannot distinguish from the actual situation. According to

definition 3.3.2, the relations RKi are equivalence relations, which means, that the
actual situation is always considered as possible. So, each situation that satisfies Kiφ

also satisfies φ. Moreover, in each situation each agent knows all valid formulae and
all consequences of her knowledge. This property is called “logical omniscience”.

According to definition 3.3.3, the indistinguishability relation for belief does not

need to be reflexive, which means, an agent need not consider the actual situation
as possible, and thus in the case of belief we cannot generally conclude φ from Biφ.

In the rest of this work, it will be convenient to use the following derived operators

as “short cuts” to make formulae more easily understandable:

• [op]iφ ≡ ¬〈op〉i¬φ
The operator [·]i is the dual operator to 〈·〉i. Intuitively, [op]iφ means that if

op is the next operation from agent i’s point of view, then after the execution
of op the formula φ holds.

• φ∧ψ ≡ ¬(¬φ∨ ¬ψ)

• 3iφ ≡ ⊤ Uiφ
Intuitively, 3iφ means that eventually from agent i’s point of view φ holds.

• 2iφ ≡ ¬3i¬φ

The box operator 2iφ is the dual to the diamond operator above. It means,
that from agent i’s point of view, φ holds always in the future.

• φ ⇒ ψ ≡ ¬φ∨ψ

• φWiψ ≡ φUiψ ∨ 2iφ

The operator W can be seen as a “weak”-until operator: While the until-
operator U must eventually be “resolved”, i.e. ψ must eventually become

true, this is, however, not necessary in the case of the “weak”-until operator
W .

For better readability we define the following descending order of precedence:

1. not (¬)

2. strong next (〈a〉i), weak next ([a]i)
3. strong until ( Ui), weak until ( Wi)

4. knows (Ki), believes (Bi), always (2i), eventually (3i)
5. and (∧), or (∨), implies (⇒)
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4.3 Properties of the logic L(Ag,Õ,P̃)

In this section we show useful properties of the logic.

Some quite interesting properties of logics are whether they have the finite model

property and whether they are compact: A logic has the finite model property if
every non theorem can be falsified in some situation in a finite model. Compactness

means, that every infinite set of formulae is satisfiable, iff all its finite subsets are
satisfiable.

Unfortunately, the logic L doesn’t have any of these properties. It can be easily

seen, that L is not compact: Consider for example the set of formulae

Φ := {⊤ Uiφ} ∪ {¬φ, [a]i¬φ, [a]i[a]i¬φ, [a]i[a]i[a]i¬φ, . . .}, where Oi := {a}. (4.1)

Obviously, any every finite subset of Φ is satisfiable but the infinite set Φ is not,
since the until formula demands that φ becomes true after a finite number of steps

and the infinite set says, that φ is neither true now, nor after one step, nor after
two steps, nor after three, etc. Consequently, the logic is not compact.

Next, we show that the logic does not have the finite model property: Consider for

example the formula

φ1 := Ki〈a〉j⊤ for i /∈ ag(a) (4.2)

Agent i does not participate in operation a, and thus she cannot distinguish be-

tween the situations before and after agent j has performed operation a. Accord-
ing to the semantics of the knowledge operator, a situation (F, c) satisfies the for-
mula φ1 iff the sub formula 〈a〉j⊤ is satisfied in all situations (F ′, c ′) that are RKi -

indistinguishable from situation (F, c) for agent i, and in particular in all situations
that are i-equivalent to (F, c). Since the indistinguishability relation for knowledge is

reflexive, the situation (F, c) must satisfy 〈a〉i⊤ and thus there must exist a situation

(F, ca), such that (F, c)
a

−→ (F, ca). Since i /∈ ag(a), we have that (F, c) ≡i (F, ca).
Again, the situation (F, ca) must satisfy 〈a〉iφ and thus there must exist a situation

(F, caa) such that (F, ca)
a

−→ (F, caa). We can apply the same argument infinitely
often. In order to satisfy formula φ1, agent j must perform an infinite sequence of
solely a. Consequently, the formula φ1 can be satisfied only in an infinite model (in

which at least agent j performs infinitely many operations).

Consider now the formula

φ2 := ¬φ1. (4.3)
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φ2 can be falsified only in an infinite model: every finite model falsifies φ1 and thus
satisfies ¬φ1. Only an infinite model can satisfy φ1 and thus falsify ¬φ1.

Consequently, the logic does not have the finite model property.

One important feature of the logic is that it is trace-consistent. Formulae are always
local to a set of agents. If two situations (F, c) and (F, c̄) are equivalent for all agent
i ∈ A in a set of agents A, then a formula of type A is true in (F, c) if and only if it

is true in (F, c̄).

Definition 4.3.1 (trace-consistent) Let M = (A,RK,RB, I) be a model. We

call the language L trace-consistent iff it has the following property:

For each pair of situations (F, c), (F, c ′) ∈ |M| and for each formula φ ∈ L it holds
that

if (F, c) ≡A (F, c ′) and type(φ) = A

then (F, c) |=M φ if and only if (F, c ′) |=M φ.

Lemma 4.3.2 Let M = (A,RK,RB, I) be a model, let φ ∈ ΦA be a formula of
type A and let (F, c), (F, c̄) ∈ |M| be two situations such that (F, c) ≡i (F, c̄) for all
i ∈ A.

Then (F, c) |=M φ iff (F, c̄) |=M φ

Proof:

We prove this lemma by induction over the structure of the formula.

Induction begin:
Suppose, φ = ⊤, with ⊤ ∈ Φ∅.

According to definition 4.2.1, it holds that s |=M ⊤ for every s ∈ |M| and thus in
particular (F, c) |=M ⊤ and (F, c̄) |=M ⊤ for every (F, c) ≡∅ (F, c̄).

Suppose, φ = ⊥, with ⊥ ∈ Φ∅.

According to definition 4.2.1, it holds that s 6|=M ⊥ for all s ∈ |M| and thus in
particular (F, c) 6|=M ⊥ and (F, c̄) 6|=M ⊥ for every (F, c) ≡∅ (F, c̄).

Suppose, φ = P with P ∈ Pi.
(F, c) |=M p

⇐⇒ (* by definition 4.2.1 *)

I((F, c), p) = ⊤
⇐⇒ (* by definitions 3.3.4 and 3.3.2(3) *)

I((F, c̄), p) = ⊤
⇐⇒ (* by definition 4.2.1 *)

(F, c̄) |=M p

Induction hypothesis: Suppose, for all formulae φ ′ of a size less than that of φ it

holds that if (F, c) ≡i (F, c̄) for all i ∈ type(φ ′), then (F, c) |=M φ ′ iff (F, c̄) |=M φ ′.
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Induction step:

• Suppose, φ = ¬φ1 and the induction hypothesis holds for φ1. Further, sup-
pose, (F, c) ≡i (F, c̄) for all i ∈ type(φ).

(F, c) |=M ¬φ1
⇐⇒ (F, c) 6|=M φ1
⇐⇒ (* by the induction hypothesis and because type(φ) = type(φ1) *)

(F, c̄) 6|=M φ1
⇐⇒ (F, c̄) |=M ¬φ1.

• Suppose, φ = φ1∨φ2 and (F, c) ≡i (F, c̄) for all i ∈ type(φ).
(F, c) |=M φ1∨φ2

⇐⇒ (* by definition 4.2.1 *)
(F, c) |=M φ1 or (F, c) |=M φ2

⇐⇒ (* type(φ1) ⊆ type(φ) and type(φ2) ⊆ type(φ) *)
(F, c̄) |=M φ1 or (F, c̄) |=M φ2

⇐⇒ (* by definition 4.2.1 *)
(F, c̄) |= φ1∨φ2

• Suppose, φ = Kiφ1 and (F, c) ≡i (F, c̄).
(F, c) |=M Kiφ1

⇐⇒ (* by definition 4.2.1 *)

for all (F ′, c ′) ∈ |M| with ((F, c), (F ′, c ′)) ∈ RKi it holds that
(F ′, c ′) |=M φ1

⇐⇒ (* by definition 3.3.2(3) and 3.3.2(1) (transitive) *)
for all (F ′, c ′) ∈ |M| with ((F, c̄), (F ′, c ′)) ∈ RKi it holds that

(F ′, c ′) |=M φ1
⇐⇒ (* by definition 4.2.1 *)

(F, c̄) |= Kiφ1

• Suppose, φ = Biφ1 and (F, c) ≡i (F, c̄).
(F, c) |=M Biφ1

⇐⇒ (* by definition 4.2.1 *)

for all (F ′, c ′) ∈ |M| with ((F, c), (F ′, c ′)) ∈ RBi it holds that
(F ′, c ′) |=M φ1

⇐⇒ (* by definition 3.3.3(2) *)
for all (F ′, c ′) ∈ |M| with ((F, c̄), (F ′, c ′)) ∈ RBi it holds that

(F ′, c ′) |=M φ1
⇐⇒ (* by definition 4.2.1 *)

(F, c̄) |= Biφ1

• Suppose, φ = 〈a〉iφ1 and (F, c) ≡i (F, c̄).
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(F, c) |=M 〈a〉iφ1
⇐⇒ there exist situations (F, c ′), (F, r) ∈ |M| such that (F, c ′) ≡i (F, c) and

(F, c ′)
a

−→ (F, r) and (F, r) |=M φ1
⇐⇒ (* (F, c) ≡i (F, c̄) *)

there exist situations (F, c ′), (F, r) ∈ |M| such that (F, c ′) ≡i (F, c̄) and

(F, c ′)
a

−→ (F, r) and (F, r) |=M φ1
⇐⇒ (F, c̄) |= 〈a〉iφ1

• Suppose, φ = φ1 Uiφ2 and (F, c) ≡i (F, c̄).
(F, c) |=M φ1 Uiφ2

⇐⇒ there exists c ′ ∈ CF such that ↓i c ⊆↓i c ′ and (F, ↓i c ′) |= φ2 and for
all c ′′ ∈ CF with ↓i c ⊆↓i c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M φ1

⇐⇒ (* because ↓i c =↓i c̄ *)
there exists c ′ ∈ CF such that ↓i c̄ ⊆↓i c ′ and (F, ↓i c ′) |= φ2 and for
all c ′′ ∈ CF with ↓i c̄ ⊆↓i c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M φ1

⇐⇒ (F, c̄) |=M φ1 Uiφ2

2

Remark 1: The logic L is a linear time logic, i.e. the events belonging to one
agent are totally ordered. This means that though there are several possible next

operations for the whole system in each situation, there is at most one for each
agent. Logically, this means that for all situations (F, c) the following holds:

(F, c) |=M 〈op〉iφ implies (F, c) |=M [op]iφ

Proof:

(F, c) |=M 〈op〉iφ

=⇒ there exists c ′, r ∈ CF, such that c ≡i c
′ and c ′

op
−→ r and (F, r) |=M φ

=⇒ (∗Definition 3.2.2 ensures that the events of each agent are totally ordered∗)

for all c ′, r ∈ CF, such that c ≡i c
′ we have c ′

op
−→ r and (F, r) |=M φ

=⇒ not exists c ′, r ∈ CF, such that c ≡i c
′ and c ′

op
−→ r and (F, r) |=M ¬φ

=⇒ (F, c) |=M ¬〈op〉i¬φ

=⇒ (F, c) |=M [op]iφ
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Remark 2: The following equivalence will be helpful for defining a tableau based
proof system in the next chapter:

(F, c) |=M φ Uiψ
iff
(F, c) |=M ψ∨ (¬ψ∧φ∧ 〈O〉i(φ Uiψ)) for 〈O〉iα :=

∨

o∈Oi
〈o〉iα

Proof:

(F, c) |=M φ Uiψ

⇐⇒ (∗by definition 4.2.1∗)

there exists c ′ ∈ CF such that ↓i c ⊆↓i c ′ and (F, ↓i c ′) |=M ψ and

for all c ′′, with ↓i c ⊆↓i c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M φ

⇐⇒ either(F, ↓i c) |=M ψ or

(F, ↓i c) 6|=M ψ and (F, ↓i c) |=M φ and

there exists c ′ ∈ CF, such that ↓i c ⊂↓i c ′ and (F, ↓i c ′) |=M ψ and

for all c ′′ ∈ CF with ↓i c ⊂↓i c ′′ ⊂↓i c ′ : (F, ↓i c ′′) |=M φ

⇐⇒ either (F, ↓i c) |=M ψ or

(F, ↓i c) |=M ¬ψ∧φ and

there exists an o ∈ Oi, such that c
o

−→ co and

there exists c ′ ∈ CF, such that ↓i co ⊆↓i c ′ and (F, ↓i c ′) |=M ψ and

for all c ′′ ∈ CF with ↓i co ⊆↓i c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M φ

⇐⇒ either (F, ↓i c) |=M ψ or

(F, ↓i c) |=M ¬ψ∧φ and (F, ↓i c) |=M (
∨

o∈Oi

〈o〉i(φ Uiψ))

⇐⇒ either (F, ↓i c) |=M ψ or (F, ↓i c) |=M ¬ψ∧φ ∧ 〈O〉iφ Uiψ

⇐⇒ (F, ↓i c) |=M ψ∨ (¬ψ ∧φ∧ 〈O〉iφ Uiψ)

⇐⇒ (∗ by lemma 4.3.2 and the fact that by definition 4.1.1

type(ψ∨ (¬ψ∧φ ∧ 〈O〉iφ Uiψ)) = {i} ∗)

(F, c) |=M ψ ∨ (¬ψ∧ φ∧ 〈O〉iφ Uiψ)

2

Remark 3: A similar equivalence holds for the weak until operator:
(F, c) |=M φWiψ

iff
(F, c) |=M ψ∨ (¬ψ∧φ∧ [O]i(φWiψ)) for [O]iα :=

∧

o∈Oi
[o]iα .
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Proof:

(F, c) |=M φ Wiψ

⇐⇒ (∗ by equivalences defined on page 39 ∗)

(F, c) |=M (φ Uiψ) ∨ ¬(⊤ Ui(¬φ))

⇐⇒ (∗ by remark 2 on page 44 ∗)

(F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ ¬(¬φ∨ (φ∧ ⊤ ∧ 〈O〉i⊤ Ui(¬φ)))

⇐⇒ (F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ (¬φ∨ ⊥ ∨ ¬(〈O〉i⊤ Ui(¬φ))))

⇐⇒ (∗ by definition of 〈O〉iα and [O]iα ∗)

(F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ (¬φ∨ ⊥ ∨ [O]i¬(⊤ Ui(¬φ))))

⇐⇒ (∗ by equivalences defined on pages 39 f : ⊤ Uiα ≡ 3iα∗)

(F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ (¬φ∨ ⊥ ∨ [O]i¬3i¬φ))

⇐⇒ (∗ by equivalences defined on pages 39 f : ¬3i¬α ≡ 2iα∗)

(F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ (¬φ∨ ⊥ ∨ [O]i2iφ))

⇐⇒ (F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ ¬φ) ∨ (φ∧ ⊥) ∨ (φ∧ [O]i2iφ)

⇐⇒ (F, c) |=M (ψ∨ (¬ψ∧φ∧ 〈O〉iφ Uiψ)) ∨ (φ∧ [O]i2iφ)

⇐⇒ (F, c) |=M ψ ∨ (¬ψ∧φ ∧ (〈O〉iφ Uiψ∨ [O]i2iφ))

⇐⇒ (∗ by definition 4.2.1 and definitions of 〈O〉iα and [O]iα ∗)

(F, c) |=M ψ ∨ (¬ψ∧φ ∧ [O]i(φ Uiψ) ∨ (2iφ))

⇐⇒ (∗ by equivalences defined on page 39 ∗)

(F, c) |=M ψ ∨ (¬ψ∧φ ∧ [O]i(φ Wiψ)

2

Remark 4
The “strong” and the “weak” until operators can be seen as duals: For all situations

(F, c) it holds that

(F, c) |=M ¬(φ Uiψ) iff (F, c) |=M ¬ψ Wi(¬φ∧ ¬ψ) (4.4)

(F, c) |=M ¬(φ Wiψ) iff (F, c) |=M ¬ψ Ui(¬φ∧ ¬ψ) (4.5)

Proof:

1. Equation 4.4:
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(F, c) |=M ¬(φ Uiψ)

⇐⇒ (* by definition 4.2.1 *)
⇐⇒ there does not exist a configuration c ′ ∈ CF with ↓i c ⊆↓i c ′ such that

(F, ↓i c ′) |=M ψ and for all c ′′ ∈ CF with ↓i c ⊆↓i c ′′ ⊂↓i c ′ it holds
that (F, ↓i c ′′) |=M φ

⇐⇒ either for all configurations c ′ ∈ CF with ↓i c ⊆↓i c ′ it holds that
(F, ↓i c ′) |=M ¬ψ

or there exists a configuration c ′′ ∈ CF with ↓i c ⊆↓i c ′′ such that
(F, ↓i c ′′) |=M ¬φ∧ ¬ψ and for all configurations ↓i c̄ with

↓i c ⊂↓i c̄ ⊆↓i c ′′ it holds that (F, ↓i c̄) |=M ¬ψ

⇐⇒ (* by definition 4.2.1 *)

(F, ↓i c) |=M ¬(⊤ Uiψ)

or (F, ↓i c) |=M (¬ψ Ui(¬φ∧ ¬ψ))

⇐⇒ (* by definitions on page 39 and definition 4.2.1 *)

(F, ↓i c) |=M (¬ψ Ui(¬φ∧ ¬ψ)) ∨ 2i¬ψ

⇐⇒ (* by definitions on page 39 *)

(F, ↓i c) |=M ¬ψ Wi(¬φ∧ ¬ψ)

⇐⇒ (* by lemma 4.3.2 *)

(F, c) |=M ¬ψ Wi(¬φ∧ ¬ψ)

2. Equation 4.5:
(F, c) |=M ¬(φ Wiψ)

⇐⇒ (* by definitions on page 39 *)

(F, c) |=M ¬((φ Uiψ) ∨ ¬(⊤ Ui¬φ))

⇐⇒ (F, c) |=M ¬(φ Uiψ) ∧ (⊤ Ui¬φ))

⇐⇒ (* by definition 4.2.1 *)
there does not exist a configuration c ′ ∈ CF with ↓i c ⊆↓i c ′ such

that (F, ↓i c ′) |=M ψ and for all configurations c ′′ ∈ CF with ↓i c ⊆↓i
c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M φ

and there does exist a configuration c ′ ∈ CF with ↓i c ⊆↓i c ′ such

that (F, ↓i c ′) |=M ¬φ

⇐⇒ there exists a (least) configuration c ′ ∈ CF with ↓i c ⊆↓i c ′ such

that (F, ↓i c ′) |=M ¬φ ∧ ¬ψ and for all configurations c ′′ ∈ CF with
↓i c ⊆↓i c ′′ ⊂↓i c ′ it holds that (F, ↓i c ′′) |=M ¬ψ

⇐⇒ (* by definition 4.2.1 *)
(F, ↓i c) |=M ¬ψ Ui(¬φ∧ ¬ψ)

⇐⇒ (* by lemma 4.3.2 *)
(F, c) |=M ¬ψ Ui(¬φ∧ ¬ψ)

2
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In our framework, the knowledge of an agent is determined by her local state. The
agent knows whatever is true in all situations that she considers to be possible. We

do not require, that agents always keep track of the information they had in the
past, but allow agents to forget information they had already acquired. This means,

we do not assume that the agents in our framework have perfect recall. Agents
with perfect recall acquire new information by performing operations while keeping
track of their “old” information. Since we allow agents to “forget” about their past

behavior, the following formulae do not hold in general:

Ki[a]iφ ⇒ [a]iKiφ (4.6)

Ki2iφ ⇒ 2iKiφ (4.7)

The following very simple model M contains a configuration, that does not satisfy
the formula Ki[a]iφ⇒ [a]iKiφ.

Let Ag = {i},Oi = {a} and Pi = {p} be the static declaration of a model M =

(A,RK,RB, I) with

• A = {F1, F2} with F1 = ({e}, {(e, e)}, λ1) and F2 = (∅, ∅, λ2) and λ1(f) = a for all
f ∈ {e} and λ2(f) = a for all f ∈ ∅,

• RK = (RKi ) and RKi = {((F1, ∅), (F1, ∅)), ((F1, {e}), (F1, {e})), ((F1, {e}), (F2, ∅)),
((F2, ∅), (F2, ∅)), ((F2, ∅), (F1, {e}))},

• RB = RK,

• I((F1, ∅), p) = I((F2, ∅), p) = ⊥ and I((F1, {e}), p) = ⊤

We show, that the initial configuration (F1, ∅) of run F1 in this model satisfies the
formula Ki[a]ip∧ 〈a〉i¬Kip and thus does not satisfy the formula Ki[a]iφ⇒ [a]iKiφ

(which is equivalent to ¬(Ki[a]ip∧ 〈a〉i¬Kip)):

Proof:
(F1, ∅) |=M Ki[a]ip∧ 〈a〉i¬Kip

⇐⇒ (* by definition 4.2.1 *)
(F1, ∅) |=M Ki[a]ip and (F1, ∅) |=M 〈a〉i¬Kip

⇐⇒ (* by definition 4.2.1 *)
(F1, ∅) |=M [a]ip and (F1, {e}) |=M ¬Kip

⇐⇒ (* by definition 4.2.1 and definition of M *)
(F1, {e}) |=M p and there exists a situation s ∈ |M| with ((F1, {e}), s) ∈ RKi
and s |=M ¬p

⇐⇒ (* by definition 4.2.1 *)
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I((F1, {e}), p) = ⊤ and ((F1, {e}) |=M ¬p or (F2, ∅) |=M ¬p)
⇐⇒ (* by definition 4.2.1 and definition of M *)

I((F1, {e}), p) = ⊤ and I((F2, ∅), p) = ⊥

Consequently, the situation (F1, ∅) does not satisfy the formula Ki[a]iφ⇒ [a]iKiφ.

2
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Chapter 5

A Tableau Proof System for L(Ag,Õ,P̃)

In the previous chapters we have developed a class of formal models M of informa-

tion systems and a logic L, the semantics of which is based on these models. The
models M together with the language L can be seen as a unifying logical framework

for the specification of semantic constraints and security constraints for information
systems. The intention behind specifying these two types of constraints in a unified

framework is to find conflicts between them: given a set of formulae Γ ⊂ L as a
specification of the desired constraints. Is this set of formulae satisfiable? Does
there exist a model and a situation of this model that satisfies each formula γ ∈ Γ?

The set of formulae Γ that specifies the desired constraints might be very big so that
it will be very hard to prove its satisfiability (or non-satisfiability) by hand. We wish

to have a tool for checking satisfiability (or non-satisfiability) of Γ automatically. A
well known method in automated deduction are semantic tableaux. In this chapter,

we will develop a tableau method for a subset of our logic L.

The models M contain three different relations for time, for knowledge and for

belief. These relations are not independent of each other: Each agent believes
everything that she knows. Further, knowledge of an agent can change only due to

operations this agent performs. These dependencies between operations and change
of knowledge as well as between knowledge and believe of agents make the structure

of models quite involved. As we will see later, the structure of the models must
in some sense be represented in the tableau method. This makes the definition of
the tableau rules quite complicated. For feasibility reasons, we therefor decided

to restrict the logic to the fragment, that contains only modal knowledge operators
instead of knowledge and belief operators. We then do not need to take the relations

RBi between situations of the model into account and restrict the model to M =

(A,RK, I) only.

5.1 Introduction to Tableaux

The method of semantic tableaux can be seen as a refutation procedure that decom-

poses a given set of formulae into a network of sets. It is a well established tool in
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automated deduction to prove, whether a formula is a logical consequence of a set
of formulae.

Modal tableaux and modal logics became increasingly important with the introduc-

tion of “possible-worlds-semantics” by Kripke in 1959. One can essentially distin-
guish between two types of modal tableaux: Explicit systems and implicit systems.

In explicit systems the reachability relations between situation (or possible worlds
in Kripke Semantics) are explicitly represented by some means and we are allowed

to directly reason about the known properties of the relations. In implicit systems,
there is no explicit representation of the reachability relations and we cannot directly

reason about their properties. Instead, the properties of the reachability relations
must be built in the logical formulae.

As Rajeev Gore states in [Gor99], there is a subtle, but important difference between

implicit and explicit tableaux: Implicit systems are local in the sense, that in each
tableau node, it works only on a set of formulae local to one world (situation) with no

explicit references to the particular properties of the reachability relations. Explicit
tableaux are more global in the sense, that one can “see” the reachability relation and
hence keep a picture of the whole model under construction. Our logic is a multi

modal logic with strong dependencies between the temporal component and the
epistemic component of a model. In section 5.3 we will discuss the specific difficulties

that arise through the strong interdependencies between the various reachability
relations and argue, why we employ a version of explicit tableaux.

Let us now give a brief introduction in the syntax of tableaux, following [Gor99].

We use Γ for a set of formulae and γ, φ, ψ as formulae. Each tableau node is labelled
with a finite set of formulae. We write Γ, φ instead of Γ ∪ {φ}. Then, obviously,

Γ, φ, φ = Γ, φ and also Γ, φ, ψ = Γ, ψ, φ, i.e. the number of copies of a formula as well
as the order in which formulae occur in the set is immaterial as far as the notation

is concerned.

A tableau rule consists of a finite set of formula schemas called the numerator N
and a (finite) list of finite sets of formulae called denominators D1, . . .Dn:

N

D1 | . . . | Dn
(5.1)

A tableau rule is to be read as If the numerator N is satisfiable, then so is one
of the denominators D1, . . .Dn. The numerator of each rule contains one or more

distinguished formulae called the principal formulae. Each denominator may contain
distinguished formulae called side formulae.

Below at the right, you find a tableau rule with
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1. a numerator Γ, φ∨ψ with a principal
formula φ∨ψ

2. two denominators Γ, φ and Γ, ψ with
side-formulae φ and ψ respectively.

Γ, φ∨ψ
Γ, φ | Γ, ψ

A tableau system is then a finite collection of tableau rules. A tableau for a set of

formulae Γ is an (infinite) tree of finite grade, whose nodes are labelled with finite
sets of formulae. A tableau rule with a numerator N is applicable to a node, if the

formula set at this node is an instance of N .

There are two steps for extending a tableau tree:

1. Choose a leaf node that is labelled with a formula set Γ and choose a tableau
rule that is applicable to Γ .

2. If the rule has n denominators, then create n successor nodes, with successor
node i carrying an appropriate instantiation of the ith denominator.

5.2 Preliminaries

The logic L does not provide a dual for every operator. However, we have defined the

duals of the logical and modal operators as derived operators on page 39 and have
shown duality of strong and weak until in remark 4 on page 45. For simplification

of the presentation we use the following equivalences for negative formulae to push
the negation symbols inside. For most operators, the equivalence is obvious, for the

operators U we have shown the equivalence in remark (4) on page 45 We allow
negation only in front of atomic propositions and in front of epistemic formulae. As

we will see, applications of the rules (TR 7), (TR 8) and (TR 9) put a negation
symbol in front of a formula. In this case we assume that the negation symbol is

immediately pushed inside according to the following equivalences. Similarly, at the
beginning we assume, that all negation symbols occur only in front of knowledge
operators or in front of atomic propositions P ∈ P (except for ⊤ and ⊥).
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¬⊤ ⊥
¬⊥ ⊤
¬¬P P

¬¬Kiφ Kiφ

¬(φ∧ψ) ¬φ∨ ¬ψ

¬〈op〉iφ [op]i¬φ

¬[op]iφ 〈op〉i¬φ
¬(φUiψ) ¬ψWi(¬φ∧ ¬ψ)

¬(φWiψ) ¬ψUi(¬φ∧ ¬ψ)

5.3 Tableau Formulae

Our logic is a multimodal logic with temporal and epistemic modalities. In the fol-
lowing we will consider the temporal successor relation (see definition 3.2.3) as well

as the epistemic indistinguishability relations for each agent (see definition 3.3.2)
uniformly as accessibility relations on situations of a model M. The temporal and
the epistemic accessibility relations are not defined independently, there are inter-

dependencies among the two types of accessibility relations.

The fourth condition of definition 3.3.2 requires that if in a situation (F, c) an opera-

tion o is possible, and if for all agents participating in operation o situation (F, c) is
indistinguishable from a situations (F ′, c ′), then operation o must be possible next in
situation (F ′, c ′) as well and the resulting situations (F, co) and (F ′, c ′o) respectively

must be indistinguishable as well for each of the participating agents. Figure 5.1
illustrates this requirement.

a

i ∈ ag(a)
forall

RKi

(F ′, c ′)

(F, c) (F, ca)

a

(F, ca)

(F ′, c ′a)

forall
i ∈ ag(a) R

K
i

Figure 5.1: Interdependencies between temporal and epistemic relations

Representing this restriction in tableau rules seems to be quite involved. In [DG01]
Davoren and Gore define a tableau system for a logic with a comparable require-

ment. They call it the lower diamond property as the lower part of the diamond
follows from the upper part. The tableau system defined by Davoren and Gore is not
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complete in the sense, that there exist accepting tableaux for unsatisfiable formu-
lae. They give a formula as a counterexample that is not satisfiable but the tableau

system does accept the formula to be satisfiable. The problem is exactly the above
described property; it has “non-local” effects: A kind of “global view” is required in

order to detect and repair incomplete diamonds. According to [Gor99] we can dis-
tinguish between static tableau rules, in which the numerator of the rule corresponds
to the same situation as all its denominators and dynamic tableau rules in which

the denominator corresponds to the creation of a “successor” (either temporal or
epistemic) situation. However, in both cases the formulae in one node correspond

to only one situation. In case of the described interdependencies between tempo-
ral and epistemic relations a more global view on the model under construction is

demanded.

A possible solution to this problem is to use explicit tableaux, which means, we
explicitly represent the accessibility relations in the tableaux. Labelled tableaux are

one kind of explicit tableaux. The main principle is to use tableau labels to bring
some of the semantics into the syntax, as is suggested in [Fit83], [Fit96] and [Mas94].

Massacci uses structured labels as prefixes for formulae. Given two labels we are
able to tell, whether they are related by the accessibility relation simply by looking

at their structure. In our case, this is not so simple as we have to deal with a set of
accessibility relations, not only one. Thus we slightly modify this technique and do

not use structured labels but unstructured ones and relate them explicitly, so that
we can reason about formulae as well as about the labels and the structure they
suggest.

We introduce a tableau language L which extends the logic L in the following way:
We introduce a set of unstructured tableau labels each of which will later-on rep-

resent a situation of a model. All formulae φ ∈ L will be preceded by such a
tableau label which means, we can allocate formulae with different situations within
one node of the tableau. Formulae preceded by a tableau label are called labelled

formulae.

Further, we introduce a second type of formulae, so called structure formulae. They

represent the various relations between various situations. This enables us to repre-
sent the structure of models directly inside the tableau and also to directly reason

about the represented structure.

The third type of formulae are the labels themselves. They are included in the
tableau language L to ensure that a particular tableau rule (namely rule (TR 14))

will later on be applied in the correct way.

Recall, that the logic L does not have the finite model property: the formula
¬Ki〈a〉jφ with i /∈ ag(a) can be falsified only in an infinite model and Ki〈a〉jφ
can be satisfied only in an infinite model. Similarly, the formula φ Wi⊥ can be sat-
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isfied only in an infinite model. This property causes an important problem for the
tableau procedure: Each tableau path represents (a ’serialization’ of each run of) a

possible model for the set of formulae under consideration. Each situation of such a
serialization is represented by a tableau label which means, we need to use infinitely

many labels and may have to construct infinite tableau paths on which infinitely
many labels occur. However, for each node in the tableau the set of formulae in this
node is finite. Only the union of all nodes along an infinite path may contain an

infinite set of formulae.

Another problem in the following tableau system is caused by formulae of type Kiφ,

where φ /∈ Φ{i}. Formulae of this type cause the tableau system to be not complete.
However, in chapter 6, section 6.2 we will show completeness for a reasonable subset
of the logic L, for which we require that for a formula Kiφ it holds that φ ∈ Φ{i}.

Definition 5.3.1 (tableau language L) Let label be a set of (unstructured)
tableau labels containing a distinctive label l0.

We define the set of labelled formulae Ll as follows:

If φ ∈ L is a formula and if l ∈ label is a tableau label, then

l ⊢ φ

is a labelled formula.

We define the set of structure formulae Ls as follows:

If l, l ′ are tableau labels and if a ∈ O is an operation and i ∈ Ag is an agent then

l
a

−→ l ′

and
lRil

′

are structure formulae.

The tableau language L is defined as the union of the set of labelled formulae Ll, the

set of structure formulae Ls and set of tableau labels label:

L = Ll ∪ Ls ∪ label

For a set of tableau formulae ΓT ⊂ L we denote the set of tableau labels occurring
in ΓT ∩ (Ll ∪ Ls) as label(ΓT ):

• l0 ∈ label(ΓT ),
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• l ⊢ γ ∈ ΓT implies that l ∈ label(ΓT ),

• lRil
′ ∈ ΓT implies that l, l ′ ∈ label(ΓT ) and

• l
a

−→ l ′ ∈ ΓT implies that l, l ′ ∈ label(ΓT ).

• For all other tableau labels l ∈ label we have that l /∈ label(ΓT ).

We define ΓT ⊂ L to be a tableau set iff

ΓT ∩ label = label(ΓT ).

There is a close relation between the tableau language L on the one hand and models

and the language L on the other hand. The semantics of a formula φ ∈ L is defined
on situations of a model. We say, a situation (F, c) of a model M satisfies a formula

φ . . . and if we have a set of formulae Γ ⊂ L we say, a situation (F, c) of a model
M satisfies a set of formulae Γ . . .. All formulae of Γ must be satisfied in the same

situation. In the language L we cannot formulate that different formulae γ and γ ′

contained in the same set of formulae Γ are related to different situations. This is,

however, possible in the tableau language L. Two different labelled formulae l ⊢ γ
and l ′ ⊢ γ ′ may refer to two different situations of a model. We define an embedding
ℓ from the set of tableau labels label(ΓT ) into the set of situations |M| of a model.

The tableau formula l ⊢ γ then “means” that the formula γ ∈ L is satisfied by
situation ℓ(l) and the tableau formula l ′ ⊢ γ ′ “means” that the formula γ ′ ∈ L is

satisfied by situation ℓ(l ′). Note, that these two tableau formulae may represent
two different situations because the tableau labels l and l ′ may be embedded into

different situations, i.e. ℓ(l) 6= ℓ(l ′).

The language L contains structure formulae, that refer to the structure of the model
via the embedding of tableau labels into situations of a model. Strictly speaking,

structure formulae refer to the indistinguishability relations for knowledge and to
the temporal successor relation on situations.

Let us now capture this correspondence more formally:

Definition 5.3.2 (L-embedding, L − satisfiable) Let ΓT ⊂ L be a tableau set
(i.e. ΓT ∩ label = label(ΓT ) ) and let M = (A,RK, I) be a model.

A mapping ℓ : label(ΓT ) −→ |M| is an L-embedding from the set of tableau labels

label(ΓT ) into the set of situations |M|, iff for all tableau labels l, l ′ ∈ label(ΓT ), for
all agents i ∈ Ag and for all operations o ∈ O it holds that:

• l Ri l ′ ∈ ΓT implies (ℓ(l), ℓ(l ′)) ∈ RKi
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• l
o

−→ l ′ ∈ ΓT implies that there exists a run F ∈ A, such that ℓ(l) ∈ CF and

ℓ(l ′) ∈ CF and ℓ(l)
o

−→ ℓ(l ′)

ΓT is L − satisfiable with L-embedding ℓ iff for all labelled formulae l ⊢ γ ∈ ΓT
it holds that:

ℓ(l) |=M γ

ΓT is L − satisfiable iff there exists a model M = (A,RK, I) and there exists an
L-embedding ℓ : label −→ |M|, such that ΓT is L − satisfiable with L-embedding ℓ.

If a set of tableau formulae ΓT ⊂ L is L − satisfiable with L-embedding ℓ, then we
call ℓ a satisfying L-embedding for ΓT .

Note: In reference to the close relation between tableau label and situations, we

sometimes use a notation of label that is similar to the notation of situations,
e.g. (F, c) instead of l and l

a
−→ la or (F, c)

a
−→ (F, ca) instead of l

a
−→ l ′. Note,

however, that tableau labels are only syntactic elements, they do not carry any
semantics!

A set of formulae Γ ⊂ L is satisfiable iff there exists a model and a situation (F, c) in
this model such that (F, c) satisfies each formula γ ∈ Γ . To prove satisfiability for a
finite set of formula Γ ⊂ L we construct a tableau set from Γ to which we then apply

the tableau rules. We take a label l ∈ label and prefix each formula γ ∈ Γ with this
label. Further, we also add the label itself to the set to ensure, that the constructed

set is a tableau set.

Definition 5.3.3 (construction of tableau formulae) Let Γ ⊂ L be a finite set

of formulae and let l0 ∈ label be the distinctive tableau label.

The constructor τ constructs a set of tableau formulae ΓT out of the set of formulae
Γ ⊂ L by

1. adding the tableau label l0 to the set of tableau formulae and

2. prefixing each formula γ ∈ Γ by tableau label l0.

τ : 2L −→ 2L where τ(Γ) := {l0 ⊢ γ| for all γ ∈ Γ } ∪ {l0}

Note, that the set of tableau formulae ΓT constructed by constructor τ is a tableau
set, i.e. ΓT ∩ label = label(ΓT ).

As defined above, a set of tableau formulae consists of structure formulae, labelled

formulae and tableau labels. Often we are not only interested in a single structure
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formula but in the combination of structure formulae in the set. As defined in
the definition of L-embedding (definition 5.3.2), a structure formula of the type

(F, c)
a

−→ (F, ca) refers to a transition between situations ℓ((F, c)) and ℓ((F, ca))

for some appropriate L-embedding ℓ into a model M. We are interested in those
subsets of the structure formulae in a set of tableau formulae that are related to

interleavings of a run in a model. We call these subsets chains:

Definition 5.3.4 (chain) Let ΓT be a tableau set. We define a chain of ΓT induc-
tively as:

χ = (F, c) is a chain of ΓT iff (F, c) ∈ label(ΓT ).

χ = (F, c)
o

−→ (F, c ′) is a chain of ΓT iff (F, c)
o

−→ (F, c ′) ∈ ΓT .

If χ = (F, c0)
o0−→ . . .

on−1−→ (F, cn) is a chain of ΓT
and (F, cn)

on−→ (F, cn+1) ∈ ΓT
then χ ′ := χ

on−→ (F, cn+1) is a chain of ΓT .

We call a chain χ = (F, c0)
o0−→ . . .

on−1−→ (F, cn) of ΓT maximal iff it does not exist

a formula (F, c)
o

−→ (F, c ′) ∈ ΓT such that (F, c) = (F, cn) or (F, c ′) = (F, c0).

We call an infinite chain χ = (F, c0)
o0−→ . . . of ΓT maximal iff it does not exist a

formula (F, c)
o

−→ (F, c ′) ∈ ΓT such that (F, c ′) = (F, c0).

Two sets of tableau formulae Γ1T and Γ2T are called chain-equivalent (Γ1T ≃ Γ2T ) iff

they contain the same set of maximal chains.

In section 5.4 we define a tableau system the rules of which work on tableau sets.

The idea of the tableau system is as follows:

1. We start with a finite set of formulae Γ0 ⊂ L that we want to prove unsatisfi-
able.

2. We transform Γ0 ⊂ L by means of construction τ into a set of tableau formulae

ΓT0 ⊂ L, such that for exactly one label (F, c) ∈ label we have

• (F, c) ∈ ΓT0 and

• γ ∈ Γ0 implies (F, c) ⊢ γ ∈ ΓT0 .

3. We then apply the tableau rules to the tableau set ΓT0 .

4. We show that ΓT0 is L − satisfiable (see definition 5.3.2), iff Γ0 is satisfiable,

i.e. there exists a model M = (A,RK, I) and a situation (F, c) ∈ |M|, such
that (F, c) |=M γ for all γ ∈ Γ0.
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Theorem 5.3.5 Let Γ ⊂ L be a finite set of formulae of L and let ΓT ∈ L be a
finite set of tableau formulae of L, such that

• label(ΓT ) = {l0} and

• γ ∈ Γ iff l0 ⊢ γ ∈ L.

Then Γ is satisfiable iff ΓT is L − satisfiable.

Proof:

1. Suppose, Γ is satisfiable.
=⇒ there exists a model M and a situation (F, c) ∈ |M| such that for all

γ ∈ Γ : (F, c) |=M γ

=⇒ construct an L-embedding ℓ : label(ΓT ) −→ |M| such that for all ℓ(l0) =

(F, c)

=⇒ (* ΓT ∩ Ls = ∅ *)

ℓ is a satisfying L-embedding for ΓT
=⇒ ΓT is L − satisfiable.

2. Suppose, ΓT is L − satisfiable.
=⇒ there exists a satisfying L-embedding ℓ : label(ΓT ) −→ |M|

=⇒ for ℓ(l0) = (F, c) it holds that (F, c) |=M γ for all γ ∈ Γ
=⇒ Γ is satisfiable.

2

5.4 Tableau Rules

Our tableau system does not only break down formulae by logical implications. The

structure formulae of the extended language L take care of the correct structure of
a potential model. Thus we can say that by breaking down formulae, at the same

time, the tableau system “constructs” a part of a potential model. This means, that
some of our rules are related to logical implications, while others are related to the

requirements on the structure of possible models.

To make sure, that all necessary derivations are covered by the proof-system, we have
to apply the rules given in section 5.4 in a certain order. We define the following

three blocks of tableau rules:

1. • axioms for unsatisfiability and rules for logical implication (rules in sec-

tion 5.4.1);
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• rules that are related to the semantics for next (rules, which do not create
new next successors) (rules in section 5.4.3);

2. • (most) rules that are related to the structure of the RKi -indistinguishability
relations and the semantics of the knowledge operator (all rules in section

5.4.2, except for rule (TR 9), which belongs to block 3);

• rules that are related to the interaction between knowledge and actions

(rules in section 5.4.4);

3. rules, that create new labels and are related to the structural requirements:

• a rule that, semantically speaking, extends the temporal relation (rule
5.4.3), and

• a rule that, semantically speaking, extends the indistinguishability rela-
tion ( (TR 9).

Starting with the first block, we have to apply rules from each block until no further
rules can be applied any more, then we can shift to the next block of rules.

This method ensures some kind of fairness for the application of tableau rules: In

proposition 5.6.14 we will see that whenever a tableau rule can be applied to the
tableau set occurring in a node of a tableau, then on each infinite tableau path

starting from this node this rule will be served after a finite number of steps.

Let us now present the tableau rules.

Each tableau rule can be read as The numerator is L − satisfiable iff one of the
denominators is L−satisfiable. Note, that the if and only if in the previous sentence

indicates our goal: We want to prove soundness and completeness of the system.

Let us fix a set of tableau labels label for the remainder of this chapter. Whenever

a denominator Γden contains a tableau label l that is not explicitly mentioned in
the numerator Γnum of the rule, then this label needs to be new to the tableau set,

i.e. l /∈ label(Γnum). This constraint applies for the rules (TR 9) and (TR 14).

Furthermore, in some rules, we put formulae “asleep” which means, they may not

be used any more as principal formulae for the rules (TR 6), (TR 9) and (TR 14).
We mark these formulae as “sleeping” by coloring them.

If not stated otherwise, all formulae carry the same marking status in the denomina-
tors as they do in the numerator. Newly created tableau formulae do not carry any

marks. Rules can be applied to marked formulae as well as to unmarked formulae.
However, there are exceptions of this condition:

• Rules (TR 6) and (TR 9) may only be applied to unmarked knowledge for-

mulae but they mark the respective knowledge formulae in the denominator.
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• Rule (TR 13) may be applied to both marked and unmarked knowledge for-
mulae and keep the marking status for the respective knowledge formula in the

denominator. However, additionally it adds a new marked knowledge formula
to the denominator.

• Rule (TR 14) may only be applied to unmarked tableau labels. The applica-
tion of the rules marks the tableau label for which the rule is applied. This

ensures, that for each situation, we will only have one successor for each oper-
ation.

Rule (TR 14) is the only rule in which a tableau label as a formula plays a
relevant role.

5.4.1 Axioms and Local Rules

Axioms for Unsatisfiability

Axioms identify sets of tableau formulae that are not L − satisfiable, which means,
there does not exist a satisfying L-embedding for them.

ΓT , (F, c) ⊢ φ, (F, c) ⊢ ¬φ
(TR 1)

ΓT , (F, c) ⊢ ⊥
(TR 2)

Rules Referring to Logical Implication

Next we present the rules that refer to logical implication. As we will see, these rules

break down formulae local to one situation. They are standard for most tableau
procedures and thus do not need further explanation.

ΓT , (F, c) ⊢ ⊤

ΓT
(TR 3)

ΓT , (F, c) ⊢ φ∧ ψ

ΓT , (F, c) ⊢ φ, (F, c) ⊢ ψ
(TR 4)

ΓT , (F, c) ⊢ φ∨ ψ

ΓT , (F, c) ⊢ φ | ΓT , (F, c) ⊢ ψ
(TR 5)
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Local Knowledge Rule (Reflexivity)

The following rule is again a local rule. It corresponds to the reflexivity of the RKi
indistinguishability relation: If a situation (F, c) of a model M satisfies a formula
Kiφ, then because of the reflexivity of the knowledge indistinguishability relation it

also satisfies formula φ. For each tableau formula (F, c) ⊢ Kiφ in the tableau set we
thus add a labelled tableau formula (F, c) ⊢ φ to the set.

We do not remove the principal (F, c) ⊢ Kiφ from the tableau set because it has

impacts on other labels (situations) that might not be identifiable at the moment
of the rule application. So the principal formula (F, c) ⊢ φ will be a marked side

formula in the denominator of the rule. The marking prevents it from being principal
formula again for the same rule. For the application of rule (TR 6) we require the

principal formula to be unmarked.

ΓT , (F, c) ⊢ Kiφ (unmarked)

ΓT , (F, c) ⊢ Kiφ, (F, c) ⊢ φ
(TR 6)

Induction Rules

The next two rules are the rules for the unwinding of the (weak and strong) until

operators. If the logic L contained a global, unlabelled next (often denoted as ©),
a formula φ Uψ could be unwound to two alternative successors ψ and ¬ψ ∧ φ ∧

©φ Uψ. However, such a global next does not exist in L. We use the abbreviation
〈O〉iφ Uiψ :=

∨

a∈Oi
〈a〉iφ Uiψ instead that indicates, that there must be at least

one next operation of agent i and after this operation the until formula must hold

again. Note, that this abbreviation is merely a syntactic one and is possible only
because the set of operations of each agent Oi is finite. In the case of φWiψ we

cannot assume that there actually exists a next operation: φWiψ is also satisfied in
a situation in which agent i does not perform any further operations. However, if

there is a next operation of agent i then φWiψ must hold after the next operation
is performed. We abbreviate this by [O]iφWiψ :=

∧

a∈Oi
[a]iφWiψ.

ΓT , (F, c) ⊢ φ Uiψ

ΓT , (F, c) ⊢ ψ | ΓT , (F, c) ⊢ ¬ψ ∧φ∧ 〈O〉iφ Uiψ
(TR 7)

(where 〈O〉iφ abbreviates
∨

a∈Oi
〈a〉iφ)
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ΓT , (F, c) ⊢ φWiψ

ΓT , (F, c) ⊢ ψ | ΓT , (F, c) ⊢ ¬ψ ∧φ∧ [O]iφWiψ
(TR 8)

(where [O]iφ abbreviates
∧

a∈Oi
[a]iφ)

5.4.2 Rules Concerning Epistemic Structure

As mentioned in the introduction to this section, structure formulae refer to the

structure of the indistinguishability relations for knowledge and to the temporal
relation of a potential model.

The rules in this section take care of the correct representation of the indistinguisha-

bility relations by tableau formulae and tableau rules.

• A formula ¬Kiφ is true in a situation (F, c), iff there exists an RKi -
indistinguishable situation (F ′, c ′) in which φ does not hold. Suppose, ΓT
contains a tableau formula (F, c) ⊢ ¬Kiφ. We know that if we embed the label
(F, c) into a model, the model must contain at least one situation (F ′, c ′) that

is RKi -indistinguishable from ℓ((F, c)) and that does not satisfy φ.

We cannot assume that the tableau label l, that is mapped on the situation
(F ′, c ′), has already occurred in label(ΓT ). Therefor, we must introduce a new

label in rule (TR 9). For this new label (F ′, c ′) we require, that

– the situation in which it gets embedded is RKi -indistinguishable from the

situation (F, c) (in the tableau indicated by (F, c)Ri(F
′, c ′))

– it does not satisfy φ (in the tableau indicated by (F ′, c ′) ⊢ ¬φ).

To ensure, that we do not apply this rule infinitely many times and thereby
create infinitely many labels that satisfy the above requirements, we put the

formula (F, c) ⊢ ¬Kiφ asleep by marking it.

Again, as before in rule (TR 6) we require an unmarked principal formula for
this rule.

• The RKi -indistinguishability relation is an equivalence relation. Rule (TR 6)

already takes care for the reflexivity of the structure. We define tableau rules
that ensure symmetry and transitivity for the indistinguishability relations.
If a set of tableau formulae ΓT contains a structure formula (F, c)Ri(F

′, c ′)
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we add the structure formula (F ′, c ′)Ri(F, c) and if it contains the for-
mulae (F, c)Ri(F

′, c ′) and (F ′, c ′)Ri(F
′′, c ′′), we add the structure formula

(F, c)Ri(F
′′, c ′′).

• On the semantical side we have that two RKi -indistinguishable situations satisfy

the same set of knowledge formulae of agent i: If two situations (F, c) and
(F ′, c ′) ∈ |M| are RKi -indistinguishable ( ((F, c), (F ′, c ′)) ∈ RKi ) then (F, c) |=M

Kiφ iff (F ′, c ′) |=M Kiφ and, accordingly (F, c) |=M ¬Kiφ iff (F ′, c ′) |=M ¬Kiφ

for all formulae φ ∈ L. We define two syntactic rules that correlate to this

semantic fact: If we have the tableau formulae (F, c) ⊢ Kiφ and (F, c)Ri(F
′, c ′)

then we introduce a new tableau formula (F ′, c ′) ⊢ Kiφ and, accordingly, if we

have two tableau formulae (F, c) ⊢ ¬Kiφ and (F, c)Ri(F
′, c ′) then we introduce

a new tableau formula (F ′, c ′) ⊢ ¬Kiφ.

As mentioned before, knowledge formulae can occur marked and unmarked

in the tableau. The rules for the transfer of knowledge formulae across Ri-
edges/paths can be applied to both marked and unmarked formulae. We

marked a tableau formula (F, c) ⊢ Kiφ to prevent rule (TR 6) to be applied
infinitely many times to the same formula. This marking is only relevant in
the context of this rule. That means for the rule for transferring knowledge

formulae, that the principal formula (F, c) ⊢ Kiφ will remain marked, iff it was
marked before and remain unmarked, iff it was unmarked before. The newly

added tableau formula (F ′, c ′) ⊢ Kiφ will be unmarked: rule (TR 6) has not
been applied to this tableau formula yet.

The case is different for formulae (F, c) ⊢ ¬Kiφ. Here we use the marking

to indicate, that already one label l in this “Ri-equivalence” class exists, with
l ⊢ ¬φ. Thus, in this rule, the newly added tableau formula (F ′, c ′) ⊢ ¬Kiφ will

be marked. If the principal of the rule, i.e. tableau formula (F, c) ⊢ ¬Kiφ, is
marked as well, then there either already exists a tableau formula (F ′, c ′) ⊢ ¬φ

in this Ri-equivalence class or there is at least one more tableau formula, that
is responsible to produce such a tableau formula. If the principal formula is

unmarked, this means, that it will sooner or later create a formula (F ′, c ′) ⊢ ¬φ

with (F ′, c ′) being in the same Ri-equivalence class as (F, c).

• The interpretation of a model is defined in such a way, that each proposition
p ∈ P has the same value in all RKi -indistinguishable situations. Therefor, rule

(TR 12) propagates propositions (or their negations) to labels that belong to
the same Ri equivalence class.
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Creation of New Ri-successors

The following rule corresponds to the first item above. For each awake, i.e. un-
marked tableau formula (F, c) ⊢ ¬Kiφ ∈ Γl we employ a new tableau label (F ′, c ′)

and relate it to tableau label (F, c) my means of a structure formula (F, c)Ri(F
′, c ′).

For this new tableau label we further add the labelled formula (F ′, c ′) ⊢ ¬φ. Intu-
itively, on the semantical level this means that we identify a situation (F ′, c ′) that

is RKi -indistinguishable to situation (F, c) and takes care, that the formula ¬φ is
satisfied in at least one situation of the equivalence class. Further, since we require

for a tableau set that ΓT ∩ label = label(ΓT ) we must add the tableau label (F ′, c ′)

itself as a formula to the denominator.

As explained above, the application of this rule marks the principal formula to indi-
cate, that, semantically spoken, there already exists one situation in the equivalence

class, which satisfies ¬φ. For the application of rule (TR 9) we require the principal
formula to be unmarked. The principal formula occurs as marked side formula in

the denominator.

ΓT , (F, c) ⊢ ¬Kiφ (unmarked)

ΓT , (F, c) ⊢ ¬Kiφ , (F, c)Ri(F ′, c ′), (F ′, c ′), (F ′, c ′) ⊢ ¬φ
(TR 9)

Transitive and Symmetric Closure of the Ri-relation

The next two rules construct the symmetric and transitive closure of the Ri-relations.

ΓT , (F, c)Ri(F
′, c ′)

ΓT , (F, c)Ri(F
′, c ′), (F ′, c ′)Ri(F, c)

(TR 10)

ΓT , (F, c)Ri(F
′, c ′), (F ′, c ′)Ri(F

′′, c ′′)

ΓT , (F, c)Ri(F
′, c ′), (F ′, c ′)Ri(F

′′, c ′′), (F, c)Ri(F
′′, c ′′)

(TR 11)

Transfer of Formulae Between Ri-indistinguishable Situations

As motivated in items 3 and 4 above, the rules (TR 12) and (TR 13) ensure,
that in Ri-equivalent situations the same knowledge formulae and the same i-local

propositions hold.
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In rule (TR 12) we take any marked or unmarked formula of the form (F, c) ⊢ χ with
χ ∈ {Kiφ, P,¬P | P ∈ Pi, φ ∈ L} and transfer it to an Ri related tableau label (F ′, c ′),

omitting any marking in the new formula (F ′, c ′) ⊢ χ. In other words, the rule can
be applied to both marked and unmarked tableau formulae. The newly generated

side formula in the denominator is unmarked, independent of the marking of the
principal formula.

ΓT , (F, c)Ri(F
′, c ′), (F, c) ⊢ χ for χ ∈ {Kiφ, P,¬P|P ∈ Pi, φ ∈ L}

ΓT , (F, c)Ri(F
′, c ′), (F, c) ⊢ χ, (F ′, c ′) ⊢ χ

(TR 12)

The next rule can again be applied to both marked and unmarked formulae (F, c) ⊢
¬Kiφ. The marking status of the side formula (F, c) ⊢ ¬Kiφ will be the same as that

of the principal formula (F, c) ⊢ ¬Kiφ. However, the side formula (F ′, c ′) ⊢ ¬Kiφ

in the denominator will be marked, independently of the marking status of the

principal formula. This marking ensures, that the side formula (F ′, c ′) ⊢ ¬Kiφ does
not create another (unnecessary) Ri-successor through rule (TR 9).

ΓT , (F, c)Ri(F
′, c ′), (F, c) ⊢ ¬Kiφ

ΓT , (F, c)Ri(F
′, c ′), (F, c) ⊢ ¬Kiφ, (F

′, c ′) ⊢ ¬Kiφ
(TR 13)

5.4.3 Rules Concerning Temporal Structure

The rules in this section take care of the correct representation of the temporal
successor relation of a potential model by tableau formulae and tableau rules.

Creation of Next-Successors

If a formula 〈a〉iφ with a ∈ Oi or a formula 〈O〉iφ is satisfied in a situation (F, c)

of a potential model, then there must exist a successor situation (F, c ′) of (F, c)

and an operation a ′ ∈ O such that (F, c)
a′

−→ (F, c ′). (From a formula 〈a〉iφ we
can even conclude a stronger condition, namely that there exists a situation (F, ca)

with (F, c)
a

−→ (F, ca). However, in the context of this rule the weaker statement

made above is sufficient.) Rule (TR 14) takes care of the creation of necessary
next-successors.

Let us in the following abbreviate “〈O〉iφ or 〈a〉iφ for any a ∈ Oi” by 〈·〉iφ.
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Although the model for the logic was defined with a partial order relation for the
temporal relations, the tableau works in an interleaving fashion. The set of tableau

formulae in the numerator contains a set of chains as defined in definition 5.3.4.
Semantically speaking, each chain represents one interleaving of a potential model.

If the tableau set Γnum contains a formula (F, c) ⊢ 〈·〉iφ and rule (TR 14) has not
been applied for label (F, c) yet, i.e. label (F, c) is unmarked, then rule (TR 14)
creates a denominator for each operation1 a ′ ∈ O. The denominator contains a new

formula (F, c)
a′

−→ (F, ca ′) for the respective operation a ′. Further, rule (TR 14)

marks the tableau label (F, c) so that the rule (TR 14) can be applied only once

for each label. This prevents, that there are two structure formula (F, c)
a

−→ (F, ca)

and (F, c)
a′

−→ (F, ca ′) in the same tableau set with a 6= a ′ or (F, ca) 6= (F, ca ′).

The following rule may be applied only for tableau labels (F, c) that are unmarked.
The application of this rule generates one denominator for each operation ai ∈ O.

The tableau label (F, cai) in the ith denominator must be new to the tableau set.

ΓT , (F,c) ⊢ 〈.〉iφ,(F,c) (unmarked)

ΓT , (F,c) ⊢ 〈.〉iφ,(F,c)
a1−→ (F,ca1),(F,c),(F,ca1) | ... | ΓT , (F,c) ⊢ 〈.〉iφ,(F,c)

an
−→ (F,can),(F,c),(F,cn)

(TR 14)

Saturation of Temporal Successors

In the previous rule, we have created possible next-successors for tableau labels.

Semantically speaking, a structure formula (F, c)
a

−→ (F, ca) ∈ ΓT indicates, that in
a model the situation ℓ((F, ca)), corresponding to tableau label (F, ca), is reachable

from the situation ℓ((F, c)), corresponding to tableau label (F, c), by execution of an
operation a.

If (F, ca) is the situation resulting from performing an operation a in the situation
(F, c) and if the situation (F, c) satisfies a formula 〈a〉iφ or [a]iφ then the resulting

situation (F, ca) satisfies the formula φ. These considerations lead to the following
tableau rules:

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ 〈a〉iφ

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ φ
(TR 15)

1Note, that this is possible only because O is finite.
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ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ [a]iφ

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ φ
(TR 16)

If a situation (F, c) evolves to a situation (F, ca) by the performance of an operation
a, then the situation (F, c) cannot satisfy a formula 〈b〉iφ with i ∈ ag(a) and a 6= b

because the operations for each agent are totally ordered. In the tableau we capture
this contradiction by adding a tableau formula (F, c) ⊢ ⊥. Independently of the sub
formula φ if the situation (F, c) evolves to (F, ca) by the performance of an operation

a, then situation (F, c) satisfies the formula [a]iφ where i ∈ ag(a). We capture these
considerations in the following tableau rules:

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ 〈b〉iφ with i ∈ ag(a), a 6= b

(F, c) ⊢ ⊥
(TR 17)

If a situation (F, c) evolves to a situation (F, ca) by performing an action a and if
situation (F, c) satisfies a formula 〈b〉iφ (or a formula [b]iφ) with i /∈ ag(a), then the

situation (F, ca) also satisfies the formula 〈b〉iφ (or the formula [b]iφ, respectively).
From these considerations we conclude the following two rules:

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ 〈b〉iφ with i /∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ 〈b〉iφ
(TR 18)

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ [b]iφ with i /∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ [b]iφ

(TR 19)

Because of the rules for until, U , and for the weak until, W , we introduced artificial
global next 〈O〉iφ and [O]iφ as abbreviations for quantifications over all operations

of Oi. As for local next, we distinguish between the two cases, that agent i does
take part in operation a and that agent i does not take part.
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First consider, that agent i takes part in operation a:

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ 〈O〉iφ with i ∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ φ
(TR 20)

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ [O]iφ with i ∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ φ
(TR 21)

The next rules consider operations a in which agent i does not take part:

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ 〈O〉iφ with i /∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ 〈O〉iφ
(TR 22)

ΓT , (F, c)
a

−→ (F, ca), (F, c) ⊢ [O]iφ with i /∈ ag(a)

ΓT , (F, c)
a

−→ (F, ca), (F, ca) ⊢ [O]iφ

(TR 23)

5.4.4 Interaction Between Knowledge and Action

Not all operations can be observed by all agents, usually only a subset of all agents
takes part in an operation. For those agents i, that do not take part, the situations
before and after the execution of the operation are i-equivalent. Condition 3 of

definition 3.3.2 says, that i-equivalent situations are also RKi -indistinguishable. This

leads to the following rule, which has the structure formula (F, c)
a

−→ (F, c ′) as

principal formula in the numerator and the set of formulae {(F, c)
a

−→ (F, c ′)} ∪
{(F, c)Ri(F, c

′)|i /∈ ag(a)} as side formulae in the denominator.

ΓT , (F, c)
a

−→ (F, ca)

ΓT , (F, c)
a

−→ (F, ca), (F, c)Ri(F, ca) for all i /∈ ag(a)

(TR 24)

The next two rules correspond to condition 4 of definition 3.3.2. This condition
makes the tableau rules quite complex. It ensures, that if a situation (F, c) evolves

into situation (F, ca) by the execution of an operation a and there is a situation
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(F ′, c ′) RKi -indistinguishable from (F, c) for all agents i involved in a, then operation
a must also be possible in situation (F ′, c ′). Tableau rule (TR 25) captures this

constraint in the tableau. It can be applied, if the tableau set Γnum contains a
formula (F, c)

a
−→ (F, ca) and it contains a tableau label (F ′, c ′) such that for all

i ∈ ag(a) the formula (F, c)Ri(F, ca) ∈ Γnum. The denominator Γden of rule (TR
25) is a superset of the numerator and additionally to the numerator it contains for
all i ∈ ag(a) the formula (F ′, c ′) ⊢ 〈a〉i⊤.

Further, condition 4 of definition 3.3.2 requires, that after performing the a-
step from situation (F ′, c ′) the resulting situation (F ′, c ′a) must be indistinguish-

able from situation (F, ca) for all agents i involved in operation a. This con-
straint leads to rule (TR 26). Rule (TR 26) can be applied if the tableau set

Γnum contains formulae (F, c)
a

−→ (F, ca) and (F ′, c ′)
a

−→ (F ′, c ′a) and the set

{(F, c)Ri(F, ca) | i ∈ ag(a)} as principal formulae. The denominator Γden of rule
(TR 26) is a superset of the numerator: and additionally to the numerator it con-
tains the set {(F, ca)Ri(F

′, c ′a) | i ∈ ag(a)} as side formulae.

ΓT , (F,c)
a

−→ (F,ca),(F,c)Ri(F
′,c′) for all i ∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,c)Ri(F
′,c′),(F′,c′) ⊢ 〈a〉i⊤ for all i ∈ ag(a)

(TR 25)

ΓT , (F,c)
a

−→ (F,ca),(F′,c′)
a

−→ (F′,c′a),(F,c)Ri(F
′,c′) for all i ∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F′,c′)
a

−→ (F′,c′a),(F,c)Ri(F
′,c′),(F,ca)Ri(F

′,c′a) for all i ∈ ag(a)

(TR 26)

5.5 Definition of Tableaux

In this section we define tableaux for finite tableau sets ΓT ⊂ L. We distinguish

between general tableaux, the root of which is labelled by an arbitrary tableau set
ΓT and regular tableaux. The root of a regular tableau is labelled by a tableau set

ΓT0 that is constructed from a set of formulae Γ0 by construction τ. Note, that the
root of a regular tableau does not contain any structure formulae (i.e. ΓT0 ∩ Ls = ∅)
and all labelled formulae in ΓT0 carry the same label (i.e. |label(ΓT0 )| = 1).

Many of the properties we show for the tableaux only apply to regular tableaux. We
assume a certain structure of the set of tableau formulae occurring in the tableau

that is guaranteed only for sets of formulae occurring in regular tableaux.
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Definition 5.5.1 (general tableau) A (general) tableau T (ΓT ) is a labelled, pos-
sibly infinite tree of finite grade where every node v of the tree is labelled2 with a

finite tableau set Γ(v), such that the following holds:

• The root is labelled with ΓT .

• If Γ(v) is a tableau axiom, then v is a leaf of the tree.

• If Γ(v) is not an axiom, then

– either no tableau rule is applicable to Γ(v) and thus v is a leaf or

– the children of v are created and labelled according to the rules:

Γ(v) is the numerator and the labels of the children are the denominators

of the rule.
Three blocks of rule applications alternate:

block 1 = rules (TR 3), (TR 4), (TR 5), (TR 6), (TR 7), (TR 8),

(TR 15), (TR 16), (TR 17), (TR 18), (TR 19), (TR 20), (TR 21),
(TR 22), (TR 23),
block 2 = rules (TR 10), (TR 11), (TR 12), (TR 13), (TR 24),(TR

25) and (TR 26)
block 3 = rules (TR 9) and (TR 14)

∗ The children of v are generated by an application of a rule of block
1, if a rule of block 1 is applicable and if

· v is the root of the tree or

· if v is generated from v ′ by the application of a rule of block 1 or

· if v is generated from v ′ by the application of a rule of block 3

and no further application of a rule of block 3 is possible, or

· if v is generated from v ′ by the application of a rule of block 2
and no further rules of block 2 or block 3 are applicable.

∗ The children of v are generated by the application of a rule of block
2, if a rule of block 2 is applicable and if

· v is generated from v ′ by the application of a rule of block 2 or

· if v is generated by the application of a rule of block 1 and no
further rules of block 1 can be applied any more, or

· if v is generated from v ′ by the application of a rule of block 3
and no further rules of block 3 or block 1 are applicable.

2Note, that we use the word labelled in the context of labelled formulae, labelled events and
labelled tableau nodes. However, it should always be clear from the context which type of label
we consider.
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∗ The children of v are generated by the application of a rule of block
3, if a rule of block 3 is applicable and if

· v is generated from v ′ by the application of a rule of block 3 or

· if v is generated by the application of a rule of block 2 and no
further rules of block 2 can be applied any more, or

· if v is generated from v ′ by the application of a rule of block 1
and no further rules of block 1 or block 2 are applicable.

• Rules are applied provided that all their denominators are different from the

numerator.

We define the set of tableau formulae occurring on a path π = v0v1v2 . . . as

Γπ :=
⋃

k∈IN

Γ(vk).

We define the set of tableau formulae occurring on a prefix πn = v0v1v2 . . . vn of a

path π as

Γn :=
⋃

k≤n

Γ(vk).

A specialization of general tableaux are regular tableaux.

Definition 5.5.2 (regular tableau) A tableau T (ΓT0 ) is called regular tableau

iff there exists a set of formulae Γ0 ⊂ L such that the root ΓT0 of T is derived from
Γ0 by construction τ, such that ΓT0 = τ(Γ0).

Since we are primarily interested in the (non-)satisfiability of sets of formulae Γ0 ∈ L
we will in the remainder of this work only consider regular tableaux and assume

regular tableaux whenever we talk about tableaux.

For regular tableaux we can make one important observation that is essential for the
completeness proof of the tableau system: Consider a path π of a regular tableau

T . The set of formulae occurring on path π, Γπ, contains a set of structure formulae
of the type l

a
−→ la, which forms a set of chains.

It cannot happen that a tableau label l ∈ label(Γπ) has two next-successors or two

next-predecessors, i.e. for all labels l, l1, l2 ∈ label(Γπ) and for all a, b ∈ O the
following holds:

• If l
a

−→ l1 and l
b

−→ l2 then a = b and l1 = l2 and

• if l1
a

−→ l and l2
b

−→ l then a = b and l1 = l2.
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Further, each chain has a least label l such that there is no label l ′ ∈ label(Γπ) and

operation a ∈ O with l ′
a

−→ l. Together with the previous constraint this implies
that there can be no cycles in the chains. From this we can conclude, that each

tableau label occurs in exactly one maximal chain in Γπ.

Figure 5.5 illustrates constructions, that do not occur:

b

a

b

a

l2

l1
l ll

l1

l2

∗

a

Figure 5.2: Combinations of structure formulae that cannot occur in Γπ.

We define this property to be the regular tableau property:

Definition 5.5.3 (regular tableau property) Let ΓT be a set of tableau for-
mulae and let l −→+ l ′ be the transitive closure of all tableau formulae of type

l
a

−→ l ′ ∈ Γπ with a ∈ O.

ΓT has the regular tableau property iff it satisfies the following properties:

1. l1
a

−→ l2 ∈ Γπ and l1
b

−→ l ′2 ∈ Γπ implies a = b and l2 = l ′2 (no split),

2. l1
a

−→ l2 ∈ Γπ and l ′1
b

−→ l2 ∈ Γπ implies a = b and l1 = l ′1 (no join),

3. l −→+ l ′ implies l 6= l ′ (no cycle).

Lemma 5.5.4 Let T be a regular tableau and let π be a path of T .

Γπ has the regular tableau property.

For each finite prefix of a path π we can prove this lemma by induction over the
length of the path.

The induction hypothesis is, that for each prefix v0v1 . . . vn of the path the set

Γn =
⋃

k≤n Γ(vk) has the regular tableau property.

Most tableau rules do not change the set of the structure formulae of type l
a

−→ la.

For these rules it is obvious that if Γnum has the regular tableau property then also
Γden has the regular tableau property.

The only rules that change the set of these structure formulae are rules (TR 17)

and (TR 14). Rule (TR 17) deletes a structure formula of the form l
a

−→ l ′. This
obviously cannot lead to a violation against the lemma: the only applicable rule
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after application of rule (TR 17) is rule (TR 2). Thus, it cannot happen that a
deleted label will be introduced again into the considered tableau set along a path.

Using a new label, rule (TR 14) adds a new structure formula of respective form.

Since the new label did not occur in Γnum before, the introduction of this new
structure formula can neither lead to joins nor can it lead to cycles.

Each application of rule (TR 14) with formulae (F, c) ⊢ 〈·〉iφ, (F, c) as principal

formulae marks the tableau label (F, c). Since the rule may only be applied to
unmarked tableau labels and there is no rule, that unmarks a marked tableau label,

the rule (TR 14) may be applied only once for each tableau label (F, c) ∈ label(Γπ).

Rule (TR 14) is the only rule that creates structure formulae of the type (F, c)
a

−→
(F, ca), so this rule cannot create two structure formula l

a
−→ l ′ and l

b
−→ l ′′ with

a = b or l ′ = l ′′.

We now capture this informal proof-sketch more formally:

Proof of lemma 5.5.4

Let T (ΓT0 ) be a regular tableau and let π be a path of T (ΓT0 ).

Suppose, Γπ does not have the regular tableau property. Then, Γπmust either contain

• two structure formulae l1
a

−→ l2 and l1
b

−→ l ′2 with a 6= b or l2 6= l ′2 or

• it must contain two structure formulae l1
a

−→ l2 and l ′1
b

−→ l2 with a 6= b or

l1 6= l ′1 or

• it must contain a cycle l −→+ l ′ with l = l ′.

1. Suppose, l1
a

−→ l2 ∈ Γπ and l1
b

−→ l ′2 ∈ Γπ with l2 6= l ′2 or a 6= b.

=⇒ there must exist a least prefix v0 . . . vm . . . vn of path π such that

a) the set Γ(vm) is derived from Γ(vm−1) by the application of rule (TR 14)

and w.l.o.g. l1
a

−→ l2 ∈ Γm \ Γm−1 and

b) Γ(vn) is derived from Γ(vn−1) by the application of rule (TR 14) and

l1
b

−→ l ′2 ∈ Γn \ Γn−1

=⇒ for all k ≥m it holds that l1 ∈ label(Γ(vk)) is marked as sleeping
=⇒ Rule (TR 14) cannot be applied to label l1 in node vn−1

=⇒ contradiction to the assumption, that l1
b

−→ l ′2 ∈ Γn \ Γn−1.

2. Suppose, l1
a

−→ l2 ∈ Γπ and l ′1
b

−→ l2 ∈ Γπ with l2 6= l ′2 or a 6= b.
=⇒ there must exist a least prefix v0 . . . vm . . . vn of path π such that
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a) the set Γ(vm) is derived from Γ(vm−1) by the application of rule (TR 14)

and w.l.o.g. l1
a

−→ l2 ∈ Γm \ Γm−1 and

b) Γ(vn) is derived from Γ(vn−1) by the application of rule (TR 14) and

l ′1
b

−→ l2 ∈ Γn \ Γn−1

=⇒ (* no rule deletes an existing label from a tableau set3 *)
l2 ∈ label(Γ(vk)) for all k ≥m
=⇒ (* because rule (TR 14) adds a new label *)

rule (TR 14) cannot add the tableau formula l ′1
b

−→ l2 to the tableau set in

node Γ(vn), since l2 is not new

=⇒ this is a contradiction to the assumption that l ′1
b

−→ l2 ∈ Γn \ Γn−1.

3. Suppose, χ = l
a0−→ l1

a1−→ l2
a2−→ . . .

an−1−→ ln
an−→ l is a chain of Γπ.

=⇒ there exists a least prefix v0v1, . . . vm of π such that χ is a chain of Γm.
=⇒ rule (TR 14) is applied to node vm−1 and w.l.o.g. l

a0−→ l1
a1−→ l2

a2−→
. . .

an−1−→ ln is a chain of Γm−1 and ln
an−→ l ∈ Γm \ Γm−1

=⇒ l ∈ label(Γ(vm−1))

=⇒ l is not new to Γ(vm) which is a contradiction to the application of rule
(TR 14).

2

From lemma 5.5.4 we can easily conclude the following corollaries:

Corollary 5.5.5 Let Γ be a tableau set that has the regular tableau property. Every
subset Γ ′ ⊆ Γ has the regular tableau property.

Corollary 5.5.6 Let Γ be a tableau set that has the regular tableau property and let
l
a

−→ l ′ ∈ Γ . Then there does not exist a chain χ in Γ with χ = l
a0−→ · · ·

ak−→ · · ·
an−→ l ′

and ak 6= a.

Our aim of constructing a tableau for a tableau set ΓT is to prove L-satisfiability
or L-unsatisfiability of ΓT . What rejection conditions are needed for tableaux so

that all L-unsatisfiable tableau sets are rejected and all L-satisfiable tableau sets
are accepted?

3except for rule (TR 17), but after the application of this rule only axiom (TR 2) can be applied
to close the path, rule (TR 14) cannot be applied again on that path. Rule (TR 3) cannot
delete a tableau label as for the activator l ⊢ ⊤ it holds that either l = l0 or there exists a
structure formula in the numerator containing l. In either case the tableau label is not deleted
from the set by application of rule (TR 3).
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If we only had to deal with finite tableaux, we could use the standard definition
for acceptance or rejection of tableaux: A leaf, that carries an inconsistent set

of formulae cannot be satisfied and thus must be rejected. A leaf, that carries a
consistent set will be accepted. If all leaves are rejected, the tableau is rejected, if

at least one leaf is accepted, the tableau is accepted. However, the tableau system
for L may construct infinite paths due to several reasons. Some of these paths may
be accepted, because they represent a possible run of a model, others may have to

be rejected.

There are several reasons for possibly infinite tableau paths. The following list gives

some examples:

• The repeated application of the induction rules (TR 7) and (TR 8) may lead

to infinite paths in a tableau.

Consider for example a tableau set ΓT0 = {l ⊢ ⊤ Ui⊥, l}.

Repeated applications of rules (TR 7), (TR 4), (TR 3), (TR 14), (TR 20)
lead to an infinite tableau. A sketch of a tableau proof for ΓT0 is given in the

appendix on page 239.

Semantically speaking, the infinite path represents an infinite interleaving of
an infinite run in which obviously the formula ⊤ is always satisfied and the

formula ⊥ is never satisfied. However, such a run does not satisfy the “strong
until” ⊤Ui⊥. Generally, in a formula φ Uiψ the sub formulaψ must eventually

become true to fulfill the whole formula. This is not necessary in case of
formula φWiψ. The semantics of formula φWiψ is “either φUiψ or 2iφ”, so

⊤ Wi⊥ would be satisfied on the infinite path described above.

Thus, in the tableau we have to distinguish between infinite paths that have
to be rejected (those, that correspond to a satisfying interleaving) and those,

that need to be accepted.

• The combination of knowledge formulae and “next” formulae may lead to an

infinite Ri equivalence class, which in turn leads to an infinite tableau path:
Consider for example the tableau set ΓT0 = {l ⊢ Ki〈a〉j⊤, l} where i /∈ ag(a).

Repeated application of rules (TR 6), (TR 14), (TR 15), (TR 24), and
(TR 12) would generate an infinite tableau path. (A more detailed proof

sketch is given in the appendix on page 240.) In terms of the tableau this
means that if we have a tableau formula (F, c) ⊢ Ki〈a〉jφ ∈ Γπ (for π being

an infinite path) then by application of rules (TR 6) and (TR 14) we will

also have (F, c) ⊢ 〈a〉iφ ∈ Γπ and (F, c)
a

−→ (F, ca) ∈ Γπ for some tableau label
(F, ca), and finally also (F, ca) ⊢ Ki〈a〉jφ ∈ Γπ. Here, we already see, that if

none of the other formulae in the set Γπ leads to a contradiction, we will have
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infinitely many applications of the rules (TR 6) and (TR 14) on a path and
consequently we create an infinite tableau path.

On the semantical level this means that in some situation (F, c) an agent i

knows that another agent j is performing some operation a next. Here, it is
important that agent i does not take part in operation a and thus the situations
before and after performing a (the situations (F, c) and (F, ca)) are equivalent

from agent i’s point of view. Since agent i cannot distinguish between (F, c)

and (F, ca) both situations are RKi -indistinguishable. This again implies that

if (F, c) |=M Ki〈a〉jφ we also have (F, ca) |=M Ki〈a〉jφ. It is easy to see,
that this formula requires an infinite repetition of operation a by agent j and

consequently an infinite model.

• The third possibility is due to a particular fairness problem. Each branch of

a tableau tree is (semantically) related to a particular interleaving of a run.
Now consider the case where the set of formulae contains a formula of type

(F, c) ⊢ 〈a〉iφ. If on this branch operations of agent i are ignored for an
infinite number of steps, which means that no further a ′-step with a ′ ∈ Oi is
deduced on the rest of this (infinite) branch. On the semantical level this is

equivalent to saying that in some situation (F, c) agent i does not perform any
more actions though there is another action required by the formula 〈a〉iφ.

This of course means, that the formula 〈a〉iφ is not satisfied in the situation
(F, c). Consequently, an unfair tableau path must get rejected. The only point

is that we have to make sure, that there exists a path in the tableau, which
represents a fair interleaving. That this is the case can easily be seen: Each

time, rule (TR 14) is applied, all possible operations are fanned out, which
implies, that each possible interleaving is represented in the tableau.

Some of the infinite paths need to be rejected, others need to be accepted: We reject
paths, that are infinite because they represent an unfair interleaving or because of

an infinite occurrence of a formula φ Uiψ and we accept all other infinite paths.

Before we give a formal definition for the rejection / acceptance of a tableau, we first
define more formally the two criteria due to which infinite paths must be rejected.

Definition 5.5.7 (U-trace) Let T be a tableau and let π = v0v1v2 . . . be an infinite
path of T . The path π contains an until-trace (U-trace), iff Γπ contains a (not

necessarily maximal) infinite chain χ = l0
a0−→ l1

a1−→ . . . such that the following

holds:

• l0 ⊢ φ Uiψ ∈ Γπ

• for all lm in χ with lm ⊢ φ Uiψ ∈ Γπ there exists a subchain χ ′ = lm
am−→

. . .
an−1
−→ ln of χ with m < n, such that
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– lm ⊢ ¬ψ ∈ Γπ

– for all ak, with m ≤ k < n − 1 we have that ak /∈ Oi, and

– ln ⊢ φUiψ ∈ Γπ

Definition 5.5.8 (fair tableau paths) Let T be a tableau and let π =

v0, v1, v2, . . . be a path in T .

We call π fair iff

for each tableau formula l ⊢ 〈·〉iφ ∈ Γπ there exists a chain χ = l
a0−→ l1

a1−→ . . .
an−1
−→

ln in Γπ with an−1 ∈ Oi.

A path, which is not fair, is called unfair.

Definition 5.5.9 (acceptance/rejection condition) Given a tableau T for a set

of tableau formulae ΓT ⊂ L. A path in a tableau is rejected, iff

1. it is finite and its leaf is labelled with an axiom,

2. it contains an infinite U-trace or

3. it is unfair.

A path in a tableau is accepted, iff it is not rejected.

A tableau is rejected, iff all its paths are rejected.
A tableau is accepted, iff it is not rejected.

We give some example of tableau proofs in the appendix C.

5.6 Basic Properties of Regular Tableaux

5.6.1 Fairness on Application of Tableau Rules

The application of tableau rules is more or less non deterministic. For the correct
functioning of the tableau method we need to ensure that every rule that can be

applied will be served after a finite number of steps. Otherwise, by ignoring an
applicable rule infinitely often on a tableau path, the tableau procedure could create

an infinite tableau path that is wrongly accepted. Consider for example the tableau
set {l ⊢ Ki〈a〉j⊥, l} with i, j ∈ Ag, a ∈ O, i /∈ ag(a). Without dividing the tableau

rules into blocks and applying them block wise, we could derive the following tableau
path and always (i.e. for infinitely many steps) ignore the application of rule (TR
15), the tableau would accept the formula to be L−satisfiable, though it is obviously

not:
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Γ(v0) = { l ⊢ Ki〈a〉j⊥ , l}

⇓ (* rule (TR 6) *)

Γ(v1) = {l ⊢ Ki〈a〉j⊥, l ⊢ 〈a〉j⊥ , l}

⇓ (* rule (TR 14) *)

Γ(v2) = {l ⊢ Ki〈a〉j⊥, l ⊢ 〈a〉j⊥, l
a

−→ la , l, la}

⇓ (* rule (TR 24) *)

Γ(v3) = { l ⊢ Ki〈a〉j⊥ , l ⊢ 〈a〉j⊥, l
a

−→ la, lRila , l, la}

⇓ (* rule (TR 12) *)

Γ(v4) = {l ⊢ Ki〈a〉j⊥, l ⊢ 〈a〉j⊥, l
a

−→ la, lRila, la ⊢ Ki〈a〉j⊥ , l, la}

⇓ (* rule (TR 6) *)
...

Note the difference between the notion of fairness in definition 5.5.8 and the type of

inequitability we consider in this example: In this example, tableau rule (TR 15) is
applicable to infinitely many tableau sets on the path but it is never actually applied.

So, in this case we consider an inequitable sequence of tableau rule applications.

In definition 5.5.8 we talk about unfair paths π in a different sense: The existence of

a formula l ⊢ 〈·〉iφ requires a tableau formula l
o

−→ l ′ with o ∈ Oi. However, each
time rule (TR 14) is applied on π, we choose a denominator that considers a next

operation ≀ /∈ Oi, so that we have an unfair sequence of choices of denominators.
Such a path represents an unfair interleaving of a potential model.

To prevent the generation of such inequitable sequences of applications of rules

mentioned in the above example, we have divided the tableau rules into three blocks,
the exertion of which alters: Rules of each block are applied as long as possible and

when no rule of that block can be applied any more, we apply rules of the next block
as long as possible and so forth. For our example, this means that before we could
apply rule (TR 24) from block 2 we had to apply all applicable rules of block 1,

in particular rule (TR 15) which we ignored in our example. We show that even
on infinite tableau paths this block order ensures a certain kind of “fairness” in the

application of the tableau rules: Since we deal with finite sets of tableau rules, rules
of each block can be applied only a finite number of times before rules of the “next”

block must be applied. It is the combination of the blocks that creates infinite paths.
This guarantees that if a rule is applicable then it will either be applied within a

finite number of steps or it will not be applied because the modification achievable
through its application has already been achieved through the application of other

rules. Consider for example a tableau set ΓT = Γ ′T ∪ {(F, c) ⊢ Kiφ}. Obviously, for ΓT
rule (TR 6) can be applied. There is no rule applicable to ΓT that “disables” rule
(TR 6). However, it is still possible that rule (TR 6) will never be applied: the

resulting formula (F, c) ⊢ φ might already be contained in Γ ′T and the definition of
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tableaux requires for the application of rules that all denominators differ from the
numerator. We therefore distinguish between enabled rules (those that are applicable

and have to be applied after a finite number of steps) and satisfied rules that are
applicable, but the result of which is already contained in the set.

Definition 5.6.1 (enabled rules, satisfied rules) Let ΓT be a tableau set and let
Γnum

Γd1 | ... | Γdn
be a tableau rule.

We call a rule Γnum

Γd1 | ... | Γdn
enabled for ΓT iff ΓT complies to Γnum such that the

rule is applicable to ΓT .

We call Γnum

Γd1 | ... | Γdn
satisfied iff it is enabled but for at least one of the denominators

Γdk , the application of the rule would not have any effect, i.e. Γnum = Γdk .

Note, that only rules that are enabled but not satisfied for a tableau set ΓT may
actually be applied to ΓT .

Let us now consider a finite tableau set ΓT .

To show that rules of block 1 can be applied only a finite number of times in suc-
cession, we define a norm for the size of tableau sets. The considered measure will

be a Laurent polynomial. For this norm, we will define a Noetherian ordering. We
then show that the application of a rule of block 1 strictly decreases the size of the

considered tableau set. Since the ordering is Noetherian, rules of block 1 can be ap-
plied only a finite number of times in succession. The size of a tableau set depends

on both the structure formulae and the labelled formulae.

For the application of rules of block 2 we again define a norm for tableau sets. This

measure is based on some kind of saturation argument:

• Rules (TR 10), (TR 11), (TR 24) and (TR 26) fill up the Ri-Relations,
i.e. they add new tableau formulae of the type lRil

′. Since the set of labels

in each tableau set occurring at a tableau node is finite and is not modified
by rules of block 2 and since no structure formula lRil

′ is deleted by a rule

of block 2, the rules mentioned above can be applied only a finite number of
times in succession before a rule of another block is applied.

• Rules (TR 12), (TR 13) and (TR 25) fill up labels with propositions, knowl-

edge formulae and with next-formulae of the type l ⊢ 〈a〉i⊤. Propositions and
knowledge formulae are simply migrated to other labels, there is no rules of

block 2 that deletes or creates new knowledge formulae or propositions. The
next formulae are newly created by rule (TR 25). However, there is no rule
in block 2 that deletes such a formula again and there are only finitely many

agents i ∈ Ag and finitely many operations a ∈ O and thereby only finitely
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many temporal next formulae 〈a〉i⊤. Now the argument is again that there
exist only finitely many labels in a tableau set at any tableau node and only

finitely many tableau formulae. None of the rules of block 2 creates new
tableau labels. Thus, rules of block 2 can be applied only finitely many times

in succession before a rule of another block is applied.

Block 3 consists of rules (TR 9) and (TR 14). When applied to a tableau set Γ(v)
at a tableau node v, rule (TR 9) adds a new label l ′ to the set of tableau labels

in Γ(v), adds a formula lRil
′ and marks the activator of the rule, so that it cannot

activate this rule again. The effect of rule (TR 14) are similar: When applied to

a tableau set Γ(v) at a tableau node v, rule (TR 14) creates a number of children.
For each child, it adds a new label la to the set of tableau labels in Γ(v), adds a

new formula l
a

−→ la and marks the activating label l. Rule (TR 14) has a tableau

formula l ⊢ 〈·〉iφ and the appropriate unmarked label l as activator. The application
of the rule marks the activating label l. Both rules of block 3 mark their activators

and do not unmark marked activators again. Further, because formulae have only a
finite number of sub formulae, these rules can create only finitely many new complete

activators for either rule (TR 9) or (TR 14). So, rules of block 3 can be applied
only a finite number of times in succession before a rule of block 1 or block 2 must
be applied again.

From the above considerations we can conclude that rules of each block can be

applied only a finite number of times in succession. Only the iteration of blocks
yields infinite tableau paths, as shown in figure 5.3.

Let us now capture this more formally.

Lemma 5.6.2 (finite application of each block) Let ΓT be a finite tableau set

having the regular tableau property. For k ∈ {1, 2, 3} it holds that starting from ΓT
rules of exclusively block k can be applied only finitely many times in succession.

We prove this lemma for each block separately. By defining a norm ‖ · ‖b1 for finite
tableau sets that have the regular tableau property and a Noetherian order relation

for this norm we prove that rules of block 1 can be applied only finitely many times
in succession.

Then we do the same for rules of block 2: We define a norm ‖ · ‖b2 for finite tableau
sets having the regular tableau property and a Noetherian order relation and show

that the application of a rule of block 2 decreases the size of the considered tableau
set. Finally, we repeat this procedure for rules of block 3.

Proposition 5.6.3 Let ΓT be a finite tableau set having the regular tableau property.
Starting with ΓT , rules of block 1 may be applied only a finite number of times in

succession.
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Figure 5.3: Rules of each block can be applied only a finite number of times in
succession

Let us first define a norm | · |b1 for logical formulae that may occur in a tableau

and a norm ‖ · ‖b1 for finite tableau sets having the regular tableau property. The
norms will be Laurent polynomials4. We then define a Noetherian ordering on the
set of Laurent polynomials. Finally, we show that each application of a rule of block

1 strictly decreases (according to the defined Noetherian ordering) the size of the
tableau set to which the rule was applied. Since the ordering is Noetherian, i.e. there

cannot be infinite descending chains, there can be only finitely many applications of
rules of block 1.

As constituted in section 5.2, negation symbols occur in tableau sets only in front

of the knowledge operators Ki and in front of local propositions p ∈ P . In addition,
knowledge formulae of type Kiφ can occur in a tableau marked as well as unmarked.

We first define a norm | · |b1 for logical formulae that may occur in a tableau set
(preceded by a tableau label). We define the norm in such a way, that if a formula

φ occurs in the principal formula of a rule of block 1, then the size of the logical
formula occurring in the side formula of the rule is less than (or equal to) the size

of φ.

Definition 5.6.4 (norm | · |b1 for a logical formula) Let (Ag,O,P) be the
static part of an information system. Let i ∈ Ag be an agent and let a ∈ O be an

operation.

4A Laurent polynomial is like a polynomial except that it may have positive as well as negative
powers.
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Let L∗ ⊂ L be the set of those logical formulae that may occur in a tableau set having
the regular tableau property (i.e. the negation symbol ¬ may occur only in front of a

local proposition or in front of a knowledge operator Ki, formulae of the form Kiψ

may be either marked or unmarked).

Additionally, let x be a positive integer variable, x > 0. We define the norm | · |b1 for

formulae φ ∈ L∗ inductively as a Laurent polynomial in x and x−1 with coefficients
in IN:

| · |b1 : L∗ −→ IN[x, x−1]

|⊤|b1 = |⊥|b1 = 1

|p|b1 = |¬p|b1 = 1

|φ∧ ψ|b1 = |φ|b1+ 1+ |ψ|b1

|φ∨ ψ|b1 = |φ|b1+ 1+ |ψ|b1

|φ Uiψ|b1 = |φ|b1+ 3+ |¬ψ|b1

|φ Wiψ|b1 = |φ|b1+ 3+ |¬ψ|b1

|Kiφ|b1 = |φ|b1+ 1 for Kiφ unmarked

|Kiφ|b1 = 0 for Kiφ marked

|¬Kiφ|b1 = |φ|b1+ 1

|〈a〉iφ|b1 =
|φ|b1

x
+ 1

|[a]iφ|b1 =
|φ|b1

x
+ 1

|〈O〉iφ|b1 =
|φ|b1

x
+ 1

|[O]iφ|b1 =
|φ|b1

x
+ 1

Each finite tableau set that has the regular tableau property ΓT ⊂ L is partitioned

into a set of structure formulae Γs ⊂ Ls, a set of labelled formulae Γl ⊂ Ll and a set
of tableau labels Γlabel with Γlabel = label(ΓT ). Looking at the structure formulae we

can identify a set of maximal chains of tableau labels. Since in each tableau node,
the set of tableau formulae is finite, the number of (maximal) chains as well as each

maximal chain in this set is finite.

A tableau formula l ⊢ φ of Ll consists of two components: A tableau label l and
a logical formula φ of L∗. The size of such a tableau formula is dependent on

both components and is defined relative to a finite tableau set with l ∈ label(ΓT ).
Each set of tableau formulae occurring in a regular tableau contains a finite set of

finite chains, where each label occurs in exactly one chain (see lemma 5.5.3, regular
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tableau property). The ”later” a label lk occurs in the chain, the ”less” the formula
preceded by this label counts.

Based on the norm | · |b1 for logical formulae in L∗ we now define a norm ‖ · ‖b1 for

tableau formulae in Ll. Again, the norm is defined as a Laurent polynomial in x and
x−1 and with coefficients in IN. The size of a tableau formula l ⊢ φ is dependent on

the position in the maximal chain at which the tableau label l occurs. Hence, we
define the size of a tableau formula l ⊢ φ relative to the tableau set in which the

tableau formula occurs.

Definition 5.6.5 (norm ‖ · ‖b1 for (sets of) tableau formula) Let ΓT , Γ
′
T be

two finite tableau sets that have the regular tableau property and that are chain

equivalent (ΓT ≃ Γ ′T ). And let χ = l0
a0−→ . . .

ak−1
−→ lk

ak−→ . . .
an−2
−→ ln−1 be a maximal

chain of ΓT (where n is the number of tableau labels contained in the chain) such

that the tableau label lk occurs on the (k+ 1)th position in the chain. Further, let x
be a positive integer variable, x > 0.

We define the size of a tableau formula lk ⊢ φ relative to the set of tableau formulae

ΓT as a Laurent polynomial in x and x−1 and coefficients in IN:

‖lk ⊢ φ‖
b1
ΓT

:= |φ|b1 · xn−k (2)

We define the size of the set of tableau formulae Γ ′T relative to ΓT as the sum of all
sizes relative to ΓT of labelled formulae in Γ ′T :

‖Γ ′T ‖
b1
ΓT

:=
∑

γ∈Γ ′T ∩Ll

‖γ‖b1ΓT (3)

For ΓT = Γ ′T we also write ‖ΓT ‖b1 instead of ‖ΓT ‖b1Γ ′T
.

Example:
Let ΓT = {l ⊢ 〈a〉i〈b〉i〈c〉iP ∧ 〈b〉i〈d〉iP, l

a
−→ la, l, la} be a tableau set. The norm

‖ΓT ‖b1 is a Laurent polynomial:

The only maximal chain of ΓT is l
a

−→ la. As a consequence we have n = 2. It is

obvious that ΓT has the regular tableau property.
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‖ΓT ‖
b1
ΓT

=‖{l ⊢ 〈a〉i〈b〉i〈c〉iP ∧ 〈b〉i〈d〉iP}‖
b1
ΓT

=|〈a〉i〈b〉i〈c〉iP ∧ 〈b〉i〈d〉iP|
b1 · x2

=
(

|〈a〉i〈b〉i〈c〉iP|b1+ 1+ |〈b〉i〈d〉iP|b1
)

· x2

=|〈a〉i〈b〉i〈c〉iP|b1 · x2+ 1 · x2+ |〈b〉i〈d〉iP|b1 · x2

=

((

|〈b〉i〈c〉iP|
b1

x

)

+ 1

)

· x2+ 1 · x2+

(

|〈d〉iP|
b1

x + 1

)

· x2

=

(( |〈c〉iP|
b1

x
+ 1

x

)

+ 1

)

· x2+ 1 · x2+

( |P|b1

x
+ 1

x + 1

)

· x2

=

((

|P|b1

x
+ 1

x
+ 1

x

)

+ 1

)

· x2+ 1 · x2+

( 1

x
+ 1

x + 1

)

· x2

=

((

1

x
+ 1

x
+ 1

x

)

+ 1

)

· x2+ 1 · x2+ 1+ x+ x2

=
(

1
x + 1+ x+ x2

)

+ (1+ x+ x2)

=3x2+ 2x+ 2+ 1
x

=3x2+ 2x+ 2+ 1x−1

By means of a Noetherian ordering on Laurent polynomials with coefficients in IN
we show that each application of a rule of block 1 decreases the size of the considered

tableau set. As the ordering will be Noetherian, there can be only finite sequences
of tableau sets where each set Γ(vi+1) is derived from Γ(vi) by the application of a

rule of block 1.

A partial ordering (>,A) for an arbitrary set A is a Noetherian ordering if every
descending chain a1 > a2 > a3 > . . . has a least element.
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Note, that for each tableau set ΓT that contains at least one labelled formula of
type l ⊢ φ, the size ‖ΓT ‖b1, given by a Laurent polynomial

∑
i∈ZZ
aix

i, has a coefficient

ai 6= 0 for some i ∈ IN, i.e. it has a term with a positive power, the coefficient of

which is in IN+.

The lexicographical ordering defined on polynomials with coefficients in IN is a

Noetherian ordering. Here, we have to deal with Laurent polynomials with coef-
ficients in IN. We now define a Noetherian ordering on Laurent polynomials that is

comparable to the lexicographical ordering on polynomials: We consider only the
polynomial part of the Laurent polynomial, i.e. we consider only the terms with
positive powers and define that a Laurent polynomial A(x) =

∑
−m≤i≤n

aix
i is greater

(≻) than a Laurent polynomial B(x) =
∑

−m≤i≤n
bix

i if the polynomial part
∑

0≤i≤n
aix

i

of the Laurent polynomialA(x) is greater (according to the lexicographical ordering)
than the polynomial part

∑
0≤i≤n

bix
i of the Laurent polynomial B(x).

Note, that according to this definition, two polynomials that differ only in terms
with negative powers are not comparable.

Definition 5.6.6 (Noetherian ordering for Laurent polynomials) Let∑
i∈ZZ
aix

i and
∑
i∈ZZ
bix

i with ai, bi ∈ IN and ai, bi 6= 0 for only finitely many i ∈ ZZ be

Laurent polynomials.

Then ∑

i∈ZZ

aix
i ≻

∑

i∈ZZ

bix
i

:iff there exists a h ∈ IN such that ai = bi for all i > h and ai > bi for i = h.

Proposition 5.6.7 The ordering ≻ defined on Laurent polynomials in x and x−1

with coefficients in IN is a Noetherian ordering.

Proof:

1. (≻, IN[x, x−1]) is a partial ordering:

a) ≻ is irreflexive (not A(x) ≻ A(x)). This condition holds trivially.

b) ≻ is asymmetric (not A(x) ≻ B(x) and B(x) ≻ A(x)). This condition

holds trivially.

c) ≻ is transitive (if A(x) ≻ B(x) and B(x) ≻ C(x) then A(x) ≻ C(x)). This
condition holds trivially as well.
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2. Every descending chain A1(x) ≻ A2(x) ≻ A3(x) ≻ . . . is finite. This follows
directly from the facts that the relation ≻ is based on the relation> for integers

and that all coefficients of the Laurent polynomials and in particular of the
terms with positive powers are natural numbers including 0.

2

The norm for tableau sets is defined as Laurent polynomials. The order relation ≻
is a Noetherian order relation. Consequently, if we can show that each application
of a rule of block 1 reduces the size of the tableau set according to the relation ≻,

then rules of block 1 can be applied only finitely many times in succession.

Proof of proposition 5.6.3

For better readability we will use Γ for the numerator Γnum of a rule and Γ for the
considered denominator Γden.

• Rule (TR 3):
Suppose, that Γ = ΓT is derived from Γ = ΓT ∪ {lk ⊢ ⊤} by the application

of rule (TR 3) and suppose, that the maximal chain in Γ containing lk is

χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ ⊤‖b1Γ

= ‖ΓT ‖
b1
Γ

+ ‖lk ⊢ ⊤‖b1
Γ

(* Γ ≃ Γ *)

≻ ‖ΓT ‖
b1
Γ

= ‖Γ‖b1

• Rule (TR 4):

Suppose, that Γ = ΓT ∪ {lk ⊢ φ, lk ⊢ ψ} is derived from Γ = ΓT ∪ {lk ⊢ φ∧ ψ}

by the application of rule (TR 4) and suppose, that the maximal chain in Γ

containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖
b1
Γ + ‖lk ⊢ φ∧ ψ‖b1Γ

= ‖ΓT ‖b1Γ + |φ∧ ψ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖
b1
Γ + |φ|b1 · xn−k+ |ψ|b1 · xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖
b1
Γ

+ |φ|b1 · xn−k+ |ψ|b1 · xn−k+ 1 · xn−k (* Γ ≃ Γ *)

≻ ‖ΓT ‖b1Γ + |φ|b1 · xn−k+ |ψ|b1 · xn−k (* with h = n− k

and def. 5.6.6*)

= ‖ΓT ‖
b1
Γ

+ ‖lk ⊢ φ‖
b1
Γ

+ ‖lk ⊢ ψ‖
b1
Γ

(* def. 5.6.5 *)

= ‖Γ‖b1
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• Rule (TR 5):
Suppose, that, without loss of generality, Γ = ΓT ∪ {lk ⊢ φ} is derived from

Γ = ΓT ∪ {lk ⊢ φ∨ψ} by the application of rule (TR 5) and the maximal chain

in Γ containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖
b1
Γ + ‖lk ⊢ φ∨ψ‖b1Γ

= ‖ΓT ‖b1Γ + |φ∨ψ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖b1Γ + |φ|b1 · xn−k+ |ψ|b1 · xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖
b1
Γ

+ |φ|b1 · xn−k+ |ψ|b1 · xn−k+ 1 · xn−k (* Γ ≃ Γ)

≻ ‖ΓT ‖b1Γ + |φ|b1 · xn−k (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖
b1
Γ

+ ‖lk ⊢ φ‖
b1
Γ

(* def. 5.6.5 *)

= ‖Γ‖b1

• Rule (TR 6):
Suppose, that Γ = ΓT ∪ {lk ⊢ Kiφ, lk ⊢ φ} (where lk ⊢ Kiφ is marked) is derived
from Γ = ΓT ∪ {lk ⊢ Kiφ} (where lk ⊢ Kiφ is unmarked) by the application

of rule (TR 6) and suppose that the maximal chain in Γ containing lk is

χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ Kiφ‖b1Γ

= ‖ΓT ‖
b1
Γ + |Kiφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖b1Γ + (|φ|b1+ 1) · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖b1Γ + (|φ|b1+ 1) · xn−k ( * Γ ≃ Γ *)

≻ ‖ΓT ‖
b1
Γ

+ (0+ |φ|b1) · xn−k (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖b1Γ + ‖lk ⊢ Kiφ‖b1Γ + ‖lk ⊢ φ‖b1Γ (* def. 5.6.5 *)

= ‖Γ‖b1

• Rule (TR 7):
We distinguish between two cases:

1. Suppose, that Γ = ΓT ∪ {lk ⊢ φ ∧ ¬ψ ∧ 〈O〉iφ Uiψ} is derived from

Γ = ΓT ∪ {lk ⊢ φ Uiψ} by the application of rule (TR 7) and suppose
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that the maximal chain in Γ containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1−→

. . .
an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖
b1
Γ + ‖lk ⊢ φ Uiψ‖

b1
Γ

= ‖ΓT ‖
b1
Γ + |φ Uiψ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖b1Γ +|φ|b1·xn−k+|¬ψ|b1·xn−k+3·xn−k (* def. 5.6.4 *)

≻ ‖ΓT ‖
b1
Γ + |φ|b1 · xn−k+ |¬ψ|b1 · xn−k (* with h = n− k

+2 · xn−k+ |φ Uiψ|b1 · xn−k−1 and def. 5.6.6 *)

= ‖ΓT ‖b1Γ + |φ|b1 · xn−k+ |¬ψ|b1 · xn−k+ 2 ·

xn−k+ |φ Uiψ|b1 · xn−k−1

(* Γ ≃ Γ *)

= ‖ΓT ‖
b1
Γ

+ |φ∧ ¬ψ ∧ 〈O〉iφ Uiψ|b1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖
b1
Γ

+ ‖lk ⊢ φ∧ ¬ψ ∧ 〈O〉iφ Uiψ‖
b1
Γ

(* def. 5.6.5 *)

= ‖Γ‖b1

2. Suppose, that Γ = ΓT ∪ {lk ⊢ ψ} is derived from Γ = ΓT ∪ {lk ⊢ φ Uiψ} by
the application of rule (TR 7) and suppose that the maximal chain in Γ

containing lk is χ = l0
a0−→ . . .

an−2−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ φ Uiψ‖b1Γ

= ‖ΓT ‖
b1
Γ + |φ Ui¬ψ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖
b1
Γ +|φ|b1·xn−k+|¬ψ|b1·xn−k+3·xn−k (* def. 5.6.4 *)

≻ ‖ΓT ‖b1Γ + |ψ|b1 · xn−k (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖
b1
Γ

+ |ψ|b1 · xn−k (* Γ ≃ Γ *)

= ‖ΓT ‖b1Γ + ‖lk ⊢ ψ‖b1Γ (* def. 5.6.5 *)

= ‖Γ‖b1

• Rule (TR 8):
This proof is analogous to the proof for rule (TR 7).

• Rule (TR 15):

Suppose, that Γ = ΓT ∪ {lk
a

−→ lk+1, lk+1 ⊢ φ} is derived from Γ = ΓT ∪ {lk
a

−→
lk+1, lk ⊢ 〈a〉iφ} by the application of rule (TR 15) and further suppose, that

the maximal chain in Γ containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.

88



5.6 Basic Properties of Regular Tableaux

‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ 〈a〉iφ‖b1Γ

= ‖ΓT ‖b1Γ + |〈a〉iφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖
b1
Γ +

|φ|b1

x · xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖b1Γ + 1 · xn−k+ |φ|b1 · xn−k−1

≻ ‖ΓT ‖b1Γ + |φ|b1 · xn−k−1 (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖b1Γ + ‖lk+1 ⊢ φ‖b1Γ (* def. 5.6.5, Γ ≃ Γ *)

= ‖Γ‖b1

• Rule (TR 16):

This proof is analogous for the proof of rule (TR 15).

• Rule (TR 17):

Suppose, that Γ = {lk ⊢ ⊥} is derived from Γ = ΓT ∪ {lk
a

−→ lk+1, lk ⊢ 〈b〉iφ}

by the application of rule (TR 17) and further suppose, that the maximal

chain in Γ containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1. Since

lk
a

−→ lk+1 ∈ Γ it holds that k < n− 1.

‖Γ‖b1 = ‖ΓT ‖
b1
Γ + ‖lk ⊢ 〈b〉iφ‖

b1
Γ

= ‖ΓT ‖
b1
Γ + |〈b〉iφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖b1Γ +
|φ|b1

x
· xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖
b1
Γ + 1 · xn−k+ |φ|b1 · xn−k−1

≻ 1 · x1 (* with h = n− k

and def. 5.6.6 *)

= |⊥|b1 · x1 (* with def. 5.6.4 *)

= ‖lk ⊢ ⊥‖b1{lk⊢⊥} (* def. 5.6.5 *)

= ‖Γ‖b1

• Rule (TR 18):

Suppose, that Γ = ΓT ∪ {lk
a

−→ lk+1, lk+1 ⊢ 〈b〉iφ} is derived from Γ = ΓT ∪

{lk
a

−→ lk+1, lk ⊢ 〈b〉iφ} by the application of rule (TR 18) and further suppose

that the maximal chain in Γ containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1−→ . . .

an−2−→
ln−1.
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‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ 〈b〉iφ‖b1Γ

= ‖ΓT ‖b1Γ + |〈b〉iφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖
b1
Γ +

|φ|b1

x · xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖b1Γ + 1 · xn−k+ |φ|b1 · xn−k−1

≻ ‖ΓT ‖b1Γ +
|φ|b1

x
· xn−k−1+ 1 · xn−k−1 (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖b1Γ + ‖lk+1 ⊢ 〈b〉iφ‖b1Γ (* def. 5.6.5, Γ ≃ Γ *)

= ‖Γ‖b1

• Rule (TR 19):

This proof is analogous to the proof for rule (TR 18).

• Rule (TR 20): Suppose, that Γ = ΓT ∪ {lk
a

−→ lk+1, lk+1 ⊢ φ} is derived

from Γ = ΓT ∪ {lk
a

−→ lk+1, lk ⊢ 〈O〉iφ} by the application of rule (TR 20)

and further suppose, that the maximal chain in Γ containing lk is χ = l0
a0−→

. . .
ak−→ lk

ak+1
−→ . . .

an−2
−→ ln−1.

‖Γ‖b1 = ‖ΓT ‖
b1
Γ + ‖lk ⊢ 〈O〉iφ‖

b1
Γ

= ‖ΓT ‖
b1
Γ + |〈O〉iφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖b1Γ +
|φ|b1

x
· xn−k+ 1 · xn−k (* def. 5.6.4 *)

= ‖ΓT ‖
b1
Γ + 1 · xn−k+ |φ|b1 · xn−k−1

≻ ‖ΓT ‖
b1
Γ + |φ|b1 · xn−k−1 (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖
b1
Γ

+ ‖lk+1 ⊢ φ‖
b1
Γ

(* def. 5.6.5, Γ ≃ Γ *)

= ‖Γ‖b1

• Rule (TR 21):
This proof is analogous to the proof for rule (TR 20).

• Rule (TR 22):

Suppose, that Γ = ΓT ∪ {lk
a

−→ lk+1, lk+1 ⊢ 〈O〉iφ} is derived from Γ = ΓT ∪

{lk
a

−→ lk+1, lk ⊢ 〈O〉iφ} and further suppose, that the maximal chain in Γ

containing lk is χ = l0
a0−→ . . .

ak−→ lk
ak+1
−→ . . .

an−2
−→ ln−1.
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‖Γ‖b1 = ‖ΓT ‖b1Γ + ‖lk ⊢ 〈O〉iφ‖b1Γ

= ‖ΓT ‖b1Γ + |〈O〉iφ|b1 · xn−k (* def. 5.6.5 *)

= ‖ΓT ‖
b1
Γ +

|φ|b1

x · xn−k+ 1 · xn−k (* def. 5.6.4 *)

≻ ‖ΓT ‖b1Γ +
|φ|b1

x
· xn−k−1+ 1 · xn−k−1 (* with h = n− k

and def. 5.6.6 *)

= ‖ΓT ‖
b1
Γ

+ ‖lk+1 ⊢ 〈O〉iφ‖
b1
Γ

(* def. 5.6.5, Γ ≃ Γ *)

= ‖Γ‖b1

• Rule (TR 23):

This proof is analogous to the proof for rule (TR 22).

2

Next we show that rules of block 2 can be applied only finitely often in succession.

Proposition 5.6.8 Let ΓT be a finite tableau set having the regular tableau property.
Rules of block 2 can be applied only a finite number of times to ΓT in succession.

Similar to proposition 5.6.3 we prove this proposition by defining a norm for the
set of tableau formulae and a Noetherian order for this norm and show that each

application of a rule of block 2 decreases the size of the tableau set.

Since the tableau set ΓT is finite, we have that

• the number of tableau labels contained in ΓT , label(ΓT ), is finite and

• the number of knowledge formulae and propositions that are sub formulae of
tableau formulae contained in the tableau set is finite. (We denote the set of

sub formulae of ΓT by sub(ΓT ).)

Also, the number of agents and operations is finite.

Each of the tableau rules of block 2 adds either a structure formula of type l
a

−→ l ′

or of type lRil
′ or a labelled formula of type l ⊢ P, l ⊢ ¬P, l ⊢ Kiφ, l ⊢ ¬Kiφ or

l ⊢ 〈a〉i⊤ as side formula to the considered tableau set. Note, that the rules neither
delete any of those structure formulae or labelled formulae, nor do they add a new
tableau label.

We define the size of a tableau set ΓT as the sum of the differences between

1. the potential number of Ri-related pairs of tableau labels occurring in ΓT and

the actual number of Ri-related pairs of tableau labels occurring in ΓT ,
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2. the possible number of knowledge formulae and propositions and the actual
number of knowledge formulae and propositions occurring in ΓT and

3. the possible number of next formulae of type 〈a〉i⊤ and the actual number of

next formulae 〈a〉i⊤ occurring in ΓT .

To calculate the potential number of knowledge formulae and of propositions that

can occur in the tableau set we need to calculate all sub formulae of formulae in
ΓT . Therefor, we now define the set of sub formulae of a formula φ ∈ L, with the

restriction that a negation symbol may occur in φ only in front of a knowledge
operator or in front of a proposition.

Definition 5.6.9 (sub formulae sub(φ) of a logical formula φ) Let φ ∈ L be
a formula in which all negation symbols occur only in front of a proposition or in

front of a knowledge operator Ki. We define the set of sub formulae of φ, sub(φ),
inductively:

φ ∈ sub(φ)

If ⊤ ∈ sub(φ) then ⊥ ∈ sub(φ)

If ¬P ∈ sub(φ) then P ∈ sub(φ)

If φ∧ ψ ∈ sub(φ) then φ,ψ ∈ sub(φ)

If φ∨ ψ ∈ sub(φ) then φ,ψ ∈ sub(φ)

If Kiφ ∈ sub(φ) then φ ∈ sub(φ)

If ¬Kiφ ∈ φ then Kiφ ∈ sub(φ)

If φ Uiψ ∈ sub(φ) then φ,ψ ∈ sub(φ)

If φ Wiψ ∈ sub(φ) then φ,ψ ∈ sub(φ)

Definition 5.6.10 (sub formulae sub(ΓT ) of a tableau set ΓT ) Let ΓT be a fi-

nite tableau set. We define the set of sub formulae sub(ΓT ) of ΓT as

sub(ΓT ) :=
⋃

l∈label(ΓT )

⋃

l ⊢γ∈ΓT

sub(γ)

Now we can define another norm, ‖ · ‖b2 for tableau sets. This norm will be used

to prove that rules of block 2 can be applied only finitely often in succession to a
tableau set.

Definition 5.6.11 (norm ‖ · ‖b2 for finite tableau sets) Let ΓT be a finite
tableau set that has the regular tableau property. We define the size ‖ΓT ‖b2 of ΓT as

follows:

1. The set of possible Ri-related pairs of tableau labels:

X1 := {lRil
′ | l, l ′ ∈ label(ΓT ), i ∈ Ag}.
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The set of Ri-related pairs of tableau labels occurring in ΓT :
Y1 := X1 ∩ ΓT .

2. The set of possible knowledge formulae and propositions:
X2 := {l ⊢ Kiφ | Kiφ ∈ sub(ΓT ), l ∈ label(ΓT )}

∪ {l ⊢ ¬Kiφ | ¬Kiφ ∈ sub(ΓT ), l ∈ label(ΓT )}

∪ {l ⊢ P | P ∈ sub(ΓT ), l ∈ label(ΓT )}

∪ {l ⊢ ¬P | ¬P ∈ sub(ΓT ), l ∈ label(ΓT )}

.

The set of knowledge formulae and propositions occurring in ΓT :

Y2 := X2 ∩ ΓT .

3. The set of possible next-formulae of type Ki⊤:

X3 := {l ⊢ 〈a〉i⊤ | l ∈ label(ΓT ), a ∈ O, i ∈ Ag}.
The set of next-formulae occurring in ΓT :

Y3 := X3 ∩ ΓT .

We define the size ‖ΓT ‖
b2 of a tableau set ΓT as the sum of the three distances:

‖ΓT ‖
b2 :=

∑

i∈{1,2,3}

|Xi| − |Yi|

where |A| denotes of the number of elements in A.

Since the size ‖ΓT ‖b2 of a finite tableau set ΓT is a natural number and > is a

Noetherian order on natural numbers, it holds that if the application of a rule of
block 2 strictly decreases the size of a tableau set ΓT , then rules of block 2 can be

applied only finitely many times in succession.

We now prove that each application of a rule of block 2 strictly decreases the size
‖ΓT ‖b2 of the tableau set.

Proof of lemma 5.6.8:

Let Γ denote the numerator of a rule and Γ denotes the considered denominator.

1. Suppose, Γ = ΓT ∪{lRil
′, l ′Ril} is derived from Γ = ΓT ∪{lRil

′} by the application
of rule (TR 10).

By definition 5.5.1 of a tableau, a tableau rule can only be applied if all denom-
inators are different from the numerator. This means that l ′Ril /∈ Γ , otherwise,

the rule could not have been applied. This implies that ‖Γ‖b2 > ‖Γ‖b2.

2. Suppose, Γ = ΓT ∪ {lRil
′, l ′Ril

′′, lRil
′′} is derived from Γ = ΓT ∪ {lRil

′, l ′Ril
′′} by

the application of rule (TR 11).

By definition 5.5.1 of a tableau, lRil
′′ /∈ Γ , otherwise, the rule could not have

been applied. This implies that ‖Γ‖b2 > ‖Γ‖b2.
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3. Suppose, Γ = ΓT ∪ {lRil
′, l ⊢ χ, l ′ ⊢ χ} with χ of the form Kiφ,¬Kiφ, P or ¬P is

derived from Γ = ΓT ∪ {lRil
′, l ⊢ χ} by the application of either rule (TR 12)

or rule (TR 13).

By definition 5.5.1 of a tableau, l ′ ⊢ χ /∈ Γ , otherwise, the rule could not have
been applied. This implies that ‖Γ‖b2 > ‖Γ‖b2.

4. Suppose, Γ = ΓT ∪ {l
a

−→ la, lRila | i /∈ ag(a)} is derived from Γ = ΓT ∪ {l
a

−→ la}

by the application of rule (TR 24).

By definition 5.5.1 of a tableau, there must be at least one i ∈ ag(a) with

lRila /∈ Γ , otherwise the rule could not have been applied. This implies that
‖Γ‖b2 > ‖Γ‖b2.

5. Suppose, Γ = ΓT ∪ {l
a

−→ la, lRil
′, l ′ ⊢ 〈a〉i⊤ | i /∈ ag(a)} is derived from

Γ = ΓT ∪ {l
a

−→ la, lRil
′ | i ∈ ag(a)} by the application of rule (TR 25).

By definition 5.5.1 of a tableau, there must be at least one i ∈ ag(a) with
l ′ ⊢ 〈a〉i⊤ /∈ Γ , otherwise the rule could not have been applied. This implies

that ‖Γ‖b2 > ‖Γ‖b2.

6. Suppose, Γ = ΓT ∪ {l
a

−→ la, l ′
a

−→ l ′a, lRil
′, laRil

′a | i /∈ ag(a)} is derived from

Γ = ΓT ∪ {l
a

−→ la, l ′
a

−→ l ′a, lRil
′ | i /∈ ag(a)} by the application of rule (TR

26).

By definition 5.5.1 of a tableau, there must be at least one i ∈ ag(a) with
laRil

′a /∈ Γ , otherwise the rule could not have been applied. This implies that

‖Γ‖b2 > ‖Γ‖b2.

2

Finally, we have to show that also rules of block 3 may be applied only finitely many

times in succession.

Proposition 5.6.12 Let ΓT be a finite tableau set having the regular tableau prop-
erty. Rules of block 3 can be applied only a finite number of times to ΓT in succession.

Again, as in the cases before, we define a norm for tableau sets and a Noetherian
ordering for this norm and show that each application of a rule of block 3 strictly

decreases the size of the set.

Rule (TR 14) requires an unmarked tableau label l together with a formula l ⊢ 〈·〉iφ
as principal formula. The application of rule (TR 14) marks the tableau label so

that the rule can be applied only once for each tableau label. The side formulae of
this rule can not be used as principal formulae again for any of the rules of block 3.
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Rule TR 9 requires an unmarked tableau formula l ⊢ ¬Kiφ as principal formula.
The application of rule (TR 9) marks its principal formula so that it can be applied

only once for each tableau formula l ⊢ ¬Kiφ.

The problem is now that the rule TR 9 adds the formula l ′ ⊢ ¬φ for a new and
unmarked tableau label l ′ as side formula to the tableau set. This formula itself

may again become a principal formula for either rule (TR 14) or rule (TR 9).
In this case, however, we either have that φ = [·]iψ or φ = Kiψ for some agent

i and some formula ψ is a subformula of ¬Kiφ. By counting all occurrences of
knowledge operators Kj in the tableau formula ¬Kiφ and multiplying them by 2
(each knowledge operator may create one next formula that can become principal

formula in rule (TR 14)), we can estimate an upper bound of the number of new
principal formulae for rules (TR 9) and (TR 14) that can be generated be rule

(TR 9).

Thus, for norm ‖·‖b3we simply count the number of knowledge symbols Kj occurring
in unmarked negated knowledge formulae and the number of unmarked tableau

labels l for which there exists a tableau formula of type 〈·〉iφ.

Definition 5.6.13 (norm ‖ · ‖b3 for finite tableau sets) Let ΓT be a finite
tableau set that has the regular tableau property.

Let X(ΓT ) := {l ⊢ ¬Kiφ | l ⊢ ¬Kiφ ∈ ΓT (unmarked )} be the set of all unmarked
negated knowledge formulae in ΓT .

Let |l ⊢ ¬Kiφ|b3 denote the number of knowledge operators Kj with j ∈ Ag occurring

in ¬Kiφ.

Further, let labelu(ΓT ) denote the set of unmarked labels l in label(ΓT ) for which
there exists a tableau formula l ⊢ 〈·〉iφ ∈ ΓT for some i ∈ Ag and some φ ∈ L.

We then define the size ‖ΓT ‖b3 as follows:

‖ΓT ‖b3 := 2 · (
∑

x∈X(ΓT )

|x|b3) + |labelu(ΓT )|

Since the size ‖ΓT ‖b3 of a finite tableau set ΓT is a natural number and > is a

Noetherian ordering on natural numbers, it holds that if the application of a rule of
block 3 strictly decreases the size of the tableau set ΓT , then rules of block 3 can be

applied only finitely many times.

We now show that each application of a rule of block 3 to a finite tableau set ΓT
decreases the size ‖ΓT ‖b3 of the tableau set.

Proof of proposition 5.6.12:

As before, Γ denotes the numerator of a rule and Γ denotes the considered denomi-

nator.
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1. Suppose, Γ = ΓT ∪ {l ⊢ ¯¬Kiφ, lRil
′, l ′, l ′ ⊢ ¬φ} is derived from Γ = ΓT ∪ {l ⊢

¬Kiφ|l ⊢ ¬Kiφ (unmarked)} by the application of rule (TR 9).

The principal formula l ⊢ ¬Kiφ contains one more knowledge operator Kj than

the side formula l ′ ⊢ φ. The number of unmarked tableau labels l for which
there exists a next formula 〈·〉iφ is maximally increased in the denominator

by one compared to the numerator. However, since, the number of knowledge
operators counts twice ( 2 · (

∑
x∈X(Γ)

|x|b3)) it holds that ‖Γ‖b3 > ‖Γ‖b3

2. Suppose, Γ = ΓT ∪ {l ⊢ 〈.〉iφ, l
a

−→ la, l, la} is derived from Γ = ΓT ∪ {l ⊢
〈.〉iφ, l(unmarked)} by the application of rule (TR 14).

The number of knowledge operators occurring in tableau formulae starting
with a negative knowledge operator, i.e. formulae of type l ⊢ ¬Kiφ, remains
the same when rule (TR 14) is applied. The number of unmarked tableau

labels l for which there exists a tableau formula l ⊢ 〈·〉iφ for some i ∈ Ag and
some φ ∈ L decreases by 1 by the application of rule (TR 14).

Consequently, it holds that ‖Γ‖b3 > ‖Γ‖b3.

2

In propositions 5.6.3, 5.6.8 and 5.6.12 we have shown for each block of rules that
for each finite tableau set ΓT that has the regular tableau property rules of only one

block can be applied only finitely often in succession. This directly implies the proof
of lemma 5.6.2.

Proof of lemma 5.6.2:

Lemma 5.6.2 follows directly from propositions 5.6.3, 5.6.8 and 5.6.12.

2

Let T (ΓT ) be a regular tableau for a finite tableau set ΓT , let π be an accepted path

in T (ΓT ) and let v be a node on π.

According to the tableau definition 5.5.1 rules are applied in a kind of “block order”:
First, rules of block 1 are applied as long as possible, then rules of block are applied as

long as possible then rules of block 3, afterwards rules of block 1 again and so forth.
By lemma 5.6.2 we know that rules of each block can be applied only finitely many

times to a finite tableau set. Consequently, if Γ(v) is an instance of the numerator
of a tableau rule, i.e. if a tableau rule is enabled for Γ(v), then on each accepted

path starting from Γ(v) there must either be another tableau rule that disables this
tableau rule or this rule will eventually be applied and thus satisfied or this rule will

never be applied but eventually be satisfied by another rule. It is easy to verify that
only the axioms (TR 1) and (TR 2) and tableau rule (TR 17) can disable other
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tableau rules. The axiom and the rule, however, directly lead to rejected paths and
can thus not occur on accepted tableau paths.

Consequently, it holds that on each accepted tableau path all enabled rules will
eventually be satisfied.

Proposition 5.6.14 (satisfaction of enabled rules) Let T be a regular tableau
for a set of formulae ΓT0 , let π be an accepted path in T , let v be a node in π and let

Γ(v) be the tableau set occurring in node v.

If in node v a tableau rule Γnum

d1 |... | dn
is enabled then it will either be applied or

satisfied after a finite number of steps.

Proof: Since π is an accepted path, neither the axioms (TR 1) and (TR 2) nor
rule (TR 17) has been applied to a node in this path.

Further, none of the rules disables another rule: This is obvious for all rules, that

do not delete the principal formulae. These are rules (TR 6), (TR 9), (TR 10),
(TR 11), (TR 12), (TR 13), (TR 14), (TR 24), (TR 25) and rule (TR 26). It
is also obvious that rules (TR 3), (TR 4), (TR 5), (TR 7) and (TR 8) do not

disable another rule as their principal formulae do not occur as principal formulae
in any other rule.

For rules (TR 15), (TR 16), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22),

(TR 23) we need the argument, that for each tableau label l there can be only one

tableau label l ′ and one operation a ∈ O with l
a

−→ l ′ (see corollary 5.5.5). Hence,
each tableau formula l ⊢ 〈·〉iφ or l ⊢ [·]iφ can be a principal formula for only one

of the above rules (TR 15) to (TR 23). Consequently, the application of one of
the above rules cannot disable the application of another rule by deleting one of the

principal formulae.

2

We now observe a number of properties concerning structure formulae of the type

lRil
′.

The tableau rules include two rules, namely rule (TR 10) and rule (TR 11), that
are responsible for creating a transitive and symmetric closure of the Ri-rules, in
the sense, that if for an accepted tableau path π the set of formulae Γπ contains

a structure formula lRil
′ then it also contains the formula l ′Ril and if it contains

structure formulae lRil
′ and l ′Ril

′′ then it also contains the formula lRil
′′. However,

since the application of the rules is nondeterministic, we often simply talk about
Ri-sequences and Ri-equivalence between tableau labels.

Definition 5.6.15 (Ri-sequence, Ri-equivalence) Let T be a regular tableau and

let π be a path of T .

97



Chapter 5 A Tableau Proof System for L(Ag,Õ,P̃)

Let l, l ′ ∈ label(Γπ) be two tableau labels and let i ∈ Ag be an agent.

We call lR∗il
′ an Ri-sequence of Γπ if there exist tableau labels l0 . . . ln such that

l = l0, l
′ = ln and for all k ∈ {0, . . . , n− 1} it holds that lkRilk+1 ∈ Γπ or lk+1Rilk.

A tableau label l ∈ label(Γπ) is Ri-equivalent to tableau label l ′ ∈ label(Γπ) iff there

exists an Ri-sequence lR∗il
′ in Γπ.

We can observe, that the relation between structure formulae of the type l
a

−→ l ′

and structure formulae of the type lRil
′ is more restrictive in tableau sets ΓT that

have the regular tableau property than the relation between temporal relations and
the Ri-indistinguishability relations in a model:

If two Ri-equivalent tableau labels l, l ′ ∈ label(ΓT ) belong to the same maximal chain

in ΓT then either there exists a sub chain l
a0−→ l1

a1−→ . . .
an−→ l ′ or there exists a sub

chain l ′
a0−→ l1

a1−→ . . .
an−→ l in ΓT and for all k ≤ n it holds that ak /∈ Oi.

Proposition 5.6.16 Let T be a regular tableau and let π be an accepted path of T .
The following holds:

For each pair of tableau labels l, l ′ ∈ label(Γπ) and for every agent i ∈ Ag it holds

that

• if there exists a (undirected) sequence lR∗il
′ in Γπ and

• if there exists a chain l
o0−→ . . .

on−→ l ′ in Γπ

then oj /∈ Oi for all 0 ≤ j ≤ n.

an

Ri . . .Ri

a0 . . .l l ′

Figure 5.4: If two labels are connected by a chain that contains operations of Oi,
they cannot be Ri-equivalent.

None of the tableau rules that can occur on an accepted tableau path deletes struc-

ture formulae. The only rules by which structure formulae can be deleted, are the
axioms (rule (TR 1 and rule (TR 2)) and rule (TR 17). However, none of these

rules can occur on an accepted tableau path, the axioms cannot occur on an accepted
tableau path by definition of accepted paths and rule (TR 17) cannot occur on an
accepted path because the only rule that can be applied after rule (TR 17) is the

axiom (TR 2). If the structure formulae of path π violate proposition 5.6.16 then
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there must already exist a finite prefix v0v1 . . . vk of π that violates the proposition.
We prove this proposition by induction over the length of the tableau path. Most

of the tableau rules do not change the set of the structure formulae. For these rules
it is obvious, that if the proposition was fulfilled for the set of formulae before the

application of the rule, then it is also fulfilled afterwards. Thus we really only have
to do the proof for those rules, that modify the set of structure formulae in the
tableau.

Proof of lemma 5.6.16:

Let T be a regular tableau and let π be an accepted path of T . We show, that for
every prefix v0v1 . . . vk of π property P(k) holds, where P(k) is defined as follows:

For each pair of tableau labels l, l ′ ∈ label(Γk) and for every agent i ∈ Ag it holds
that

• if l and l ′ are Ri-equivalent in Γk and

• if there exists a chain l
o0−→ . . .

on−→ l ′ in Γk

then for all 0 ≤ j ≤ n it holds that oj /∈ Oi.

Induction begin: P(0) holds:

Γ0 = Γ0T contains only one label and does not contain any structure formulae.

Induction hypothesis:
Let v0v1 . . . vk be a prefix of π. Then P(k) holds.

Induction step:

We make a case differentiation over the rules of the tableau system and show, that
P(k + 1) holds.

1. Γk+1 cannot be derived from Γk be application of rules (TR 1), (TR 2) or

(TR 17) because these rules do not occur on accepted paths.

2. If Γk+1 is derived from Γk by application of rules (TR 3), (TR 4), (TR 5), (TR

6), (TR 7), (TR 8), (TR 12), (TR 13), (TR 15), (TR 16), (TR 18), (TR
19), (TR 20), (TR 21), (TR 22), (TR 23) and (TR 25) then Prop(Γk+1)

holds because none of them changes the set of the structure formulae.

3. Γk+1 is derived from Γk by application of rule (TR 9).
Suppose, Γk = ΓT ∪ {l ⊢ ¬Kiφ}

=⇒ Γk+1 = Γk ∪ {lRil
′, l ′ ⊢ ¬φ, l ′} for a new label l ′

=⇒ (* because l ′ is a new label *)

for all o ∈ O and for all l ′′ ∈ label(Γk+1) : l ′′
o

−→ l ′ /∈ Γk+1 and

l ′
o

−→ l ′′ /∈ Γk+1
=⇒ (* with supposition that P(k) holds *)

P(k+ 1) holds
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4. Γk+1 is derived from Γk by application of rule (TR 10).
Suppose Γk = ΓT ∪ {lRil

′}

=⇒ Γk+1 = Γk ∪ {l ′Ril}

(* rule (TR 10) does not change Ri-reachability *)
=⇒ P(k+ 1) holds

5. Γk+1 is derived from Γk by application of rule (TR 11).
Suppose Γk = ΓT ∪ {lRil

′, l ′Ril
′′}

=⇒ Γk+1 = Γk ∪ {lRil
′′}

=⇒ (* because rule (TR 11) does not change Ri-reachability *)
P(k+ 1) holds

6. Γk+1 is derived from Γk by application of rule (TR 24).

Suppose Γk = ΓT ∪ {l
a

−→ la}.
=⇒ Γk+1 = Γk ∪ {lRila | i /∈ ag(a)}

=⇒ We distinguish between agents j ∈ ag(a) and j /∈ ag(a):

a) let j ∈ ag(a):

for all l, l ′ ∈ label(Γk+1): lRjl
′ ∈ Γk+1 iff lRjl

′ ∈ Γk and l
a

−→ l ′ ∈

Γk+1 iff l
a

−→ l ′ ∈ Γk

b) let j /∈ ag(a):

=⇒ (* because l
a

−→ la and with corollary 5.5.6 *)

there does not exist a path l
o0−→ . . .

ok−→ . . .
on−→ la with ok ∈ Oj

=⇒ P(k+ 1) holds

7. Γk+1 is derived from Γk by application of rule (TR 26).

Γk = ΓT ∪ {l
a

−→ la, l ′
a

−→ l ′a, lRil
′ | i ∈ ag(a)}

=⇒ Γk+1 = Γk ∪ {laRil
′a | i ∈ ag(a)}

We distinguish between two cases.

a) l
a

−→ la and l ′
a

−→ l ′a belong to different maximal chains:

l0 // · · · // l

Ri
for all
i∈ag(a)

��

a // la

Ri

��

// · · ·

l ′0
// · · · // l ′

a // l ′a // · · ·
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=⇒ (* by lemma 5.5.4 and corollary 5.5.5 *)
there does not exist a chain χ ∈ Γk+1 such that both l and l ′

belong to χ.

=⇒ there does not exist a chain χ in Γk+1 with χ = la
ao−→ . . .

an−→ l ′a

=⇒ (* because P(k) holds *)
P(k+ 1) holds.

b) l
a

−→ la and l ′
a

−→ l ′a belong to the same maximal chain:

l0 // · · · // l

Ri

forall i∈aga

;;
a // la

Ri

for all i∈aga
$$

// · · · // l ′
a // l ′a // · · ·

Suppose, P(k+ 1) does not hold.
=⇒ (* because P(k) holds and rule (TR 26) is applied *)

w.l.o.g. there must exist a chain χ in Γk+1 and an i ∈ ag(a) with

χ = l
a

−→ la
a0−→ · · ·

ak−→ · · ·
an−→ l ′

a
−→ l ′a with ak ∈ Oi

=⇒ (* because lRil
′ ∈ Γk *)

contradiction to the assumption, that P(k) holds.

8. Γk+1 is derived from Γk by application of rule (TR 14).
Γk = ΓT ∪ {l ⊢ 〈·〉iφ}

=⇒ Γk+1 = Γk∪ {l
a

−→ la, la} for any a ∈ O and for a new tableau label la.
=⇒ (* la /∈ label(Γk) *)

there does not exist any Ri-sequence in Γk+1 containing la

=⇒ P(k+ 1) holds.

We have shown, that whatever rule we apply in a node k on an accepted path π,

if Γk has property P (i.e. P(k) holds) then also Γk+1 has property P (i.e. P(k + 1)

holds).

Since for all n ∈ IN we have that Γn ⊂ Γn+1, it holds that if Γπ contains a subset of
structure rules that violate lemma 5.6.16, then this violation subset must already be
contained in a finite prefix of π, Γm. We have shown, that such a finite prefix does

not exist and thus lemma 5.6.16 holds.

2

Proposition 5.6.17 Let T (ΓT0 ) be a regular tableau for a set of formulae ΓT0 and

let π be a path of T (ΓT0 ).

For all tableau labels l, l ′ with l 6= l ′ that belong to the same maximal chain χ there

exists an agent i ∈ Ag such that lRil
′ /∈ Γπ.
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This proposition follows almost directly from lemma 5.6.16 shown above.

Proof:
Suppose, l, l ′ ∈ label(Γπ) and l 6= l ′. If l and l ′ belong to the same maximal chain χ

then w.l.o.g there exists a subchain l
o0−→ . . .

on−→ l ′ of χ. According to lemma 5.6.16

it holds that there does not exist a sequence lR∗il
′ in Γπ for any i ∈

⋃

0≤j≤n−1

ag(aj).

Since l 6= l ′ it holds that
⋃

0≤j≤n−1

ag(aj) 6= ∅ and consequently, there exists at least

one agent i such that lRil
′ /∈ Γπ.

2

Let us now make another observation about the relation between structure formulae
of the form l

a
−→ la and structure formulae of the form lRil

′. This observation will

come into use when proving completeness of the tableau system.

For two labels l and l ′ occurring on the same tableau path π it holds that if they
do not belong to the same maximal chain there exists maximally one agent i ∈ Ag
such that lRil

′ ∈ Γπ. We can put it even stronger, for two different maximal chains,
there exists at most one i ∈ Ag for which two labels belonging to these two chains

are Ri-equivalent.

Lemma 5.6.18 Let T be a regular tableau for a set of formulae ΓT0 and let π be a
path of T . Further, let χ, χ ′ be maximal chains occurring in Γπ with χ 6= χ ′.

There exists an agent i ∈ Ag such that for all agents j 6= i and for all tableau labels
l belonging to chain χ and for all tableau labels l ′ belonging to chain χ ′ it holds that

lRjl
′ /∈ Γπ.

We again use induction over the length of the tableau path. If the lemma does not
hold, then there must exist two agents i, j ∈ Ag, i 6= j, such that there exist labels

li, l
′
i, lj, l

′
j with li, lj belonging to chain χ and l ′i, l

′
j belonging to chain χ ′, such that

liRil
′
i and ljRjl

′
j.

If these two structure formulae exist in Γπ, then there must already be a finite prefix
v0v1 . . . vn of π, such that liRil

′
i ∈ Γn and ljRjl

′
j ∈ Γn.

We will show, that this is not the case for each finite prefix of π and thus cannot be

the case for π either.

Proof of lemma 5.6.18:

For a prefix v0v1 . . . vn of π we define P(n) to be following property:

P(n) holds, :iff for each pair of chains χ, χ ′ in Γn with χ 6= χ ′ there exists an agent
i ∈ Ag such that for all agents j 6= i and for all tableau labels l belonging to a
maximal chain χ and for all tableau labels l ′ belonging to a maximal chain χ ′, it

holds that lRjl
′ /∈ Γn.
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Induction begin:
Γ0 = Γ0T does not contain any structure formulae, thus P(0) is true.

Induction hypothesis:
Suppose, P(m) is true. We show, that then also P(m + 1) is true.

Induction step:
We distinguish among the various rules that may have been applied to derive Γ(vm+1)

from Γ(vm).

1. Suppose, Γm+1 is derived from Γm by application of one of the rules (TR 1),

(TR 2) or (TR 17). Then P(m + 1) trivially holds.

2. Suppose, Γm+1 is derived from Γm by application of one of the following rules:

(TR 3), (TR 4), (TR 5), (TR 6), (TR 7), (TR 8), (TR 12), (TR 13),
(TR 15), (TR 16), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22), (TR

23), (TR 25). None of these rules modifies the set of structure formulae.
Thus, P(m + 1) holds.

3. Suppose, Γm+1 is derived from Γm by the application of rule (TR 9):
Suppose, Γm = Γ ∪ {l ⊢ ¬Khφ} for any h ∈ Ag.
Then Γm+1 = Γm∪ {lRhl

′, l ′ ⊢ ¬φ, l ′} with l ′ /∈ label(Γm).
Since the label l ′ is new to Γm+1, it does not occur in any maximal chain χ of

Γm but is itself a new maximal chain. There does not exist any Rh′-sequence
for h ′ 6= h from any label l ∈ label(Γm). Since lRhl

′ is the only new structure

formula in Γm+1, the property P(m + 1) holds.

4. Suppose, Γm+1 is derived from Γm by the application of rule (TR 10):

Suppose, Γm = Γ ∪ {lRhl
′}. Then Γm+1 = Γm∪ {l ′Rhl}. Since the application of

this rule does not modify Rh-sequences, property P(m + 1) holds.

5. Suppose, Γm+1 is derived from Γm by the application of rule (TR 11):
Suppose, Γm = Γ ∪ {lRhl

′, l ′Rhl
′′}. Then Γm+1 = Γm ∪ {lRhl

′′}. Since the

application of this rule does not modify Rh-sequences, property P(m+1) holds.

6. Suppose, Γm+1 is derived from Γm by the application of rule (TR 24):

Suppose, Γm = Γ ∪ {l
a

−→ la}. Then Γm+1 = Γm ∪ {lRhla| for all h /∈ ag(a)}.
Since l and la belong to the same maximal chain, the application of this rule

does not modify Rh-sequences between different chains. Thus, property P(m+

1) holds.

7. Suppose, Γm+1 is derived from Γm by the application of rule (TR 26):

Suppose, Γm = Γ∪{l
a

−→ la, lRhl
′, l ′

a
−→ l ′a}. Then Γm+1 = Γm∪{laRhl

′a}. Since
l and la as well as l ′ and l ′a belong to the same chains χ and χ ′ respectively,

property P(m + 1) holds.
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8. Suppose, Γm+1 is derived from Γm by the application of rule (TR 14):

Suppose, Γm = ΓT ∪ {l ⊢ 〈·〉hφ}, then Γm+1 = Γm∪ {l
a

−→ la, la} for a new label
la and for any a ∈ O. Since for all tableau labels l ′ ∈ label(Γm+1) and for

all agents i ∈ Ag it holds that l ′Rila /∈ Γm+1 and laRil
′ /∈ Γm+1 the property

P(m + 1) holds.

We have shown, that property P holds for every finite prefix of path π. Except
for the axioms and rule (TR 17), there is no tableau rule that deletes structure

formulae from a tableau set. Consequently, whenever two labels l, l ′ belong to the
same maximal chain in Γm, they will belong to the same maximal chain in Γπ. Thus,

property P(π) holds. 2

Corollary 5.6.19 Let T be a regular tableau for a set of formulae ΓT0 and let π be
a path of T . Further, let χ, χ ′ be maximal chains occurring in Γπ with χ 6= χ ′, let l

be a tableau label of chain χ and let l ′ be a tableau label of chain χ ′.

If lRil
′ ∈ Γπ for some agent i ∈ Ag, then for all agents j 6= i and for all tableau labels

l belonging to chain χ and for all tableau labels l ′ belonging to chain χ ′ it holds that

lRjl
′ /∈ Γπ.

Remember that for the knowledge relations in models as defined in definition 3.3.2

page 29 we require that for each pair of situations of a run there is at least one agent
i for which these two situations are not Rki -indistinguishable. We can make a similar

observation in the tableau: for each pair of tableau labels l, l ′, if there exists a chain
χ such that both tableau labels occur in the chain, then there is at least one agent

i ∈ Ag, such that lRil
′ is not in the considered tableau set. We will need this lemma

when proving completeness of the tableau system.
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Chapter 6

Soundness and Completeness of the Tableau

System

In the previous chapter we have developed a tableau system for proving unsatisfia-

bility of sets of tableau formulae. The tableau method should reject a regular set of
tableau formulae ΓT0 if and only if the set ΓT0 is not L − satisfiable. The two most

interesting questions are the following:

• Does the existence of a rejecting tableau T (ΓT0 ) for a regular tableau set ΓT0
imply that the tableau set ΓT0 is not L − satisfiable?

• Does the fact that a tableau set ΓT0 is not L−satisfiable imply that there exists

a rejecting tableau T (ΓT0 )?

In the next section we will answer the first question positively. The second question
can be answered positively only in case we make certain (syntactic) restrictions for

the logic: Recall that the logic L is defined as a family of sets of formulae.

Definition 4.1.1 allows formulae of the form Kiφ without putting any restriction
on the type of φ. In this general case, we can find sets of formulae that are not

L−satisfiable though there does not exist a rejecting tableau. However, if we restrict
the language such that only formulae of the form Kiφ are allowed for φ ∈ Φ{i} then

there exists a rejecting tableau of each set of L − satisfiable formulae.

6.1 Soundness

We call the tableau system sound if the existence of a rejecting tableau T (ΓT0 ) for a
regular tableau set ΓT0 implies that the tableau set ΓT0 is not L − satisfiable.

Let us first consider the question about soundness of the tableau system.

Theorem 6.1.1 (Soundness of the tableau system) The given tableau system
is sound: If a regular tableau T (ΓT0 ) of this system rejects a finite set of formulae

ΓT0 , then ΓT0 is not L − satisfiable.
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The formal proof of this theorem follows at the end of this section. We first introduce
some lemmas that will serve as building blocks for the proof of the main theorem.

The argumentation of the proof of theorem 6.1.1 is as follows:

1. Suppose, ΓT0 is a finite L − satisfiable set of tableau formulae and there exists
a rejecting regular tableau T (ΓT0 ).

2. Since Γ0T is L − satisfiable, there must exist a model M and a satisfying
L-embedding for ΓT0 from the set of tableau labels of ΓT0 (i.e. {l0}) into the

set of situations of M.

3. In lemma 6.1.3 we show that from the existence of an L-embedding for the
root ΓT0 of a tableau we can conclude the existence of a tableau path π in

T (ΓT0 ) such that there exists a satisfying L-embedding ℓπ : label(Γπ) −→ |M|

for Γπ.

4. Now we distinguish between two cases:

a) π is a finite path. Because of the assumption that T is a rejecting tableau,
the leaf of the finite path π must be labelled with an axiom. This means

that path π either contains a tableau formula (F, c) ⊢ ⊥ or two tableau
formulae (F, c) ⊢ φ and (F, c) ⊢ ¬φ. This, however, contradicts the

existence of a satisfying L-embedding for each node on the path.

b) π is an infinite path. As T is rejected, we again distinguish between two
cases:

i. π is fair and contains an infinite U -trace. In this case, lemma 6.1.6

shows that Γπ is not L − satisfiable, which is a contradiction to the
conclusion drawn from lemma 6.1.3 above. Consequently, T cannot

contain a fair path that has an infinite U -trace.

ii. π is an unfair path. Lemma 6.1.4 proves that unfair paths do not
need to be considered any further: If Γπ is L − satisfiable then there

also exists a fair path π ′ for which Γπ′ is L− satisfiable. This path is
either finite and the leaf is labelled with an axiom or it contains an

infinite U -trace. However, both of these options have already been
excluded above. Consequently, T cannot contain an unfair path π

for which there exists a satisfying L-embedding.

This proof-sketch shows that if ΓT0 is L − satisfiable then there cannot exist any

rejected tableau T for ΓT0 because a rejected tableau would require that each path
π of the tableau is either

1. a finite path the leaf of which is labelled by an axiom, or
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2. an infinite and unfair path, or

3. an infinite, fair path that contains an U -trace.

All three options were excluded above. Consequently, there cannot exist any satis-

fying L-embedding.

First we show that if for a regular tableau T (ΓT0 ) the root ΓT0 is L− satisfiable with
some L-embedding ℓ : label(ΓT0 ) −→ |M|, then there exists a path π = v0v1 . . . in

the tableau such that

1. for every node vm on π the tableau set Γ(vm) is L − satisfiable with some

L-embedding ℓm : label(Γ(vm)) −→ |M| and

2. for all tableau labels l ∈ label(Γm−1) it holds that ℓm−1(l) = ℓm(l).

Note, that this means that all tableau sets on this path can be embedded into the

same model.

Lemma 6.1.2 Let T (ΓT0 ) be a regular tableau and let M be a model.

If there exists a satisfying L-embedding

ℓ0 : label(ΓT0 ) −→ |M|

for ΓT0 then there exists a path π = v0v1v2 . . . in the tableau such that for each node

vm on this path there exists a satisfying L-embedding ℓm : label(Γm) −→ |M| with
ℓm((F, c)) = ℓm−1((F, c)) for all labels (F, c) ∈ label(Γm−1).

We prove this lemma by induction over the length of the tableau path and step
by step identify the considered path. To do so, we must make a case differentiation
among all 26 possible tableau rules. For most of the rules this proof is rather simple:

We show that the L-embedding for the numerator of a rule is also a satisfying
L-embedding for one of its denominators. Only if the tableau rule introduces a new

tableau label, the embedding function must be adjusted. This is the case for the
tableau rules (TR 9) and (TR 14).

Proof:
Let T (ΓT0 ) be a regular tableau, let M be a model and let ℓ0 : label(ΓT0 ) −→ |M| be
a satisfying L-embedding for ΓT0 . We show that for each n ∈ IN there exists a path

πn = v0v1v2 . . . vn in T that has property P(πn), where we define property P(πn)
as follows:

For each node vm on πn there exists a satisfying L-embedding ℓm : label(Γm) −→ |M|

with ℓm((F, c)) = ℓm−1((F, c)) for all labels (F, c) ∈ label(Γm−1).
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Induction begin:
v0 has the required property by assumption.

Induction hypothesis:

We have already identified a path πm that has property P(πm).

Induction step:
We show that there exists an extension of πm to πm+1 such that πm+1 has property

P(πm+1)

1. Suppose, rule (TR 1) has been applied to node vm.
There does not exist any satisfying L-embedding for Γ(vm) = ΓT ∪ {(F, c) ⊢
φ, (F, c) ⊢ ¬φ}. Thus, property P(πm) cannot hold, which contradicts the

induction hypothesis. This implies that rule (TR 1) cannot have been applied
in node vm.

2. Suppose, rule (TR 2) has been applied to node vm.

There does not exist any satisfying L-embedding for Γ(vm) = ΓT ∪ {(F, c) ⊢
⊥}. Thus, property P(πm) does not hold, which contradicts the induction

hypothesis. This implies that rule (TR 2) cannot have been applied.

3. Suppose, rule (TR 3) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ ⊤}. Rule (TR 3) has only one denominator and thus, node

vm has only one possible successor vm+1. Then L-embedding ℓm+1 := ℓm is a
satisfying L-embedding for Γ(vm+1) = ΓT , because Γ(vm+1) ⊂ Γ(vm).

Consequently, property P(πm+1) holds.

4. Suppose, rule (TR 4) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ φ∧ψ}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c)) |=M φ∧ ψ

=⇒ (∗ by definition of the semantics of φ ∧ψ ∗)
ℓm((F, c)) |=M φ and ℓm((F, c)) |=M ψ

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1 := ℓm is a satisfying L-embedding for Γ(vm+1) = ΓT ∪ {(F, c) ⊢
φ, (F, c) ⊢ ψ}

Consequently, property P(πm+1) holds.

5. Suppose, rule (TR 5) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ φ∨ψ}.
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=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm((F, c)) |=M φ∨ ψ

=⇒ (∗ by definition of the semantics of φ ∨ψ ∗)
ℓm((F, c)) |=M φ or ℓm((F, c)) |=M ψ

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1 := ℓm is a satisfying L-embedding for Γ(vm+1) = ΓT ∪ {(F, c) ⊢ φ}

or

ℓm+1 := ℓm is a satisfying L-embedding for Γ(vm+1) = ΓT ∪ {(F, c) ⊢ ψ}
We choose πm+1 accordingly.

Consequently, property P(πm+1) holds.

6. Suppose, rule (TR 6) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ Kiφ}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
=⇒ ℓm((F, c)) |=M Kiφ

=⇒ (∗ by definition of the semantics of Kiφ and reflexivity of RKi ∗)
ℓm((F, c)) |=M Kiφ and ℓm((F, c)) |=M φ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for Γ(vm+1) = Γ(vm) ∪ {(F, c) ⊢
φ}

Consequently, property P(πm+1) holds.

7. Suppose, rule (TR 7) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ φ Uiψ}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c)) |=M φ Uiψ
=⇒ (∗ by remark 2, page 44 and def. 4.2.1 ∗)

ℓm((F, c)) |=M ψ or ℓm((F, c)) |=M (φ∧ ¬ψ ∧ 〈O〉iφ Uiψ)

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for
Γ(vm+1) = ΓT ∪ {(F, c) ⊢ ψ}

or
ℓm+1 := ℓm is a satisfying L-embedding for
Γ(vm+1) = ΓT ∪ {(F, c) ⊢ φ∧ ¬ψ∧ 〈O〉iφ Uiψ}

We choose πm+1 accordingly.

Consequently, property P(πm+1) holds.

8. Suppose, rule (TR 8) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ φWiψ}.
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=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm((F, c)) |=M φWiψ

=⇒ (∗ by remark 3 page 44 and def. 4.2.1 ∗)
ℓm((F, c)) |=M ψ or ℓm((F, c)) |=M (φ∧ ¬ψ ∧ [Oi]φWiψ)

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c) ⊢ ψ}

or

ℓm+1 := ℓm is a satisfying L-embedding for
Γ(vm+1) = ΓT ∪ {(F, c) ⊢ φ∧ ¬ψ∧ [Oi]φWiψ}

We choose πm+1 accordingly.
Consequently, property P(πm+1) holds.

9. Suppose, rule (TR 9) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ ¬Kiφ}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c)) |=M ¬Kiφ

=⇒ (∗ by definition 4.2.1 of the semantics of ¬Kiφ ∗)
there exists a situation (F ′, c ′) ∈ |M| such

that (ℓm((F, c)), (F ′, c ′)) ∈ RKi
and (F ′, c ′) |=M ¬φ

=⇒ (∗ because label(Γ(vm)) ⊂ label(Γ(vm+1)) ∗)
we construct ℓm+1 : label(Γ(vm+1)) −→ |M| from ℓm in such a way that

ℓm+1(l) :=

{
ℓm(l) for l ∈ label(Γm)

(F ′, c ′) for l ∈ label(Γm+1) \ label(Γm)

=⇒ ℓm+1 is a satisfying L-embedding for
Γ(vm+1) = Γ(vm) ∪ {(F ′, c ′) ⊢ ¬φ, (F, c)Ri(F

′, c ′), (F ′, c ′)}

Consequently, property P(πm+1) holds.

10. Suppose, rule (TR 10) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)Ri(F
′, c ′)}.

=⇒ (∗ by definition 5.3.2 of a satisfyingL-embedding ∗)
(ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi

=⇒ (∗ because RKi is symmetric ∗)
(ℓm((F ′, c ′)), ℓm((F, c))) ∈ RKi

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = Γ(vm) ∪ {(F ′, c ′)Ri(F, c)}

Consequently, property P(πm+1) holds.

11. Suppose, rule (TR 11) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =
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ΓT ∪ {(F, c)Ri(F
′, c ′), (F ′, c ′)Ri(F

′′, c ′′)}.
=⇒ (∗ by definition 5.3.2 of L-embedding ∗)

(ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi and (ℓm((F ′, c ′)), ℓm((F ′′, c ′′))) ∈ RKi
=⇒ (∗ because RKi is transitive ∗)

(ℓm((F, c)), ℓm((F ′′, c ′′))) ∈ RKi
=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = Γ(vm) ∪ {(F, c)Ri(F
′′, c ′′)}

Consequently, property P(πm+1) holds.

12. Suppose, rule (TR 12) or rule (TR 13) has been applied to node vm.

a) Suppose, ℓ : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)Ri(F
′, c ′), (F, c) ⊢ χ} for χ ∈ {P,¬P|P ∈ Pi}.

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm((F, c)) |=M χ and (ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi

=⇒ (∗ by definition 3.3.4 of an interpretation ∗)
ℓm((F ′, c ′)) |=M χ

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1 := ℓm is a satisfying L-embedding for
Γ(vm+1) = Γ(vm) ∪ {(F ′, c ′) ⊢ χ}

Consequently, property P(πm+1) holds.

b) Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for

Γ(vm) = ΓT ∪ {(F, c)Ri(F
′, c ′), (F, c) ⊢ χ} for χ ∈ {¬Kiφ, Kiφ | φ ∈ L}.

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm((F, c)) |=M χ and (ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi

=⇒ (∗ by definition of the semantics of Kiφ ∗)
ℓm((F ′, c ′)) |=M χ

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1 := ℓm is a satisfying L-embedding for
Γ(vm+1) = Γ(vm) ∪ {(F ′, c ′) ⊢ χ}

Consequently, property P(πm+1) holds.

13. Suppose, rule (TR 14) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c) ⊢ 〈.〉iφ}.
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=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm((F, c)) |=M 〈.〉iφ

=⇒ (∗ 〈.〉iφ is an abbreviation for either 〈a〉iφ or 〈O〉iφ ∗)
ℓm((F, c)) |=M 〈a〉iφ with a ∈ Oi or
ℓm((F, c)) |=M 〈O〉iφ

=⇒ (∗ by definition of the semantics of 〈O〉iφ∗)
there exists an o ∈ Oi, s.t. ℓm((F, c)) |=M 〈o〉iφ

=⇒ (∗ by definition of the semantics of 〈o〉iφ ∗)
there exist (F, c ′), (F, r) ∈ |M|, such that (F, c ′) ≡i ℓm((F, c))

and (F, c ′)
o

−→ (F, r) and (F, r) |=M φ

=⇒ We distinguish between two cases:

First case: ℓm((F, c)) = (F, c ′);

operation o is the next operation for all agents j ∈ ag(o), i.e.

ℓm((F, c)) = (F, c ′) and ℓm((F, c))
o

−→ (F, r) and (F, r) |=M φ.

As rule (TR 14) creates a denominator for each operation in O,

we can choose vm+1 such that for (F, co) ∈ label(Γm+1) \ label(Γm)

we have (F, c)
o

−→ (F, co) ∈ Γ(vm+1)

and we construct ℓm+1 as follows:

ℓm+1(l) :=

{
ℓm(l) for l ∈ label(Γm)

(F, r) for l = (F, co)

Second case: ℓm((F, c)) 6= (F, c ′);

there exists an agent j ∈ ag(o), j 6= i, such that
operation o is not the next operation for agent j,

but instead some operation o ′ ∈ Oj \ Oi is, i.e.
there exist j ∈ ag(o), o ′ ∈ Oj \ Oi and (F, c ′′) ∈ |M|, such that

ℓm((F, c))
o′

−→ (F, c ′′) and c ′′ ⊆ c ′.
As rule (TR 14) creates a denominator for each operation in O,

we can choose vm+1 such that for

(F, co ′) ∈ label(Γm+1) \ label(Γm) we have (F, c)
o′

−→ (F, co ′) ∈ Γ(vm+1)

and construct ℓm+1 from ℓm in such a way that

ℓm+1(l) =

{
ℓm(l) for l ∈ label(Γm)

(F, c ′′) for l = (F, co ′)

=⇒ ℓm+1 is a satisfying L − embedding for Γ(vm+1)

Consequently, property P(πm+1) holds.

14. Suppose, rule (TR 15) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈a〉iφ}.
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=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓ((F, ca)) and ℓm((F, c)) |=M 〈a〉iφ
=⇒ (∗ by definition of the semantics of 〈a〉iφ ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and there exist situations (F, c ′), (F, r) ∈
|M| such that

ℓm((F, c)) ≡i (F, c ′) and (F, c ′)
a

−→ (F, r) and (F, r) |=M φ

=⇒ (∗ because of lemmas 3.2.4 and 4.3.2 on pages 25 and 41 ∗)
ℓm((F, ca)) ≡ag(a) (F, r) and ℓ((F, ca)) |=M φ

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, ca) ⊢ φ}

Consequently, property P(πm+1) holds.

15. Suppose, rule (TR 16) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ [a]iφ}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M [a]iφ

=⇒ (∗ by definition of the semantics of [a]iφ ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and

for all (F, c ′), (F, r) ∈ |M|, such that

ℓm((F, c)) ≡i (F, c ′) and (F, c ′)
a

−→ (F, r) holds that (F, r) |=M φ

=⇒ ℓm((F, ca)) |=M φ

=⇒ ℓm+1 := ℓm is satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, ca) ⊢ φ}

Consequently, property P(πm+1) holds.

16. Suppose, rule (TR 17) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈b〉iφ} with i ∈ ag(a), a 6= b.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M 〈b〉iφ
Let ℓm((F, c)) = (F, c) and ℓm((F, ca)) = (F, ca).
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=⇒ (∗ by definition of the semantics of 〈b〉iφ ∗)

(F, c)
a

−→ (F, ca) and

there exist situations (F, c ′), (F, r) ∈ |M| such that

(F, c) ≡i (F, c ′) and (F, c ′)
b

−→ (F, r)

=⇒ (∗ because i ∈ ag(a) ∩ ag(b) and i-events are totally ordered ∗)
contradiction to the induction hypothesis that
ℓm is a satisfying L-embedding for Γ(vm)

=⇒ there does not exist any satisfying L-embedding for Γ(vm)

=⇒ contradiction to the assumption that P(πm) holds.

=⇒ rule (TR 17) cannot have been applied.

17. Suppose, rule (TR 18) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈b〉iφ} with i /∈ ag(a), a 6= b.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M 〈b〉iφ with i /∈ ag(a)

=⇒(∗ by definition 3.2.3 ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M 〈b〉iφ
and ℓm((F, c)) ≡i ℓm((F, ca))

=⇒(∗ by lemma 4.3.2 ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M 〈b〉iφ
andℓm((F, ca)) |=M 〈b〉iφ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for Γ(vm+1) = ΓT ∪ {(F, c)
a

−→
(F, ca), (F, ca) ⊢ 〈b〉iφ}

18. Suppose, rule (TR 19) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ [b]iφ} with i /∈ ag(a), a 6= b.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M [b]iφ with i /∈ ag(a)

=⇒(∗ by definition 3.2.3 ∗)
ℓm((F, c)) ≡i ℓm((F, ca))

=⇒(∗ by lemma 4.3.2 ∗)
ℓ((F, c)) |=M [b]iφ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, ca) ⊢ [b]iφ}

Consequently, property P(πm+1) holds.

19. Suppose, rule (TR 20) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈O〉iφ} with i ∈ ag(a)
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=⇒ (∗ by definition of 〈O〉iφ ∗)
ℓm is a satisfying L-embedding for

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢
∨

o∈Oi
〈o〉iφ}

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)), ℓm((F, c)) |=M
∨

o∈Oi
〈o〉iφ

=⇒ (∗ by definition of the semantics of ∨ and 〈o〉iφ ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)), and there exists o ∈ Oi and (F, c), (F, r) ∈
|M|, such that

ℓm((F, c)) ≡i (F, c ′) and (F, c ′)
o

−→ (F, r) and (F, r) |=M φ

=⇒ (∗ because a ∈ Oi and Ei is totally ordered ∗)
ℓm((F, ca)) |=M φ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, ca) ⊢ φ}

Consequently, property P(πm+1) holds.

20. Suppose, rule (TR 21) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ [O]iφ} with i ∈ ag(a).
=⇒ (∗ by definition of [O]iφ ∗)

ℓm is a satisfying L-embedding for

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢
∧

o∈Oi
[o]iφ}

=⇒ (∗ by definition of 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M
∧

o∈Oi
[o]iφ

=⇒ (∗ by definition of the semantics of ∧ ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and for all o ∈ Oi : ℓm((F, c)) |=M [o]iφ

=⇒ (∗ by definition of the semantics of [o]iφ ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and
for all o ∈ Oi, (F, c ′), (F, r) ∈ |M| it holds that

if ℓm((F, c)) ≡i (F, c ′) and (F, c ′)
o

−→ (F, r) then (F, r) |=M φ

=⇒ (∗ because ℓm((F, c)) ≡i ℓm((F, c)) and ℓm((F, c))
a

−→ ℓm((F, ca)) ∗)
ℓm((F, ca)) |=M φ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, ca) ⊢ φ}

Consequently, property P(πm+1) holds.

21. Suppose, rule (TR 22) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈O〉iφ} with i /∈ ag(a).
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=⇒ (∗ by definition of 〈O〉iφ ∗)
ℓm is a satisfying L-embedding for

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢
∨

o∈Oi
〈o〉iφ}

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)), ℓm((F, c)) |=M
∨

o∈Oi
〈o〉iφ

=⇒ (∗ because ℓm((F, c)) ≡j ℓm((F, ca)) with j /∈ ag(a) and thus i /∈
ag(a)∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, ca)) |=M
∨

o∈Oi
〈o〉iφ with i /∈

ag(a)

=⇒ (∗ by definition of 〈O〉iφ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, ca)) |=M 〈O〉iφ for i /∈ ag(a)

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ 〈O〉iφ}

Consequently, property P(πm+1) holds.

22. Suppose, rule (TR 23) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for

Γ(vm) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ [O]iφ} with i /∈ ag(a).
=⇒ (∗ by definition of [O]iφ ∗)

ℓm is a satisfying L-embedding for

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢
∧

o∈Oi
[o]iφ for i /∈ ag(a)}

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, c)) |=M
∧

o∈Oi
[o]iφ

=⇒ (∗ because ℓm((F, c)) ≡i ℓm((F, ca)) for all j /∈ ag(a) ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F, ca)) |=M
∧

o∈Oi
[o]iφ

=⇒ ℓm+1 := ℓm is a satisfying L-embedding for

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢
∧

o∈Oi
[o]iφ} in M.

=⇒ (∗ by definition of [O]iφ ∗)
ℓm+1 is a satisfying L-embedding for

Γ(vm+1) = ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c) ⊢ [O]iφ}

Consequently, property P(πm+1) holds.

23. Suppose, rule (TR 24) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca)}.
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=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca))

=⇒ (∗ by definition 3.3.2 and ℓm((F, c)) ≡i ℓm((F, ca)) for all i /∈ ag(a) ∗)
(ℓm((F, c)), ℓm((F, ca))) ∈ RKi for all i /∈ ag(a)

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)
ℓm+1) := ℓm is a satisfying L-embedding for
Γ(vm+1) = Γ(vm) ∪ {(F, c)Ri(F, ca) for all i /∈ ag(a)}

Consequently, property P(πm+1) holds.

24. Suppose, rule (TR 25) has been applied to node vm.

Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F, c)Ri(F
′, c ′) for all i ∈ ag(a)}.

=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and (ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi for all i ∈
ag(a)

=⇒ (∗ by definition 3.3.2 condition 4 ∗)

there exists (F ′, c ′′) ∈ |M| such that ℓm((F ′, c ′))
a

−→ (F ′, c ′′)

=⇒ (∗ because (F ′, c ′′) |=M ⊤ is a tautology ∗)
ℓm((F ′, c ′)) |=M 〈a〉i⊤ for each i ∈ ag(a)

=⇒ ℓm+1 := ℓm is a satisfying L − embedding for

Γ(vm+1) = Γ(vm) ∪ {(F ′, c ′) ⊢ 〈a〉i⊤ for all i ∈ ag(a)}

Consequently, property P(πm+1) holds.

25. Suppose, rule (TR 26) has been applied to node vm.
Suppose, ℓm : label(Γ(vm)) −→ |M| is a satisfying L-embedding for Γ(vm) =

ΓT ∪ {(F, c)
a

−→ (F, ca), (F ′, c ′)
a

−→ (F ′, c ′a), (F, c)Ri(F
′, c ′)

for all i ∈ ag(a)}.
=⇒ (∗ by definition 5.3.2 of a satisfying L-embedding ∗)

ℓm((F, c))
a

−→ ℓm((F, ca)) and ℓm((F ′, c ′))
a

−→ ℓm((F ′, c ′a)) and

(ℓm((F, c)), ℓm((F ′, c ′))) ∈ RKi for all i ∈ ag(a)

=⇒ (∗ by definition 3.3.2 cond. 4 and Ei is totally ordered ∗)
(ℓm((F, ca)), ℓm((F ′, c ′a))) ∈ RKi

=⇒ ℓm+1 := ℓm is a satisfying L − embedding for

Γ(vm+1) = Γ(vm) ∪ {(F, ca)Ri(F
′, c ′a) for all i ∈ ag(a)}

Consequently, property P(πm+1) holds.

2

We have shown that if the root ΓT0 of regular tableau T (ΓT0 ) is L − satisfiable with
some L-embedding ℓ : label(ΓT0 ) −→ |M| then there exists a path π in T (ΓT0 ), such
that for each prefix πm of π there exists a satisfying L-embedding ℓm : label(Γm) −→
|M| and it holds that for all m ∈ IN : ℓm(l) = ℓm+1(l) for all l ∈ label(Γm).
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We will now show how to construct a satisfying L-embedding ℓπ for the set of
formulae Γπ. Note, that π may be an infinite path and thus Γπ may also be infinite.

Let us now consider an infinite tableau path π = v0, v1, v2, . . .. Suppose, for this

path holds that each node vm is L − satisfiable with some L-embedding ℓm, where
L-embedding ℓm is an extension of L-embedding ℓm−1 in the sense of lemma 6.1.2.

Lemma 6.1.3 Let T (ΓT0 ) be a regular tableau for a tableau set ΓT0 and let ℓ0 :

label(ΓT0 ) −→ |M| be a satisfying L-embedding for ΓT0 .

There exists a tableau path π in T , such that there exists a satisfying L-embedding

ℓπ : label(Γπ) −→ |M| for Γπ.

Proof:

Let T (ΓT0 ) be a regular tableau for a tableau set ΓT0 and let ℓ0 : label(ΓT0 ) −→ |M|

be a satisfying L-embedding for ΓT0 . According to lemma 6.1.2 there exists a path π
in tableau T , such that for all nodes vm on π there exists a satisfying L-embedding

ℓm : label(Γ(vm)) −→ |M| such that for all tableau labels (F, c) ∈ label(Γm) it holds
that ℓm((F, c)) = ℓm+1((F, c)).

We now construct a mapping ℓπ : label(Γπ) −→ |M| in such a way that ℓπ((F, c)) :=

ℓk((F, c)) with (F, c) ∈ label(Γ(vk)) and for all n < k : (F, c) /∈ label(Γ(vn)), in other
words, we construct ℓπ :=

⋃

k∈IN
ℓk to be the union of all L-embeddings ℓk.

Suppose, ℓπ is not a satisfying L-embedding for Γπ. There may be three possible
reasons:

1. There exists a structure formula (F, c)
a

−→ (F, ca) ∈ Γπ but not ℓπ((F, c))
a

−→
ℓπ((F, ca)).

However, then there exists a smallest m ∈ IN with (F, c)
a

−→ (F, ca) ∈ Γ(vm)

and not ℓm((F, c))
a

−→ ℓm((F, ca)) which is a contradiction to the assumption

that ℓm is a satisfying L-embedding for Γ(vm).

2. There exists a structure formula (F, c)Ri(F
′, c ′) ∈ Γπ but

(ℓπ((F, c)), ℓπ((F
′, c ′))) /∈ RKi .

However, then there exists a smallest m with (F, c)Ri(F
′, c ′) ∈ Γ(vm) and

(ℓm((F, c)), ℓm((F ′, c ′))) /∈ RKi which is a contradiction to the assumption that
ℓm is a satisfying L-embedding for Γ(vm).

3. There exists a labelled formula (F, c) ⊢ φ ∈ Γπ and ℓπ((F, c)) 6|=M φ.

However, then there exists a smallest m with (F, c) ⊢ φ ∈ Γ(vm) and
ℓm((F, c)) 6|=M φ which is a contradiction to the assumption that ℓm is a

satisfying L-embedding for Γ(vm).
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From this we can conclude that ℓπ is a satisfying L-embedding for Γπ and thus ℓπ is
a satisfying L-embedding for all Γ(vm) with vm ∈ π.

2

As we have stated before, there are several possible reasons for infinite paths in a
tableau. One is the existence of so-called unfair tableau paths. Remember, we call a
tableau-path π = v0, v1, v2, . . . unfair, if Γπ contains a tableau-formula (F, c) ⊢ 〈·〉iφ

but does not contain a chain χ = (F, c)
o0−→ (F, c1)

o1−→ . . .
on−→ (F, cn+1) with

on ∈ Oi.

We show that we may ignore unfair tableau paths: Whenever there is an unfair
path π = v0, v1, v2 . . . such that Γπ is L − satisfiable, there also exists a fair path

π ′ = v0, v
′
1, v

′
2, . . . such that Γπ′ is L − satisfiable.

Lemma 6.1.4 Let T (ΓT0 ) be a regular tableau for a tableau set ΓT0 and let ℓ0 :

label(ΓT0 ) −→ |M| be a satisfying L-embedding for ΓT0 .

The tableau T contains a fair tableau path π, such that there exists a satisfying
L-embedding ℓπ : label(Γπ) −→ |M|.

Each maximal chain χ of tableau labels of a tableau path π can be seen as the
counterpart of an interleaving of a partially ordered run F of the model M. We

call an interleaving of a partially ordered run fair, if for every agent i and for every
situation (F, c) it holds that starting from situation (F, c), if i performs another

operation in the partial order view, then i performs the next operation after a finite
number of steps in the interleaved view.

We prove lemma 6.1.4 by step by step identifying a fair tableau path π such that

each maximal chain of Γπ corresponds to a fair interleaving of a run of model M.
While identifying π, we at the same time construct a satisfying L-embedding ℓπ :

label −→ |M| for Γπ.

Before we give the proof of lemma 6.1.4, we introduce fair interleavings formally:

Definition 6.1.5 (interleaving) Let M be a model and let (F, c0) ∈ |M| be a
situation of M with F = (E,≤, λ).

An interleaving
−−−→
(F, c0) = ((F, c0), (F, c1), . . .) starting from situation (F, c0), is a se-

quence of situations, such that

1. for all situations (F, c) ∈
−−−→
(F, c0), with (F, c) 6= (F, c0) it holds that c0 ⊂ c,

i.e. (F, c0) is the least situation of
−−−→
(F, c0);
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2. each situation (F, ci) ∈
−−−→
(F, c0) either has exactly one direct successor (F, ci+1) ∈

−−−→
(F, c0), such that there exists an event e ∈ E with ci∪ {e} = ci+1 or (F, ci) is he
last element of the sequence.

We call an infinite interleaving
−−−→
(F, c0) fair iff for all agents i ∈ Ag and for all

situations (F, c) ∈
−−−→
(F, c0) the following holds:

If Ei\c 6= ∅, then there exists a finite subsequence ((F, c), (F, c ′), . . . , (F, c∗)) of
−−−→
(F, c0)

such that (c∗ \ c) ∩ Ei 6= ∅.

Informally, we call an interleaving fair, if for every agent i and for every situation

(F, c) it holds that starting from situation (F, c), if i performs another operation in
the partial order view, then i performs the next operation after a finite number of

steps in the interleaved view.

Proof of lemma 6.1.4:
Suppose, T (ΓT0 ) is a regular tableau for a tableau set ΓT0 and ℓ : label(ΓT0 ) −→ |M|

is a satisfying L-embedding for ΓT0 .

In the following we will stepwise identify a fair tableau path π with a satisfying

L-embedding ℓπ : label(Γπ) −→ |M|. We further fix a set I of fair interleavings , such

that for every maximal chain χ = (F, c0)
a0−→ (F, c1)

a1−→ . . . there exists exactly one

fair interleaving
−−−→
(F, c0) ∈ I with ℓπ((F, c0)) = (F, c0).

The following invariant will hold for each prefix πm = v0v1v2, . . . vm of π:

Invariant:

1. ℓm is a satisfying L-embedding for Γm and

2. each maximal chain χ = (F, c0)
a0−→ (F, c1)

a1−→ . . .
an−1−→ (F, cn) of Γm corre-

sponds to a prefix of a fair interleaving
−−−→
(F, c0) such that

a) ℓm((F, c0)) = (F, c0) and

b) if (F, c)
a

−→ (F, c ′) in χ, then ℓm((F, c)) ∈
−−−→
(F, c0) and ℓm((F, c ′)) ∈

−−−→
(F, c0)

and ℓm((F, c))
a

−→ ℓm((F, c ′)).

Induction begin:

Let π0 := v0 and for ℓ0((F, c0)) = (F, c) we fix a fair interleaving
−−−→
(F, c0) and define

I0 := {
−−−→
(F, c0)}.

According to the assumption, ℓ0 : label(ΓT0 ) −→ |M| is a satisfying L-embedding

for ΓT0 . Further, ΓT0 has exactly one maximal chain, namely χ = (F, c0). Obviously,
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ℓ0((F, c0)) = (F, c0) is a prefix of the fair interleaving
−−−→
(F, c0). Consequently, the

invariant holds for π0 and I0.

Induction hypothesis:

Suppose, we have already identified a prefix πm of π, an L-embedding ℓm :

label(Γm) −→ |M| and a set Im of fair interleavings, such that the invariant holds

for πm and Im.

Induction step:
We construct πm+1 from πm, ℓm+1 from ℓm and Im+1 from Im such that the invariant

holds for πm+1,ℓm+1 and Im+1.

We divide the tableau rules into five categories:

1. Suppose, one of the following tableau rules is applied in node vm: (TR 1),
(TR 2), (TR 17).

Since ℓm is a satisfyingL-embedding, none of these rules can have been applied.

2. Suppose, one of the following tableau rules is applied in node vm:

(TR 3), (TR 4), (TR 6), (TR 10), (TR 11), (TR 12), (TR 13), (TR 15),
(TR 16), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22), (TR 23), (TR

24), (TR 25), (TR 26).
Each of these rules has only one denominator such that there is no choice for

the extension of πm to πm+1. According to the proof of lemma 6.1.2, we define
ℓm+1 := ℓm. Since Γm ≃ Γm+1, we also define Im+1 := Im. Then the invariant

holds for πm+1.

3. Suppose, rule (TR 5) is applied in node vm.

As none of the denominators of this rule adds new labels to the tableau set,
we have that Γm ≃ Γm+1. We keep the L-embedding and define ℓm+1 := ℓm.
According to induction step 5 on page 108 in the proof of lemma 6.1.2, ℓm+1 is a

satisfying L-embedding for Γm+1. Thus, the first item of the invariant holds for
πm+1. Since Γm ≃ Γm+1, we do not need to consider any new interleavings and

thus we define Im+1 := Im. Then, obviously, the second item of the invariant
is also fulfilled, such that the invariant holds for πm+1, ℓm+1 and Im+1.

4. Suppose, rule (TR 7) or rule (TR 8) are applied in node vm.

Again, as none of the denominators of rule (TR 7) or rule (TR 8), respectively,

adds a new tableau label to the tableau set, we hat that Γm ≃ Γm+1. We define
ℓm+1 := ℓm. According to induction step 7 on page 109 and induction step

8 on page 109 in the proof of lemma 6.1.2 respectively, ℓm+1 is a satisfying
L-embedding for either the left or the right denominator of the rule. We

choose node vn+1 accordingly, so that ℓm+1 is a satisfying L-embedding for
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Γm+1. Thus, the first item of the invariant holds for πm+1. Since we have
that Γm ≃ Γm+1 we do not need to consider any new interleavings and thus we

define Im+1 := Im. Obviously, the second item of the invariant is also fulfilled,
such that the invariant holds for πm+1, ℓm+1 and Im+1.

5. Suppose, rule (TR 9) is applied in node vm.

This rule has only one denominator, so there is only one possible node vm+1

for πm+1 to extend πm. We define ℓm+1(l) :=

{
ℓm(l) for l ∈ label(Γm)

(F ′, c ′) for l ∈ (F ′, c ′)

According to induction step 9 on page 110 in the proof of lemma 6.1.2, ℓm+1 is

a satisfying L-embedding for Γm+1. Thus, the first item of the invariant holds
for πm+1.

The tableau label (F ′, c ′) is a new label in Γm+1. Since rule (TR 9) does not

add a new structure formula of the type l
o

−→ l ′ to Γm for any tableau labels
l, l ′ ∈ label(Γm+1), we have a new maximal chain χ = (F ′, c ′) consisting of only
one tableau label.

Let ℓm+1((F
′, c ′)) = (F ′, c ′), then we fix a fair interleaving

−−−−→
(F ′, c ′) and define

Im+1 := Im∪ {
−−−−→
(F ′, c ′)}.

For all maximal chains χ ′ 6= χ in Γm+1 the second item of the invariant is
trivially fulfilled. For the newly added chain χ = (F ′, c ′) we have fixed the

interleaving
−−−−→
(F ′, c ′) in such a way that the second item of the invariant is

trivially fulfilled.

Thus, the invariant holds for πm+1, ℓm+1 and Im+1.

Therefore, the invariant is fulfilled for πm+1 and ℓm+1.

6. Suppose, rule (TR 14) is applied in node vm.

This is the crucial rule for identifying the fair tableau path π. This rule has
a choice of denominators (one denominator for each operation o ∈ O) as well

as it introduces a new tableau label and extends a maximal chain χ in each
denominator.

We choose the node vm+1 which extends path πm according to the already
fixed set of interleavings in the following way.

Let Γ(vm) = ΓT ∪ {(F, c) ⊢ 〈·〉iφ, (F, c)} with (F, c) unmarked and ei-

ther 〈·〉iφ = 〈a〉iφ for some i ∈ Ag, a ∈ Oi and some φ ∈
L or 〈·〉iφ = 〈O〉iφ for some i ∈ Ag and some φ ∈ L.
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=⇒ (* by def. 5.3.2 of a satisfying L-embedding *)
there exists an operation o ∈ Oi with ℓm((F, c)) |=M 〈o〉iφ

=⇒ (* by lemma 5.5.4 and because (F, c) is unmarked *)

there exists an operation o ∈ Oi with ℓm((F, c)) |=M 〈o〉iφ and there

exists exactly one maximal chain of the form χ = (F, c0)
a0−→ . . .

an−1
−→

(F, c) in Γ(vm)

=⇒ (* by induction hypothesis *)

there exists a fair interleaving
−−−→
(F, c0) ∈ Im that corresponds to χ in the

following way: ℓm((F, c0)) = (F, c0) and for all (F, cx)
ax−→ (F, cx+1) in χ

with x ≤ n − 1 it holds that ℓm((F, cx)) ∈
−−−→
(F, c0) and ℓm((F, cx+1)) ∈

−−−→
(F, c0) and ℓm((F, cx))

a
−→ ℓm((F, cx+1))

and there exists an operation o ∈ Oi with ℓm((F, c)) |=M 〈o〉iφ

Let ℓm((F, c)) = (F, c). There exists a situation (F, c ′) ∈
−−−→
(F, c0) such that

(F, c)
o′

−→ (F, c ′) for some o ′ ∈ O. (Note, that not necessarily o = o ′. It might
also be that o ′ ∈ Oj for some j /∈ ag(o).)

We choose the extension of πm according to the fair interleaving
−−−→
(F, c0) in such

a way that (F, c)
o′

−→ (F, c ′) ∈ Γ(vm+1) for some new tableau label (F, c ′).

(This extension is possible because rule (TR 14) generates a denominator for
each operation o ∈ O.

Next, we modify the L-embedding as we have done in the proof of lemma 6.1.2:

ℓm+1(l) =

{
ℓm(l) for l 6= (F, c ′)

(F, c ′) for l = (F, c ′)

Because of the definition of ℓm+1 according to the fair interleaving, ℓm+1 is a

satisfying L-embedding for Γm+1 = Γm ∪ {(F, c)
o′

−→ (F, c ′)}.

Since we have chosen the extension of πm according to the fair interleaving
−−−−−−−→
ℓm((F, c0)), the invariant is fulfilled for πm+1.

Up to now, we have identified a path π = v0, v1, v2, . . .. According to the proof of

lemma 6.1.3, ℓπ :=
⋃

m∈IN
ℓm is a satisfying L-embedding for Γπ. We define the set of

fair interleavings Iπ :=
⋃

m∈IN
Im.

Now suppose, π = v0, v1, v2, . . . is not fair.

By definition 5.5.8 of fairness of a tableau path, there exists a tableau label (F, c) ∈
label(Γπ), such that (F, c) ⊢ 〈a〉iφ ∈ Γπ or (F, c) ⊢ 〈O〉iφ ∈ Γπ and for the maximal

chain χ = l0
a0−→ l1

a1−→ l2 . . .
ak−→ (F, c)

ak+1−→ . . . it holds that for k ′ > k, ak′ /∈ Oi.
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Suppose, ℓm((F, c)) = (F, c). Since ℓπ is a satisfying L-embedding for Γπ, there exists
an operation o ∈ Oi, such that (F, c) |=M 〈o〉iφ.

By construction of the set of fair interleavings Iπ, there exists a fair interleaving
−−−→
(F, co) ∈ Iπ with (F, c0) = ((F, c0), (F, c1), (F, c2), . . .) and with ℓπ(l0) = (F, c0) and for

all lm
am−→ lm+1 it holds that ℓπ(lm) ∈

−−−→
(F, c ′0) and ℓπ(lm+1) ∈

−−−→
(F, c ′0) and ℓπ(lm)

am−→
ℓπ(lm+1).

Thus, there exists a k ∈ IN such that ℓπ((F, c)) = (F, ck) and for all k ′ > k it holds

that if (F, ck′), (F, ck′+1) ∈
−−−→
(F, co) and (F, ck′)

aak ′
−→ (F, ck′+1) then ak′ /∈ Oi.

Since (F, ck) |=M 〈o〉iφ with o ∈ Oi this is a contradiction to the definition of a fair
interleaving.

Consequently, the identified path π must be a fair path.

We have shown that if the root ΓT0 of a regular tableau T (ΓT0 ) is L− satisfiable, then
there exists a fair tableau path π in T , such that Γπ is L − satisfiable. This means

that we do not have to consider unfair paths any further but can simply reject unfair
paths in a tableau: If we find an unfair tableau path π such that Γπ is L−satisfiable,
then there also exists a fair tableau path π ′, such that Γπ′ is L − satisfiable.

Next we have a closer look at paths that contain U− traces. We will show that there
does not exist a satisfying L-embedding for any path π that contains an U -trace.

Consider an until formula φUiψ that is true in a situation (F, c) of a model M.

The semantics of the until-formula requires that there exists a situation (F, c ′) with
↓i (F, c) ⊆↓i (F, c ′) such that ↓i (F, c ′) “resolves” the until formula, i.e. makes ψ true

(↓i (F, c ′) |=M ψ).

Now suppose, π is a path of T and Γπ contains a U -trace, i.e. it contains a tableau
formula (F, c) ⊢ φ Uiψ and for all (F, c ′) that occur later in the same maximal chain

as (F, c), Γπ contains a formula (F, c ′) ⊢ ¬ψ. A chain corresponds to an interleaving
of a run in a model, so this means that in such an interleaving each situation into

which one of the labels (F, c ′) is embedded satisfies the formula ¬ψ. This, however,
contradicts the requirement that ψ must eventually be satisfied.

Lemma 6.1.6 Let T be a tableau and let π be a fair infinite path of T , such that π

contains an U-trace. Then Γπ is not L − satisfiable.

Proof:

Suppose, π is a fair tableau path that contains an U -trace and Γπ is L − satisfiable.

By definition 5.5.7 of an U -trace this supposition implies
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Γπ contains a (not necessarily maximal) infinite chain

χ = lk
ok−→ lk+1

ok+1−→ . . . for some k ∈ IN, (1)

such that lk ⊢ φ Uiψ ∈ Γπ (2)

and for all lm ∈ χ with m ≥ k and lm ⊢ φ Uiψ ∈ Γπ (3)

there exists a subchain χ ′ = lm
om−→ . . .

on−→ ln+1 of χ, such that (4)

lm ⊢ ¬ψ ∈ Γπ, (5)

for all ox, with m ≤ x < n we have that ox /∈ Oi, and (6)

ln+1 ⊢ φUiψ ∈ Γπ (7)

Remember, the assumption was that Γπ is L−satisfiable, i.e. there a exists a satisfying
L-embedding ℓπ : label(Γπ) −→ |M|. By definition 5.3.2 of a satisfying L-embedding

and by the lines above we can conclude that the following holds:

for all x ≥ k it holds that ℓπ(lx)
ox−→ ℓπ(lx+1) (* cf. line (1) *)

and ℓπ(lk) |=M φUiψ. (* cf. line (2) *)

Further, from lines (3) to (7) it follows that for all tableau labels lm ∈ χ withm ≥ k
and lm ⊢ φ Uiψ ∈ Γπ there exists a subchain
χ ′ = lm

om−→ . . .
on−→ ln+1 of χ, such that

ℓπ(lm)
om−→ ℓπ(lm+1)

om+2
−→ . . .

on−→ ℓπ(ln+1),

ℓπ(lm) |=M φ Uiψ ∧ ¬ψ, (* cf. lines (3), (5) *)

ℓπ(ln+1) |=M φ Uiψ (* cf. line (6) *)
and ℓπ(lm) ≡i ℓπ(lm+1) ≡i . . . ≡i ℓπ(ln) (* cf. line (7) *)

By lemma 4.3.2 this means that ℓπ(lk) |=M φ Uiψ and for all tableau labels lm ∈ χ

with lm ⊢ φ Uiψ ∈ Γπ there exists a subchain χ ′ = lm
om−→ . . .

on−→ ln+1 of χ,

such that

for all m ≤ x ≤ n it holds that ℓπ(lx) |=M φ Uiψ∧ ¬ψ, (8)

and ℓπ(ln+1) |=M φ Uiψ∧ ¬ψ. (9)

This implies that for all tableau labels l ∈ χ it holds that

ℓπ(l) |=M φ Uiψ ∧ ¬ψ. (10)

Again by lemma 4.3.2 we have that for all situations (F, c) ∈ |M|, such that there

exists a tableau label l ∈ χ with ℓπ(l) ≡i (F, c), it holds that (F, c) |=M φ Uiψ∧ ¬ψ.
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According to definition 3.2.2 the events local to each agent are totally ordered. Thus,
for ℓπ(l0) = (F, co) there does not exist a situation (F, d) ∈ |M| with c0 ⊆ d and

(F, d) 6|=M φ Uiψ∧ ¬ψ.

This is a contradiction to the semantics of φ Uiψ which demands that at some

situation (F, c) ⊇ ℓπ((F, c0)) the formula ψ must hold.

Thus, if π is a fair tableau path and there exists a satisfying L-embedding ℓπ for Γπ,

then π does not contain an U -trace.

2

With these preliminaries we can now prove the soundness of the tableau system as

stated in theorem 6.1.1.

Let us recall theorem 6.1.1:

The given tableau system is sound: If a regular tableau T (ΓT0 ) of this system rejects
a finite set of formulae ΓT0 , then ΓT0 is not L − satisfiable.

Proof of theorem 6.1.1:

Suppose,

ΓT0 is a finite L − satisfiable set of tableau formulae and (11)

there exists a rejecting regular tableau T (ΓT0 ) (12)

By definition 5.3.2 on page 55 of a satisfying L-embedding there exists a model

M = (A,RK, I) and a satisfying L-embedding ℓ : label(ΓT0 ) −→ |M| for ΓT0 from the
set of tableau labels of ΓT0 (i.e. {l0}) into the set of situations of M.

According to lemma 6.1.3 on page 118, there exists a tableau path π in T (ΓT0 ) such
that there exists a satisfying L-embedding ℓπ : label(Γπ) −→ |M| for Γπ.

Now we distinguish between two cases:

1. π is a finite path.
=⇒ (* by assumption 12 that T (ΓT0 ) is a rejecting tableau and by the

rejection conditions in definition 5.5.9 *)

The leaf of π is labelled with an axiom.
=⇒ Path π either contains a tableau formula (F, c) ⊢ ⊥ or two tableau

formulae (F, c) ⊢ φ and (F, c) ⊢ ¬φ.
=⇒ There does not exist a satisfying L-embedding for Γπ.

=⇒ Path π is not a finite.

2. π is infinite.
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As T (ΓT0 ) is a rejecting tableau, we again distinguish between two cases:

a) π is fair and contains an U -trace.
=⇒ (* with lemma 6.1.6 and proposition 6.1.6 *)

Γπ is not L − satisfiable.
=⇒ this is a contradiction to the conclusion drawn above from lemma

6.1.3
=⇒ π is either unfair or does not contain an U -trace.

b) π is unfair.
=⇒ (* by lemma 6.1.4 on page 119 *)

There exists a fair tableau path π ′, such that Γπ′ is L−satisfiable.
=⇒ (* according to the assumption (12) that T (ΓT0 ) is a rejecting

tableau *)
Path π ′ must either be finite finite path the leaf of which is labelled
with an axiom or it must be an infinite and fair path that contains

an U -trace.
=⇒ This is a contradiction to the proof steps above.

=⇒ π is not unfair.

These three cases lead to the conclusion that path π is neither a finite path the leaf
of which is labelled with an axiom, nor is it an unfair path nor does it contain an

U -trace.

Thus, according to definition 5.5.9, π is not a rejected path and consequently, T (ΓT0 )

is not a rejecting tableau.

This is a contradiction to assumption (12).

Thus, we have proven theorem 6.1.1:
If ΓT0 is L − satisfiable, then there does not exist a rejecting regular tableau T (ΓT0 )

for ΓT0 .

2
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6.2 Completeness of the Tableau System

We call the tableau method complete if there exists a rejected tableau T (ΓT0 ) for
each tableau set ΓT0 that is not L − satisfiable.

As already mentioned in the introduction to this chapter on page 105, the tableau
method is not complete for the full language L without the belief operator B.

The following example is a counterexample for completeness.

Let Ag := {1, 2},O1 := {a},O2 := {b} and P1 = ∅,P2 := {p}. Now consider tableau

set ΓT0 := {l0 ⊢ K1p, l0 ⊢ 〈a〉1⊤, l0 ⊢ 〈b〉2(¬p)}. Γ
T
0 is not L − satisfiable.

However, each tableau T (ΓT0 ) will contain an accepted tableau path like the follow-

ing:

l0 ⊢ K1p , l0 ⊢ 〈a〉1⊤, l0 ⊢ 〈b〉2(¬p), l0

(TR 6)

l0 ⊢ K1p , l0 ⊢ p , l0 ⊢ 〈a〉1⊤ , l0 ⊢ 〈b〉2(¬p), l0

(TR 14)

l0 ⊢ K1p, l0 ⊢ p, l0 ⊢ 〈a〉1⊤ , l0
a

−→ la , l0 ⊢ 〈b〉2(¬p) , l0 , la (TR 15),

(TR 18)

l0 ⊢ K1p, l0 ⊢ p, la ⊢ ⊤ , l0
a

−→ la , la ⊢ 〈b〉2(¬p) , l0, la

(TR 3)

l0 ⊢ K1p, l0 ⊢ p, l0
a

−→ la , la ⊢ 〈b〉2(¬p), l0, la

(TR 24)

l0 ⊢ K1p, l0 ⊢ p, l0
a

−→ la , l0R2 la , la ⊢ 〈b〉2(¬p) , l0 , la

(TR 14)

l0 ⊢ K1p, l0 ⊢ p, l0
a

−→ la , la
b

−→ lab , l0R2 la , la ⊢ 〈b〉2(¬p) , l0 , la , lab

(TR 15)

l0 ⊢ K1p, l0 ⊢ p , l0
a

−→ la , la
b

−→ lab , l0R2 la , lab ⊢ ¬p , l0, la , lab

(TR 12)

l0 ⊢ K1p, l0 ⊢ p , l0
a

−→ la , la
b

−→ lab , l0R2 la , la ⊢ p , lab ⊢ ¬p, l0, la , lab

(TR 24)

l0 ⊢ K1p, l0 ⊢ p, l0
a

−→ la , la
b

−→ lab , laR1 lab , l0R2 la , lab ⊢ ¬p, l0 , la , lab

(TR 10)

l0 ⊢ K1p, l0 ⊢ p, l0
a

−→ la , la
b

−→ lab, laR1 lab , l0R2 la , labR1 la , laR2 l0 , lab ⊢
¬p, l0, la , lab
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No further tableau rules can be applied to the last line of above tableau path. On
first sight it seems as if rule (TR 12) would be applicable to formulae labR1la and

lab ⊢ ¬p. However, the side condition of rule (TR 12) requiring p to be element of
P1 forbids the application of the rule. Since the path is finite and does not end with

an axiom, it is accepted. Hence, the tableau containing such a path is accepted as
well. However, the tableau set ΓT0 is not L − satisfiable.

In the formula K1p, the proposition p is not local to agent 1 who is supposed to

know p. Agent 1 cannot notice, when agent 2 changes the value of p. Figure 6.1
illustrates the problem. The situation (F, cb), shown by a red line in the figure, does

not ’occur’ in the tableau in the sense that if we embed the tableau labels into a
model, then the considered tableau path does not contain a label that is embedded

into situation (F, cb). This fact in itself is not a problem. In lemma 4.3.2 we have
shown that a formulae of type A is satisfied in a situation (F, c) if and only if it is
satisfied in all situations (F, c ′) that are i-equivalent to (F, c) for all i ∈ A. In this

example this means that ℓπ(l0) satisfies formula K1p iff all situations that are RK1 -
indistinguishable from ℓπ(l0), satisfy p. This means in particular that all situations

that are 1-equivalent to ℓπ(l0) must satisfy p. However, since p ∈ P2 is a proposition
local to agent 2, the tableau rules only ensure that all RK2 -indistinguishable situations

satisfy p. They do not ensure that all RK1-indistinguishable situations satisfy p.

Ag2

Ag1
a

b
p ¬p

ℓπ(l0) ℓπ(lab)ℓπ(la)

K1p

〈a〉1⊤

〈b〉2¬p

(F, cb)

Figure 6.1: Counterexample for completeness

However, the tableau system is complete for a reasonable subset of the language L
that contains only those knowledge formulaeKiφ in which φ is of type i, i.e. φ ∈ Φ{i}.

We claim that this subset is a reasonable subset for the following reason: In the
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unrestricted version of L, it is possible to state that an agent i knows a fact about
another agent j without being able to notice the change of the fact. In the restricted

version of L, it is only possible to formulate knowledge of agent i about facts, the
change in truth-value of which agent i is able to observe.

However, the example in the next chapter, chapter 7 shows, that sometimes it is

desirable to not have the restricted language: An agent may for example know
constraints about the behavior of other agents and of the system or about the effects

of operations performed by other agents.

The subset, for which the tableau method is complete, will be called Lc. The
language Lc is basically defined as L with two differences: Firstly, it does not contain

belief operators Bi (for which the tableau was not constructed anyway) and secondly,
the knowledge operators Ki are defined with the restriction described above.

Definition 6.2.1 (Language Lc) Let Ag be a set of agents. φ ∈ L is a formula

of Lc iff

1. φ does not contain any belief operator Bi for i ∈ Ag and

2. for each agent i ∈ Ag and for each sub formula of φ of the form Kiψ it holds

that ψ ∈ Φ{i} is of type i.

Let Γ0 ⊂ Lc be a finite set of formulae and let ΓT0 be the tableau set constructed
from Γ0 according to definition 5.3.3. We will show that the existence of an accepted

tableau T (ΓT0 ) for tableau set ΓT0 implies that the tableau set is L − satisfiable.

This means that for a set of tableau formulae ΓT0 that is not L − satisfiable, there
does not exist an accepted tableau and thus, all tableaux constructed from ΓT0 must

be rejected.

If we only had to deal with finite tableaux, i.e. tableaux with only finite paths, we

could prove completeness as follows: Given an accepted tableau T (ΓT0 ). According
to definition 5.5.9, there must exist an accepted path π in the tableau. Take the leaf
of the accepted path π and construct a model that satisfies the leaf. Then show by

induction that the first node of π, i.e. the root of the tableau is L− satisfiable. This
means, we have to show that whenever a denominator of a rule is L− satisfiable, so

is the numerator.

In our case the problem is that the tableaux are potentially infinite, and not only
finite but also infinite paths can be accepted. There is no leaf that can be used as

first node for the induction. Thus, we have to modify the method.

A tableau that accepts a set of formulae ΓT0 must have an accepted path. This

means, the tableau must contain a path π that is either
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• finite and does not end with an axiom or

• infinite, fair and does not contain an U -trace.

We prove completeness by

1. defining a method for constructing a model M for the set of tableau formulae
Γπ occurring on an accepted path π and an L-embedding ℓπ : label(Γπ) −→ |M|

and

2. showing,

• that the structure constructed according to this method is a model in the

sense of definition 3.4.1, and

• that the mapping ℓπ constructed according to this method is a satisfying

L-embedding for Γπ and thus for ΓT0 which is a subset of Γπ.

Since ΓT0 ⊆ Γπ, it obviously holds that if Γπ is L − satisfiable, then so is ΓT0 .

6.2.1 Construction of a Model M and a satisfying L-embedding

As mentioned above, we first present a method to construct a model M and a sat-

isfying L-embedding ℓ : label(Γπ) −→ |M| for a set of tableau formulae Γπ occurring
on an accepted path π in a tableau T (ΓT0 ).

Requiring an accepted path as input, the method consists of three parts: Part 1

constructs the temporal part of the model, i.e. it constructs the set of runs A.
Further, part 1 also constructs the L-embedding ℓπ that embeds all tableau labels
into situations of the runs. The second part of the construction constructs the

epistemic part of the model, i.e. the indistinguishability relations RKi . Finally, the
third part of the method constructs the interpretation function of the model M
under construction.

In the following, we briefly describe the method informally:

We can assume that the set of agents Ag, the distributed set of operations Õ and

the distributed set of propositions P̃ is fixed.

We modify the set of operations and extend it by an init-operation, that is jointly
performed by all agents. The first operation of each constructed run will be this

init-operation. There is only a syntactic reason for adding this operation: In the
construction method we will construct a number of runs and extend them succes-
sively. To be able to distinguish among the various runs, we initially add one event

to each run in which every agent participates and that is labelled by operation init.
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However, we could also use any other operation instead of init, as long as the event
is unique to the run.

To construct a model, we start with an accepted path π = v0v1v2v3, . . .. We succes-

sively consider for every node vj, j ≥ 1 the difference between Γj and Γj−1.

If vj is derived from vj−1 by application of rule (TR 9), then Γj\ Γj−1 contains a new
tableau label l that is (and will remain) the first label of a (new) maximal chain.

For this tableau label we construct a new run F = (E,≤, λ) such that E contains
only one event. This event is labelled by init and is used to distinguish F from other

runs. We embed the tableau label into the situation (F, E).

If vj is derived from vj−1 by the application of rule (TR 14), then Γj\Γj−1 contains a

new tableau label l and a new structure formula of the form l ′
a

−→ l for some tableau

label l ′ and for some operation a. We consider the situation (F, c) into which tableau
label l ′ is embedded and extend run F by a new event e. For i ∈ ag(a) we define e

to be greater (with respect to relation ≤ defined in definition 3.2.2) than all other
i-events that already belong to run F. We then embed l into the configuration that

results from configuration c by performing operation a, i.e. we embed tableau label
l in configuration c ∪ {e}.

If vj is derived from vj−1 by any other tableau rule, we don’t do anything as then

the set Γj \ Γj−1 does not contain any new tableau labels.

Now every tableau label is embedded into a situation of a run. However, each

run may also contain situations that are not images of tableau labels, i.e. the
L-embedding ℓ is not surjective. We can view each tableau path as representing
one interleaving of a partially ordered run in the sense that those situations of a

run that are images of tableau labels form one interleaving of this run. However,
there may exist other interleavings of the same run which consist of other situations.

The next two parts of the construction method are divided into two steps each: In
the first step, the indistinguishability relation for knowledge and the interpretation

function are constructed for situations that are images of tableau labels, respectively.
In the second step, the indistinguishability relation and the interpretation function

are extended for all situations.

After having constructed the temporal part of the model, i.e. the set of runs A
and after having constructed the L-embedding we construct the indistinguishability

relations RKi for knowledge in two steps: First we define the indistinguishability
relations restricted to those situations that are images of tableau labels: For all

tableau formulae of type lRil
′, we define the images of the tableau labels to be

in the relation RK,prei : (ℓπ(l), ℓπ(l
′)) ∈ R

K,pre
i . In the second step we extend the

relation RK,prei to the complete relation RKi . We add all pairs of situations of |M|

to the relation that are i-equivalent. Since the indistinguishability relation is an
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equivalence relation, we finally construct the transitive, reflexive and symmetric
closure of the relation RK,prei and the pairs of i-equivalent situations.

In the third part of the construction method, we construct the interpretation func-

tion. Again we proceed in two steps: First we define the interpretation function
Ipre for all pairs of situations (F, c) and propositions, such that (F, c) is an image of

a tableau label l. We define the interpretation function to be true for all such pairs
(l, p), for which there exists a formula l ⊢ p ∈ Γπ. For all other pairs we define the

interpretation function to be false. In the second step we extend the interpretation
function for all situations that are not an image of a tableau label. We define those

pairs of situations (F, c) and propositions p to be true, for which there exists an
image ℓπ(l) of a tableau label l, such that ((F, c), ℓπ(l)) ∈ RKi and Ipre(ℓπ(l), p) = ⊤.

Construction method for constructing a model M = (A,RK, I) and a satisfying

L-embedding ℓ for ΓT0 from an accepted tableau path π.

We assume that the signature (Ag, Õ, P̃) is known. We first add an auxiliary oper-
ation ’init’ to the set of operations that will be executed once in the beginning of

each run. It will only be used to distinguish among various runs that have only the
initial event.

For all i ∈ Ag we define O∗
i := Oi ∪ {init}, such that O∗ = O ∪ {init}.

Let π = v0v1v2v3 . . . be an accepted path of a regular tableau T (ΓT0 ) for a tableau
set ΓT0 .

Part 1: Construction of the set of runs A and an L-embedding ℓπ.

Start with A0 := {F00} such that F00 = (E,≤, λ)00 where

E = {e} (13)

≤ = {(e, e)} (14)

λ : E −→ O∗, λ(e) = init (15)

Define ℓ0 : label(Γ0) −→ |A| with

ℓ0(l0) := (F00, E) for l0 ∈ label(Γ0). (16)

Set x := 1.

For j ∈ IN+ do begin

• If vj is derived from vj−1 by application of one of the rules (TR 3), (TR 4),
(TR 5), (TR 6), (TR 7), (TR 8), (TR 10), (TR 11), (TR 12), (TR 13),
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(TR 15), (TR 16), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22), (TR
23), (TR 24), (TR 25), (TR 26)1, then

set

Aj := Aj−1 and (17)

ℓj : label(Γj) −→ |A|, with

ℓj(l) := ℓj−1(l). (18)

• If vj is derived from vj−1 by application of rule (TR 9), then

derive Aj from Aj−1 as follows:

Aj := Aj−1 ∪ {Fx0} where Fx0 = (E,≤, λ) with

E := {e} for a new event e, (19)

≤ := {(e, e)}, (20)

λ : E −→ O∗, λ(e) = init (21)

Derive ℓj : label(Γj) −→ |A| from ℓj−1 as follows:

ℓj(l) =

{
ℓj−1(l) for l ∈ label(Γj−1)

(Fx0, E) for l ∈ label(Γj) \ label(Γj−1)
(22)

Increment x.

• If vj is derived from vj−1 by application of rule (TR 14), then

there exists a tableau label la ∈ label(Γj) \ label(Γj−1) and a tableau formula

l
a

−→ la ∈ Γj \ Γj−1.

Further, there exists a situation (Fzy, c) ∈ |A| such that ℓj−1(l) = (Fzy, c), where

Fzy = (E,≤, λ)zy is a run and c ⊆ E is a set of events.

Derive Aj from Aj−1 as follows:

Replace Fzy = (E,≤, λ)zy in Aj−1 by Fzy+1 = (E ′,≤ ′, λ ′)zy+1 with

1Note, that rules (TR 1), (TR 2) and (TR 17) cannot be applied on accepted paths.
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E ′ := E ∪ {e}, for a new event e. (23)

≤ ′ := (≤ ∪ { (e ′, e) | e ′ ∈ Ei for i ∈ ag(a)}∪ {(e, e)} )t (24)

where Xt is the transitive closure of X.

λ ′ : E ′ −→ O∗,

λ ′(e ′) :=

{
a for e ′ = e

λ(e) otherwise
(25)

Derive ℓj : label(Γj) −→ |A| from ℓj−1 as follows:

ℓj(l
′) :=






(Fzy+1, E
′) for l ′ = la

(Fzy+1, d) for ℓj−1(l
′) = (Fzy, d), l

′ 6= la

(Fnm, d) for ℓj−1(l
′) = (Fnm, d), l

′ 6= la and n 6= z

(26)

end do

Note, that the definitions of the ℓj’s are such that there exist unique

values xl and dl for each tableau label l ∈ label(Γπ) with the following
property:

for all j ∈ IN it holds that if ℓj(l) = (Fxy, d) then x = xl and d = dl.

“After the completion” of the loop, which has infinitely many iterations (for all
j ∈ IN), we construct each run Fx as follows:

Fx :=
⋃

y∈IN

Fxy =
(

⋃

y∈IN

Exy,
⋃

y∈IN

≤xy,
⋃

y∈IN

λxy
)

(27)

Now we construct the (possibly infinite) set A of all (possibly infinite) runs Fx and

the L-embedding ℓπ as follows:

A := {Fx | x ∈ IN} (28)

ℓπ : label(Γπ) −→ |A|, with ℓπ(l) = (Fxl , dl) (29)

Part 2: In the second part of the construction method we construct the indistin-
guishability relation RK ⊆ |A|× |A| as follows:

For all i ∈ Ag start with RK,0i := ∅.
For all j ∈ IN+ do begin
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• If vj is derived from vj−1 by application of one of the rules (TR 3), (TR 4),
(TR 5), (TR 6), (TR 7), (TR 8), (TR 12), (TR 13), (TR 14), (TR 15),

(TR 16), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22), (TR 23), (TR
25):

Construct RK,ji := R
K,j−1
i . (30)

• If vj is derived from vj−1 by application of one of the rules (TR 9), (TR 10),
(TR 11), (TR 24), (TR 26):

For lRil
′ ∈ Γj \ Γj−1 construct RK,ji from R

K,j−1
i as follows:

R
K,j
i := R

K,j−1
i ∪ {((F, c), (F ′, c ′)) | ℓπ(l) = (F, c), ℓπ(l

′) = (F ′, c ′)} (31)

end do

“After the completion” of the loop, which has again infinitely many iterations (for

all j ∈ IN+), we construct RK,prei as the (infinite) union of all RK,ji , that is,

R
K,pre
i :=

⋃

j∈IN+

R
K,j
i . (32)

We then extend RK,prei to RKi as follows:

RKi := (R
K,pre
i ∪ {((F, c), (F, c ′)) | (F, c), (F, c ′) ∈ |A|, (F, c) ≡i (F, c ′)})trs (33)

where (X)trs is the reflexive, transitive and symmetric closure of X.

Part 3: In the third part of the construction method we construct the interpretation
function I : {(F, c) | F ∈ A, c ⊆ E for F = (E,≤, λ)}×P −→ {⊤,⊥} in two steps:

First we define the interpretation function for all situations that are images of tableau
labels:

Ipre(ℓπ(l), p) :=

{
⊤ if l ⊢ p ∈ Γπ

⊥ otherwise
(34)
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Then we extend the interpretation function for all situations in A:

I((F, c), p) :=






⊥ if c = ∅

Ipre((F, c), p) if (F, c) is an image of a tableau label.

Ipre((F ′, c ′), p) if (F, c) is no image of a tableau label

and ((F, c), (F ′, c ′)) ∈ RKi
and (F ′, c ′) is an image of a tableau label.2

(35)

Finally, we construct the desired model M := (A,RK, I).

In the following we will show that the model M = (A,RK, I) constructed accord-
ing to the construction method above does actually fulfill the constraints of defi-
nition 3.4.1. Further, we have to show that the mapping ℓ is actually a satisfying

L-embedding in the sense of definition 5.3.2.

Let us briefly recall the requirements for M = (A,RK, I) to be a model:

• A = {F1, F2, F3, . . .} is a set of runs if for every run Fi = (E,≤, λ)i the following
holds:

– E is a denumerable set.

– ≤⊆ E× E is a partial order on the set of events, ≤ ∩(Ei× Ei) is a total
order on the set of i-local events.

– λ : E −→ O ∪ {init} is a mapping from the set of events into the set of
operations.

• RK is the set of indistinguishability relations for each agent, if the following
holds:

– For every agent i ∈ Ag the relation RKi is an equivalence relation.

– If ((F, c), (F, c ′)) ∈ RKi for all i ∈ Ag then c = c ′.

– If for two situations (F, c), (F, c ′) ∈ |A| we have that (F, c) ≡i (F, c ′) then

((F, c), (F, c ′)) ∈ RKi .

– If for two situations (F, c1), (F, c2) ∈ |A| holds, that (F, c1)
op
−→ (F, c2) and

there exists (F ′, c ′1) ∈ |A| such that for every i ∈ ag(op) it holds that

((F, c1), (F
′, c ′1)) ∈ R

K
i then there exists (F ′, c ′2) ∈ A such that (F ′, c ′1)

op
−→

(F ′, c ′2) and ((F, c2), (F
′, c ′2)) ∈ R

K
i for every i ∈ ag(op).

2From lemmas 6.2.8 and 6.2.16 it follows that this is a partition on the set of situations.
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• I : |M|×P −→ {⊤,⊥} is an interpretation function if the following holds: For
all (F, c), (F ′, c ′) ∈ |M| with ((F, c), (F ′, c ′)) ∈ RKi and for all p ∈ Pi it holds

that I((F, c), p) = I((F ′, c ′), p).

Let us also briefly recall the requirement for a satisfying L-embedding ℓπ :

label(Γπ) −→ |A|:

• ℓπ must be a total mapping.

• If l ⊢ φ ∈ Γπ then ℓπ(l) |=M φ.

• If l
a

−→ l ′ ∈ Γπ then ℓπ(l)
a

−→ ℓπ(l).

• If lRil
′ ∈ Γπ then (ℓπ(l), ℓπ(l

′)) ∈ RKi .

Further we must also show that for every tableau label l ∈ label(Γπ) it holds that if

ℓπ(l) = (F, c), then c is actually a configurations of run F, i.e. c is a downward closed
set of events.

If all these requirements hold for the constructed model M = (A,RK, I) and for the

L-embedding ℓπ, then ℓπ is a satisfying L-embedding for the set of formulae Γπ and
thus also for ΓT0 which is a subset of Γπ.

First we show that A is a set of runs according to definition 3.2.2.

Proposition 6.2.2 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0
and let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-

struction method on page 133.

For each F ∈ A it holds that F = (E,≤, λ) is a run in the sense of definition 3.2.2.

Proof:

1. Claim: E is a denumerable set of events.

This follows directly from construction steps (13), (19), and (23).

2. Claim: ≤ is a partial order, i.e. ≤ is reflexive, transitive and antisymmetric.

a) Let e ∈ E be events of run F.
=⇒ There exists a smallest j ∈ IN, such that e ∈ Ej \ Ej−1
=⇒ (* according to construction steps (14), (14) and (24) *)

(e, e) ∈≤j \ ≤j−1
=⇒ (* by construction of ≤=

⋃

k∈IN
≤k *)

it holds that (e, e) ∈≤
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b) Let e1, e2, e3 ∈ E be events of run F.
=⇒ there exists a smallest j ∈ N, such that e1, e2, e3 ∈ Ej

and (e1, e2) ∈≤j,and (e2, e3) ∈≤j
=⇒ (* according to construction steps (14), (14) and (24) *)

(e1, e3) ∈≤j
=⇒ (* by construction of ≤=

⋃

k∈IN
≤k *)

(e1, e3) ∈≤

c) Let us first prove the following sub-lemma:

Lemma 6.2.3 Let T (ΓT0 ) be an accepted regular tableau for a tableau set
ΓT0 and let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by

the construction method on page 133.

For all j ∈ IN it holds that if e ∈ Ej \ Ej−1 then for all pairs
(e1, e2) ∈≤j \ ≤j−1 we have that e2 = e.

Proof: According to step (24) of the construction method, ≤k is

constructed from ≤k−1 such that ≤k= (≤k−1 ∪ {(e ′, e) | e ′ ∈ Ei for i ∈
ag(a)} ∪ {(e, e)})t. Since e ∈ Ek \ Ek−1, we know that for all pairs

(e1, e2) ∈≤k−1 it holds that e1 6= e and e2 6= e. Obviously, for all pairs
(e1, e2) ∈ {(e ′, e) | e ′ ∈ Ei for i ∈ ag(a)} ∪ {(e, e)} it holds that e2 = e.

According to construction steps (14), (20) and (24), ≤k−1 is already
closed under transitivity. Consequently, for all pairs (e1, e2) ∈≤k it holds

that e2 = e. 2

Now we prove by contradiction that ≤ is antisymmetric.
Suppose, ≤ is not antisymmetric, i.e. there exists a pair of events e1, e2 ∈
E with e1 6= e2 such that (e1, e2) ∈≤ and (e2, e1) ∈≤.
=⇒ w.l.o.g there exist j, k,m ∈ IN with j < k ≤ m, s.t. e1 ∈ Ej \Ej−1

and e2 ∈ Ek \ Ek−1 and {(e1, e2), (e2, e1)} ⊆≤m
and since steps (13), (19), (23) each time use a new event, it
holds for all j ′ > j that e1 /∈ Ej′ \Ej′−1 and it holds for all k ′ > k

that e2 /∈ Ek′ \ Ek′−1

=⇒ (* with sub lemma 6.2.3 *)

(e2, e1) ∈≤j \ ≤j−1 and (e1, e2) ∈≤k \ ≤k−1
=⇒ (e2, e1) ∈≤j \ ≤j−1 is a contradiction to the fact that e2 ∈

Ek \ Ek−1 and j < k.
=⇒ there cannot exist events e1, e2 ∈ E with e1 6= e2 and (e1, e2) ∈≤

and (e2, e1) ∈≤.
=⇒ ≤ is antisymmetric
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3. Claim: For all i ∈ Ag the relation ≤ ∩(Ei× Ei) is a total order.
We prove this claim by contradiction.

Suppose, ≤ ∩(Ei× Ei) is not a total order.
=⇒ There exists a pair of events e1, e2 ∈ E with i ∈ ag(λ(e1)) and i ∈

ag(λ(e2)) and (e1, e2) /∈≤ and (e2, e1) /∈≤.

=⇒ w.l.o.g. there exist j, k ∈ IN with j < k and e1 ∈ Ej \ Ej−1 and e2 ∈
Ek \ Ek−1.

=⇒ (* by construction step (23) *)

e1 ∈ Ek and e2 ∈ Ek \ Ek−1 and i ∈ ag(λk(e1)) and i ∈ ag(λk(e2)) .
=⇒ (* by construction step (24) *)

(e1, e2) ∈≤k
=⇒ (* by construction step (27) *)

(e1, e2) ∈≤
=⇒ contradiction to the assumption that (e1, e2) /∈≤ and (e2, e1) /∈≤.

4. Claim: λ is a total mapping on the set of events.

This follows directly from steps (15), (21), (25), (27) of the construction.

2

We now investigate some correlations between the constructed runs and the tableau

set Γπ.

Lemma 6.2.4 Let T (ΓT0 ) be an accepted regular tableau and let π be an accepted

path in T . Further, let M = (A,RK, I) be the structure constructed from path π by
the construction method and let ℓπ : label(Γπ) −→ |M| be the constructed mapping.

For all tableau labels l it holds that if ℓπ(l) = (Fz, c) then c is a downward closed set

of events.

Proof: Let ℓπ(l) = (Fz, c) with Fz = (E,≤, λ). Then there exists a j ∈ IN such that

l ∈ Γj \ Γj−1.

By part 1 of the construction there exists a y ∈ IN such that ℓj(l) = (Fzy, E
′) with

Fzy = (E ′,≤ ′, λ ′). Obviously E ′ is a downward closed set of events with respect to

≤ ′.

From construction step (24) it follows that for all events e ∈ E \ E ′ there does not
exist an event e ′ ∈ E ′ such that e ≤ e ′.

Hence, from step (27) it follows that c ⊂ E is a downward closed set of events with
respect to ≤.

2
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In lemma 6.2.5 we will now show that for each tableau formula l
a

−→ la the following
holds: If by L-embedding ℓπ tableau label l is embedded into situation ℓπ(l) and

tableau label la is embedded into situation ℓπ(la) then in the model M we have that

ℓπ(l)
a

−→ ℓπ(la).

Lemma 6.2.5 Let T (ΓT0 ) be an accepted regular tableau and let π be an accepted
path in T . Further, let M = (A,RK, I) be the structure constructed from path π by

the construction method and let ℓπ : label(Γπ) −→ |M| be the constructed mapping.

For tableau labels l, la it holds that l
a

−→ la ∈ Γπ iff ℓπ(l)
a

−→ ℓπ(la).

Proof:

“=⇒” Let l
a

−→ la ∈ Γπ and let M = (A,RK, I) be the model constructed by the

construction method.
According to part 1 of the construction, there exists a j ∈ IN, such that for

ℓj(l) = (F, c) and ℓj(la) = (F, d) there exists an event e ∈ E with d = c ∪ {e}

and λ(e) = a.

By definition 3.2.3 this means, that (F, c)
a

−→ (F, d).

Steps (26) and (29) imply that this holds for all ℓk, k > j and in particular for

ℓπ, i.e. ℓπ(l)
a

−→ ℓπ(la).

“⇐=” Let ℓπ(l)
a

−→ ℓπ(la).

By definition 3.2.3 there exists an event e ∈ E such that for ℓπ(l) = (Fz, c) and

ℓπ(la) = (Fz, ca) and Fz = (E,≤, λ) it holds that ca = c ∪ {e} and λ(e) = a.

By construction of Fz and ℓπ in steps (27) and (29) there exist j, y ∈ IN such
that la ∈ label(Γj) \ label(Γj−1) and ℓj(la) = (Fzy, ca).

The only case in the construction that extends an already existing run is, if
the considered node is derived by application of rule (TR 14).

Thus, Fzy = (E ′,≤, λ ′) must have been constructed from Fzy−1 by steps (23)
to (26). By step (26), it holds that ca = E ′ and there must exist a tableau

formula l ′
a′

−→ la.

By lemma 5.5.4 it holds that l ′ = l and a ′ = a and hence l
a

−→ la ∈ Γπ.

2

In the following proposition we show that for each i ∈ Ag the relation RKi is an
indistinguishability relation for knowledge according to definition 3.3.2.

Proposition 6.2.6 Let T (ΓT0 ) be an accepted regular tableau and let π be an ac-

cepted path in T . Further, let M = (A,RK, I) be the structure constructed from

141



Chapter 6 Soundness and Completeness of the Tableau System

path π by the construction method and let ℓπ : label(Γπ) −→ |M| be the constructed
L-embedding.

The relation RKi is an indistinguishability relation for knowledge for each agent i ∈
Ag.

Before we can prove this proposition, we need to investigate a number of properties

of the constructed relations RKi . These properties will be used in the proof of the
proposition.

In the following we will distinguish between those situations (F, c) ∈ |M| of the

model that are images of tableau labels and those situations that are not images.
Whenever we say, a situation (F, c) is an image of a tableau label, we mean that

there exists a tableau label l ∈ Γπ such that ℓπ(l) = (F, c). Note, that the relation
R
K,pre
i , which is constructed in step (32), is only defined on images of tableau labels.

The first observation we make, is that for each pair (F, c), (F ′, c ′) of images of tableau

labels it holds that if F = F ′, i.e. if the images belong to the same run, then this pair
of labels is i-equivalent for some agent i ∈ Ag, (F, c) ≡i (F ′, c ′) iff the pair of these

labels is an element of the relation RK,prei , i.e. ((F, c), (F ′, c ′)) ∈ RK,prei :

Lemma 6.2.7 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ be the L-embedding constructed
from path π by the construction method on page 133.

Let (F, c), (F ′, c ′) ∈ |M| be images of tableau labels. Then for all i ∈ Ag the following

holds:

1. If ((F, c), (F ′, c ′)) ∈ RK,prei and F = F ′, then (F, c) ≡i (F ′, c ′).

2. If (F, c) ≡i (F ′, c ′) then ((F, c), (F ′, c ′)) ∈ RK,prei .

Proof:

1. Let ((F, c), (F ′, c ′)) ∈ RK,prei and F = F ′.
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=⇒ there exist tableau labels l, l ′ ∈ label(Γπ) such that ℓπ(l) = (F, c) and
ℓπ(l

′) = (F ′, c ′)

=⇒ (* by construction of RK,prei , steps (30), (31), (32) *)
lRil

′ ∈ Γπ
=⇒ (* by part 1 of the construction and the fact that l and l ′ are embedded

into the same run *)

w.l.o.g. there exists a chain l
ao−→ · · ·

an−→ l ′ and lRil
′ ∈ Γπ

=⇒ (* by lemma 6.2.5 *)

there exists a chain l
ao−→ · · ·

an−→ l ′ and (F, c) = ℓπ(l)
a0−→ · · ·

an−→
ℓπ(l

′) = (F, c ′) and lRil
′ ∈ Γπ

=⇒ (* by definition 3.2.3 *)

there exists a chain l
ao−→ · · ·

an−→ l ′ and lRil
′ ∈ Γπ and for ℓπ(l) = (F, c)

and ℓπ(l
′) = (F, c ′) we have that c ⊂ c ′

=⇒ (* by lemma 5.6.16 *)

for all j ≤ n it holds that aj /∈ Oi
=⇒ (* by part 1 of the construction *)

for all e ∈ c ′ \ c it holds that e /∈ Ei
=⇒ (* by definition 3.2.3 *)

(F, c) ≡i (F ′, c ′)

2. Let (F, c), (F ′, c ′) be images of tableau labels and let (F, c) ≡i (F ′, c ′).
=⇒ F = F ′ and there exist tableau labels l, l ′ ∈ label(Γπ) such that ℓπ(l) =

(F, c) and ℓπ(l
′) = (F ′, c ′)

=⇒ (* by part 1 of the construction *)

there exists a chain l
a0−→ · · ·

an−→ l ′ in Γπ, such that for all j ≤ n it
holds that oj /∈ Oi.

=⇒ (* by rules (TR 11) and (TR 24) and proposition 5.6.14 *)
lRil

′ ∈ Γπ
=⇒ (* by construction step (31) *)

((F, c), (F ′, c ′)) ∈ RK,prei

2

The next observation we make, is that for each situation (F, c) ∈ |M| and for each

agent i ∈ Ag there exists an image of a tableau label (F, c ′) ∈ |M| such that (F, c)

and (F, c ′) are i-equivalent ((F, c) ≡i (F, c ′)).

Lemma 6.2.8 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-
struction method on page 133 and let ℓπ : label(Γπ) −→ |M| be the constructed

mapping.

143



Chapter 6 Soundness and Completeness of the Tableau System

Let (F, c) ∈ |M| with c 6= ∅ (i.e. c contains at least the initial operation init)
be a situation of the constructed model. For each i ∈ Ag there exists a situation

(F, c ′) ∈ |M| for which there exists a tableau label l ∈ label(Γπ) such that ℓπ(l) = (F, c ′)

and (F, c) ≡i (F, c ′).

Proof:

Let M = (A,RK, I) be a model constructed by the construction method above and
let F = (E,≤, λ) ∈ A be a run of M.

According to the construction of M each event e ∈ E with λ(e) 6= init is inserted

into the set of events E by step (23) of the construction.

By steps (24), (25) and (26) and by the construction of ℓπ in step (29) of the
construction method the following holds:

For each agent i ∈ Ag and for each event e ∈ Ei there exists a tableau label l such
that ℓπ(l) = (F, d) with d ∈ E and the following property holds:

e = max≤(d ∩ Ei).
3

This means, that for each situation (F, c) ∈ |M| and for each i ∈ Ag there exists a

tableau label l with ℓπ(l) = (F, d), such that max≤(d ∩ Ei) = max≤(c ∩ Ei).

Hence, according to definition 3.2.3 of i-view it holds that for each situation (F, c) ∈
|M| there exists a tableau label l such that ℓπ(l) ≡i (F, c).

2

In the next two lemmas we show the following two properties:

1. For all images of tableau labels (F, c), (F ′, c ′) that if ((F, c), (F ′, c ′)) ∈ RKi then

already ((F, c), (F ′, c ′)) ∈ RK,prei . This means that the construction of RKi does

lead to any new related pairs of images of tableau labels.

2. For every pair of situations (F, c), (F, c ′) belonging to the same run of a model

constructed by the method defined above it holds that (F, c) and (F, c ′) are RKi -
indistinguishable, ((F, c), (F, c ′)) ∈ RKi , iff they are i-equivalent, (F, c) ≡i (F, c ′).

This means that the construction of the reflexive, transitive and symmetric
closure does add only pairs of situations to the RKi -indistinguishability relation

that belong to different chains.

In the rest of this section let R≡i := {((F1, c1), (F1, c2)) | (F1, c1), (F1, c2) ∈
|A|, (F1, c1) ≡i (F1, c2)}. In the proofs of the following two lemmas, we shall see
the set of situations |M| as nodes and the relation RK,prei and R≡i as the edges of a

directed graph.

3Note, that according to lemma 6.2.4, ℓπ(l) is a configuration, i.e., ℓπ(l) is downward closed.
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Note, that R≡i is an equivalence relation since ≡i is an equivalence relation. Further,
by tableau rules (TR 10) and (TR 11), by proposition 5.6.14 and by construction

steps (31) and (32), the relation RK,prei is closed under symmetry and transitivity.

We define an ≡i-maximal sub-path of a path p as follows:

Definition 6.2.9 Let M = (A,RK, I) be a model constructed by the construction

method above. Let G = (|M|, R
K,pre
i ∪R≡i ) be a graph, such that the situations of M

are the nodes and the relations RK,prei and R≡i are the edges of the graph.

Let a path p ′ between nodes s and s ′ be a sub-path of a path p. We call sub-path p ′

≡i-maximal if the following holds:

• either s is the first node in p or the edge in p leading to s is in RK,prei , and

• either s ′ is the last node in p or the edge in p leading from node s ′ is in RK,prei

and

• all edges in sub-path p ′ are in R≡i

Lemma 6.2.10 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and

let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-
struction method on page 133.

Let (F, c), (F ′, c ′) ∈ |M| be images of tableau labels. For each agent i ∈ Ag it holds
that if ((F, c), (F ′, c ′)) ∈ RKi , then ((F, c), (F ′, c ′)) ∈ RK,prei .

Proof: Let ((F, c), (F ′, c ′)) ∈ RKi and let (F, c), (F ′, c ′) be images of tableau labels.

Then ((F, c), (F ′, c ′)) ∈ RKi iff there exists a path p from (F, c) to (F ′, c ′) in the graph.

(Note, that p may contain edges of RK,prei as well as of R≡i .)

For each ≡i-maximal sub-path p ′ of p, where p ′ leads from a node s to a node s ′ it
holds that s and s ′ are images of tableau labels belonging to the same run F.

Since R≡i is an equivalence relation, it holds that (s, s ′) ∈ R≡i and thus s ≡i s
′.

By lemma 6.2.7 we have that (s, s ′) ∈ RK,prei .

We have shown that each ≡i-maximal sub-path of p can be substituted by an edge
in RK,prei . Hence, there exists a path p ′′ from (F, c) to (F ′, c ′), such that all edges of

p ′′ belong to RK,prei .

Since RK,prei is closed under transitivity, there exists an edge ((F, c), (F ′, c ′)) ∈ RK,prei .

2
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Lemma 6.2.11 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-

struction method on page 133.

Let (F, c), (F, c ′) ∈ |M| be situations belonging to the same run F. For all agents
i ∈ Ag it holds that ((F, c), (F, c ′)) ∈ RKi iff (F, c) ≡i (F, c ′).

Proof:

“=⇒”: Let ((F, c), (F, c ′)) ∈ RKi .

This means, there exists a path p in RK,prei ∪ R≡i from (F, c) leading to (F, c ′).

If all edges of p are in R≡i , then we are already done. Otherwise, by lemma
6.2.8 there exists a prefix p ′ of path p from (F, c) to some node s such that

s is an image of a tableau label and p ′ contains only edges of R≡i . Hence,
since R≡i is an equivalence relation, there exists an edge of R≡i between (F, c)

and s. Similarly, there exists a sub-path p ′′ of p leading from some node s ′ to
(F, c ′) such that all edges of p ′′ are of R≡i and hence there also exists an edge

between s ′ and (F, c ′) in R≡i .

Since there exists a path between s and s ′ in RKi and s, s ′ are images of tableau
labels, it holds that by lemma 6.2.10 there exists an edge between node s and

node s ′ in RK,prei .

Note, that the nodes s and s ′ must both belong to run F. By lemma 6.2.7
there exists an edge between node s and node s ′ in R≡i .

This means that there exists an edge in R≡i from (F, c) to s, from s to s ′ and

also from s ′ to (F, c ′). Since R≡i is an equivalence relation, it finally holds that
((F, c), (F, c ′)) ∈ R≡i .

“⇐=”: This direction follows directly from construction step (33).

2

Lemma 6.2.12 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-
struction method on page 133.

Let (F, c), (F, c ′) ∈ |M| be situations with (F, c) 6= (F, c ′). There exists an agent

i ∈ Ag such that ((F, c), (F, c ′)) ∈ RKi .
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Proof: (F, c), (F, c ′) ∈ |M| with (F, c) 6= (F, c ′)

=⇒ there exists an agent i ∈ Ag such that (F, c) 6≡i (F, c ′)

=⇒ ((F, c), (F, c ′)) /∈ R≡i
=⇒ (* by lemma 6.2.11 and since (F, c) and (F, c ′) belong to the same run *)

((F, c), (F, c ′)) /∈ RKi
2

The relation RKi constructed according to the method described in the beginning of

this section has a property that is not necessary for an indistinguishability relation
for knowledge, but that will help us for proving lemma 6.2.14:

Lemma 6.2.13 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and

let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ be the mapping constructed

from path π by the construction method on page 133.

Let (F, c), (F ′, c ′) ∈ |M| be situations of to different runs: F 6= F ′. There exists at
most one agent i ∈ Ag with ((F, c), (F, c ′)) ∈ RKi .

Proof: Let i ∈ Ag be an agent and let ((F, c), (F ′, c ′)) ∈ RKi and F 6= F ′.

=⇒ (* by lemma 6.2.8 *)
((F, c), (F ′, c ′)) ∈ RKi and there exist images of tableau labels (F, c̄), (F ′, c̄ ′) ∈
|M|, such that (F, c) ≡i (F, c̄) and (F ′, c ′) ≡i (F ′, c̄ ′)

=⇒ (* by step (33) and by lemma 6.2.10 *)

((F, c̄), (F, c̄ ′)) ∈ RKi and ((F, c̄), (F, c̄ ′)) ∈ RK,prei

=⇒ (* by part 2 of the model construction *)
there exist tableau labels l, l ′ ∈ label(Γπ) with ℓπ(l) = (F, c̄) and ℓπ(l

′) =

(F, c̄ ′) and lRil
′ ∈ Γπ

=⇒ (* since F 6= F ′ and by part 1 of the construction *)

l, l ′ belong to different maximal chains in Γπ
=⇒ (* by lemma 5.6.18 and corollary 5.6.19 *)

for all agents j 6= i and for all tableau labels l̄, l̄ ′, such that l belongs to

the same chain as l̄ and l ′ belongs to the same chain as l̄ ′, it holds that
l̄Rjl̄ ′ /∈ Γπ

=⇒ (* by construction steps (31) and (32) *)

for all j 6= i and for all images ((F, ¯̄c), (F ′, ¯̄c ′)) /∈ RK,prei

=⇒ (* by lemma 6.2.10 *)
for all agents j 6= i it holds that ((F, c), (F ′, c ′)) /∈ RKi .

2

In the next lemma we will show that each relation RKi satisfies the condition of an

indistinguishability relation that says that the enabling and the effect of operations
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is only dependent on those agents that participate in the operation.

Lemma 6.2.14 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ : label(Γπ) −→ |M| constructed
from path π by the construction method on page 133.

If for two situations (F, c1), (F, c2) ∈ |M| holds that (F, c1)
op
−→ (F, c2) and there exists

(F ′, c ′1) ∈ |M| such that for every i ∈ ag(op) it holds that ((F, c1), (F
′, c ′1)) ∈ R

K
i then

there exists (F ′, c ′2) ∈ |M| such that (F ′, c ′1)
op
−→ (F ′, c ′2) and ((F, c2), (F

′, c ′2)) ∈ RKi
for every i ∈ ag(op).

Proof: Suppose, for two situations (F, c), (F, ca) ∈ |M| it holds that (F, c)
a

−→ (F, ca)

and there exists (F ′, c ′) ∈ |M| with ((F, c), (F ′, c ′)) ∈ RKi for every i ∈ ag(a):

(F ′, c ′)

(F, c) (F, ca)

RKi

a

i ∈ ag(a)
forall

Figure 6.2: starting position

We then distinguish between two cases:

1. F = F ′:

=⇒ (* by lemma 6.2.11 on page 146 *)
(F, c) ≡i (F ′, c ′):

(F ′, c ′)

(F, c) (F, ca)
a

i ∈ ag(a) ≡i
forall
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=⇒ (* by definition 3.2.3 of i-equivalence *)

there exists a situation (F ′, c ′a) ∈ |M| with (F ′, c ′)
a

−→ (F ′, c ′a):

(F ′, c ′)

(F, c) (F, ca)
a

i ∈ ag(a) ≡i
forall

a
(F ′, c ′a)

=⇒ (* by lemma 3.2.4 on page 25 *)

there exists a situation (F ′, c ′a) ∈ |M| with (F ′, c ′)
a

−→ (F ′, c ′a) and

(F, ca) ≡i (F ′, c ′a):

i ∈ ag(a)
forall

i ∈ ag(a)
forall

(F ′, c ′)

(F, c) (F, ca)
a

≡i

a

≡i

(F ′, c ′a)

=⇒ (* by lemma 6.2.11 on page 146 *)

for all i ∈ ag(a) it holds that ((F, ca), (F ′, c ′a)) ∈ RKi :

i ∈ ag(a)
forall

i ∈ ag(a)
forall

(F ′, c ′)

(F, c) (F, ca)
a

a

RKiRKi

(F ′, c ′a)

2. F 6= F ′:
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=⇒ (* by lemma 6.2.13 on page 147 *)
there exists exactly one i ∈ Ag with ((F, c), (F ′, c ′)) ∈ RKi

=⇒ (* by lemma 6.2.8 on page 143 *)

there exist situations (F, c̄), (F, c̄a), (F ′, c̄ ′) ∈ |M| with
(F, c) ≡i (F, c̄), (F, ca) ≡i (F, c̄a) and (F ′, c ′) ≡i (F ′, c̄ ′)

and for which there exist tableau labels
(F, c̄), (F ′, c̄ ′0), (F, c̄a) ∈ label(Γπ) such that

ℓπ((F, c̄)) = (F, c̄), ℓπ((F
′, c̄ ′0)) = (F ′, c̄ ′) and ℓπ((F, c̄a)) = (F, c̄a)

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

(F, c̄a)

(F, c̄) (F, c̄a)

ℓπ

ℓπ ℓπ

(F ′, c̄ ′0)

(F ′, c̄ ′0)

=⇒ (* by definition 3.2.3 *)

(F, c̄)
a

−→ (F, c̄a)

=⇒ (* by lemma 6.2.5 *)

(F, c̄)
a

−→ (F, c̄a) ∈ Γπ
=⇒ (* by lemma 6.2.11 and since RKi is transitive and symmetric *)

((F, c̄), (F ′, c̄ ′)) ∈ RKi
=⇒ (* by lemma 6.2.10 *)

((F, c̄), (F ′, c̄ ′)) ∈ RK,prei

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

a

a

(F, c̄) (F, c̄a)

R
K,pre
i

ℓπ
(F, c̄a)

ℓπ

(F ′, c̄ ′0)

(F ′, c̄ ′0)

ℓπ
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=⇒ (* by construction of RK,prei in steps (30), (31) and (32) *)
(F, c̄)Ri(F

′, c̄ ′0)

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

a

a

(F, c̄a)

Ri

(F, c̄) (F, c̄a)

(F ′, c̄ ′0)
ℓπ

ℓπ(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

a

a

(F, c̄a)

(F, c̄) (F, c̄a)

R
K,pre
i

(F ′, c̄ ′0)

(F ′, c̄ ′0)

ℓπ

=⇒ (* by rule TR 25 applied to tableau rules (F, c̄)
a

−→ (F, c̄a) and
(F, c̄)Ri(F

′, c̄ ′0) and by proposition 5.6.14 *)

(F ′, c̄ ′0) ⊢ 〈a〉i⊤ ∈ Γπ
=⇒ (* π is an accepted path (fair, no axiom) *)

Γπ contains a finite chain (F ′, c̄ ′0)
o0−→ . . .

on−1−→ (F ′, c̄ ′n)
a

−→ (F ′, c̄ ′na)

with i /∈ ag(oj) for 0 ≤ j < n:

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

...

RKi

o0

on−1

a

a

a

a

(F, c̄a)

(F ′, c̄ ′n) (F ′, c̄ ′na)

Ri

fo
r
i
/∈
a
g
(o
j)

ℓπ

ℓπ(F, c̄)(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

a

a

(F, c̄a)

Ri

(F, c̄) (F, c̄a)

(F ′, c̄ ′0)

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

RKi

a

a

a

(F, c̄) (F, c̄a)

R
K,pre
i

(F ′, c̄ ′0)

(F ′, c̄ ′0)

ℓπ
(F, c̄a)
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=⇒ (* by part 1 of the construction and lemma 6.2.5 *)
there exists a situation (F ′, c̄ ′na) ∈ |M| with ℓπ((F

′, c̄ ′na)) = (F ′, c̄ ′na)

and ℓπ((F
′, c̄ ′n))

a
−→ (F ′, c̄ ′na):

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

(F, c)

...

(F ′, c̄ ′0)

RKi

(F ′, c̄ ′0)

o0

on−1

a

a

a

a

a

(F, ca)

(F ′, c̄ ′n)

(F ′, c̄ ′na)

Ri

(F ′, c̄ ′n)

fo
r
i
/∈
a
g
(o
j)

ℓπ

ℓπ

ℓπ

(F, c̄a) ℓπ

ℓπ(F ′, c̄ ′na)

RK,prei

=⇒ (* by tableau rules (TR 24) and (TR 11) and proposition 5.6.14 *)

(F ′, c̄ ′0)Ri(F
′, c̄ ′n) ∈ Γπ

=⇒ (* by construction steps (31), (32) and (33) *)
((F ′, c̄ ′0), (F

′, c̄ ′n)) ∈ R
K
i

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

(F, c)

...

(F ′, c̄ ′0)

RKi

(F ′, c̄ ′0)

o0

a

a

a

a

a

(F, ca)

(F ′, c̄ ′n) (F ′, c̄ ′na)

Ri

fo
r
i
/∈
a
g
(o
j)

ℓπ(F ′, c̄ ′na)

(F, c̄a) ℓπℓπ

ℓπ

(F ′, c̄ ′n)ℓπ

Ri

on−1

R
K,pre
i

RKi
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=⇒ (* by lemma 6.2.11 *)
(F ′, c ′) ≡i (F ′, c̄ ′n)

=⇒ (* by definition 3.2.3 and lemma 3.2.4 *)

there exists a situation (F ′, c ′a) such that (F ′, c ′)
a

−→ (F ′, c ′a) and
(F ′, c̄ ′na) ≡i (F ′, c ′a)

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

(F, c)

...

(F ′, c̄ ′0)

RKi

(F ′, c̄ ′0)

o0

a

a

a

a

a

(F, ca)

(F ′, c̄ ′n) (F ′, c̄ ′na)

Ri

fo
r
i
/∈
a
g
(o
j)

ℓπ(F ′, c̄ ′na)

(F, c̄a) ℓπℓπ

ℓπ

(F ′, c̄ ′n)ℓπ

Ri

on−1

a
(F ′, c ′a)

R
K,pre
i

RKi ≡i ≡i
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=⇒ (* by rule (TR 11) and proposition 5.6.14 *)
(F, c)Ri(F

′, c̄ ′n) ∈ Γπ
=⇒ (* by rule TR 26 and proposition 5.6.14 *)

(F, c̄a)Ri(F
′, c̄ ′na) ∈ Γπ

=⇒ (* by construction steps (31), (32) *)

(F, ca)R
K,pre
i (F ′, c ′a)

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

(F, c)

...

(F ′, c̄ ′0)

RKi

(F ′, c̄ ′0)

o0

a

a

a

a

a

(F, ca)

(F ′, c̄ ′n) (F ′, c̄ ′na)

Ri

fo
r
i
/∈
a
g
(o
j)

ℓπ(F ′, c̄ ′na)

(F, c̄a) ℓπℓπ

ℓπ

(F ′, c̄ ′n)ℓπ

Ri

on−1

a
(F ′, c ′a)

RiRi

R
K,pre
i

RKi ≡i ≡i

R
K,pre
i

=⇒ (* by construction step (33) *)

((F, ca), (F ′, c ′a)) ∈ RKi

(F, c̄)

(F ′, c ′)

≡i

(F, c) (F, ca)

≡i ≡i

(F, c)

...

(F ′, c̄ ′0)

RKi

(F ′, c̄ ′0)

o0

a

a

a

a

a

(F, ca)

(F ′, c̄ ′n) (F ′, c̄ ′na)

Ri

fo
r
i
/∈
a
g
(o
j)

ℓπ(F ′, c̄ ′na)

(F, c̄a) ℓπℓπ

ℓπ

(F ′, c̄ ′n)ℓπ

Ri

on−1

a
(F ′, c ′a)

Ri

RKi

Ri

R
K,pre
i

RKi ≡i ≡i

R
K,pre
i

2
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Using the lemmas shown above, we can now easily prove proposition 6.2.6, which
says that the relation RKi is an indistinguishability relation according to definition

3.3.2:

Proof of proposition 6.2.6:

1. Claim: For every agent i ∈ Ag the relation RKi is an equivalence relation.

This follows directly from construction step (33).

2. Claim: If ((F, c), (F, c ′)) ∈ RKi for all i ∈ Ag then c = c ′.

This follows directly from lemma 6.2.12.

3. Claim: If for two situations (F, c), (F, c ′) ∈ |A| we have that (F, c) ≡i (F, c ′)

then ((F, c), (F, c ′)) ∈ RKi .

This follows directly from construction step (33).

4. Claim: If for two situations (F, c1), (F, c2) ∈ |A| holds, that (F, c1)
op
−→ (F, c2)

and there exists (F ′, c ′1) ∈ |A| such that for every i ∈ ag(op) it holds that

((F, c1), (F
′, c ′1)) ∈ RKi then there exists (F ′, c ′2) ∈ A such that (F ′, c ′1)

op
−→

(F ′, c ′2) and ((F, c2), (F
′, c ′2)) ∈ R

K
i for every i ∈ ag(op).

This has been shown in the proof of lemma 6.2.14.

2

Next, we have to show that the mapping I constructed in steps (34) and (35) of the

model construction is actually an interpretation according to definition 3.3.4.

Proposition 6.2.15 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0
and let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ be the mapping constructed

from path π by the construction method on page 133.

I : |M| × P −→ {⊤,⊥} is an interpretation function, i.e. the following holds: For
all (F, c), (F ′, c ′) ∈ |M| with ((F, c), (F ′, c ′)) ∈ RKi and for all p ∈ Pi it holds that
I((F, c), p) = I((F ′, c ′), p).

Recall, that the mapping I is constructed in two steps: In the first step a mapping

Ipre is constructed and defined for all pairs of propositions and those situations
that are images of tableau labels. In the second step the mapping is extended for

all situations of the constructed runs.

We thus prove above proposition 6.2.15 in two parts: We first restrict to only those

situations that are images of tableau labels. We prove a lemma which says that
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for all propositions p and for tableau labels l, l ′ it holds that if lRil
′ ∈ Γπ then

Ipre(ℓπ(l)) = Ipre(ℓπ(l ′)).

Using this lemma we can prove the proposition for all situations that occur in the

structure. We then show, that for all agents i and for all situations (F, c), (F ′, c ′) ∈
|M| it holds that if (F, c) and (F ′, c ′) are i-indistinguishable, then for all propositions

p ∈ Pi the situations (F, c) and (F ′, c ′) have the same interpretation.

Lemma 6.2.16 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and

let π be an accepted path in the tableau.
Further, let M = (A,RK, I) be the structure and ℓπ : label(Γπ) −→ |M| be the

mapping constructed from path π by the construction method on page 133.
For all agents i ∈ Ag, for all propositions p ∈ Pi and for all images (F, c), (F ′, c ′) of

tableau labels the following holds:
If ((F, c), (F ′, c ′)) ∈ RK,prei then Ipre((F, c), p) = Ipre((F ′, c ′), p)

Proof:

1. Let i ∈ Ag. Let ((F, c), (F ′, c ′)) ∈ RK,prei and let Ipre((F, c), p) = ⊤.

=⇒ (* by construction steps (31) and (32) *)

there exist tableau labels l, l ′ with ℓπ(l) = (F, c) and ℓπ(l
′) = (F ′, c ′)

and lRil
′ ∈ Γπ

=⇒ (* by construction step (34) *)
l ⊢ p ∈ Γπ and lRil

′ ∈ Γπ
=⇒ (* by tableau rule (TR 12) and proposition 5.6.14 *)

l ′ ⊢ p ∈ Γπ
=⇒ (* by construction step (34) *)

Ipre((F ′, c ′), p) = ⊤

2. Let i ∈ Ag. Let ((F, c), (F ′, c ′)) ∈ RK,prei and let Ipre((F ′, c ′), p) = ⊤.

=⇒ (* by construction steps (31) and (32) *)

there exist tableau labels l, l ′ with ℓπ(l) = (F, c) and ℓπ(l
′) = (F ′, c ′)

and lRil
′ ∈ Γπ

=⇒ (* by tableau rule (TR 10) and proposition 5.6.14 *)
lRil

′ ∈ Γπ and l ′Ril ∈ Γπ
=⇒ (* by construction step (34) *)

l ′ ⊢ p ∈ Γπ and l ′Ril ∈ Γπ
=⇒ (* by tableau rule (TR 12) and proposition 5.6.14 *)

l ⊢ p ∈ Γπ
=⇒ (* by construction step (34) *)

Ipre((F, c), p) = ⊤

2
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Next, we show that proposition 6.2.15 holds:

Proof of proposition 6.2.15:
We prove this lemma by contradiction.

Let i ∈ Ag be an agent. Let (F, c), (F ′, c ′) ∈ |M| be situations with ((F, c), (F ′, c ′)) ∈
RKi . Further, let p ∈ Pi be an i-local proposition.

Suppose, I((F, c), p) = ⊤ and I((F ′, c ′), p) = ⊥.
=⇒ (* by lemma 6.2.8 and construction step (35) *)

there exist situations (F, c̄), (F ′, c̄ ′) ∈ |M| that are images of tableau la-
bels and for which holds (F, c) ≡i (F, c̄) and (F ′, c ′) ≡i (F ′, c̄ ′) and

Ipre((F, c̄), p) = ⊤ and Ipre((F ′, c̄ ′), p) = ⊥
=⇒ (* by construction step (33) *)

((F, c̄), (F ′, c̄ ′)) ∈ RKi and Ipre((F, c̄), p) = ⊤ and Ipre((F ′, c̄ ′), p) = ⊥
=⇒ (* by lemma 6.2.10 *)

((F, c̄), (F ′, c̄ ′)) ∈ RK,prei and Ipre((F, c̄), p) = ⊤ and Ipre((F ′, c̄ ′), p) = ⊥
=⇒ contradiction to lemma 6.2.16!

Since the relation RKi is an equivalence relation, the above proof holds also in the
case that I((F, c), p) = ⊥ and I((F ′, c ′), p) = ⊤. Hence, for ((F, c), (F ′, c ′)) ∈ RKi and
for p ∈ Pi it holds that I((F, c), p) = I((F ′, c ′), p).

2

From propositions 6.2.2, 6.2.6 and 6.2.15 we can now immediately infer, that the
constructed structure M = (A,RK, I) is a model in the sense of definition 3.4.1:

Theorem 6.2.17 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure constructed from path π by the con-
struction method on page 133.

Then M is a model in the sense of definition 3.4.1.

Proof:

1. Claim: A is a set of runs.
This has been shown in proposition 6.2.2.

2. Claim: RK = (RK1 , . . . , R
K
n) is a family containing an indistinguishability rela-

tion RKi for each agent i ∈ Ag.
This has been shown for each agent in proposition 6.2.6.

3. Claim: I is an interpretation function.

This has been shown in proposition 6.2.15.

2
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We finally have to prove that the constructed mapping ℓπ is a satisfyingL-embedding
in the sense of definition 5.3.2. There are three conditions for ℓπ being a satisfying

L-embedding:

1. For each tableau formula l
a

−→ la ∈ Γπ it must hold that ℓπ(l)
a

−→ ℓπ(la). This

has already been shown in lemma 6.2.5.

2. For each tableau formula lRil
′ ∈ Γπ it must hold that (ℓπ(l), ℓπ(l

′)) ∈ RKi . This

follows directly from the construction of RK,prei in steps (31) and (32) and from
the construction of RKi in step (33).

3. For each tableau formula l ⊢ φ ∈ Γπ it must hold that ℓπ(l) |=M φ. The

proof of this condition requires more effort. We will prove this condition in
proposition 6.2.18.

Proposition 6.2.18 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0
and let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ : label(Γπ) −→ |M| be the
mapping constructed from path π by the construction method on page 133.

Then for every labelled formula l ⊢ φ ∈ Γπ it holds that ℓπ(l) |=M φ.

Consider the set of labelled tableau formulae Γπ ∩ Ll. From proposition 5.6.14 and

the tableau rules it follows that for every formula all sub formulae are contained in
Γπ as well: If for example Γπ contains a formula l ⊢ φ ∧ ψ then by 5.6.14 and rule
(TR 4) Γπ also contains tableau formulae l ⊢ φ and l ⊢ ψ.

We define the size of a labelled tableau formula roughly as the number of propositions

and operators occurring in the formula and prove the above proposition by induction
over the size of the formulae.

Before we prove the hypothesis for a formula, we must have proven it for all its sub

formulae.

The size of a formula is not directly dependent on the number of operators in the

formula: Negation signs in tableau formulae are allowed only in front of propositions
and in front of the knowledge operator. However, when processing a tableau formula

l ⊢ ¬Kiφ with tableau rule (TR 9), we create a tableau formula l ′ ⊢ ¬φ. Before this
formula is entered into the tableau, it gets transformed according to table on page

52. This means, instead of counting the number of logical symbols of a negative
tableau formula ¬φ we first have to transform ¬φ into a positive tableau formula

and then count the number of logical symbols of this positive tableau formula.

One might wonder why we need a new metric for the size of formulae and do not

reuse the one defined in 5.6.4 and 5.6.5. However, these definitions need a finite
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set of tableau formulae as context. Γπ is a potentially infinite set with potentially
infinite chains. Thus for the following proof we need a metric for the size of formulae

that is independent of the context in which the formula occurs.

Definition 6.2.19 (size of a formula) We define the size |φ| of a formula φ ∈ L
as follows:

|⊤| = 1

|⊥| = 1

|p| = 1 for all p ∈ P
|¬p| = 2 for all p ∈ P
|φ1∨ φ2| = |φ1| + 1+ |φ2|

|¬(φ1∧φ2)| = |(¬φ1) ∨ (¬φ2)| = |¬φ1| + 1+ |¬φ2|

|φ1∧ φ2| = |φ1| + 1+ |φ2|

|¬(φ1∧φ2)| = |(¬φ1) ∧ (¬φ2)| = |¬φ1| + 1+ |¬φ2|

|φ1 Uiφ2| = |φ1| + 1+ |φ2|

|¬(φ1 Uiφ2)| = |(¬φ2)Wi(¬φ1∧ ¬φ2)| = 2|¬φ2| + |¬φ1| + 2

|φ1 Wiφ2| = |φ1| + 1+ |φ2|

|¬(φ1 Wiφ2)| = |(¬φ2)Wi(¬φ1∧ ¬φ2)| = 2|¬φ1| + |¬φ1| + 2

|Kiφ| = |φ| + 1

|¬Kiφ| = |¬φ| + 1

|〈a〉iφ| = |φ| + 1

|¬〈a〉iφ| = |[a]i(¬φ)| = |¬φ| + 1

|[a]iφ| = |φ| + 1

|¬[a]iφ| = |〈a〉i(¬φ)| = |¬φ| + 1

Definition 6.2.20 (size of a tableau-formula) We define the size of a labelled

tableau formula |(F, c) ⊢ φ| ∈ Ll as equal to the size |φ| of φ :

|(F, c) ⊢ φ| := |φ|

As explained above, we will prove proposition 6.2.18 by induction over the size of
the formulae. For formulae of size 1 the induction hypothesis can easily be shown on

the basis of the interpretation function defined in the model construction algorithm.

For formulae of a size greater than 1 we have to make a case differentiation depending
on the outer most logical symbol. Remember, that Γπ contains only positive formulae

and formulae with negation signs only in front of a proposition or a knowledge
operator. This means that we do not have to look at the cases of negative formulae.
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Proof of proposition 6.2.18:

We show for every labelled formula l ⊢ φ ∈ Γπ that it holds that ℓπ(l) |=M φ.

Induction begin:
Let |(F, c) ⊢ φ| = 1, then (F, c) ⊢ φ is either

1. of the form (F, c) ⊢ p for any p ∈ P , or

2. of the form (F, c) ⊢ ⊤ for

3. of the form (F, c) ⊢ ⊥.

For the first case, the construction of the interpretation function I is such that
(F, c) ⊢ p ∈ Γπ implies that ℓπ((F, c)) |=M p, the second case is trivial since all

situations satisfy ⊤, thus also ℓπ((F, c)) |=M ⊤. The third case cannot occur in
Γπ: The assumption is that π is an accepted path that cannot contain a formula

(F, c) ⊢ ⊥.

Induction hypothesis:
For all formula (F, c) ⊢ φ with |(F, c) ⊢ φ| ≤ n it holds that

(F, c) ⊢ φ ∈ Γπ implies ℓπ((F, c)) |=M φ.

Induction step:

Suppose, the induction hypothesis holds and |(F, c) ⊢ φ| = n + 1. Then we have to
differentiate between the following cases:

1. Claim: (F, c) ⊢ φ = (F, c) ⊢ φ1∧φ2 ∈ Γπ implies ℓπ((F, c)) |=M φ1∧ φ2:

(F, c) ⊢ φ1∧ φ2 ∈ Γπ
=⇒ (* by definition 5.5.1, rule (TR 4) and proposition 5.6.14 *)

(F, c) ⊢ φ1 ∈ Γπ and (F, c) ⊢ φ2 ∈ Γπ
=⇒ (* because of the induction hypothesis *)

ℓπ((F, c)) |=M φ1 and ℓπ((F, c)) |=M φ2
=⇒ (* by definition 4.2.1 *)

ℓπ((F, c)) |=M φ1∧φ2

2. Claim: (F, c) ⊢ φ = (F, c) ⊢ φ1∨φ2 ∈ Γπ implies ℓπ((F, c)) |=M φ1∨ φ2:
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(F, c) ⊢ φ1∨ φ2 ∈ Γπ
=⇒ (* by definition 5.5.1, rule (TR 5) and proposition 5.6.14 *)

(F, c) ⊢ φ1 ∈ Γπ or (F, c) ⊢ φ2 ∈ Γπ
=⇒ (* by induction hypothesis *)

ℓπ((F, c)) |=M φ1 or ℓπ((F, c)) |=M φ2
=⇒ (* by definition 4.2.1 *)

ℓπ((F, c)) |=M φ1∨φ2

3. Claim: (F, c) ⊢ φ = (F, c) ⊢ Kiφ1 ∈ Γπ implies ℓπ((F, c)) |=M Kiφ1:

(F, c) ⊢ Kiφ1 ∈ Γπ
=⇒ (* by definition 5.5.1, rules (TR 6) and (TR 12) and by proposition

5.6.14 *)

(F, c) ⊢ φ1 ∈ Γπ and for all (F ′, c ′) ∈ label(Γπ) with (F, c) Ri (F
′, c ′) ∈ Γπ

holds that (F ′, c ′) ⊢ φ1
=⇒ (* by induction hypothesis *)

ℓπ((F, c)) |=M φ1 and for all (F ′, c ′) with (F, c)Ri(F
′, c ′) ∈ Γπ holds that

ℓπ((F
′, c ′)) |=M φ1

=⇒ (* by lemma 4.3.2 and the restriction that φ1 ∈ Φ{i}
4 *)

for all (F ′, c ′) ∈ |M| for which (ℓπ((F, c)), (F
′, c ′)) ∈ RKi it holds that

(F ′, c ′) |=M φ1
=⇒ (* by definition 4.2.1 of the semantics of L ) *)

ℓπ((F, c)) |=M Kiφ1

4. Claim: (F, c) ⊢ φ = (F, c) ⊢ ¬Kiφ1 ∈ Γπ implies ℓπ((F, c)) |=M ¬Kiφ1:

(F, c) ⊢ ¬Kiφ1 ∈ Γπ
=⇒ (* by rule (TR 9) and proposition 5.6.14 *)

there exists (F ′, c ′) ∈ label(Γπ) for which (F, c)Ri(F
′, c ′) ∈ Γπ and

(F ′, c ′) ⊢ ¬φ1 ∈ Γπ
=⇒ (* by induction hypothesis *)

(F, c)Ri(F
′, c ′) ∈ Γπ and ℓπ((F

′, c ′)) |=M ¬φ1
=⇒ (* by construction steps (31), (32) and (33) *)

(ℓπ((F, c)), ℓπ((F
′, c ′))) ∈ RKi and (F ′, c ′) |=M ¬φ1

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, c)) |=M ¬Kiφ1

5. Claim: (F, c) ⊢ φ = (F, c) ⊢ φ1Uiφ2 ∈ Γπ implies ℓπ((F, c)) |=M φ1Uiφ2:

(F, c) ⊢ φ1Uiφ2 ∈ Γπ
=⇒ (by rule (TR 7) and proposition 5.6.14 *)

we distinguish between two possible cases:

4Recall, that we show completeness of the tableau system only for the subset of L, in which for a
formula Kiφ1 holds that φ1 ∈ Φ{i}.
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a) (F, c) ⊢ φ2 ∈ Γπ:

=⇒ (* by induction hypothesis *)
ℓπ((F, c)) |=M φ2

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, c)) |=M φ1 Uiφ2

b) (F, c) ⊢ φ1∧ ¬φ2∧ 〈O〉iφ1 Uiφ2 ∈ Γπ:

=⇒ (* Path π is fair and does not contain an until-trace,

by repeated applications of rules (TR 14), (TR 20), (TR 22),
and (TR 7), as well as by proposition 5.6.14 *)

there exists a shortest chain χ = (F, c0)
o0−→ (F, c1)

o1−→ . . .
om−→

(F, cm+1) of Γπ with (F, cm+1) ⊢ φ2 ∈ Γπ and (F, c) = (F, c0) and
for all k ≤ m holds (F, ck) ⊢ φ1:

=⇒ (* by algorithm 6.2.1 (page 133) and by ind. hypothesis *)

for all k ≤ m : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1)) and ℓπ((F, ck)) |=M φ1

and ℓπ((F, cm+1)) |=M φ2 and (F, c) = (F, c0)

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, c)) |=M φ1 Uiφ2

6. Claim: (F, c) ⊢ φ = (F, c) ⊢ φ1Wiφ2 ∈ Γπ implies ℓπ((F, c)) |=M φ1Wiφ2:

(F, c) ⊢ φ1Wiφ2 ∈ Γπ
=⇒ (* by rule (TR 8) and proposition 5.6.14 *)

there are two possibilities:

a) (F, c) ⊢ φ2 ∈ Γπ
=⇒ (* by the induction hypothesis *)

ℓπ((F, c)) |=M φ2
=⇒ (* by definition 4.2.1 of the semantics of L *)

ℓπ((F, c)) |=M φ1Wiφ2

b) (F, c) ⊢ φ1∧ ¬φ2∧ [Oi]φ1 Wiφ2 ∈ Γπ
=⇒ (* Path π is fair, by repeated applications of rules (TR 21), (TR

23), and (TR 8), as well as by proposition 5.6.14 *)

we again distinguish between two cases:

i. there exists a shortest finite chain χ = (F, c0)
o0−→ (F, c1)

o1−→ . . .
om−→

(F, cm+1) of Γπ with (F, c) = (F, c0) and (F, cm+1) ⊢ φ2 ∈ Γπ and for
all k ≤ m it holds that (F, ck) ⊢ φ1 ∈ Γπ
=⇒ (* by lemma 6.2.5 and by the induction hypothesis *)

for all k ≤ m : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1)) and ℓπ((F, ck)) |=M

φ1 and ℓπ((F, cm+1)) |=M φ2 and (F, c) = (F, c0)

=⇒ (* by definition 4.2.1 of the semantics of L *)

ℓπ((F, c)) |=M φ1Wiφ2
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ii. there exists a chain χ = (F, c0)
o0−→ (F, c1)

o1−→ . . . of Γπ and for all

k ∈ IN : (F, ck) ⊢ φ1 ∈ Γπ and (F, c) = (F, c0)

=⇒ (* by lemma 6.2.5 and by the induction hypothesis *)

(F, c) = (F, c0) and for all k ∈ IN : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1))

and ℓπ((F, ck)) |=M φ1
=⇒ (* by definition 4.2.1 of the semantics of L *)

ℓπ((F, c)) |=M φ1Wiφ2

7. Claim: (F, c) ⊢ φ = (F, c) ⊢ 〈a〉iφ1 ∈ Γπ implies ℓπ((F, c)) |=M 〈a〉iφ1:

(F, c) ⊢ 〈a〉iφ1 ∈ Γπ
=⇒ (* by rule (TR 14), by proposition 5.6.14 and by fairness of path π *)

there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ such

that (F, c0) = (F, c) and om = a and for all k < m : ok /∈ Oi
=⇒ (* by rules (TR 15) and (TR 18) and proposition 5.6.14 *)

for all k ≤ m holds that (F, ck) ⊢ 〈a〉iφ1 ∈ Γπ and (F, cm+1) ⊢ φ1 ∈ Γπ
=⇒ (* by lemma 6.2.5 *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) and for all k ≤ m holds that

(F, ck) ⊢ 〈a〉iφ1 ∈ Γπ and (F, cm+1) ⊢ φ1 ∈ Γπ
=⇒ (* by induction hypothesis *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) and for all k ≤ m holds that

(F, ck) ⊢ 〈a〉iφ1 ∈ Γπ and ℓπ((F, cm+1)) |=M φ1
=⇒ (* by definition 3.2.3 *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) and for all k ≤ m holds that
(F, ck) ⊢ 〈a〉iφ1 ∈ Γπ and ℓπ((F, cm+1)) |=M φ1 and ℓπ((F, c0)) ≡i
ℓπ((F, cm))

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, cm)) |=M 〈a〉iφ1 and ℓπ((F, c0)) ≡i ℓπ((F, cm))

=⇒ (* by lemma 3.2.4 *)
ℓπ((F, c0)) |=M 〈a〉iφ

=⇒ (* since (F, c) = (F, c0) *)
(F, c) |=M 〈a〉iφ

8. Claim: (F, c) ⊢ φ = (F, c) ⊢ [a]iφ1 ∈ Γπ implies ℓπ((F, c)) |=M [a]iφ1:

(F, c) ⊢ [a]iφ1 ∈ Γπ
=⇒ We distinguish among three possible cases:

a) there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) of Γπ and

(F, c) = (F, c0) and for all k < m : ok /∈ Oi and om = a

=⇒ (* analogous to the proof for 〈a〉iφ1, but by application of rules
(TR 16), (TR 19) instead of rules (TR 15) and (TR 18) *)

ℓπ((F, c)) |=M [a]iφ1
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b) there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ and

(F, c0) = (F, c) and for all k < m : ok /∈ Oi and om ∈ Oi \ {a}

=⇒ (* by rules (TR 16)and (TR 19) and prop. 5.6.14 *)

(F, c0)
o0−→ . . .

om−→ (F, cm+1) with (F, c0) = (F, c), om ∈ Oi \ {a},

for all k < m : ok /∈ Oi and (F, cm+1) ⊢ φ1 ∈ Γπ
=⇒ (* by lemma 6.2.5 *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) with (F, c0) = (F, c), om ∈
Oi \ {a}, for all k < m : ok /∈ Oi and (F, cm+1) ⊢ φ1 ∈ Γπ

=⇒ (* by induction hypothesis *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) with (F, c0) = (F, c), om ∈
Oi \ {a}, for all k < m : ok /∈ Oi and for all k ≤ m it holds that
(F, ck) ⊢ [a]iφ1 ∈ Γπ and ℓπ((F, cm+1)) |=M φ1

=⇒ (* by definition 4.2.1 of the semantics of L *)

ℓπ((F, c0))
o0−→ . . .

om−→ ℓπ((F, cm+1)) with (F, c0) = (F, c), om ∈
Oi \ {a}, for all k < m : ok /∈ Oi and ℓπ((F, cm)) |=M [a]iφ1

=⇒ (* by definition 3.2.3 and lemma 3.2.4 *)
ℓπ((F, c)) = ℓπ((F, c0)) |=M [a]iφ1

c) there exists an infinite chain χ = (F, c0)
o0−→ (F, c1)

o1−→ . . . in Γπ with

(F, c0) = (F, c) and for all k ∈ IN : ok /∈ Oi
=⇒ (* by lemma 6.2.5 *)

for all k ∈ IN it holds that ℓπ((F, ck))
o

−→k ℓπ((F, ck+1)) and ok /∈
Oi

=⇒ (* by part 1 of the construction *)

Suppose, ℓπ((F, c)) = (F, c); for all events e ∈ E with e ∈ E \ c it
holds that λ(e) /∈ Oi

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, c)) |=M [a]iφ1

9. Claim: (F, c) ⊢ φ = (F, c) ⊢ 〈O〉iφ1 ∈ Γπ implies ℓπ((F, c)) |=M
∨

o∈Oi
〈O〉iφ1:

(F, c) ⊢ 〈O〉iφ1 ∈ Γπ
=⇒ (* by rule (TR 14), prop. 5.6.14, and assumption that π is fair *)

there exists a chain (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ such that (F, c) =

(F, c0) and om ∈ Oi and for all k < m : ok /∈ Oi
=⇒ (* by rules (TR 20) and (TR 22) and proposition 5.6.14 *)

there exists a chain (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ such that (F, c) =

(F, c0) , om ∈ Oi and for all k < m : ok /∈ Oi; further for all k ≤ m :

(F, ck) ⊢ 〈O〉iφ1 ∈ Γπ and (F, cm+1) ⊢ φ1 ∈ Γπ
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=⇒ (* by lemma 6.2.5 *)

for all k ≤ m : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1)) and om ∈ Oi and for all

k < m : ok /∈ Oi; further for all k ≤ m : (F, ck) ⊢ 〈O〉iφ1 ∈ Γπ and

(F, cm+1) ⊢ φ1 ∈ Γπ
=⇒ (* by induction hypothesis *)

for all k ≤ m : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1)) and om ∈ Oi and for all

k < m : ok /∈ Oi; further for all k ≤ m : (F, ck) ⊢ 〈O〉iφ1 ∈ Γπ and
ℓπ((F, cm+1)) |=M φ1

=⇒ (* by definition 4.2.1 *)

for all k ≤ m : ℓπ((F, ck))
ok−→ ℓπ((F, ck+1)) with (F, c) = (F, c0) and for

all k < m : ok /∈ Oi ; further ℓπ((F, cm)) |=M
∨

o∈Oi

〈o〉iφ1

=⇒ (* by definition 3.2.3 and lemma 3.2.4 *)
ℓπ((F, c)) |=M

∨

o∈Oi
〈o〉iφ1

10. Claim: (F, c) ⊢ φ = (F, c) ⊢ [O]iφ1 ∈ Γπ implies ℓπ((F, c)) |=M
∧

o∈Oi
[o]iφ1:

(F, c) ⊢ [O]iφ1 ∈ Γπ
=⇒ (* by rule (TR 14) and prop. 5.6.14 *)

there are two possibilities:

a) there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ such that

(F, c) = (F, c0), om ∈ Oi and for all k < m : ok /∈ Oi
=⇒ (* by rules (TR 21), (TR 23) and prop. 5.6.14 *)

there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ
such that (F, c) = (F, c0), om ∈ Oi and for all k < m : ok /∈ Oi and
further (F, cm+1) ⊢ φ1 ∈ Γπ and for all k ≤ m : (F, ck) ⊢ [O]iφ1 ∈
Γπ

=⇒ (* by induction hypothesis *)

there exists a finite chain χ = (F, c0)
o0−→ . . .

om−→ (F, cm+1) in Γπ
such that (F, c) = (F, c0), om ∈ Oi and for all k < m : ok /∈ Oi
and further ℓπ((F, cm+1)) |=M φ1

=⇒ (* by lemma 6.2.5 *)

for all k ≤ m : ℓπ((F, ck))
o

−→k ℓπ((F, ck+1)), for all k < m : ok /∈
Oi and om ∈ Oi and ℓπ((F, cm+1)) |=M φ1

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, cm)) |=M [O]iφ1

=⇒ (* by definition 3.2.3 and lemma 3.2.4 *)
ℓπ((F, c) |=M [O]iφ1

165



Chapter 6 Soundness and Completeness of the Tableau System

b) for (F, c) = (F, c0) there does not exist a finite chain χ = (F, c0)
o0−→

. . .
om−→ (F, cm+1) in Γπ such that om ∈ Oi

=⇒ (* by part 1 of the construction *)
for all events e ∈ E with e ∈ E \ c it holds that λ(e) /∈ Oi

=⇒ (* by definition 4.2.1 of the semantics of L *)
ℓπ((F, c) |=M [o]iφ1 for all o ∈ Oi

=⇒ ℓπ((F, c)) |=M
∧

o∈Oi
[o]iφ1

2

Now we have collected all requirements that are necessary for mapping ℓπ con-

structed by the construction method on pages 133ff. to be a satisfying L-embedding:

Theorem 6.2.21 Let T (ΓT0 ) be an accepted regular tableau for a tableau set ΓT0 and
let π be an accepted path in the tableau.

Further, let M = (A,RK, I) be the structure and ℓπ : label(Γπ) −→ |M| be the
mapping constructed from path π by the construction method on page 133.

Then ℓπ is a satisfying L-embedding.

Proof:

1. Claim: For each tableau formula l
a

−→ la ∈ Γπ it holds that ℓπ(l)
a

−→ ℓπ(la).
This has been shown in lemma 6.2.5.

2. Claim: For each tableau formula lRil
′ ∈ Γπ it holds that (ℓπ(l), ℓπ(l

′)) ∈ RKi .

This follows directly from the construction of RK,prei in steps (31) and (32) and
from the construction of RKi in step (33).

3. Claim: For each tableau formula l ⊢ φ ∈ Γπ it holds that ℓπ(l) |=M φ.

This has been shown in proposition 6.2.18.

2

Finally, with theorems 6.2.17 and 6.2.21 as prerequisites it is easy to show that the

tableau method is complete for the language Lc.

From a given tableau set ΓT0 we can always construct a tableau T (ΓT0 ). We have

shown that we can construct a model M = (A,RK, I) and a satisfying L-embedding
ℓπ from a given accepted tableau path. This means that if ΓT0 is not L− satisfiable,

then there does not exist an accepted tableau for ΓT0 , i.e. all tableaux T (ΓT0 ) are
rejected.
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6.2 Completeness of the Tableau System

Theorem 6.2.22 (Completeness of the tableau system) The given tableau
method is complete for Lc:
Let Γ0 ⊂ Lc be a finite set of formulae and let ΓT0 be the tableau set constructed from
Γ0 according to definition 5.3.3.

If Γ0 is not satisfiable, and thus ΓT0 is not L− satisfiable, then there exists a rejected

tableau T (ΓT0 ).

Proof: Let ΓT0 be a finite tableau set that is not L− satisfiable and let T (ΓT0 ) be an

accepted tableau for ΓT0 . Then by definition 5.5.9, tableau T (ΓT0 ) has an accepted
path π.

Following the construction method on pages 6.2.1 ff, we now construct a structure

M = (A,RK, I) and a mapping ℓπ. By theorem 6.2.17, the constructed structure
M is a model in the sense of definition 3.4.1. Further, by theorem 6.2.21, the

constructed mapping ℓπ : label(Γπ) −→ |M| is a satisfying L-embedding for Γπ.
Since ΓT0 ⊆ Γπ, the L-embedding ℓπ is also a satisfying L-embedding for ΓT0 . Hence,

ΓT0 is L − satisfiable. This is a contradiction to the assumption that ΓT0 is not
L − satisfiable.

Consequently, T (ΓT0 ) is a rejected tableau.

2
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Chapter 7

A Specification Example

In this chapter we give an example of specification of semantic constraints and

security constraints for information systems using our logic.

In [BS97a] and [BS97b] Bleumer and Schunter have suggested a procedure for the
charging and clearing process in the German health care system that allows effective

control of the total remuneration of the health care system on the one side and
guarantees the legitimate privacy interests for the participants on the other side.

The procedure described there is based on public key cryptography.

In the German health care system, health insurances must bear all the occurring
costs of the treatment while physicians are relatively free and uncontrolled in their

work. Health insurances have a legitimate interest to control the overall costs while
policy holders and physicians have legitimate privacy interests.

The example is divided into three sections:

1. In the first section we informally describe the system proposed by [BS97a],

[BS97b] and and its semantic and security constraints.

2. In the second section we specify the proposed system logically. This section

is divided into four subsections. In the first subsection, we describe the static
part of the system.

In the second subsection we specify semantic constraints about the temporal

behavior of the agents. In the third subsection, we define semantic constraints
about the epistemic behavior of agents. In the fourth subsection, we specify a

number of security constraints that must be met by the system.

3. In the third section, we discuss advantages and limitations of our view of an
information system and of the logic L.
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7.1 Privacy Oriented Clearing for the German Health Care
System

The focus of the system described in [BS97a], [BS97b] is on the participants and the
transaction flows in the German health care system regarding billing and payment

of medical services.

Bleumer and Schunter identify four types of health care providers: 1) registered
physicians, 2) pharmacies and paramedical professionals, 3) specialists and 4) hos-

pital physicians. We do not model the complete system with all its various types of
health care providers but restrict to only physicians and pharmacies:

1. Registered physicians (in the following abbreviated by D) are outpatient physi-

cians, registered by compulsory health insurances and have their own indepen-
dent practices. They may give medical treatment and issue prescriptions for

medicaments. Their actual clearing houses are local associations of registered
physicians, ’Kassenärztliche Vereinigung’ (KV).

In the described system, registered physicians form groups, such that each

physician belongs to exactly one group. Each KV then serves as a group
central.

2. Pharmacists (in the following abbreviated by F) serve patients according to
the prescriptions of registered physicians. Their actual clearing houses are the

health insurances.

Apart from the health care providers, we further identify the following participants
of the health care system:

1. Compulsory Health Insurances (in the following abbreviated by H) are insti-
tutions that bear the costs of medical treatment of a policy holder. A policy

holder pays an income dependent premium at regular intervals to the health
insurance. Independent of the amount of premium, the compulsory health

insurance must give each policy holder equal service. Compulsory health in-
surances issue I-certificates (insurance certificates) to policy holders, reimburse

the “Kassenärztliche Vereinigung” (KV) and pharmacies.

2. Kassenärztliche Vereinigung, abbreviated by KV, is a local association of reg-

istered physicians that reimburses the invoices of registered physicians and
gets again reimbursed by the compulsory health insurances. On behalf of the

health insurances, the KVs register physicians and assign them to a group.
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3. Policy holders (in the following abbreviated by P) pay income related premiums
to the health insurances. They receive insurance certificates (I-certificates)

from their health insurance which enable them to claim services from health
care providers.

In our example system, we assume one health insurance H, one KV, one pharmacy
F, two (registered) physicians D1 and D2 and two policy holders P1 and P2. Further,

we assume that both physicians, D1 and D2 belong to the same group G, the central
of which is the KV.

The system defined by Bleumer and Schunter can be divided into two phases, an

initialization phase and a treatment and billing phase. The initialization phase
includes the following actions:

• The policy holder, the pharmacy and the physicians register at the health
insurance.

• The health insurance issues insurance certificates to its registered policy hold-
ers.

• As already mentioned above, the system proposed by Bleumer and Schunter

is based on public key cryptography. The necessary keys are generated in the
initialization phase:

– The health insurance generates a pair of cryptographic keys the secret
key of which it uses for issuing insurance certificates to its policy holders.

The corresponding public key is used by physicians to validate insurance
certificates of their patients.

– Each physician generates two pair of cryptographic keys, one for signing

invoices, the other one for issuing prescriptions to her patients.

– To perpetuate anonymity, the physicians do not actually sign invoices
and issue prescriptions with their individual keys but form groups and

use group keys for signing invoices and issuing prescriptions. Therefor,
they send their public keys to the KV which serves as a group central and

generates pairs of group keys for signing invoices and issuing prescrip-
tions. The physicians will later use the public group keys together with

their individual keys from which the group keys are generated for signing
invoices and issuing prescriptions. Using the secret group key, only the

group central, the KV, can later determine the identity of the issuer of a
prescription or of the signer of an invoice. The health insurance will use
the public group key to verify, that the issuer of the invoice belongs to a

group of registered physicians.
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– The pharmacy generates a pair of cryptographic keys for signing invoices
that it sends to the health insurance.

The main phase is the treatment and billing phase. This phase includes the following
actions:

• Policy holders request treatment from physicians and medicaments from phar-
macies.

• Physicians issue prescriptions to their patients and send invoices to the health
insurance (via the KV).

• The pharmacy delivers medicaments to policy holders and sends invoices to

the health insurance.

• The health insurance clears and verifies invoices.

• The KV helps to clear invoices and identifies signers of invoices or issuers of

prescriptions in case the health insurance suspects misuse.

In the next two sections we describe these two phases in more detail.

7.1.1 Initialization Phase

Some necessary initialization operations are performed in the beginning of the be-

havior of the system. These operations are

• registration of pharmacies and physicians,

• generation and publication of cryptographic keys,

• issuing of I-certificates.

Initialization of the system We assume as initial situation that there no connec-
tions yet between policy holders, physicians, the health insurance, the KV and the

pharmacy, i.e. the policy holders are not registered at the health insurance and
don’t hold any insurance certificates, yet, the physicians and the pharmacy are not

registered yet either, etc.
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Registration of physicians and pharmacies In order to participate in the health
care billing and payment system, in particular to claim reimbursement from the

health insurance for provided treatment or delivered medicaments, the physicians
and the pharmacy must be registered at the health insurance. We require that

the registration at the health insurance is the first operation of each physician
and of the pharmacy. The registration operations are denoted by register(D1,KV,H),
register(D2,KV,H), register(F,H). Note, that we assume that the KV needs to partici-

pate in the registration operation of each physician. This is indicated by the indexes
of the registration operations.

Generation and publication of cryptographic keys

• Health insurance H:
For issuing I-certificates (insurance certificates) to its policy holders, the health

insurance H needs a pair of cryptographic keys. We will denote the public key
of the health insurance by pkH and the secret key by skH. The operation for
generating the keys for health insurance H is genH. Using its secret key skH,

the health insurance H issues I-certificates to its policy holders. The public key
pkH is needed by physicians and pharmacies for validating I-certificates shown

to them by policy holders. The health insurance thus publishes its public key
pkH to each registered physician D and to each registered pharmacy F by

operations pub(H,D)(pkH) and pub(H,F)(pkH) respectively.

• Pharmacy F:
The pharmacy F generates a pair (skF, pkF) of cryptographic keys for signing

invoices. The operation for generating the keys for the pharmacy is called
genF. The pharmacy will use its secret key for signing invoices, the health

insurance uses the pharmacy’s public key for verifying invoices of the phar-
macy. Pharmacy F publishes its public key pkF to the health insurance H by

operation pub(F,H)(pkF).

• Physician D and “Kassenärztliche Vereinigung” KV:
By performing operation geniD, each physician D generates a pair of individual

cryptographic keys (piD, siD) that are used for signing and verifying signatures
on invoices. The physician sends her individual public key piD to the KV by

operation pub(D,KV)(piD) . The KV uses the public individual keys to generate

a pair of group keys (piG, siG) by performing operation geniKV. The public
group key will be published to each physician D of group G by operation

pub(KV,D)(piG) and the the health insurance by operation pub(KV,H)(piG).

D will use her public keys piG and piD as well as her secret key siG for

signing invoices that she sends to the KV that forwards them to the health
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insurance. The health insurance H needs the public group key piG to verify
group signatures on invoices. While the health insurance can only determine

the group to which the signer of an invoice belongs, the KV uses the public
and the secret group keys piG and siG to determine the identity of the signer.

A similar setting will be used for issuing and verifying prescriptions: By per-

forming operation genpD, each physician D generates a pair of cryptographic
prescription keys (ppD, spD). She publishes her public key to the KV by per-

forming operation pub(D,KV)(ppD). From the set of public individual prescrip-
tion keys, the KV generates a pair of group keys for prescriptions (spG, ppG)

performing operation genpKV. The public group key will be published to all

physicians, to the health insurance and to the pharmacy. A physician uses
her public and secret individual prescription keys spD and ppD as well as

the public group key ppG for issuing prescriptions. The pharmacy and the
health insurance use the public group key to verify the prescriptions. While

the pharmacy and the health insurance can only determine the group of the
issuer of an prescription, the KV uses the secret group key spG to determine

the identity of the issuer of a prescription.

• Policy holders:

In our setting, policy holders do not need to generate any cryptographic keys.

Issuing of insurance certificates The health insurance H issues a batch of I-
certificates to each of its policy holders P using its secret key skH. The issuing

operation issueI(H,P) is performed jointly by health insurance H and policy holder

P. Each resulting I-certificate I(ps) contains information about the issuing health

insurance and the pseudonym, on which the I-certificate was issued. It ensures the
following properties:

• Each I-certificate allows to determine the issuing health insurance H but not
the identity of the policy holder P.

• Each I-certificate can be used only once. Using it a second time reveals the pol-
icy holder’s identity to the health insurance. Thus, obviously each pseudonym

must be unique.

7.1.2 Treatment and Billing Phase

The treatment and billing phase is the main phase of the system and starts after
the initialization steps are performed. This phase contains the following processes:
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Treatment A policy holder P requests treatment from a physician D by showing
the physician one of her (unused) I-certificates, e.g. I(ps) for some pseudonym ps.

The showing operation is named show(P,D)(I(ps)). Physician D needs the public key
pkH of the health insurance for verifying the shown I-certificate. After showing the

I-certificate, the policy holder is temporarily (i.e. for the time of treatment) known
to physician D by pseudonym ps. From the I-certificate, the physician knows that
policy holder P holds an I-certificate issued by health insurance H on pseudonym ps.

Further, she holds a transcript tI(ps) of the insurance certificate. This transcript
contains the pseudonym ps and will be enclosed in the invoice, when the physician

claims reimbursement from the health insurance via the KV for treating the pol-
icy holder. Eventually, after treatment has finished, the physician may forget the

correspondence (P, ps).

The physician may provide some treatment herself and additionally issue a prescrip-
tion M(D, ps ′) to the policy holder1. For issuing the prescription, physician D uses

her secret prescription key spD. The prescription must be issued on a pseudonym
ps ′ under which the the policy holder will request the prescribed medicaments at a

pharmacy. In the issuing process, the policy holder adds the pseudonym of a fresh
I-certificate. There are basically two ways of modeling the issuing process: Either

we assume that the physician and the policy holder agree on the pseudonym under
which the policy holder can later on claim the medicaments or the pseudonym is

kept secret from the physician so that only the policy holder knows under which
pseudonym she will later on claim the prescribed medicament. In the first case, we
could introduce one issue operation for each pseudonym. In our example, we prefer

the latter case, in which the physician shall not know the pseudonym for which a
prescription is issued. We introduce three operations for the issuing process:

1. By performing operation s issue(D,P) physician D and policy holder P jointly
start the issuing process.

2. Then the policy holder chooses one of his fresh I-certificates, e.g. I(ps ′) and
adds the pseudonym ps ′ to the prescription by operation addP(ps

′). Since the

choice of the pseudonym must be kept secret from the physician, this operation
is performed by policy holder P only.

3. Finally physician D and policy holder P together complete the issuing process
by jointly performing operation e issue(D,P).

After the issuing process, the policy holder holds the medical prescriptionM(D, ps ′)

which has as first parameter the issuing physician and as second parameter the

1In this example we abstract from the actually prescribed medicaments, they are not modeled in
the prescription.

175



Chapter 7 A Specification Example

chosen pseudonym. Note, that these three operations always need to be performed
in a row. No other operation of physician D and policy holder P may be performed

in between.

Showing a medical prescription M(D, ps ′) and I-certificate I(ps) to pharmacy F,
policy holder P requests the prescribed medicament from the pharmacy. (The phar-

macy is supposed to only deliver the requested medicament, if both the I-certificate
and the prescription are issued for the same pseudonym and will thus only accept

apposite certificates and prescriptions.) The performance of the show operation
gShow(P,F)(ps, D, ps

′) generates a transcript tM(ps, D, ps ′).

Clearing – Physicians Physicians get reimbursed by the health insurance via the
KV.

For billing the health insurance, physician D includes a transcript tI(ps) of the
appropriate I-certificate in the invoice and signs the invoice with her secret individual
invoice key siD, her individual public invoice key piD and the public invoice key piG
of group G. To do so, she performs operation signD(inv(ps)) by which she gets the
signed invoice σinv

D (tI(ps)). The physician then deposits the signed invoice at the KV

by operation dep(D,KV)(σ
inv
D (tI(ps))). The KV forwards it to the health insurance H

by operation dep(KV,H)(σ
inv
D (tI(ps))). The signed invoice takes the indirection over

the KV instead of being sent directly from the physicianD to the health insurance H,

because the health insurance should not get to know the signer unless the insurance
suspects a misuse. If this is not the case, the KV is used as some kind of anonymizing

channel. In case the health insurance suspects misuse, the health insurance requests
the KV to determine the identity of the signer with the help the secret group key
siG.

The fact that the invoicing party belongs to group G is denoted as
group(G, σinv

D (tI(ps))). The fact that physician D has issued an invoice σ is de-

noted as id(σinv
D (tI(ps)))

If the health insurance does not request the KV to reanonymize the signer of an
invoice, it must eventually reimburse the physician D via the KV. This is done by

operations reimb(H,KV)(σ
inv
D (tI(ps))) and reimb(KV,D)(σ

inv
D (tI(ps))).

To ensure that each pseudonym is used only once, the health insurance H remembers
pseudonyms, for which she already received an invoices. If a pseudonym is used

twice, then the health insurance will know the identity of the policy holder that
carried the pseudonym.

Clearing – Pharmacies The pharmacy clears its costs directly with the health in-

surance. The invoice of a pharmacy must include a transcript of both the prescrip-
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tion and the corresponding I-certificate. The pharmacy signs its invoice by perform-
ing operation signF(inv(tM(ps, D, ps ′))). After signing the invoice, the pharmacy

holds the signed invoice σinv
F (tI(tM(ps, D, ps ′))). To get reimbursed, the pharmacy

sends the invoice to the health insurance by operation dep(F,H)(σ
inv
F (tM(ps, D, ps ′))).

The health insurance verifies the signature and “accepts” the invoice if the signature
is OK and the pseudonyms of both transcripts match. As before, to ensure that each
pseudonym is used only once, the health insurance H checks the pseudonym. If the

pseudonym has already been used before the health insurance will automatically
know the identity of the policy holder.

After receiving a signed invoice σinv
F (tM(ps, D, ps ′)) from the pharmacy,

the health insurance will eventually reimburse the pharmacy by operation
reimb(H,F)(σ

inv
F (tM(ps, D, ps ′))).

7.2 Logical Specification of the Billing and Clearing Scheme

This section concentrates on the logical specification of semantic constraints and
security constraints of the health care clearing system.

In the first subsection we define the static part of the system (refer to section 3.1). We

view the participants of the health care system, i.e. physicians, policy holders, health
insurances, etc. as a set of agents Ag, and define the distributed set of propositions

P̃ and the distributed set of operations Õ.

In the second subsection we logically specify the semantic constraints concerning
the temporal behavior of the system. The operations do not carry any semantics

themselves, they are only syntactic elements. We will define their meaning over the
interpretation of the relevant propositions. We do this in the logic itself. Formulae

restrict the set of runs that we accept as appropriate.

In the third subsection we will give examples of semantic constraints about the
epistemic behavior. We specify examples of how operations effect the knowledge

and belief of participating agents.

In the fourth subsection we will specify a number of security constraints that should

be met by the system.

To make the presentation (hopefully) easier to understand we make the following
abstractions. Note, that the logic L can be used to specify security constraints

without these abstractions.

• We assume that a physician does not accept the same I-certificate of a policy
holder twice.
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• We do not distinguish between multiple submissions of the same invoice by a
physician (via the KV) or a pharmacy.

• We assume that each actor generates only one pair of keys for each purpose.
The created keys will then remain stored at the respective actors forever. This

ensures that we do not have to deal with outdated keys.

In section 7.3 we will discuss which changes we would have to make if we dropped
these abstractions.

7.2.1 Static Part of the System

In the previous section we have listed various participants of the health care system.

For our example we assume one health insurance H, two registered physicians D1
and D2, one local association of registered physicians KV, two policy holders P1 and

P2 and one pharmacy F.

We formally define the set of agent as follows:

Ag := {H,D1, D2, KV, P1, P2, F}

Local Propositions

Each agent is equipped with a set of local propositions. For (hopefully) better

reading, we use propositions with a syntactic structure.

In the previous section we have already described a number of facts that have to
be modeled as propositions. We first list all necessary facts and briefly describe

their (informal) meaning. Then, we will model the propositions as follows: Each
proposition ’fact@agent’ is constructed in such a way that the first part of the

proposition describes a fact and the second part tells us, at which agent this fact is
stored, for example piG@KV means that the fact piG (meaning “the public invoice

key of group G) is stored at the KV.

We now list the facts that can be combined to propositions according to the construct
’fact@agent’ by concatenating them with the agent they are stored at.

Pseudonyms: {♠,♦,♣,♥}

Pseudonyms do not occur directly as facts in the specification. However, insur-
ance certificates are issued on pseudonyms, policy holders are known to physi-

cians by their pseudonyms and prescriptions are also issued on pseudonyms. So,
we will use pseudonyms in the construction of other facts.
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Cryptographic keys: pkH, skH, ppG, spG, piG, siG, ppD1 , spD1 , piD1 , siD1 ,
ppD2 , spD2 , piD2 , siD2 , pkF, skF
As described in section 7.1.1, agents generate pairs of cryptographic keys in the
initialization phase. We denote the generated keys as follows:

• the health insurance generates a pair of keys which we denote by

pkH / skH (for the public / secret key of health insurance H).

• each physician D ∈ {D1, D2} generates two pairs of cryptographic keys. We

denote these individual keys by

–ppD / spD (for the public / secret prescription key of physician D)
as well as

–piD / siD (for the public / secret issuing key of physician D).

• the KV generates two pairs of group keys from the individual keys of the
physicians. We denote these keys by

–ppG / spG (for the public / secret prescription key of group G), as
well as

–piG / siG (for the public / secret issuing key of group G).

• the pharmacy generates a pair of cryptographic keys for signing its invoices.
We denote these keys by

pkF / skF for the public / secret key of pharmacy F.

I-certificates: I(ps)
An I-certificate I(ps) entitles a policy holder to request treatment from a physi-

cian under pseudonym ps and to claim medicaments from a pharmacy according
to a prescription that is issued for pseudonym ps.

Used I-certificates: Iu(ps)
An I-certificate issued on pseudonym ps has already been used.

Double-show: ds(ps)
An I-certificate issued on pseudonym ps has been double-shown.

Medical prescriptions: M(D, ps)

While a policy holder is under treatment at a physician, the physician D may
issue a medical prescription M(D, ps) to a policy holder. The prescription is

issued on a pseudonym and has to the shown to a pharmacy together with the
appropriate I-certificate, issued on the same pseudonym.

Transcripts from I-certificates: tI(ps)
After a policy holder has shown an I- certificate issued on pseudonym ps to
a physician D, the physician holds a transcript tI(ps) of the corresponding I-

certificate.
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Patient P has pseudonym ps: (P, ps)

Policy holder P is associated with pseudonym ps and is currently under treat-

ment.

Health insurance H has issued an I-certificate on pseudonym ps : (H, ps)

Health insurance H has issued an I-certificate on pseudonym ps.

Transcripts from medical prescriptions: tM(ps, D, ps ′)

After a policy holder has shown an I-certificate I(ps) and a prescription

M(D, ps ′) to the pharmacist, she holds a transcript tM(ps, D, ps ′) of the shown
certificates.

Signed invoices: σinv
D (tI(ps)) and σinv

F (tM(ps, D, ps ′))

Physicians and the pharmacy enclose a transcript of a shown certificate in an

invoice and sign the invoice.

Identity of a policy holder: id(P, ps)
The policy holder that has double-shown an I-certificate issued on pseudonym

ps is policy holder P.

Identity of the signer of an invoice: id(D, σinv
D (tI(ps)))

The physician that has issued the signed invoice σinv
D (tI(ps)) is physician D.

Group of the signer of an invoice: group(G, σinv
D (tI(ps)))

The signer of the invoice group(G, σinv
D (tI(ps))) belongs to the group G of physi-

cians.

Identity of the issuer of a prescription: id(D, σinv
F (tM(ps, D, ps ′)))

Each signed invoice of a pharmacy encloses a transcript of a prescription issued
by some physician. The identity of the issuer of this prescription is D.

Group of the issuer of a prescription: group(G, σinv
F (tM(ps, D, ps ′)))

Each signed invoice of a pharmacy encloses a transcript of a prescription issued

by some physician. The issuer of this prescription belongs to group G.

Formally, we define the set of facts for each agent of the system as follows:

• Facts for health insurance H:
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fact(H) ::= key | invoice | identity | group

key ::= skH | pkH | pkF | ppG | piG | ppD1 | piD1 | ppD2 | piD2

invoice ::= σinv
D (tI(ps)) | σinv

F (tM(ps, D1,ps)) | σinv
F (tM(ps, D2,ps))

ps ::= ♠ | ♦ | ♥ | ♣

identity::= id(P1, ps) |id(P2, ps) | id(D1, σ
inv
D1

(tI(ps))) | id(D2, σ
inv
D2

(tI(ps)))

| id(D1, σ
inv
F (tM(ps, D1,ps))) | id(D2, σ

inv
F (tM(ps, D2,ps)))

group ::= group(G, σinv
D (tI(ps)))

• Facts of policy holder P ∈ {P1, P2}:

fact(P) ::= certificate | used | double-show

certificate ::= I(ps) | M(D1, ps) | M(D2, ps)

ps ::= ♠ | ♦ | ♥ | ♣

used ::= Iu(ps)

double-show::= ds(ps)

• Facts of the pharmacy F:

fact(F) ::= key | transcript | invoice

key ::= pkF | skF | pkH | piD1 | piD2 | ppD1 | ppD2 | piG | ppG |

transcript::= tM(ps, D1,ps) | tM(ps, D2,ps)

invoice ::= σinv
F (transcript)

ps ::= ♠ | ♦ | ♥ | ♣

• Facts for the “Kassenärztliche Vereinigung”:

fact(KV) ::= invoice | key

invoice ::= σinv
D1

(transcript) | σinv
D2

(transcript)

transcript::= tI(ps)

ps ::= ♠ | ♦ | ♥ | ♣

key ::= piD1 | pi ′D2 | ppD1 | pp ′
D2

| piG | siG | ppG | spG | pkH | pkF

• Facts of physician D ∈ {D1, D2}:
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fact(D) ::= key | transcript | invoice | treatment

key ::= piD | siD | ppD | spD | pkH piG | ppG | pkF

transcript::= tI(ps)

ps ::= ♠ | ♦ | ♥ | ♣

invoice ::= σinv
D (transcript)

treatment::= (P1,ps) | (P2,ps) | (H,ps)

A proposition consists of a fact plus the name of the agent to whose set of proposi-
tions it belongs. This supplement ensures that all sets of propositions are disjoint.

Intuitively, the supplement tells us, where (at which location) the fact is stored.

The set of propositions for agent i ∈ Ag is then defined as follows:

Pi := {fact(agent)@agent | agent = i}

The distributed set of propositions is defined as follows:

P̃ := (PH,PP1,PP2 ,PF,PKV,PD1 ,PD2)

Operations

In the following, we specify the set of operations of each agent. Operations that are

in the operation alphabet of more than one agent are to be performed as a joint
operation together by all agents that have the operation in their alphabet.

• Operations of health insurance H:

OH ::= { register(F,H), register(D,KV,H),

genH , pub(H,ag)(pkH)

issueI(H,P1), issueI(H,P2),

dep(KV,H)(σ
inv
D (tI(ps)))

dep(F,H)(σ
inv
F (tM(ps,D,ps’))),

req(H,KV)(σ
inv
D (tI(ps))),

reimb(H,KV)(σ
inv
D (tI(ps)))

reimb(H,F)(σ
inv
F (tM(ps,D,ps’))),

| ag ∈ {P1, P2, D1, D2, KV, F},D ∈ {D1, D2},ps, ps’ ∈ {♠,♦,♣,♥}

}
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• Operations of the policy holder P:

OP ::= { issueI(H,P),

s issue(D,P), e issue(D,P), addP(ps)

show(P,D)(ps),gShow(P,F)(ps,D,ps’), deliverF,P(ps),

| D ∈ {D1, D2},ps, ps’ ∈ {♠,♦,♣,♥}

}

• Operations of the pharmacy F:

OF ::= { register(F,H), genF ,

pub(H,F)(pkH), pub(F,H)(pkF),

gShow(P,F)(ps,D,ps’)

signF(inv(tM(ps,D,ps’)))

dep(F,H)(σ
inv
F (tM(ps,D,ps’)))

reimb(H,F)(σ
inv
F (tM(ps,D,ps’)))

| P ∈ {P1, P2},D ∈ {D1, D2},ps,ps’ ∈ {♠,♦,♣,♥}

}

• Operations of the local association of registered physicians KV:

OKV ::= { register(D,KV,H)

geniKV, genpKV,

pub(D,KV)(piD), pub(D,KV)(pi
′
D),

pub(KV,H)(pgG), pub(KV,H)(pg
′
G),

dep(KV,H)(σ
inv
D (tI(ps))),

dep(D,KV)(σ
inv
D (tI(ps))),

req(H,KV)(σ
inv
D (tI(ps))),

reimb(H,KV)(σ
inv
D (tI(ps))),

reimb(KV,D)(σ
inv
D (tI(ps)))

| D ∈ {D1, D2},ps,ps’ ∈ {♠,♦,♣,♥}

}

• Operations of the registered physician D:
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OD ::= { register(D,KV,H), geniD, genpD

pub(H,D)(k),

show(P,D)(ps),

s issue(D,P), e issue(D,P)

signD(inv(ps))

dep(D,KV)(σ
inv
D (tI(ps)))

reimb(KV,D)(σ
inv
D (tI(ps)))

| k ∈ {pkH, pkF, ppD1 , ppD2, ppG, piD1 , piD2 , piG, },

P ∈ {P1, P2},ps, ps’ ∈ {♠,♦,♣,♥}

}

The distributed set of operations is then defined as follows:

Õ := (OH,OP1 ,OP2 ,OF,OKV,OD1 ,OD2)

7.2.2 Semantic Constraints – Temporal Behavior

We will now logically specify the semantic constraints about the temporal behavior of

the system. All the following formulae are to be satisfied by the initial configuration
of a run in an appropriate model.

The operations in our language do not carry any semantics themselves, they are only
syntactic elements. We define the meaning of the operations over the interpretation
of the relevant propositions. This is done in the logic itself. For each operation we

give a number of preconditions that must be met for this operation to be executable,
and describe its effect. The interpretation of most propositions is closely related to

only one operation. We can specify that their interpretation can be changed only
by a certain operation.

We specify the appropriate semantic constraints such as “once a key is generated,

it will exist forever”. These formulae restrict the set of runs that we accept as
appropriate.

Here, we encounter the frame problem, a prominent problem in the context of Arti-
ficial Intelligence. When specifying the effects of an operation, we somehow have to
deal with the non-effects as well. This problem was first mentioned by [MH69] and

has since then been well investigated by Reiter, Levesque, Shanahan, etc. among
others (see for example [Rei91, SL93, Sha97]). We will further discuss this problem

in section 7.3.
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Syntactic Abbreviations

For the following logical specification it will be convenient to have some syntactic

abbreviations in addition to the ones already defined in chapter 4.

1. It is convenient to use a kind of meta logic for conjunctions and disjunctions
of sets of agents, operations and propositions. For example, we write

∧

p∈Pi

p

instead of p1∧p2∧p3∧p4 for Pi = {p1, p2, p3, p4}. This kind of abbreviation
is possible because the set of agents, the set of operations and the set of

propositions are finite which means, we could always explicitly write down the
complete conjunction or disjunction.

2. We will often specify that the value of a proposition can be changed only
through a particular operation. In this case, we require that

the operation is actually performed before the change of the value. To specify

this, the following abbreviation will be useful:

φ W+
i ψ ≡ φ Wi(φ∧ψ) and

φ U+
i ψ ≡ φ Ui(φ∧ψ)

3. We denote the set of all public keys by

pubkey := {pkH, pkF, ppD1 , ppD2, ppG, piD1 , piD2 , piG}.

4. We denote the set of public keys generated by agent i as pubkey(i).

5. We denote the set of all pseudonyms by Ps := {♠,♦,♣,♥}.

6. We denote the set of all possible signed invoices of physician D by
Σ(D) := {σinv

D (tI(ps)) | ps ∈ {♠,♦,♣,♥}}.

7. The pharmacist encloses the transcript of a an I-certificate and of a prescription
into her invoice. We denote the set of all possible signed invoices of pharmacist

F by
Σ(F) := {σinv

F (tM(ps, D, ps ′)) | ps, ps ′ ∈ Ps, D ∈ {D1, D2}}

In the following specification we will repeatedly formalize that the execution of

a particular operation is not possible. The formalization might seem to be a bit
surprising so we explain it in advance: We specify that a particular operation a is

not executed next by some agent i, by formula [a]i⊥: For all operations a that agent
i performs next, it holds that after the performance of operation a the formula ⊥
holds. Since, according to the definition of the semantics, ⊥ does not hold in any

situation, operation a cannot be performed next.
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Initialization of the system

In the initial situation, all propositions are false.

∧

i∈Ag

∧

p∈Pi

¬p@i (1)

Registration

The first operation performed by a physician and by a pharmacy is their respective
registration operation which they perform jointly with the health insurance.

〈register(D1,KV,H)〉D1⊤ ∧ 〈register(D2,KV,H)〉D2⊤ ∧ 〈register(F,H)〉F⊤ (2)

Generation and Publication of Cryptographic Keys

The health insurance H, the physicians D1 and D2, the KV and the pharmacy F
need cryptographic keys to perform certain operations. In order to not have to deal

with outdated keys, we assume that each key, once it is generated, will exist forever.

Each generation operation always generates its respective secret and public crypto-
graphic keys. Once a key is generated, it will exist forever, and no agent will perform

the generation operation more than once.

We can read the first line,

2H[genH]H2H(pkH@H∧ skH@H∧ [genH]H⊥),

of the following formula (3) as follows:

Always from the point of view of agent H (denoted by 2H):
If genH is the next operation from H’s point of view (denoted by [genH]H),
then after the execution of genH it holds that always from the point of view of H

(denoted by 2H),
H has the public key pkH (denoted by the proposition pkH@H)

and the private key skH (denoted by the proposition skH@H)
and will not next perform the generation operation genH (denoted by [genH]H⊥).

The other of the formula lines can be read accordingly.
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2H[genH]H2H(pkH@H∧ skH@H∧ [genH]H⊥)

∧ 2F[genF]F2F(pkF@F∧ skF@F∧ [genF]F⊥)

∧ 2D1 [genpD1 ]D12D1 (ppD1@D1∧ spD1@D1∧ [genpD1 ]D1⊥)

∧ 2D1 [geniD1 ]D12D1 (piD1@D1∧ siD1@D1∧ [geniD1 ]D1⊥)

∧ 2D2 [genpD2 ]D22D2 (ppD2@D2∧ spD2@D2∧ [genpD1 ]D2⊥)

∧ 2D2 [geniD2 ]D22D2 (piD2@D2∧ siD2@D2∧ [geniD2 ]D2⊥)

∧ 2KV[geniKV]KV2KV(ppG@KV ∧ spG@KV ∧ [geniKV]KV⊥)

∧ 2KV[genpKV]KV2KV(piG@KV ∧ siG@KV ∧ [genpKV]KV⊥)

(3)

Cryptographic keys can only be generated by the corresponding generation opera-
tion.

Again, we explain the first line,

¬(pkH@H∨ skH@H) W+
H〈genH〉H⊤,

in more detail:

Agent H does not have the public and private public keys pkH and skH (denoted by
¬(pkH@H∨ skH@H))

until from H’s point of view (denoted by W+
H)

an operation 〈genH〉H will occur next. (denoted by 〈genH〉H⊤).

Note, that this formula contains the abbreviation W+
H, which indicates, that agent

H has the respective keys only after the operation genH.

¬(pkH@H∨ skH@H) W+
H〈genH〉H⊤

∧ ¬(piG@KV ∨ siG@KV) W+
KV〈geniKV〉KV⊤

∧ ¬(ppG@KV ∨ spG@KV) W+
KV〈genpKV〉KV⊤

∧ ¬(piD1@D1∨ siD1@D1) W+
D1

〈geniD1 〉D1⊤

∧ ¬(ppD1@D1∨ spD1@D1) W
+
D1

〈genpD1〉D1⊤

∧ ¬(piD2@D2∨ siD2@D2) W+
D2

〈geniD2 〉D2⊤

∧ ¬(ppD2@D2∨ spD2@D2) W
+
D2

〈genpD2〉D2⊤

∧ ¬(pkF@F∨ skF@F) W+
F 〈genF〉F⊤

(4)
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The KV cannot generate the group keys of group G until it has stored the respective
individual keys of all physicians belonging to group G, i.e. of both physicians D1
and D2.

[geniKV]KV⊥ WKV (piD1@KV ∧ piD2@KV)

∧ [genpKV]KV⊥ WKV (ppD1@KV ∧ ppD2@KV)
(5)

Agents need public keys of other agents for verification purposes. Always, when
some agent i publishes a public key p to some agent j then after the publishing

operation agent j will hold the public key of agent i forever.

∧

k∈pubkey

∧

i,j∈Ag
i 6=j

2j [pub(i,j)(k)]j 2jk@j (6)

No agent i has the public key of another agent until some agent j publishes the key

to agent i.

∧

i∈Ag

∧

k∈pubkey\pubkey(i)

(

¬k@i W+
i

(

∨

j6=i
j∈Ag

〈pub(j,i)(k)〉i⊤
)

)

(7)

It always holds that agent j can publish the key to agent i only if j holds the key
herself:

∧

k∈pubkey

∧

i,j∈Ag
i 6=j

(

2j

(

¬k@j ⇒ [pub(j,i)(k)]j⊥
)

)

(8)

Issuing I-certificates

The health insurance issues I-certificates to the policy holders who can use them to

claim treatment from physicians and medicaments from the pharmacy according to
prescriptions. We now specify the effects of the operation issueI(H,P) by which the

health insurance H issues I-certificates to policy holders.

Operation issueI(H,P) is the only operation, through which I-certificates are issued.
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∧

P∈{P1,P2}

∧

ps∈PS

(

¬I(ps) W+
P 〈issueI(H,P)〉P⊤

)

(9)

For issuing I-certificates to its policy holders, the health insurance always needs its

secret key skH:

∧

P∈{P1,P2}

(

2H

(

¬skH@H ⇒ [issueI(H,P)]H⊥
)

)

(10)

Once a policy holder holds an I-certificate, she will hold it forever.

∧

P∈{P1,P2}

∧

ps∈PS

(

2P

(

I(ps)@P ⇒ 2PI(ps)@P
)

)

(11)

Each I-certificate (identified by its pseudonym) can be issued only to one policy
holder:

∧

ps∈PS

(

2H

(

[issueI(H,P1)]H

(

I(ps)@P1 ⇒ 2H

(

[issueI(H,P2)]H(¬I(ps)@P2)
)

)

)

∧ 2H

(

[issueI(H,P2)]H

(

I(ps)@P2 ⇒ 2H

(

[issueI(H,P1)]H(¬I(ps)@P1)
)

)

)

)

(12)

Each issue operation between a policy holder P and the health insurance H issues
exactly one I-certificate2.

There are basically two ways to formalize this: One easy way is to simply introduce
four different operations, one for each pseudonym. The disadvantage of this solu-
tion is that the health insurance, that participates in each operation, can distinguish

among the four operations. It would be awkward to demand that though the out-
come of the operation is deterministic, the health insurance does not know, on which

pseudonym each of the four operations issues an I-certificate. We prefer a different
solution here: We formulate a number of constraints saying that if a policy holder

P holds x I-certificates and then performs the issue operation, she will afterwards
hold x + 1 I-certificates. Which I-certificate she receives through the operation is

non-deterministic.

2Two different I-certificates are distinguished by their pseudonyms.
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We first specify the fact that policy holder P holds exactly x I-certificates, with
x ∈ {1, . . . , 4}, each issued on a different pseudonyms:

αP(ps) means, policy holder P ∈ {P1, P2} holds exactly one I-certificate. This

I-certificate is issued on pseudonym ps ∈ Ps:

αP(ps) ::= I(ps)@P ∧
∧

ps ′∈PS\{ps}

¬I(ps ′)@P

αP(ps1,ps2) with ps1 6= ps2 means, policy holder P ∈ {P1, P2} holds exactly two
I-certificates issued on pseudonyms ps1 and ps2 ∈ Ps respectively:

αP(ps1, ps2) ::= I(ps1)@P ∧ I(ps2)@P ∧
∧

ps ′∈PS\{ps1,ps2}

¬I(ps ′)@P

αP(ps1,ps2,ps3) with psi 6= psj for i, j ∈ {1, 2, 3} and i 6= j means, policy holder
P ∈ {P1, P2} holds exactly three I-certificates, issued on pseudonyms ps1, ps2
and ps3 ∈ Ps:

αP(ps1, ps2, ps3) ::= I(ps1)@P
∧ I(ps2)@P

∧ I(ps3)@P
∧

∧

ps ′∈PS\{ps1,ps2,ps3}

¬I(ps ′)@P

αP(ps1,ps2,ps3,ps4) with psi 6= psj for i, j ∈ {1, 2, 3, 4} and i 6= j means, pol-
icy holder P ∈ {P1, P2} holds exactly four I-certificates, issued on pseudonyms

ps1, ps2, ps3 and ps4 ∈ Ps respectively:

αP(ps1, ps2, ps3, ps4) ::= I(ps1)@P

∧ I(ps2)@P
∧ I(ps3)@P

∧ I(ps4)@P

We can now formulate for each policy holder the effects of the issue operation in
dependency of the situation directly before the issue operation. For policy holder

P ∈ {P1, P2} we call this formula about the effects of the issue operation βP.

β0
P means that if policy holder P does not have any I-certificate, he will get exactly

one by performing the issuing operation:
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β0P ::= ¬
(

I(♠)@P ∨ I(♦)@P ∨ I(♥)@P ∨ I(♣)@P
)

⇒ [issueI(H,P)]P
(

αP(♥) ∨ αP(♣) ∨ αP(♠) ∨ αP(♦)
)

β1
P means that if policy holder P holds one I-certificate and performs an issue oper-

ation, he will have exactly two I-certificates after the performance of the opera-

tion, the old certificate and a new certificate issued on a different pseudonym:

β1P ::= αP(♦) ⇒ [issueI(H,P)]P
(

αP(♦,♥) ∨ αP(♦,♠) ∨ αP(♦,♣)
)

∧ αP(♥) ⇒ [issueI(H,P)]P
(

αP(♥,♦) ∨ αP(♥,♠) ∨ αP(♥,♣)
)

∧ αP(♣) ⇒ [issueI(H,P)]P
(

αP(♣,♥) ∨ αP(♣,♠) ∨ αP(♣,♦)
)

∧ αP(♠) ⇒ [issueI(H,P)]P
(

αP(♠,♥) ∨ αP(♠,♦) ∨ αP(♠,♣)
)

β2
P means that if policy holder P holds two I-certificates and performs an issue

operation, she will have exactly three I-certificates after the execution of the

issuing operation, the old certificates and another one issued on a different
pseudonym:

β2P ::= αP(♦,♥) ⇒ [issueI(H,P)]P
(

αP(♦,♥,♠) ∨ αP(♦,♥,♣)
)

∧ αP(♦,♠) ⇒ [issueI(H,P)]P
(

αP(♦,♠,♥) ∨ αP(♦,♠,♣)
)

∧ αP(♦,♣) ⇒ [issueI(H,P)]P
(

αP(♦,♣,♥) ∨ αP(♦,♣,♠)
)

∧ αP(♠,♣) ⇒ [issueI(H,P)]P
(

αP(♠,♣,♥) ∨ αP(♠,♣,♦)
)

∧ αP(♥,♣) ⇒ [issueI(H,P)]P
(

αP(♥,♣,♦) ∨ αP(♥,♣,♠)
)

∧ αP(♥,♠) ⇒ [issueI(H,P)]P
(

αP(♥,♠,♦) ∨ αP(♥,♠,♣)
)

β3
P means that if policy holder P holds three I-certificates and performs an issue

operation, she will have four I-certificates after the execution of the operation,
all certificates issued on different pseudonyms.

β3P ::=
(

αP(♥,♣,♠) ∨ αP(♥,♣,♦) ∨ αP(♥,♠,♦) ∨ αP(♣,♠,♦)
)

⇒ [issueI(H,P)]PαP(♥,♦,♠,♣)
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β4
P means that if policy holder P holds four I-certificates, she cannot perform an-

other issue operation:

β4P ::= αP(♥,♣,♠,♦) ⇒ [issueI(H,P)]P⊥ (13)

We can now define the effect of the issue operation by formalizing that for both policy

holders it holds that they will get exactly one more I-certificate by participating in
the issue operation:

∧

P∈{P1,P2}

2P(β
0
P∧ β1P∧ β2P∧ β3P∧ β4P) (14)

Requesting Treatment

A policy holder requests treatment from a physician by showing one of her I-

certificates.

When a policy holder P shows her I-certificate to a physician D, the physician re-

ceives the transcript of the I-certificate denoted by proposition tI(ps)@D, temporar-
ily registers P as a patient under pseudonym ps, denoted by proposition (P, ps)@D

and learns forever that health insurance H has issued an I-certificate on pseudonym
ps, denoted by proposition (H, ps)@D.

∧

D∈{D1,D2}

∧

P∈{P1,P2}

∧

ps∈Ps
(

2D [show(P,D)(ps)]D
(

tI(ps)@D ∧ (P, ps)@D∧ 2D(H, ps)@D
)

)
(15)

A policy holder can register at a physician only by showing her an I-certificate. A
physician receives a transcript and gets to know which I-certificates health insurance

H has issued only through a show operation. For proposition (H, ps)@D we model
this constraint differently from the other propositions. According to constraint (15)

once the physician D has learned that the health insurance H has issued an I-
certificate with pseudonym ps, she will never forget this. Thus, once proposition

(H, ps)@D is true, it will always remain true. This is not the case for propositions
(P, ps)@D and tI(ps)@D.
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∧

D∈D1,D2

∧

P∈{P1,P2}

∧

ps∈Ps
(

2D

(

(

¬tI(ps)@D
)

⇒
(

¬tI(ps)@D
)

W+
D

(
∨

P′∈{P1,P2}

〈show(P′,D)(ps)〉D⊤
)

)

∧ 2D

(

(

¬(P, ps)@D
)

⇒
(

¬(P, ps)@D
)

W+
D 〈show(P,D)(ps)〉D⊤

)

∧ ¬(H, ps)@P W+
D

(
∨

P∈{P1,P2}

〈show(P,D)(ps)〉D⊤
)

)

(16)

We have three preconditions for the show operation: A policy holder can show only
those I-certificates to physicians that she holds. A physician does only participate in

a show operation, if pseudonym ps has not already been shown to her before and if
she has the public key of the health insurance so that she can verify the I-certificates.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps∈Ps
(

2P

(

(¬I(ps)@P) ⇒ [show(P,D)(ps)]P⊥
)

∧ 2D

(

(H, ps)@P⇒ [show(P,D)(ps)]D⊥
)

∧ 2D

(

(¬pkH@D) ⇒ [show(P,D)(ps)]P⊥
)

)

(17)

Issuing prescriptions While a policy holder is under treatment by a physician, the

physician may issue a prescription to the policy holder. The policy holder adds
one of his (fresh) pseudonyms to the prescription under which she will claim the

medicament from a pharmacy. As already motivated in section 7.1.2, we prefer to
model the process of issuing a prescription by a sequence of three operations: First,
the issuing process starts with a joint operation s issue(D,P) of both the physician D

and the policy holder P. Then the policy holder adds a fresh pseudonym by operation
addP(ps) and finally the process is completed by the joint operation e issue(D,P).

Figure 7.1 illustrates this process.

We now describe the prescription process. From the physician’s point of view, there

is always a completion operation directly after the starting operation of an issuing
process. From the point of view of the policy holder, there are always three opera-
tions directly in a row. The completion operation always follows directly after the
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addP(ps)

D

P

s issue(D,P) e issue(D,P)
spD

I(ps) M(D, ps)

Figure 7.1: Prescription process

operation addP(ps) which in turn follows directly after the starting operation of the

issuing process.

∧

D∈{D1,D2}

∧

P∈{P1,P2}
(

2D[s issue(D,P)]D〈e issue(D,P)〉D⊤
)

∧
(

2P[s issue(D,P)]P
(
∨

ps∈Ps
(〈addP(ps)〉P〈e issue(D,P)〉P⊤)

)

)

(18)

From the physician’s point of view, the completion of the issuing process cannot
take place after any other operation than the start operation. From the point of

view of the policy holder, adding a pseudonym to a prescription can take place only
directly after the starting operation of the issuing process and the completion of

the issuing process can take place only directly after adding the pseudonym to the
prescription.

∧

P∈{P1,P2}

∧

D∈{D1,D2}
(

2D

∧

op∈OD\{s issue(D,P)}

(

[op]D[e issue(D,P)]D⊥
)

∧ 2P

∧

op∈OP\{s issue(D,P)}

∧

ps∈Ps

(

[op]P[addP(ps)]P⊥
)

∧ 2P

∧

ps∈Ps

∧

op∈OP\{addP(ps)}

(

[op]P[e issue(D,P)]P⊥
)

)

(19)

After the process of issuing a prescription, the participating policy holder holds the
issued prescription:
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∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps∈Ps
(

2P

(

[addP(ps)]P [e issue(D,P)]P M(D, ps)@P
)

)
(20)

The only way for a policy holder to get hold of a prescription is to follow the issuing

process.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps∈Ps

2P

(

¬M(D, ps)@P ⇒
(

¬M(D, ps)@P W+
P 〈addP(ps)〉P〈e issue(D,P)〉P⊤

)

)

(21)

A physician needs her secret prescription key spD, her public prescription key ppD
and her public group key for prescriptions ppG to issue a prescription. She issues

prescriptions only to those policy holders that are currently under her treatment.
The policy holder must hold an I-certificate to participate in the prescription process

and she can only add a pseudonym of one of her I-certificates.

∧

D∈{D1,D2}

∧

P∈{P1,P2}

2D

(

¬
(

spD@D∧ ppD@D∧ ppG@D
)

⇒ [s issue(D,P)]D⊥
)

∧
(

(
∧

ps∈Ps
(¬(P, ps)@D)

)

⇒ [s issue(D,P)]D⊥
)

∧ 2P

(

(
∧

ps∈Ps
¬I(ps)@P

)

⇒ [s issue(D,P)]P⊥
)

∧
∧

ps∈Ps

(

2P

(

¬I(ps)@P ⇒ [addP(ps)]P⊥
)

)

(22)

Claiming Medicine from a Pharmacy

A policy holder claims prescribed medicaments from the pharmacy by showing the

prescription and the corresponding I-certificate. If the pharmacy accepts the cer-
tificates, it receives a transcript of the prescription and the I-certificate and delivers
the requested medicament.
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From the show operation, the pharmacy receives a transcript of each show-operation
and learns (forever) that the health insurance H has issued an I-certificate with

pseudonym ps.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

[gShow(P,F)(ps, D, ps
′)]F
(

tM(ps, D, ps ′)@F∧ (2F(H, ps)@F)
)

)
(23)

The show operation is the only operation through which the pharmacy receives a

transcript and learns, to which health insurance a pseudonym belongs.

(

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

¬tM(ps, D, ps ′)@F ⇒

¬tM(ps, D, ps ′)@F W+
F

∨

P∈{P1,P2}

〈gShow(P,F)(ps, D, ps
′)〉⊤

)

)

∧

(

∧

ps∈Ps

∧

P∈{P1,P2}

(

¬KFI(ps)@P W+
F

∨

D∈{D1,D2}

∨

ps′∈Ps

〈gShow(P,F)(ps, D, ps
′)〉F⊤

)

)

(24)

Note, that the above formalization is not allowed by the restricted language Lc:
The sub formula KFI(ps)@P is syntactically not possible in Lc. We could modify
the formula by introducing a new proposition (I(ps), P)@F which intuitively stands

for “the pharmacy holds a note, that policy holder P holds I-certificate I(ps)”. The
sub formula KFI(ps)@P could then be substituted by formula KF(I(ps), P)@F.

During the show operation, the pharmacy verifies the prescription and the I-

certificate. To do so, it must hold the public group key for prescriptions ppG and
the public key of the health insurance, pkH.

She accepts each I-certificate only once.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

(¬(ppG@F ∧ pkH@F) ∨ (H, ps)@F) ⇒ [gShow(P,F)(ps, D, ps
′)]F⊥

)
(25)
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Policy holder P claims medicaments from the pharmacy F by showing one of her
prescriptions together with the corresponding I-certificate. To do so, she must hold

both the prescription and the I-certificate.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2P

(

¬
(

I(ps)@P ∧M(D, ps ′)@P
)

⇒ [gShow(P,F)(ps, D, ps
′)]P⊥

)
(26)

Clearing – Physicians

To get reimbursed for her treatment, a physician encloses the appropriate transcript

of an I-certificate in an invoice, signs the invoice with her secret signature key siD
and sends the signed invoice to the KV that will transfer it to the health insurance.

The health insurance accepts the invoice if it originates from a physician of group
G.

The health insurance H may then verify whether the I-certificate that led to the
transcript enclosed in the invoice has been used before. Further, the health insurance
H may either ask the KV to identify the signer of the invoice or must eventually send

the money to the KV that has to transfer it to the appropriate physician.

A physician encloses the appropriate transcript of an I-certificate into an invoice

and signs the invoice. After the sign operation, the signer holds a signed invoice.

∧

D∈{D1,D2}

∧

ps∈Ps

2D

(

[signD(inv(tI(ps)))]D σ
inv
D (tI(ps))@D

)

(27)

The sign operation is the only operation by which a physician can get a signed
invoice.

∧

D∈{D1,D2}

∧

ps∈Ps

2D

(

¬σinv
D (tI(ps))@D ⇒

(

¬σinv
D (tI(ps))@D W+

D〈signD(inv(ps))〉D⊤
)

))
(28)

To perform the sign operation the physician needs her secret individual invoice key

siD, her public individual invoice key piD and the public group key for signing
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invoices, piG. Further, the physician must hold the transcript that she encloses in
the invoice.

∧

D∈{D1,D2}

∧

ps∈Ps

2D

(

¬
(

siD@D∧piD@D∧piG@D∧tI(ps)
)

⇒ [signD(inv(ps))]D⊥
)

(29)

The physician can deposit her signed invoice at the KV. As explained above, we do

not distinguish between several deposits of the same invoice. We assume that if the
agent already holds an invoice, a second generation or deposit of the same invoice is

simply ignored. After the physician has deposited the signed invoice at the KV, the
KV holds the invoice.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2KV

(

[dep(D,KV)(σ)]KV σ@KV
)

(30)

The deposit operation is the only way for the KV to receive a signed invoice from a
physician.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

(

2KV

(

¬σ@KV ⇒ ¬σ@KV W+
KV〈dep(D,KV)(σ)〉KV⊤

)

)

(31)

The physician can only deposit signed invoices that she holds. The KV does only

accept a signed invoice from a physician the public signature key of whom it holds.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2D

(

¬σ@D ⇒ [dep(D,KV)(σ)]D⊥
)

∧ 2KV

(

¬piD@KV ⇒ [dep(D,KV)(σ)]KV⊥
)

(32)

If the KV holds a signed invoice of a physician, it deposits the invoice at the health

insurance. After the deposit operation, the health insurance holds the signed invoice
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and stores it forever.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2H

(

[dep(KV,H)(σ)]H2Hσ@H
)

(33)

The health insurance receives a signed invoice only through the deposit operation.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

(

¬σ@H W+
H〈dep(KV,H)(σ)〉H⊤

)

(34)

The KV can only deposit those invoices at the health insurance that it holds. The

health insurance accepts an invoice only if it can verify that the signer of the invoice
belongs to group G. To verify this, the insurance must hold the public group key
for invoices, piG.

∧

D∈{D1,D2}

∧

σ∈Σ(D)
(

2KV

(

¬σ@KV ⇒ [dep(KV,H)(σ)]KV⊥
)

∧ 2H

(

¬piG@H ⇒ [dep(KV,H)(σ)]H⊥
))

(35)

The health insurance always suspects deception, if it receives the same invoice more

than once.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2H

(

σ@H ⇒ [dep(KV,H)(σ)]H
((

2H[reimb(H,KV)(σ)]H⊥
)

∧ 3H〈req(H,KV)(σ)〉H⊤
)

)

(36)

If the health insurance requests the identity of the signer of an invoice from the KV,

the KV reveals the signer’s identity.
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∧

D∈{D1,D2}

∧

σ∈Σ(D)

2KV

(

[req(H,KV)(σ)]KVid(D, σ)@H
)

(37)

The KV needs its public and secret group keys for invoices, piG and siG to verify

the identity of the issuer.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

¬
(

piG@KV ∧ siG@KV
)

⇒ [req(H,KV)(σ)]KV⊥ (38)

Clearing – Pharmacy

To claim reimbursement from the health insurance, the pharmacy encloses the tran-

script of a show operation into an invoice and signs the invoice. After the signature
operation, it holds the signed invoice.

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

[signF(inv(tM(ps, D, ps ′)))]Fσ
inv
F (tM(ps, D, ps ′))@F

)

(39)

The sign operation is the only operation by which the pharmacy can get a signed
invoice.

∧

D∈{D1,D2}

∧

ps,ps′∈Ps
2F

(

¬σinv
F (tM(ps, D, ps ′))@F⇒

(

¬σinv
F (tM(ps, D, ps ′))@F W+

F 〈signF(inv(tM(ps, D, ps ′)))〉F
)

)

(40)

The pharmacy needs its secret key to sign an invoice. It can only enclose those
transcripts into an invoice that it holds.

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

∧ 2F

(

¬(skF@F∧ tM(ps, D, ps ′)@F) ⇒ [signF(inv(tM(ps, D, ps ′)))]F⊥
)

(41)

The pharmacy claims reimbursement by depositing her signed invoice at the health
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insurance. It needs to hold the invoice in order to deposit it.

∧

σ∈Σ(F)

(

∧2F

(

¬σ@F⇒ [dep(F,H)(σ)]F⊥
)

)

(42)

The health insurance receives a signed invoice from the pharmacy by a deposit

operation. It holds a received invoice forever.

∧

σ∈Σ(F)

2H

(

[dep(F,H)(σ)]H(2Hσ@H)
)

(43)

The health insurance receives a signed invoice from the pharmacy only through a

deposit operation.

∧

σ∈Σ(F)

(

¬σ@H W+
H〈dep(F,H)(σ)〉H⊤

)

(44)

The health insurance accepts an invoice from the pharmacy only, if it receives the

invoice for the first time, if it can verify the signature, i.e. it holds the public key of
the pharmacy, and if it can verify the group of the issuer of the prescription, i.e. it

holds the public prescription key of group G.

∧

σ∈Σ(F)

2H

(

(

σ@H∨ ¬pkF∨ ¬ppG
)

⇒ [dep(F,H)(σ)]H⊥
)

(45)

From an invoice of the pharmacy, the health insurance learns the group of the
physician that has issued the corresponding prescription.

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

σinv
F (tM(ps, D, ps ′))@H ⇒ group(G, σinv

F (tM(ps, D, ps ′)))@H
)

(46)

After the health insurance has received a signed invoice from the pharmacist, it will

eventually reimburse the pharmacist. For each signed invoice, it will reimburse the
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pharmacy only once.

∧

σ∈Σ(F)

2H

(

[dep(F,H)(σ)]H 3H[reimb(H,F)(σ)]H⊤
)

(47)

7.2.3 Semantic Constraints – Epistemic Behavior

In the previous section we have modeled semantic constraints about the temporal
behavior. Each agent knows some of the specified constraints. This section shows

how we can model the effects of operations on the knowledge of agents. In this
context it is important to remember that the logic L does not assume perfect recall

of agents. This means, that agents can forget information by performing operations.
The following formulae are characteristic for perfect recall and do not hold in

general:

Ki[a]iφ ⇒ [a]iKiφ

Ki2iφ ⇒ 2iKiφ

We will not model the change of knowledge for all operations as this would imply a

large number of formulae without giving us more insight into how these constraints
can be modeled. Instead we restrict ourselves to only few examples.

Epistemic effects of publishing keys In equation (6) we formalized that after the

publish operation, the agent to whom the key was published, holds the key forever.
We assume that this constraint is always known to the publisher:

∧

k∈pubkey

∧

i,j∈Ag
i 6=j

2i

(

Ki

(

2i

(

[pub(i,j)(k)]i (2jk@j)
)

))

(48)

Since we do not assume in our framework that agents have perfect recall, the above
constraint does not imply that after publishing a key to agent j, agent i always know

that agent j holds the key forever. For example, without having perfect recall, agent
i may simply forget that it has published the key to agent j. So, in our framework,

we have to explicitly formalize that agent i does not forget that she has published
the key to another agent:
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∧

k∈pubkey

∧

i,j∈Ag
i 6=j

2i [pub(i,j)(k)]i

(

(

Ki(2jk@j)
)

∧
(

2i(Kik@j)
)

)

(49)

Note, that the above formula does not belong to the restricted language Lc for which

the tableau system is complete: Agent i knows that something local to agent j holds.
However, agent i does in practice have no control over the fact local to j. In our

scenario, it might for example happen that agent j’s system crashes and will delete
all the keys. Agent i wouldn’t know that, so how can agent i know that agent j

holds the key?

Another way to model the constraint which says that the publishing agent will never
forget, that the agent to whom she has published a key will hold the key forever

is by specifying that the publishing agent keeps “a record” of this operation. To
specify this, we introduce a new proposition kj for each public key k and for each

agent j.

∧

k∈pubkey

∧

i,j∈Ag
i 6=j

(

2i [pub(i,j)(k)]i 2ik
j@i

∧ 2i

(

kj@i ⇒ Kik@j
)

∧ ¬kj@i W+
i 〈pub(i,j)(k)〉i⊤

)

(50)

Depending on the point of view, we might favor either the first or the second scenario.

We can further assume that whenever some agent j holds a public key of another

agent, agent j believes that the other agent holds the public key as well and also
holds the corresponding secret key (we assume that every actor knows that there

exists exactly one group G of physicians which includes both physicians). (Note,
that we distinguish between “agent i believes that agent j holds a key” and “agent i

holds the key”. If we, for example, formulate BjskH@H then this means that agent
j believes that agent H holds the secret key named by skH. This, however, does not
mean that agent j believes the value of the key skH and can thus use the key. If we

wanted to express that agent j believes the value of the key, then we would have to
formulate BjskH@B.
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∧

j∈Ag
2j

(

pkH@j ⇒ 2j

(

Bj(pkH@H ∧ skH@H)
)

∧ pkF@j ⇒ 2j

(

Bj(pkF@F∧ skF@F)
)

∧ ppG@j ⇒ 2j

(

Bj
(

(ppG@D1∧ spG@D1) ∨ (ppG@D2∧ spG@D2)
))

∧ ppG@j ⇒ 2j

(

Bj
(

ppD1@D1∧ ppD2@D2∧ spD1@D1∧ spD2@D1
))

∧ ppG@j ⇒ 2j

(

Bj
(

ppG@KV ∧ spG@KV
))

∧ piG@j ⇒ 2j

(

Bj
(

(piG@D1∧ siG@D1) ∨ (piG@D2∧ siG@D2)
))

∧ piG@j ⇒ 2j

(

Bj
(

piD1@D1∧ piD2@D2∧ siD1@D1∧ siD2@D1
))

∧ piG@j ⇒ 2j

(

Bj
(

piG@KV ∧ siG@KV
))

)

(51)

Epistemic constraints concerning i-certificates The health insurance always
knows that each I-certificate is issued only to one policy holder:

∧

ps∈Ps

2H

(

KH ¬
(

I(ps)@P1∧ I(ps)@P2
)

)

(52)

The health insurance knows that after each issue operation, the participating pol-

icy holder holds one more I-certificate. Let βissue denote formula (14). Then this
constraints can be formalized as

2H KHβissue (53)

7.2.4 Specification of Security Constraints

The introduced example of a privacy oriented clearing scheme has to satisfy a number

of security constraints which will be discussed in this section. According to the
introduction we can distinguish among various aspects of security constraints:

• Secrecy: We have to prevent the improper disclosure of data.

• Integrity: We have to prevent the improper modification of data.
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• Availability: We have to prevent denial of service.

We can find all these three aspects in our example system. The main purpose of the

system as it is described in [BS97a], [BS97b] is to maintain as much privacy for all
participants of the health care system as possible on the one hand and to ensure as

much “control” as is necessary on the other hand. For example, though the health
insurance must know that an invoice of a physician is “correct” and that the treated

patient is actually insured by the health insurance, it does not need to know the
identities of the issuing physician or of the patient/policy holder.

We will now discuss a number of security constraints of the system concerning the

three aspects mentioned above and show how they can be formalized in our specifi-
cation language:

Secrecy The main secrecy requirement of the described health care system is that
the health insurance shall not know which physician has treated which

policy holder without the help of the KV and unless the policy holder has misbe-
haved and shown an I-certificate twice.

This main secrecy constraint can be divided into basically two simpler constraints:

1. The health insurance does not know the identity of the holder of
an I-certificate unless the holder has misbehaved and shown an I-
certificate twice.

We can even strengthen this constraint: The health insurance does not know
the identity of the holder of an I-certificate unless it knows that the holder
has misbehaved and shown an I-certificate twice.

Our logic does not provide any temporal past operators. We thus introduce
two new propositions local to the policy holder. The new proposition Iu(ps)

is true, if and only if the I-certificate with pseudonym ps has already been
shown. The new proposition ds(ps) (double-show) is true if and only if the
policy holder has shown an I-certificate at least twice.

When a policy holder shows an I-certificate to a physician or pharmacy, she
remembers, which I-certificate she has used. Showing it to a physician or
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pharmacy is the only way to use it and to remember that it is used.

α1(P, ps) ::=2P

(

∧

D∈{D1,D2}

[show(P,D)(ps)]P2PI
u(ps)@P

∧
(

∧

D∈{D1,D2}

[gShow(P,F)(ps, D, ps)]D2PI
u(ps)@P

)

)

α2(P, ps) ::=¬Iu(ps)@P W+
P

(

∨

D∈{D1,D2}

〈show(P,D)(ps)〉P⊤

∨
(

∨

D∈{D1,D2}

〈gShow(P,F)(ps, D, ps)〉D⊤
)

)

If a policy holder shows a used I-certificate again to some physician or phar-
macy, she has double-shown it. The only way to double-show an I-certificate

is to show a used certificate again.

α3(P, ps) ::=

2PI
u(ps)@P ⇒

∧

D∈{D1,D2}

(

[show(P,D)(ps)]P
(

2Pds(ps)@P
)

∧[gShow(P,F)(ps, D, ps)]D
(

2Pds(ps)@P
)

)

α4(P, ps) ::=

¬ds(ps)@P W+
P

(

Iu(ps)@D∧
∨

D∈{D1,D2}

(

〈show(P,D)(ps)〉P⊤ ∨ 〈gShow(P,F)(ps, D, ps)〉D⊤
)

)

The health insurance always knows the constraints
α1(P, ps), α3(P, ps), α2(P, ps), α4(P, ps).

∧

P∈{P1,P2}

∧

ps∈Ps

2H

(

KH
(

α1(P, ps) ∧ α3(P, ps) ∧ α2(P, ps) ∧ α4(P, ps)
)

)

(54)

Now we formalize the constraint that the health insurance knows the identity

of the holder of an I-certificate if and only if the holder has misbehaved as
follows:
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∧

P∈{P1,P2}

∧

ps∈Ps

2H

(

KH
(

I(ps)@P ∧ ds(ps)@P
)

⇒ KH
(

id(P, ps)@H
)

)

∧ 2H

(

KH
(

id(P, ps)@H
)

⇒ KH
(

I(ps)@P ∧ ds(ps)@P
)

)

(55)

Note again, that this specification uses the full language L and is not covered
by the restricted language Lc.

If we argue that the health insurance cannot actually know that the policy

holder has misbehaved, then we could again introduce an new proposition
that intuitively says: “the health insurance keeps a note that is suspects the

policy holder to have misbehaved”. This suspicion can then be verified with
the policy holder.

2. The health insurance always knows the identity of the signer of an

invoice and identity of the issuer of a prescription only with the
knowledge of the KV.

We would naively (and wrongly) wish to formalize (the first part of) the above
constraint as follows:

∧

D∈{D1,D2}

∧

ps∈Ps

2H(KHid(D, σ
inv
D (tI(ps)))@H ⇒ KKV(KHid(D, σ

inv
D (tI(ps)))@H))

∧2KV(KHid(D, σ
inv
D (tI(ps)))@H ⇒ KKV(KHid(D, σ

inv
D (tI(ps)))@H))

First of all, this formalization is syntactically not correct: The temporal modal-

ity 2i requires a formula local to agent i and the sub-formulae that follow the
box operators in the formula above are of type {H, KV}. However, also se-

mantically, it is questionable to say “always in the future of health insurance
H something must hold for the KV”. Suppose, for example a configuration
local to health insurance H, in which the health insurance does not know the

identity of the signer. Then the health insurance performs some operation
without the participation of other agents. After the operation, it knows the

identity. From the point of view of the KV, both configurations before and
after the operation are equivalent. So, how can the KV gain knowledge about

some other agent, if it cannot even distinguish these two configurations?

We reformulate the first part of the constraint as follows: Both the health
insurance and the KV always know that the health insurance knows the identity

of the signer of an invoice only with the knowledge of the KV.
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∧

P∈{D1,D2}

∧

ps∈Ps

2H

(

KH

(

KHid(D, σ
inv
D (tI(ps)))@H ⇒

KKV
(

KHid(D, σ
inv
D (tI(ps)))@H

)

))

∧ 2KV

(

KKV

(

KHid(D, σ
inv
D (tI(ps)))@H ⇒

KKV
(

KHid(D, σ
inv
D (tI(ps)))@H

)

))

(56)

The second part of the constraint, namely that the health insurance always
knows the identity of the issuer of a prescription only with the knowledge of

the KV can be formalized analogously:

∧

P∈{D1,D2}

∧

ps,ps′∈Ps

2H

(

KH

(

KHid(D, t
M(ps, D, ps ′))@H ⇒

KKV
(

KHid(D, t
M(ps, D, ps))@H

)

))

∧ 2KV

(

KKV
(

KHid(D, t
M(ps, D, ps ′))@H ⇒

KKV
(

KHid(D, t
M(ps, D, ps ′))@H

)

))

(57)

Integrity We have already encountered a number of integrity constraints in section

7.2.2. Here are some examples:

• A physician does only participate in a show operation, if she has not already

“seen” the shown pseudonym before (see constraint (17)).

• A physician issues prescriptions only to those policy holders that are currently
under treatment (see constraint (22)).

• The pharmacy accepts each I-certificate only once (see constraint (25)).

Sometimes, the participating parties need an explicit authorization or “right” to

participate.

1. A policy holder may only request treatment on account of the health insurance
from a physician if she is insured by some health insurance.
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In our example, being insured by some health insurance is equivalent to having
I-certificates of this health insurance. The policy holder proves her right by

showing the physician one of her I-certificates.

So, we can formalize the above constraint as follows:

∧

D∈{D1,D2}

∧

P∈{P1,P2}

∧

ps∈Ps

2P

(

¬I(ps)@P ⇒ [show(P,D)(ps)]P⊥
)

(58)

2. A physician is entitled to provide treatment on account of the health insurance
only if she is registered by the health insurance.

∧

D∈{D1,D2}

∧

P∈{P1,P2}
(

[show(P,D)(ps)]D⊥ WD〈register(D,KV,H)〉P⊤
)

(59)

3. Each policy holder shall receive only the prescribed medicaments. In particu-
lar, each prescribed medicament shall be received only according to prescrip-

tion.

There are several ways how this constraint could be violated: A policy holder
could show the prescription together with an I-certificate that does not corre-
spond to the prescription, she could show a prescription more than once, or

she could use a forged prescription.

According to the first possibility to misuse a prescription, we require that the
pharmacy accepts a prescription only if the policy holder shows the corre-

sponding I-certificate along with the prescription, i.e. ps = ps ′:

∧

D∈{D1,D2}

∧

P∈{P1,P2}

∧

ps,ps∈Ps
ps 6=ps ′

(

2F[gShow(P,F)(ps, D, ps
′)]F⊥

)

(60)

According to the second possibility to misuse a prescription, we require that

each policy holder can show the same prescription only once:

∧

P∈{P1,P2}

∧

ps,ps′∈Ps

∧

D∈{D1,D2}

2P

(

[gShow(P,F)(ps, D, ps
′)]P 2P

(
∧

ps′′∈Ps
[gShow(P,F)(ps

′′, D, ps ′)]P⊥
)

)
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(61)

This constraint is satisfied in our setting: We consider only one pharmacy

and according to constraint (23) this pharmacy always remembers, which I-
certificates it has already been shown. According to constraint (25) the phar-

macy does not accept the same I-certificate twice. Now, if the pharmacy
accepts only prescriptions with corresponding I-certificates, as requested in

constraint (60), then the policy holder can not show the same prescription
more than once to the same pharmacy.

Now consider the case of two pharmacies F1 and F2, each working in the same

way as described above, which means, all the constraints (23), (24), (26), (25),
and from (39) to (45) apply for both F1 and F2. Then the constraint that a

policy holder shall not be able to show the same prescription more than once
can be formalized similar as above:

α :=
∧

P∈{P1,P2}

∧

ps,ps′∈Ps

∧

D∈{D1,D2}

∧

F,F′∈{F1,F2}

2P

(

[gShow(P,F,H)(ps, D, ps
′)]P2P

(
∧

ps′′∈Ps
[gShow(P,F′,H)(ps

′′, D, ps ′)]P⊥
)

)

(62)

As the system is described above, this constraint would not be enforced. It
would be possible for a policy holder to show the same prescription twice to

different pharmacies. In this case, only the health insurance would identify
the policy holder that has used the same prescription twice after the phar-

macies have claimed reimbursement and thus sent their invoices to the health
insurance. We could for example change the system in a way suggested by

Bleumer and Schunter: Each time a policy holder shows a prescription to a
pharmacy, the pharmacy first consults the health insurance. If according to

the health insurance, the shown I-certificate and prescription have not been
shown before, the pharmacy accepts the prescription.

To change the system appropriately, we add the operation

gShow(P,F,H)(ps, D, ps
′) to the health insurance’s operation alphabet.

The health insurance remembers the shown I-certificate by proposition
(H, ps)@H, thus we modify the set of propositions of the health insurance as

follows:
P ′
H := PH∪ {(H, ps) | ps ∈ Ps}

For the new show operation gShow(P,F,H)(ps, D, ps
′) we require all constraints
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that also apply to operation gShow(P,F)(ps, D, ps
′). Further, we require that

the health insurance remembers each shown I-certificate and only participates,

if the shown I-certificate and the shown prescription correspond, if the I-
certificate has not been shown before and if the physician that has issued

the prescription belongs to group G of which the health insurance holds the
public group key for prescriptions:

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

F∈{F1,F2}

∧

ps,ps′∈Ps
ps 6=ps ′

2H[gShow(P,F,H)(ps, D, ps)]H(H, ps)@H

∧ 2H[gShow(P,F,H)(ps, D, ps
′)]H⊥

∧ 2H

(

(

(H, ps)@H∨ ¬ppG
)

⇒ [gShow(P,F,H)(ps, D, ps)]H⊥
)

(63)

A policy holder shall not be able to claim medicaments on behalf of a forged

prescription, i.e. on behalf of a prescription that cannot be verified using the
public group key of the physicians’ group. Up to now, we have only modeled

prescriptions that are issued by physicians. Then the constraint is that the
pharmacy must hold the public group key of the issuing physician’s group:

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps,ps′∈Ps

2F

(

¬ppG@F⇒ [gShow(P,F)(ps, D, ps
′)]F⊥

) (64)

We could also consider that the policy holder actually holds forged prescrip-

tions that are not issued by a physician. To formulate this we add new propo-
sitions to the set of propositions of the policy holder:

P ′
P := PP ∪ {M(X, ps)@P|ps ∈ {♠,♦,♣,♥}}

The prescriptions that are represented by this new propositions are not issued
by anyone inside the system. The policy holder may get them at any time.

We introduce an operation that says, the policy holder “receives a forged”
prescription “externally”:

O ′
P := OP ∪ {externalP}

This external operation is the only operation that may cause M(X, ps) to be

true (though it does not have to), there are no preconditions for this operation
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to be executed. Initially, we assume that no policy holder has any forged
prescriptions.

∧

P∈{P1,P2}

∧

ps∈Ps

(

¬M(X, ps)@P

∧ 2P

(

¬M(X, ps)@P ⇒
(

¬M(X, ps)@P W+
P 〈externalP〉P⊤

))

)
(65)

The pharmacy uses the public group key to verify, whether a shown prescrip-
tion is signed by a physician or not. Since none of these “new” prescriptions

is signed by a physician, the pharmacy shall not accept any of them:

∧

P∈{P1,P2}

∧

ps,ps′∈Ps
2F[gShow(P,F)(M(X, ps), ],)F⊥ (66)

4. The pharmacist may claim reimbursement only for prescriptions, for which the
corresponding I-certificate has been shown. We model this by saying that the

health insurance (which has to pay for the medicaments) only accepts signed
invoice, if the I-certificate and the prescription shown to the pharmacy, are
issued on the same pseudonym.

∧

D∈{D1,D2}

∧

ps,ps′∈Ps
ps 6=ps ′

2H[dep(F,H)(σ
inv
F (tM(ps, D, ps ′)))]H⊥ (67)

5. The physician may claim reimbursement only for giving treatment to a policy

holder who has registered as a patient.

This constraint is already ensured by formulae (17) and (29), since we have
requested for the show operation that the policy holder holds the I-certificate

that she shows, and the physician must holds the transcript of the I-certificate
that she includes in an invoice.

Availability

1. After the registration, the registering parties know that they must eventually

exchange their cryptographic keys:
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∧

D∈{D1,D2}

KH2H[register(D,KV,H)]H

(

3H〈pub(D,H)(ppG)〉H⊤ ∧ 3H〈pub(D,H)(piG)〉H⊤ ∧ 3H〈pub(H,D)(pkH)〉H⊤
)

(68)

2. After the generation of the group keys the KV must eventually publish the

public group keys to the corresponding physicians:

2KV [geniKV]KV
(

3KV〈pub(KV,D1)
(piG)〉KV⊤ ∧ 3KV〈pub(KV,D1)

(piG)〉KV⊤
)

∧ 2KV [genpKV]KV
(

3KV〈pub(KV,D1)
(ppG)〉KV⊤ ∧ 3KV〈pub(KV,D1)

(ppG)〉KV⊤
)

(69)

3. After the health insurance has received an invoice from the KV, it either has

to eventually reimburse the physician, i.e. transfer the money to the KV that
gives it to the physician or, if it suspects deception, must eventually ask the

KV to reveal the identity of the signer of the invoice (and notify the respective
physician).

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2H

(

[dep(KV,H)(σ)]H3H

(

〈reimb(H,KV)(σ)〉H⊤∨〈req(H,KV)(σ)〉H⊤
)

)

(70)

4. If the KV receives reimbursement from the health insurance, it must eventually
forward the money to the corresponding physician.

∧

D∈{D1,D2}

∧

σ∈Σ(D)

2KV

(

[reimb(H,KV)(σ)]KV3KV〈reimb(KV,D)(σ)〉KV⊤
)

(71)

5. If the health insurance accepts an invoice of the pharmacist, it must eventually
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reimburse the pharmacist.

∧

σ∈Σ(F)

2H [dep(F,H)(σ)]H3H〈reimb(H,F)(σ)〉H⊤ (72)

6. If a policy holder claims medicaments from a pharmacy by showing a prescrip-

tion and the corresponding I-certificate, the health insurance must eventually
deliver the medicament.

∧

P∈{P1,P2}

∧

D∈{D1,D2}

∧

ps∈Ps

2P

(

[〈gShow(P,F)(ps, D, ps)〉]P3P〈deliverF,P(ps)〉P⊤
)

(73)

7. If a physician D sends her public key piD or ppD to the KV, the KV must
eventually use the public key to generate a pair of group keys.

∧

D∈{D1,D2}

2KV

(

[pub(D,KV)(piD)]KV 3KV〈geniKV〉KV⊤

∧ [pub(D,KV)(ppD)]KV 3KV〈genpKV〉KV⊤
)

(74)

8. If the KV generates a pair of group keys piG, siG or ppG, spG, the public group
keys piG or ppG respectively, must eventually be sent to the health insurance.

2KV

(

[geniKV]KV3KV〈pub(KV,H)(piG)〉KV⊤

∧ [genpKV]KV3KV〈pub(KV,H)(ppG)〉KV⊤
) (75)

Modeling rights In our example, execute rights for operations are modeled by
propositions: A policy holder can for example only register at a physician by showing
an I-certificate to the physician. To do so, show of course needs an I-certificate that

has before been issued by the health insurance. Issuing an I-certificate to a policy
holder can be seen as granting the right to request treatment from a physician on

account of the health insurance.
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To request medicaments for a pharmacy, the policy holder needs a prescription
that has before been issued by a physician. As long as the policy holder does not

hold a prescription (and a corresponding I-certificate), she cannot perform the show
operation together with the pharmacy - and may not receive medicaments from the

pharmacy. Issuing a prescription to a policy holder can be seen as granting the right
to request medicaments from a pharmacy.

Similarly, secret keys can be seen as execute rights: The secret invoice key of the

pharmacy for example allows, and enables, the pharmacy to sign invoices. The
public group key and the secret individual key allow and enable a physician to sign

an invoice with the group signature, the public group key for prescriptions and a
physicians individual key for prescriptions enable a physician to issue a prescription
to a policy holder. And finally, the secret key of the health insurance enables the

health insurance to issue I-certificates.

When a right already granted is to be revoked, this can also be done by an operation

performed together of the agent that revokes the right and the agent from which
the right is revoked. The possible consequences of a revocation operation (change
of truth values of propositions, restrictions about the behavior of the agent of which

the right has been revoked) must be explicitly modeled in the provided language.

7.3 Features and Limitations of the Framework

In the previous section we have shown how the various types of semantic constraints

and security constraints can be encoded in our framework.

The example system is seen as a distributed system in which each actor (e.g. the
health insurance, physician, policy holder, etc.) performs operations sequentially.

Operations by different actors are either performed concurrently (e.g. generation of
keys) or jointly (e.g. issuing I-certificates or issuing prescriptions). These distribution

aspects are naturally encoded in our framework as each acting site of the information
system is seen as an agent.

(Execute) rights for operations are modeled by local propositions. The value of

propositions is changed through operations.

Knowledge of each agent is determined by the agent’s local state, change of knowl-
edge is due to operations performed by the agent.

Reasoning about past behavior Consider again the constraint that the health in-

surance knows the identity of a pseudonym ps only if it knows that the corresponding
policy holder has shown the I-certificate issued on pseudonym ps twice. It would be
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convenient to formalize something like: If the health insurance knows the identity of
a pseudonym, then it knows that at some time in the past, the corresponding policy

holder has shown the I-certificate for a second time. This, however, is not possible in
our framework. Instead, we introduced a new proposition local to the policy holder

that is only true after an I-certificate has been shown twice. Then we can formalize
that the health insurance knows the identity of the pseudonym only if it knows that
this proposition local to the policy holder is true. This means that even if we can

rule out models, in which the health insurance knows the identity of a pseudonym
without the corresponding policy holder having shown the I-certificate issued on this

pseudonym twice, we can not formalize that the health insurance knows that the
policy holder misbehaved in the past.

Perfect Recall As already discussed in the previous section, we do not assume

in our framework that agents have perfect recall. Perfect recall implies a strong
interaction between knowledge and action and usually adds to the complexity of the
framework.

While specifying secrecy constraints, assuming perfect recall might be desirable:
When we want to ensure that secrets are kept from an agent, it makes sense to

assume that an agent always remembers all her knowledge already acquired in the
past and all the operations performed in the past. In our framework, we must
explicitly state for all information the agent acquires that she will never forget this

information in the future. In subsection 7.2.3 we demonstrated two possibilities how
this can be specified.

However, assuming that agents have perfect recall is not always desirable. When
specifying availability constraints it makes sense to assume, that agents may for-
get information they already acquired. An agent can for example model a human

administrator who has to perform certain action at the end of each calendar year
(e.g. archiving of old data) to ensure the correct functioning of the system. Though

humans do not exhibit perfect recall the correct functioning of the system is still
desired. If this system is modeled in our framework, the annual action must be

ensured by the specification of the system without the assumption that the agent
representing the administrator has perfect recall.

Real World View In many frameworks, knowledge of agents is related to the real
world. When an agent knows some fact, this fact must hold in the real world (in the

actual real world as well as in all worlds which the agent considers to be possible).
However, in our setting we do not model the real world. Agents’ knowledge and

belief is modeled only in relation to the facts agents ’hold on their desk’. If we
wanted to relate knowledge about the real world, we would have to introduce a
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representing agent for the real world inside the system that explicitly synchronizes
with the system for example through a global clock (again modeled as agent of the

system). As long as there is no explicit synchronization with the “real-world”, we
could view agents as sitting in a black box. They can only reason about the system

“inside the box”, but since they do not notice changes in the real world outside the
system (box) it is in our opinion difficult to reason about “the actual state” of the
real world.

Frame Problem As it is well-known, any attempt to formalize local effects of oper-

ations somehow has to deal with the non-effects of operations, too. This requirement
is particularly important for security considerations. The problem is known as the

frame problem and was first mentioned by [MH69, Sha97]. Due to the law of iner-
tia, only few facts, represented as propositions in our approach, are changed by an

action, most of the facts remain unchanged.

We approach this problem as follows: For every operation we define a formula that
specifies the effects of the formula. For every proposition, we define two formulae, one

that specifies through which operations the value of the proposition may be toggled
from true to false, and another one to specify, when the value of the proposition may

be toggled from false to true. For each proposition we specify that if a proposition is
true, it will remain true until some particular operation will be performed. And if the
proposition is false, it will remain false, until some operation will be performed that

changes the value of the proposition from false to true. Note, that due to definition
3.3.2(4) of the accessibility relation for knowledge an operation can only change

those propositions that are in the proposition alphabet of agents participating in
the operation.

In our example, we defined formulae for every operation that specify the effects of

the operation, e.g. the interpretation of which propositions is changed. For each
proposition, we identified a set of operations that may change the interpretation of

the proposition and then specified the value will remain unchanged until a certain
operation is performed which may change the interpretation of the proposition.

We also approach this frame problem by the definition 3.3.2(4) of the accessibility
relation for knowledge. This definition ensures that the knowledge of an agent cannot
be affected by operations performed by other agents. This definition is related to

various solutions to the frame problem: In [CGH99] Castilho et al combine a logic
of actions and plans with an explicit notion of dependence/independence between

propositions and actions. An action can only affect the truth value of a proposition if
the proposition is dependent on the action. In [SL93] Levesque and Scherl propose

successor state axioms as a solution to the frame problem for epistemic fluents.
An “accessibility” predicate K for situations and a knowledge predicate Knows is
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defined. The successor state axiom then requires that two situations s1 and s ′1 are
“accessible” (in terms of this predicate) and situation s1 leads to a successor situation

s2 via an action a, iff action a performed in situation s ′1 leads to a successor state
s ′2 which is “accessible” from situation s2.
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Chapter 8

Conclusion and Outlook

8.1 Summary

In this thesis, we developed a unifying framework for specifying semantic constraints
and security constraints in information systems.

After the motivation, we studied various types of semantic constraints and secu-

rity constraints that can occur in information systems and developed some basic
terminology in chapter 1.

In chapter 2 we discussed the advantages and disadvantages of the related work with
respect to our problem and justified the need for a new approach.

In chapter 3, we captured our view of a distributed information system in a com-

putational model. In this model, we uniformly represented each component (actors
and objects) of the information system as a sequential agent. Each agent can per-

form operations either autonomously or jointly with other agents as synchronization
operations. Each agent is affiliated with a set of operations and with a set of propo-

sitions. To capture agents’ knowledge and belief, we defined for each agent one
indistinguishability relation each for knowledge and for belief.

In chapter 4, we developed a temporal and epistemic logic, the semantics of which

is defined on the computational model described above. The logic contains a local
next-operator and a local until-operator as temporal operators and a knowledge and

a belief operator for each agent as epistemic operators.

In chapter 5, we defined a tableau based proof system for satisfiability for a subset of
this logic. This subset does not contain any epistemic operators for belief. The main

difficulty of the tableau system arose through the interaction between operations and
knowledge of agents. In the computational model we required that the enabling of

an operation as well as its effects only depend on the knowledge (and configuration)
of the participating agents. Further, an operation cannot have any effect on the

knowledge of non participating agents. Because of this restriction a kind of “global
view” on the whole structure under construction is needed to detect and repair
violations of this restriction. To solve this problem, we defined a kind of explicit
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tableau. We extended the logical language such that we are able to directly talk
about the structure of the computational model within the language.

We showed soundness and completeness of this proof system in chapter 6.

Finally in chapter 7, we gave a specification example by modeling a secrecy ori-
ented approach to the German health care billing and clearing system introduced
by Bleumer and Schunter in [BS97a]. We interpreted their system as a distributed

information system and specified the most important semantic constraints and se-
curity constraints that occur in the system.

8.2 Competency of the Framework

The aim of this work was to develop a unifying framework for the specification
of semantic constraints and security constraints. In section 1.3 we analyzed the

problem and identified the requirements of the framework. In the following we will
briefly discuss how far our framework meets these requirements.

States and (Sequences of) Updates We required that our framework has a notion
of states and sequences of updates to be able to model static semantic constraints

that restrict possible states of the system and dynamic semantic constraints that
restrict possible (sequences of) updates of the system. In our framework, we view

the information system as a distributed system and do not assume a global state of
the system but model local states of each component. Each component is represented

by an agent and the local state of a component is modeled by the interpretation of
the agent’s local propositions in the agent’s local situation. Updates are modeled
by joint operation of agents, as we will see below on page 221. We can formalize

statements about sequences of updates through temporal next operators in the logic.

Actor’s Knowledge and Execute Rights for Read Operations We required that
our framework must have a notion of actor’s knowledge and execute rights for read

operations. Actor’s knowledge about facts she has read from the database is repre-
sented by propositions local to the agent representing the actor. Actor’s knowledge

about the behavior of the system and about the states of other agents can be for-
malized by epistemic operators within the language as we have seen in the example.
Execute rights for read operations are also modeled by propositions local to the

agent representing the reading actor. The read operation can be performed in a
situation only if the proposition representing the corresponding execute right is true

in this situation.
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Execute Rights for Write Operations We required that our framework has a no-
tion of execute rights for write operations. Analogous to execute rights for read

operations, execute rights for write operations are modeled by propositions local to
the agent representing the writing actor. A write operation can be performed in a

situation only if the proposition representing the corresponding execute right is true
in this situation.

Time We required that our framework has a notion of time. The introduced logic

is a temporal logic with local next and until operators. Each agent performs oper-
ations along a local time line. Timeliness of different agents are synchronized via

synchronization operations performed by them. The logic allows to make temporal
statements about multiple local timeliness.

Actors and Data-Objects We required a formalism for actors data-objects in our
framework. Each actor as well as each data-object is uniformly modeled as a sequen-

tial agent that performs operations. Stored data is modeled by the interpretation of
local propositions.

Read, Update and Authorization Operations We required three types of opera-
tions, read operations or queries, update operations and authorization operations

that our framework has to capture. A read operation is an operation in which an
actor queries the database and updates her knowledge with the information received
from the database. An update operation is an operation in which an actor updates

an object of the database and an authorization operation is an operation in which an
actor grants a right to or revokes a right from another actor. In our framework we do

not distinguish among these types of operations in general. Read operations, update
operations and authorization operations are uniformly modeled as synchronization

operations between a group of agents.

An update operation is for example modeled by a joint operation of the user-agent
representing the actor and the repository-agent representing the data object. In the

introduced language we then formalize how this joint operation changes the local
situations of the participating agents by defining the meaning of the operation over

the interpretation of the relevant propositions.

Overview by Example of Constraints The following table gives an overview of the

various types of constraints in an information system and relates them to constraints
in our specification example formalized in chapter 7. The first column of the table
contains the type of the constraint, the second column describes the constraint and

the third column relates the constraint to constraints in our example.
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Type Description Example

static semantic
constraints

restrict possi-
ble states of
the information

system

an I-certificate cannot be unused and dou-
ble shown at the same time

the same I-certificate cannot be issued to

two policy holders.

dynamic

semantic
constraints

restrict possible

(sequences of)
updates

the health insurance can verify the group

of the signer of an invoice, only if it has the
corresponding group key for invoices.

each issue operation increases the number
of I-certificates of the participating policy

holder by one.

secrecy con-

straints
restrict the flow of

information

The health insurance knows the identity of

the signer of an invoice only with the knowl-
edge of the KV.

The health insurance knows the identity

of the holder of an I-certificate, only if it
knows that holder has double shown the I-
certificate.

integrity con-
straints

restricts the pos-
sible (sequences

of) updates by
restricting actors’

write access to
objects

a policy holder may only request treatment
from a physician if she is insured by some

health insurance.

a physician is entitled to provide treatment
on account of the health insurance only if

she is registered by the health insurance.
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Type Description Example

availability
constrains

impose obliga-
tions on the

system

if the health insurance accepts an invoice
from the pharmacy, it must eventually re-

imburse the pharmacy.

if the pharmacy accepts the prescription
from a policy holder, it must eventually de-
liver the prescribed medicaments.

8.3 Open Problems

Computational model In our work we follow the traditional approach of modeling
agents as logically omniscient, we assume that an agent knows whatever is true in

all the situations the agent considers to be possible. This, however, means that
all agents know all the consequences of their knowledge and they know all valid

formulae. In the context of modeling secrecy this is a reasonable approach: If a
secret has to be kept, it is sensible to assume that the reasoning agent has logical

omniscience. However, in the context of modeling availability it is more appropriate
in some cases to assume that the agents are not logical omniscient: If a system

administrator is supposed to take some appropriate action as soon as he knows that
an account is being misused it makes sense to assume that the administrator is not

logical omniscient. Human administrators may draw faulty conclusions or may not
possess the computational power to infer all conclusions. Machine administrators
are resource bounded and may not have the capacity to compute all the conclusions.

While modeling belief of agents in an information system the question about belief
update and belief revision arises. When an agent gets information about changes

in the system she must update her beliefs, whereas when she gets new information
about a (local) situation in the system, she must revise her beliefs. One aim of our

system is to investigate consistency of a set of specified constraints. We did not
define any belief update or revision strategies in our model. Belief can be revised
and updated completely arbitrarily. It might be desired to investigate consistency

of a set of constraints under the assumption that the agents have intelligent belief
update and revision strategies which we did not treat in our work.

Language The modal operators defined in our language are sufficient to express

most of the required semantic constraints and security constraints as we demon-
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strated in the example in chapter 7. However, our language has following limitations
as we mentioned in section 7.3:

Often it is desirable to be able to formalize that an agent reasons about past behavior

of other agents. We for example observed this while formalizing security constraints
in our example: When the health insurance receives two invoices in which transcripts

of the same I-certificate are enclosed, we cannot formalize that the insurance knows
that the holder of the I-certificate has shown the I-certificate twice. Our language

only allows to reason about situations and future behavior of agents. In order to
be able to formalize the past behavior of an agent it could be useful to introduce

temporal past operators.

Our framework only allows to reason about the knowledge of individual agents. The
temporal logic introduced by Niebert in [Nie97] allows to reason about temporal

behavior of groups of agents. To our knowledge it is still unclear whether adding
temporal operators for group of agents provides extra expressiveness. In the context

of knowledge, it may be desired to reason about the knowledge of a group of agents.
For example, we might want to model that a secret is kept even if two or more agents
cooperate and put their knowledge together to build a group. In order to be able

to reason about the knowledge of a group of agents it could be useful to introduce
a modal epistemic operator for distributed knowledge.

Another limitation of our logic is the absence of an epistemic operator for common
knowledge. Common knowledge is for example needed for modeling agreement be-

tween agents [FHMV95]. While distributed knowledge usually does not add extra
expressiveness to a logic, common knowledge generally does [FHMV95].

Tableau The tableau based proof method defined in chapter 5 is shown to be sound
and complete. However, decidability is still an open issue. When constructing

an open tableau for a set of formulae, we can construct from an open branch of
the tableau a model with a situation that satisfies the set of formulae. There are

examples for sets of formulae that can be satisfied in models containing only a finite
set of runs while our procedure constructs a model that contains an infinite set

of runs. It is still unclear, how to modify our tableau procedure, such that only
necessary runs are constructed. It is not clear either, if there exist formulae that
require a model containing infinitely many runs.

The tableau procedure of chapter 5 is constructed for a subset of the logic introduced
in chapter 4 that does not contain modal operators for belief. It would be interesting

to extend the tableau system so that possible interaction between belief, knowledge
and action can be studied.
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Appendix A

Notations

Model

Ag = {1, . . . , k} set of agents Def. 3.1, page 21

ag, i agent

Õ = {O1, . . . ,Ok} distributed set of operations Def. 3.1, page 22

O =
⋃

i∈AgOi set of all operations Def. 3.1, page 22

Oi set of operations of agent i

op, a, ai operations
ag(op) set of agents that are involved in operation

op

P̃ = {P1, . . . ,Pk} distributed set of propositions Def. 3.1, page 21

P =
⋃

i∈AgPi set of all propositions

Pi set of propositions local to agent i
p, pi propositions

(Ag, Õ, P̃) static declarations of an information sys-

tem
↓ M downward closure Def. 3.2.1, page 23

E set of events Def. 3.2.2, page 23
Ei set of events of agent i Def. 3.2.2, page 23
λ labelling function of events Def. 3.2.2, page 23

F(Ag,Õ,P̃), F run of an information system Def. 3.2.2, page 23

A a set of runs of an information system
CF set of all configurations of a run F Def. 3.2.3, page 25

c Configuration of CF Def. 3.2.3, page 25
↓i c i-view of agent i on configuration c Def. 3.2.3, page 25

↓i (F, c) i-view of agent i on situation (F, c) Def. 3.2.5, page 26
c ≡i c ′ i-equivalence of configurations Def. 3.2.3, page 25
(F, c) ≡i (F, c ′) i-equivalence of situations Def. 3.2.5, page 26

c
a

−→ c ′ successor-relation on configurations Def. 3.2.3, page 25
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Model (cont ′d.)

(F, c)
a

−→ (F, c ′) successor-relation on situations Def. 3.2.5, page 26

RKi accessibility relation for knowledge Def. 3.3.2, page 29
RBi accessibility relation for belief Def. 3.3.3, page 30

I interpretation of a set of runs Def: 3.3.4, page 31
M = (A,RK, I) model of an information system pages 32

Logic

L temporal and epistemic logic Def. 4.1, page 35

Lc logic L without belief operator and with the
restriction for knowledge operator K, that in

a formula Kiφ, the sub formula φ must be of
type {i}

Def. 6.2.1, page 130

ΦA set of typed formulae page 35
φ,ψ, φ ′, ψ ′ formulas of L
⊥ formula of L, false Def. 4.1, page 35

⊤ formula of L, true Def. 4.1, page 35
¬φ formula of L, negation of φ Def. 4.1, page 35

φ ∨ψ formula of L Def. 4.1, page 35
〈op〉iφ formula of L Def. 4.1, page 35

φUiψ formula of L Def. 4.1, page 35
Kiφ formulas of L Def. 4.1, page 35

Biφ formula of L Def. 4.1, page 35
〈O〉iφ derived formula of L Def. 4.3, page 44

φ ∧ψ derived formula of L, and page 39
[a]iφ derived formula of L, weak next page 39
3iφ derived formula of L, eventually page 39

2iφ derived formula of L, always page 39
φWiψ derived formula of L, weak until page 39

|φ| size of a formula Def. 6.2.19, page 159
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Tableau formulae

L set of all tableau formulae Def. 5.3.1, page 54

Ll set of labelled formulae Def. 5.3.1, page 54
Ls set of structured formulae Def. 5.3.1, page 54
label set of tableau labels Def. 5.3.1, page 54

l, (F, c) tableau labels Def. 5.3.1, page 54
ℓ L-embedding Def. 5.3.2, page 55

ΓT set of tableau formulae, ΓT ⊂ L

χ chain in a set of tableau formulae Def. 5.3.4, page 57

|φ|b1 norm for logical formulae occurring in
tableau formulae

Def. 5.6.4, page 81

‖l ⊢ φ‖b1ΓT norm for labelled tableau formulae
occurring in the context of a fi-

nite tableau set that has the regular
tableau property

Def. 5.6.5, page 83

‖ΓT ‖
b1
Γ ′T

size of a set of formulae in the context
of ΓT

Def. 5.6.5, page 83

sub(φ) subformulae of a formula φ Def. 5.6.9, page 92

sub(ΓT ) subformulae occurring in a finite
tableau set ΓT

Def. 5.6.10, page 92

‖ΓT ‖
b2 norm for finite tableau sets that have

the regular tableau property
Def. 5.6.11, page 92

‖ΓT ‖
b3 norm for finite tableau sets that have

the regular tableau property
Def. 5.6.13, page 95

|(F, c) ⊢ φ| size of a tableau formula Def. 6.2.20, page 159

Tableau

T Tableau Def. 5.5.1, page 69
π path in a tableau
Γπ set of tableau formulae that occur on a tableau

path π
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A Tableau System for L

B.1 The Tableau Rules

Axioms and local rules

Axioms for unsatisfiability

ΓT , (F,c) ⊢ φ,(F,c) ⊢ ¬φ
(TR 1)

ΓT , (F,c) ⊢ ⊥
(TR 2)

Rules referring to logical implication

ΓT , (F,c) ⊢ ⊤

ΓT
(TR 3)

ΓT , (F,c) ⊢ φ∧ψ

ΓT , (F,c) ⊢ φ,(F,c) ⊢ ψ
(TR 4)

ΓT , (F,c) ⊢ φ∨ψ

ΓT , (F,c) ⊢ φ | ΓT , (F,c) ⊢ ψ
(TR 5)

Local knowledge rule (reflexivity)

Rule TR 6 may be applied only if the principal formula is unmarked. The side
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formula (F, c) ⊢ Kiφ will be marked.

ΓT , (F,c) ⊢ Kiφ (unmarked)

ΓT , (F,c) ⊢ Kiφ,(F,c) ⊢ φ
(TR 6)

Induction rules

ΓT , (F,c) ⊢ φ Uiψ

ΓT , (F,c) ⊢ ψ | ΓT , (F,c) ⊢ ¬ψ∧φ∧ 〈O〉iφ Uiψ
(TR 7)

(where 〈O〉iφ abbreviates
∨

a∈Oi
〈a〉iφ)

ΓT , (F,c) ⊢ φWiψ

ΓT , (F,c) ⊢ ψ | ΓT , (F,c) ⊢ φ∧¬ψ∧ [O]iφWiψ
(TR 8)

(where [O]iφ abbreviates
∧

a∈Oi
[a]iφ)

Rules Concerning Epistemic Structure

Creation of new Ri-successors

Rule (TR 9) may be applied only for unmarked principal formulae. The side formula

(F, c) ⊢ ¬Kiφ will be marked.

ΓT , (F,c) ⊢ ¬Kiφ (unmarked)

ΓT , (F,c) ⊢ ¬Kiφ ,(F,c)Ri(F′,c′),(F′,c′),(F′,c′) ⊢ ¬φ
(TR 9)

Transitive and symmetric closure of the Ri-relation
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ΓT , (F,c)Ri(F
′,c′)

ΓT , (F,c)Ri(F
′,c′),(F′,c′)Ri(F,c)

(TR 10)

ΓT , (F,c)Ri(F
′,c′),(F′,c′)Ri(F

′′,c′′)

ΓT , (F,c)Ri(F
′,c′),(F′,c′)Ri(F

′′,c′′),(F,c)Ri(F
′′,c′′)

(TR 11)

Transfer of formulae between Ri-indistinguishable situations

The principal formula in rule (TR 12) may be marked or unmarked. In both cases,

the side formula (F ′, c ′) ⊢ χ is unmarked.

ΓT , (F,c)Ri(F
′,c′),(F,c) ⊢ χ with χ∈ {Kiφ,P,¬P|P ∈ Pi,φ∈ L}

ΓT , (F,c)Ri(F
′,c′),(F,c) ⊢ χ,(F′,c′) ⊢ χ

(TR 12)

The principal formula in rule (TR 13) may be marked or unmarked. In both cases,
the side formula (F ′, c ′) ⊢ ¬Kiφ is marked.

ΓT , (F,c)Ri(F
′,c′),(F,c) ⊢ ¬Kiφ

ΓT , (F,c)Ri(F
′,c′),(F,c) ⊢ ¬Kiφ,(F

′,c′) ⊢ ¬Kiφ
(TR 13)

Rules Concerning Temporal Structure

Creation of next-successors

Rule (TR 14) may only be applied if the principal formula (F, c) is unmarked. The
side formula (F, c) will be marked. Rule (TR 14) creates one denominator for each
ai ∈ O.

ΓT , (F,c) ⊢ 〈.〉iφ,(F,c) (unmarked)

ΓT , (F,c) ⊢ 〈.〉iφ,(F,c)
a1−→ (F,ca1),(F,c),(F,ca1) | ... | ΓT , (F,c) ⊢ 〈.〉iφ,(F,c)

an−→ (F,can),(F,c),(F,cn)

(TR 14)
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Saturation of temporal successors

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ 〈a〉iφ

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ φ

(TR 15)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ [a]iφ

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ φ

(TR 16)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ 〈b〉iφ with i∈ ag(a),a 6=b

(F,c) ⊢ ⊥

(TR 17)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ 〈b〉iφ with i /∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ 〈b〉iφ

(TR 18)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ [b]iφ with i /∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ [b]iφ

(TR 19)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ 〈O〉iφ with i∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ φ

(TR 20)
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ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ [O]iφ with i ∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ φ

(TR 21)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ 〈O〉iφ with i /∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ 〈O〉iφ

(TR 22)

ΓT , (F,c)
a

−→ (F,ca),(F,c) ⊢ [O]iφ with i /∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,ca) ⊢ [O]iφ

(TR 23)

Interaction between knowledge and action

ΓT , (F,c)
a

−→ (F,ca)

ΓT , (F,c)
a

−→ (F,ca),(F,c)Ri(F,ca) for all i /∈ ag(a)

(TR 24)

ΓT , (F,c)
a

−→ (F,ca),(F,c)Ri(F
′,c′) for all i ∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F,c)Ri(F
′,c′),(F′,c′) ⊢ 〈a〉i⊤ for all i ∈ ag(a)

(TR 25)

ΓT , (F,c)
a

−→ (F,ca),(F′,c′)
a

−→ (F′,c′a),(F,c)Ri(F
′,c′) for all i ∈ ag(a)

ΓT , (F,c)
a

−→ (F,ca),(F′,c′)
a

−→ (F′,c′a),(F,c)Ri(F
′,c′),(F,ca)Ri(F

′,c′a) for all i ∈ ag(a)

(TR 26)

B.2 Blocks for Rule Applications

The set of tableau formula is diveded into three blocks:
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Appendix B A Tableau System for L

Block 1: Rules (TR 3), (TR 4), (TR 5), (TR 6), (TR 7), (TR 8), (TR 15), (TR
16), (TR 17), (TR 18), (TR 19), (TR 20), (TR 21), (TR 22), (TR 23)

Block 2: Rules (TR 10), (TR 11), (TR 12), (TR 13), (TR 24),(TR 25) and (TR
26)

Block 3: Rules (TR 9), (TR 14)

238



Appendix C

Tableau Example

In the following we give examples of tableau proofs. The first two examples demon-

strate how a finite set of tableau formulae may lead to infinite tableaux.

In the tableau proofs, we will always mark the activator of a rule through a colored

background and the side formulae of a rule through a red box around the formula.

Marked formulae will have a lighter color as unmarked formulae.

Example 1

Suppose for the first example the following static part of a model: Ag = {i},Oi =

{a},Pi = ∅

We construct a tableau proof for the set of tableau formulae ΓT0 = {l0 ⊢ ⊤ Ui⊥, l0}:

l0 ⊢ ⊤ Ui⊥ , l0
(TR 7)

l0 ⊢ ⊥ , l | l0 ⊢ ⊤ ∧ ⊤ ∧ 〈O〉i(⊤ Ui⊥) , l0

(TR 2) (TR 4),(TR 4)
... l0 ⊢ ⊤ , l0 ⊢ 〈O〉i(⊤ Ui⊥) , l0

(TR 3)

l0 ⊢ 〈O〉〉(⊤ U〉⊥), l0

(TR 14)

l0 ⊢ 〈O〉i(⊤ Ui⊥), l0
a

−→ la l0, la

(TR 20)

la ⊢ ⊤ Ui⊥ l0
a

−→ la , l0, la

(TR 7)
...
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Appendix C Tableau Example

Example 2:

Suppose for the second example the following static part of a model: Ag = {i, j},Oi =
{b},Oj = {a},Pi= Pj = ∅

We construct a tableau proof for the set of tableau formulae {l0 ⊢ Ki〈a〉j⊤, l0}.
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l0 ⊢ Ki〈a〉j⊤ , l0
(TR 6)

l0 ⊢ Ki〈a〉j⊤, l0 ⊢ 〈a〉j⊤ , l0

(TR 14)

l0 ⊢ Ki〈a〉j⊤, l0
b

−→ lb, l0 ⊢ 〈a〉j⊤, l0, lb | l0 ⊢ Ki〈a〉j⊤, l0
a

−→ la, l0 ⊢ 〈a〉j⊤ , l0, la

(TR 18) (TR 15)
... l0 ⊢ Ki〈a〉j⊤, l0

a
−→ la, la ⊢ ⊤ , l0, la

(TR 4)

l0 ⊢ Ki〈a〉j⊤, l0
a

−→ la , l0, la
(TR 24)

l0 ⊢ Ki〈a〉j⊤ , l0
a

−→ la, l0Rila , l0, la

(TR 12)

l0 ⊢ Ki〈a〉j⊤ , l0
a

−→ la, l0Rila, la ⊢ Ki〈a〉j⊤ , l0, la

(TR 6)
...

2
4
1



Appendix C Tableau Example

Example 3:

The next example will be a sketch of a tableau proof for the set of formulae Γ0 =

{Ki[a]ip1,¬Ki〈a〉i¬p2, [a]iKip3, 〈a〉iKi(¬p1∨ ¬p2∨ ¬p3)}.

The tableau proof will show, that this set of formulae is not satisfiable. We con-
struct a set of tableau formulae from this set of logical formulae according to the
construction defined in 5.3.3:

l0 ⊢ Ki[a]ip1, l0 ⊢ ¬Ki〈a〉i¬p2, l0 ⊢ [a]iKip3, l0 ⊢ 〈a〉iKi(¬p1∨ ¬p2∨ ¬p3), l0 Then
we apply the appropriate tableau rules. The unsatisfiability mainly comes from the

requirement about interaction of knowledge and time in definition 3.3.2(4).
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l ⊢ Ki[a]ip1 , l ⊢ ¬Ki〈a〉i¬p2, l ⊢ [a]iKip3, l ⊢ 〈a〉iKi(¬p1 ∨ ¬p2 ∨ ¬p3), l

(TR 6)

l ⊢ Ki[a]ip1 , l ⊢ [a]ip1 , l ⊢ ¬Ki〈a〉i¬p2 , l ⊢ [a]iKip3, l ⊢ 〈a〉iKi(¬p1 ∨ ¬p2 ∨ ¬p3), l

(TR 9)

l ⊢ Ki[a]ip1, l ⊢ [a]ip1, l ⊢ ¬Ki〈a〉i¬p2 , lRi l ′ , l ′ ⊢ [a]ip2 , l ⊢ [a]iKip3, l ⊢ 〈a〉iKi(¬p1 ∨ ¬p2 ∨ ¬p3) , l, l ′

(TR 14)

l ⊢ Ki[a]ip1, l ⊢ [a]ipq, l ⊢ ¬Ki〈a〉i¬p2, lRil ′ ⊢ [a]ip2, l ⊢ [a]iKip3, l ⊢ 〈a〉iKi(¬p1 ∨ ¬p2 ∨ ¬p3) , l
a

−→ la , l , l ′ , la

(TR 15)

l ⊢ Ki[a]ip1, l ⊢ [a]ip1 , l ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′ ⊢ [a]ip2, l ⊢ [a]iKip3 , la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3) , l
a

−→ la , l, l ′, la

(TR 16)

l ⊢ Ki[a]ip1, la ⊢ p1 , l ⊢ ¬Ki〈a〉i¬p2, lRi l ′ , l ′ ⊢ [a]ip2, la ⊢ Kip3 , la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3) , l
a

−→ la , l ′ , la, l

(TR 6)

l ⊢ Ki[a]ip1, la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′ ⊢ [a]ip2, la ⊢ Kip3 , la ⊢ p3 , la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3) , la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3 , l
a

−→ la , l ′ , la, l

(TR 25)

l ⊢ Ki[a]ip1 , la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2 , lRil ′ , l ′ ⊢ [a]ip2, la ⊢ Kip3, la ⊢ p3, la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3),

la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la , l ′ ⊢ 〈a〉i⊤ , la, l ′ , l

(TR 10), (TR 12), (TR 13)

l ⊢ Ki[a]ip1 , l ′ ⊢ Ki[a]ip1 , la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2 , l ′ ⊢ ¬Ki〈a〉i¬p2 , lRil ′ , l ′Ril, l ′ ⊢ [a]ip2, la ⊢ Kip3, la ⊢

p3, la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3,

l
a

−→ la, l ′ ⊢ 〈a〉i⊤ , la, l ′ , l

(TR 14)

l ⊢ Ki[a]ip1, l ′ ⊢ Ki[a]ip1 , la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, l
′ ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′Ril, l ′ ⊢ [a]ip2, la ⊢ Kip3, la ⊢ p3,

la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la, l ′ ⊢ 〈a〉i⊤ , l ′
a

−→ l ′a , la, l ′ , l, l ′a

(TR 6)

l ⊢ Ki[a]ip1, l ′ ⊢ Ki[a]ip1 , l ′ ⊢ [a]ip1 , la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, l
′ ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′Ril, l ′ ⊢ [a]ip2 , la ⊢ Kip3, la ⊢

p3,

la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la, l ′ ⊢ 〈a〉i⊤ , l ′
a

−→ l ′a , la, l ′a, l, l ′

(TR 15), (TR 16)

l ⊢ Ki[a]ip1, l
′ ⊢ Ki[a]ip1, l ′a ⊢ p1 la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, l

′ ⊢ ¬Ki〈a〉i¬p2, lRi l ′, l ′Ril, l ′a ⊢ p2 , la ⊢ Kip3, la ⊢

p3, la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la, l ′a ⊢ ⊤ , l ′
a

−→ l ′a , la, l ′a, l, l ′

(TR 3)

l ⊢ Ki[a]ip1, l
′ ⊢ Ki[a]ip1, l

′a ⊢ p1, la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, l
′ ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′Ril, l ′a ⊢ p2, la ⊢ Kip3, la ⊢

p3, la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la , l ′
a

−→ l ′a , la, l ′a, l, l ′

(TR 26)

l ⊢ Ki[a]ip1, l
′ ⊢ Ki[a]ip1, l ′a ⊢ p1 , la ⊢ p1, l ⊢ ¬Ki〈a〉i¬p2, l

′ ⊢ ¬Ki〈a〉i¬p2, lRil ′ , l ′Ril, l ′a ⊢ p2 , la ⊢ Kip3, la ⊢

p3, la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3, l
a

−→ la , l ′
a

−→ l ′a , laRil ′a , la, l ′a , l, l ′

(TR 10), (TR 12)

l ⊢ Ki[a]ip1, l
′ ⊢ Ki[a]ip1, l

′a ⊢ p1, la ⊢ p1 , l ⊢ ¬Ki〈a〉i¬p2, l
′ ⊢ ¬Ki〈a〉i¬p2, lRi l ′, l ′Ril, l ′a ⊢ p2 , la ⊢ p2 , la ⊢ Kip3, la ⊢ p3 ,

la ⊢ Ki(¬p1 ∨ ¬p2 ∨ ¬p3), la ⊢ ¬p1 ∨ ¬p2 ∨ ¬p3 , l
a

−→ la, l ′
a

−→ l ′a, laRil ′a , l ′aRila , la, l ′a, l, l ′

(TR 1)
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