Darstellung und Untersuchungen ternärer und quaternärer Halogenopalladate mit besonderer Beachtung von Redoxreaktionen Pd(II) / Pd(IV) im Festkörper

vom Fachbereich Chemie der Universität Dortmund zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte

Dissertation

von

Diplom-Chemiker Peter Heines aus Viersen

Referent:Prof. Dr. H.-L. KellerKorreferent:Prof. Dr. H. JacobsTag der mündlichen Prüfung:3. Mai 2004

Die vorliegende Arbeit wurde in der Zeit von November 1999 bis Dezember 2003 an der Universität Dortmund unter der Leitung von Herrn Professor Dr. H.-L. Keller durchgeführt.

Dank

Herrn Professor Dr. Hans-Lothar Keller danke ich für die interessante Themenstellung sowie für die großzügige Unterstützung dieser Arbeit und die vielen hilfreichen Anregungen und Diskussionen.

Herrn Professor Dr. Herbert Jacobs möchte ich für die freundliche Übernahme des Korreferats danken.

Meinen Dank möchte ich weiterhin den Mitarbeitern des Arbeitskreises von Herrn Professor Dr. H.-L. Keller für ihre Unterstützung aussprechen, besonders *Frau Helga Schulte* für die Präparation zahlreicher Pulvergemenge.

Für die Hilfe bei druckabhängigen EXAFS-Untersuchungen möchte ich mich bei *Herrn* Dr. Matthias Richwin (Universität Wuppertal) und *Herrn Dr. Hubertus Giefers* (Universität Paderborn) bedanken.

Weiterhin möchte ich mich für die Durchführung von druckabhängigen RAMAN-Messungen bei *Herrn Dipl.-Chemiker Marc Armbrüster* (MPI-CPFS Dresden) bedanken.

Ebenso danke ich den Mitarbeitern der gemeinsamen Einrichtungen, insbesondere Frau Wilga $Bu\beta$ für RAMAN-Messungen und Frau Charlotte Zweig für EDX-Untersuchungen.

Für meine Liebsten

Inhaltsverzeichnis

1	Ein	leitung	5	1
	1.1	Röntg	genografische Untersuchungen	3
		1.1.1	Einkristalldiffraktometrie	3
		1.1.2	Pulverdiffraktometrie	4
		1.1.3	Energiedispersive Röntgenfluoreszenzanalyse	6
		1.1.4	Röntgenpulverexperimente bei unterschiedlichen Drücken	6
		1.1.5	Erzeugung und Bestimmung hoher Drücke	9
		1.1.6	Röntgenabsorptionsspektroskopie	12
	1.2	Schwi	ngungsspektroskopische Untersuchungen	15
	1.3	Thern	noanalytische Methoden	17
		1.3.1	$Differenz thermoanalyse/Thermogravimetrie \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	17
		1.3.2	Difference Scanning Calorimetry	17
	1.4	Dichte	ebestimmung	17
	1.5	Präpa	rative Arbeitsmethoden	18
		1.5.1	Verwendete Substanzen	18
		1.5.2	Darstellung der Ausgangssubstanzen	19
		1.5.3	Handhabung der Ausgangssubstanzen	21
		1.5.4	Hydrothermalsynthese	22
2	Ver	bindu	$\mathbf{ngen \ vom \ Typ \ M_2[PdX_4]I_2} \ (\mathbf{M}=\mathbf{Cs}, \mathbf{X}=\mathbf{I}, \mathbf{Br}, \mathbf{Cl}; \mathbf{M}=\mathbf{Rb},$	
	X =	= Br)		24
	2.1	$Cs_2[P]$	$dI_4]I_2$ und $Cs_2[PdI_6]$	24
		2.1.1	$Cs_2[PdI_4]I_2$	24
		2.1.2	Darstellung und Charakterisierung von $Cs_2[PdI_4]I_2$	26
		2.1.3	Beschreibung der Kristallstruktur von $\operatorname{Cs}_2[\operatorname{PdI}_4]I_2 \ldots \ldots \ldots$	29
		2.1.4	Röntgenbeugungs experimente bei unterschiedlichen Drücken $\ .$ $\ .$	33
		2.1.5	Diskussion der Messergebnisse	36
		2.1.6	Bestimmung der Zustandsgleichung von $Cs_2[PdI_4]I_2$	38
		2.1.7	EXAFS Experimente bei verschiedenen Drücken	39

2.2	$Cs_2[Pc$	H_6]	41
2.3	$Cs_2[Pc$	$\mathrm{dBr}_4]\mathrm{I}_2$	43
	2.3.1	Darstellung und Charakterisierung von $Cs_2[PdBr_4]I_2$	43
	2.3.2	Beschreibung der Kristallstruktur von $Cs_2[PdBr_4]I_2$	48
	2.3.3	Thermochemische Untersuchungen von $Cs_2[PdBr_4]I_2 \ldots \ldots \ldots$	50
	2.3.4	Schwingungsspektroskopische Untersuchungen	51
	2.3.5	Druckabhängige Röntgenbeugungsuntersuchungen an $Cs_2[PdBr_4]I_2$	55
	2.3.6	Indizierungs- und Strukturbestimmungsversuche der Hochdruck-	
		phase von $Cs_2[PdBr_4]I_2$	58
	2.3.7	Kristallstrukturverfeinerung von $Cs_2[PdBr_4I_2]$	59
	2.3.8	Beschreibung der Kristallstruktur von $Cs_2[PdBr_4I_2]$	60
	2.3.9	$\label{eq:Vergleich} \mbox{Vergleich von Cs_2} [PdBr_4I_2] \mbox{ mit Rb_2} [AuBr_2] [AuBr_4] \ \ \ldots $	64
	2.3.10	Gruppe-Untergruppe-Beziehung der Raumgruppentypen in der Struk	ζ-
		turverwandtschaft von $\mathrm{Cs}_2[\mathrm{PdBr}_4]I_2$ und $\mathrm{Cs}_2[\mathrm{PdBr}_4I_2]$	67
	2.3.11	Diskussion der Messergebnisse	70
	2.3.12	Bestimmung der Zustandsgleichung von $Cs_2[PdBr_4]I_2$	75
	2.3.13	Druckabhängige RAMAN-Messungen	76
	2.3.14	Ausblick	79
2.4	$Cs_2[Pc$	$dCl_4]I_2$	80
	2.4.1	Darstellung und Charakterisierung von $Cs_2[PdCl_4]I_2 \dots \dots \dots$	80
	2.4.2	Beschreibung der Kristallstruktur von $Cs_2[PdCl_4]I_2$	85
	2.4.3	The mochemische Untersuchungen an $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$	87
	2.4.4	Schwingungsspektroskopische Untersuchungen	88
	2.4.5	Röntgenbeugungsuntersuchungen an $Cs_2[PdCl_4]I_2$ bei unterschied-	
		lichen Drücken	90
	2.4.6	RIETVELD-Analysen der Beugungsdaten von $Cs_2[PdCl_4]I_2$ bei ver-	
		schiedenen Drücken	93
	2.4.7	Diskussion der Messergebnisse	93
2.5	$Rb_2[Pot]$	$dBr_4]I_2$	97
	2.5.1	Darstellung und Charakterisierung von $Rb_2[PdBr_4]I_2$	97

		2.5.2	Beschreibung der Kristallstruktur von $Rb_2[PdBr_4]I_2$. 102
		2.5.3	Schwingungsspektroskopische Untersuchungen	. 102
	2.6	Vergle	eich interatomarer Abstände in der Reihe $M_2[PdX_4]I_2$. 104
3	Ver	bindur	ngen vom Typ $M_4Au_2PdX_{12}$ (M = Cs, Rb, X = Cl; M = Cs	s,
	$\mathbf{X} =$	= I)		109
	3.1	Rb_4A	$u_2 PdCl_{12} und Cs_4 Au_2 PdCl_{12} \dots \dots$. 109
		3.1.1	Darstellung und Charakterisierung von $M_4Au_2PdCl_{12}$ (M = Rb,	
			Cs)	. 110
		3.1.2	Beschreibung der Kristallstruktur von $M_4Au_2PdCl_{12}$ (M = Rb,	
			Cs)	. 122
	3.2	Cs_4Au	$_{12}\mathrm{PdI}_{12}$. 129
		3.2.1	Darstellung und Charakterisierung von $\mathrm{Cs}_4\mathrm{Au}_2\mathrm{PdI}_{12}$. 129
		3.2.2	Beschreibung der Kristallstruktur von $Cs_4PdAu_2I_{12}$. 135
	3.3	Vergle	eich der Kristallstrukturen von $M_4Au_2PdX_{12}$. 136
	3.4	$Cs_2[A]$	$uBr_2][AuBr_4]$. 138
		3.4.1	Darstellung und Charakterisierung von $Cs_2[AuBr_2][AuBr_4]$. 138
		3.4.2	Beschreibung der Kristallstruktur von $Cs_2[AuBr_2][AuBr_4]$. 143
		3.4.3	Einordnung von $Cs_2[AuBr_2][AuBr_4]$ in die Reihe $Cs_2[AuX_2][AuX_4]$	
			(X = Cl, I)	. 146
		3.4.4	Schwingungsspektroskopische Untersuchungen	. 148
	3.5	Cs[Au	Cl_4]	. 150
		3.5.1	Darstellung und Charakterisierung von $Cs[AuCl_4]$. 150
		3.5.2	Beschreibung der Kristallstuktur von $Cs[AuCl_4]$. 156
		3.5.3	Schwingungsspektroskopische Untersuchungen	. 161
	3.6	$[N(C_2)]$	$(\mathrm{H}_5)_4][\mathrm{AuCl}_4]$. 163
		3.6.1	Darstellung und Charakterisierung von $[Et_4N][AuCl_4]$. 163
		3.6.2	Beschreibung der Kristallstruktur von $[Et_4N][AuCl_4]$. 169
		3.6.3	Schwingungsspektroskopische Untersuchungen	. 173

4	Tet	ra-alky	Vl-ammonium-halogenopalladate(II)	174
	4.1	[N(CH	$[\mathrm{H}_3)_4]_2[\mathrm{PdCl}_4]$. 174
		4.1.1	Darstellung und Charakterisierung von $[N(CH_3)_4]_2[PdCl_4]$. 174
		4.1.2	Beschreibung der Kristallstruktur von $[N(CH_3)_4]_2[PdCl_4]$. 178
	4.2	[N(CH	$I_3)_4][Pd_2I_5] \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 183
		4.2.1	Darstellung und Charakterisierung von $[\rm N(\rm CH_3)_4][\rm Pd_2I_5]$. 183
		4.2.2	Beschreibung der Kristallstruktur von $[\mathrm{N}(\mathrm{CH}_3)_4][\mathrm{Pd}_2\mathrm{I}_5]$. 189
		4.2.3	Vergleich mit $Cs[Pd_2Cl_5]$. 196
		4.2.4	Schwingungsspektroskopische Untersuchungen $\ldots \ldots \ldots$. 198
5	Pal	ladium	n(II)-Pyridinaddukte	200
	5.1	[Pd(C	$[_{5}H_{5}N)_{2}](SCN)_{2}$. 200
		5.1.1	Darstellung und Charakterisierung von $[Pd(py)_2](SCN)_2$. 200
		5.1.2	Beschreibung der Kristallstruktur von $[Pd(py)_2](SCN)_2$. 206
		5.1.3	Thermochemische Untersuchungen	. 210
		5.1.4	Schwingungsspektroskopische Untersuchungen	. 210
	5.2	[Pd(C	$[_{5}H_{5}N)_{4}][Hg(SCN)_{4}]$. 213
		5.2.1	Darstellung und Charakterisierung von $[Pd(py)_4][Hg(SCN)_4)]$.	. 213
		5.2.2	Beschreibung der Kristallstruktur von $[\mathrm{Pd}(\mathrm{py})_4][\mathrm{Hg}(\mathrm{SCN})_4)]$. 219
		5.2.3	Schwingungsspektroskopische Untersuchungen $\ldots \ldots \ldots$. 224
6	\mathbf{Zus}	amme	nfassung	226
A	Anl	nang		231
\mathbf{Li}	iteratur 313			

Abbildungsverzeichnis

1	Darstellung des Messrasters an ID30	7
2	Links: Digitalisiertes Beugungsbild von $Cs_2[PdI_4]I_2$. Rechts: Teilweise	
	überarbeitets Beugungsbild. Unten: Pulverdiffraktogramm nach Integra-	
	tion	8
3	Membranbetriebene Diamantstempelzelle	10
4	Vorgepresstes Gasket mit Bohrung der Probenkammer	11
5	Schematische Darstellung der geschlossenen Diamantstempel	11
6	Querschnitt durch Probenumgebung einer PARIS-EDINBURGH-Druckzelle	13
7	Querschnitt durch PARIS-EDINBURGH-Druckzelle	14
8	Normalschwingungsmoden quadratisch planarer Baugruppen $[\mathrm{XY}_4]$	16
9	Pulverdiffraktogramm von $PdCl_2$	19
10	Pulverdiffraktogramm von $PdBr_2$	20
11	Pulverdiffraktogramm von PdI_2	21
12	Pulverdiffraktogramm von CsI_3	22
13	Darstellung der Umwandlung von $\mathrm{Cs}_2[\mathrm{PdI}_4]\mathrm{I}_2$ zu $\mathrm{Cs}_2[\mathrm{PdI}_6]$	24
14	Pulverdiffraktogramm von $Cs_2[PdI_4]I_2$	26
15	Elektronenmikroskopische Aufnahme eines $Cs_2[PdI_4]I_2$ -Kristalls	26
16	Ausschnitt aus der Kristallstruktur von $Cs_2[PdI_4]I_2$	29
17	Koordinationspolyeder um Cäsium in $Cs_2[PdI_4]I_2$	30
18	Umgebung um ein I ₂ -Molekül in $Cs_2[PdI_4]I_2$	30
19	Ausschnitt aus den Kristallstrukturen von $Cs_2[AuCl_2][AuCl_4]$ und	
	$\operatorname{Cs}_2[\operatorname{PdI}_4]I_2 \ldots \ldots$	32
20	Ausgewählte Beugungsdiagramme des Phasenübergangs von $Cs_2[PdI_4]I_2$	
	zu $\mathrm{Cs}_2[\mathrm{PdI}_6]$	34
21	Pulverdiffraktogramm von $Cs_2[PdI_6]$ bei 37,17 kbar $\ldots \ldots \ldots \ldots$	35
22	Ausschnitt aus der Kristallstruktur von $Cs_2[PdI_4]I_2$	36
23	Ausgewählte Atomabstände aus der RIETVELD-Verfeinerung	37
24	Verlauf des Elementarzellenvolumens von $\mathrm{Cs}_2[\mathrm{PdI}_4]\mathrm{I}_2$ gegen den Druck	38

25	Ausgewählte Atomabstände der EXAFS-Analysen	39
26	Verlauf des Elementarzellenvolumens von $Cs_2[PdI_6]$ im Bereich zwischen	
	Normaldruck und 112 kbar	41
27	Ausgewählte Pulverdiffraktogramme von $\operatorname{Cs}_2[\operatorname{PdI}_6]$ bei verschiedenen	
	Drücken	42
28	$Pulverdiffraktogramm \ von \ Cs_2[PdBr_4]I_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	45
29	Elektronenmikroskopische Aufnahme eines $Cs_2[PdBr_4]I_2$ -Kristalls	45
30	Ausschnitt aus der Kristallstruktur von $Cs_2[PdBr_4]I_2$	49
31	Koordinationspolyeder um Cäsium	49
32	Koordinationspolyeder um Iod	50
33	$DTA/TG\text{-}Messung \ von \ Cs_2[PdBr_4]I_2 . \ . \ . \ . \ . \ . \ . \ . \ . \ .$	51
34	Pulverdiffraktogramm von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$ nach DTA/TG-Messung	52
35	RAMAN-Spektrum von $\operatorname{Cs}_2[\operatorname{PdBr}_4]I_2$	52
36	$IR\text{-}Spektrum \ von \ Cs_2[PdBr_4]I_2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	53
37	Ausgewählte Pulverdiffraktogramme von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$	56
38	Ausschnittsvergrößerung von Abbildung 37	57
39	Pulverdiffraktogramm von $Cs_2[PdBr_4I_2]$ bei 104,3 kbar $\ldots \ldots \ldots$	60
40	Koordinationspolyeder um Palladium in $\mathrm{Cs}_2[\mathrm{PdBr}_4\mathrm{I}_2]$ bei 104,3 kbar	63
41	Umgebung von Cäsium in $Cs_2[PdBr_4I_2]$ bei 104,3 kbar $\ldots \ldots \ldots$	63
42	Ausschnitt aus der Kristallstruktur von $\mathrm{Cs}_2[\mathrm{PdBr}_4\mathrm{I}_2]$ bei 104,3 kbar $~.~.$	64
43	Links: Ausschnitt aus der Kristallstruktur von $Rb_2[AuBr_2][AuBr_4]$. Rechts:	
	Ausschnitt aus der Kristallstruktur von $\mathrm{Cs}_2[\mathrm{PdBr}_4\mathrm{I}_2]$ bei 104,3 kbar $~.~.$	66
44	Gruppe-Untergruppe-Beziehung der Raumgruppentypen in der Struktur-	
	verwandtschaft von $\mathrm{Cs}_2[\mathrm{PdBr}_4]I_2$ und $\mathrm{Cs}_2[\mathrm{PdBr}_4I_2]$	68
45	Verlauf einiger ausgewählter Abstände als Funktion des Drucks	71
46	Änderung des monoklinen Winkels β als Funktion des Drucks $\ . \ . \ .$.	72
47	Verlauf der Elementarzellenparameter von $Cs_2[PdBr_4]I_2$ in Abhängigkeit	
	vom Druck	73
48	Ausschnittsvergrößerung von Abbildung 47	74
49	Relatives Volumen von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$ in Abhängigkeit vom Druck	75

50	RAMAN-Spektren von $Cs_2[PdBr_4]I_2$ bei verschiedenen Drücken	77
51	Ausschnittsvergrößerung von Abbildung 50	78
52	Verschiebung der I ₂ -Schwingung (A_{1g}) in Abhängigkeit vom Druck	79
53	$Pulverdiffraktogramm \ von \ Cs_2[PdCl_4]I_2 \ \ldots \ $	82
54	Elektronenmikroskopische Aufnahme eines $Cs_2[PdCl_4]I_2$ -Kristalls	82
55	Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$	85
56	Koordinations polyeder um Iod in $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$	86
57	Koordinationspolyeder um Cäsium in $Cs_2[PdCl_4]I_2$	86
58	$DTA/TG\text{-}Messung \ von \ Cs_2[PdCl_4]I_2 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	87
59	Pulverdiffraktogramm des Rückstand der DTA/TG-Messung \hdots	88
60	RAMAN-Spektrum von $\mathrm{Cs}_2[\mathrm{PdCl}_4]I_2$	89
61	IR-Spektrum von $Cs_2[PdCl_4]I_2$	89
62	Ausgewählte Pulverdiffraktogramme von $Cs_2[PdCl_4]I_2$ bei unterschiedli-	
	chen Drücken	91
63	Ausschnittsvergrößerung von Abbildung 62	92
64	Verlauf des Elementarzellenvolumens von $Cs_2[PdCl_4]I_2$ als Funktion des	
	Drucks	94
65	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck	95
65 66	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar	95 96
65 66 67	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	95 96 99
65 66 67 68	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	95 96 99 99
65 66 67 68 69	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	95 96 99 99 .03
65 66 67 68 69 70	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem DruckAusschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbarPulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	95 96 99 99 .03 .03
 65 66 67 68 69 70 71 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 .03 .03 .05
 65 66 67 68 69 70 71 72 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 .03 .03 .05 .05
 65 66 67 68 69 70 71 72 73 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 03 03 05 05 06
 65 66 67 68 69 70 71 72 73 74 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 .03 .03 .05 .06 .06
 65 66 67 68 69 70 71 72 73 74 75 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 03 03 05 05 06 06 07
 65 66 67 68 69 70 71 72 73 74 75 76 	Ausgewählte Atomabstände in $Cs_2[PdCl_4]I_2$ mit steigendem Druck Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar Pulverdiffraktogramm von $Rb_2[PdBr_4]I_2$	 95 96 99 99 .03 .05 .05 .06 .06 .07 .07

78	IR- und RAMAN-Spektrum von $Rb_4Au_2PdCl_{12}$
79	IR- und RAMAN-Spektrum von $Cs_4Au_2PdCl_{12}$
80	Pulverdiffraktogramm von $Rb_4Au_2PdCl_{12}$
81	Elektronenmikroskopische Aufnahme eines ${\rm Rb}_4{\rm Au}_2{\rm PdCl}_{12}\text{-}{\rm Kristalls}$ 115
82	Pulverdiffraktogramm von $Cs_4Au_2PdCl_{12}$
83	Elektronenmikroskopische Aufnahme von $Cs_4Au_2PdCl_{12}$ -Kristallen 116
84	Ausschnitt aus der Polyederverknüpfung
85	Darstellung eines M_8 -Würfels (M = Rb, Cs)
86	Umgebung um M(1) und M(2) in $M_4Au_2PdCl_{12}~(M=Rb,Cs)$ 125
87	Umgebung um Cl(1) und Cl(2) in $M_4Au_2PdCl_{12}$ (M = Rb, Cs) 126
88	Aufbau der Kristallstruktur von $M_4Au_2PdCl_{12}$ (M = Rb, Cs)
89	Ausschnitt aus der Kristallstruktur von $Rb_4Au_2PdCl_{12}$
90	Pulverdiffraktogramm von $Cs_4Au_2PdI_{12}$
91	Elektronenmikroskopische Aufnahme eines $\rm Cs_4Au_2PdI_{12}\text{-}Kristalls$ 131
92	Verlauf der Elementarzellenparameter in $\rm Cs_4Au_2PdX_{12}~(X=Cl,Br,I)~$. 137
93	Verlauf der interatomaren Abstände der $[AuX_6]$ -Oktaeder $(X = Cl, Br, I)$ 137
94	Pulverdiffraktogramm von $Cs_2[AuBr_2][AuBr_4]$
95	Elektronenmikroskopische Aufnahme eines $\mathrm{Cs}_2[\mathrm{AuBr}_2][\mathrm{AuBr}_4]\text{-}\mathrm{Kristalls}$. 140
96	Koordinationspolyeder um Au ⁺ und Au ³⁺ in $Cs_2[AuBr_2][AuBr_4]$ 144
97	Ausschnitt aus der Kristallstruktur von $Cs_2[AuBr_2][AuBr_4]$ 145
98	Koordinationspolyeder um Cäsium in $Cs_2[AuBr_2][AuBr_4]$
99	Koordinationspolyeder um Br(1) und Br(2) in $Cs_2[AuBr_2][AuBr_4]$ 146
100	Verlauf der Elementarzellenparameter der Verbindungsreihe
	$Cs_2[AuX_2][AuX_4]$ (X = Cl, Br, I) 147
101	Vergleich des Abstandsverlaufs zwischen Au^{3+} und Halogen der linearen
	$[AuX_2]$ -Hantel in $Cs_2[AuX_2][AuX_4]$ so wie $[PdX_4]$ und Iod in $Cs_2[PdX_4]I_2$
	(X = Cl, Br, I)
102	RAMAN-Spektrum von $Cs_2[AuBr_2][AuBr_4]$
103	IR-Spektrum von $Cs_2[AuBr_2][AuBr_4]$
104	Pulverdiffraktogramm von $Cs[AuCl_4]$

105	Elektronenmikroskopische Aufnahme eines Cs[AuCl ₄]-Kristalls $\ldots \ldots 152$
106	Darstellung des Koordinationspoly eders um Cäsium in $\mathrm{Cs}[\mathrm{AuCl}_4]$ 156
107	Koordination um $Cl(1)$ in $Cs[AuCl_4]$
108	Koordination um $Cl(2)$ in $Cs[AuCl_4]$
109	Ausschnitt aus der Kristallstruktur von $Cs[AuCl_4]$
110	Ausschnitt aus der Kristallstruktur von $Cs[AuCl_4]$
111	RAMAN-Spektrum von $Cs[AuCl_4]$
112	IR-Spektrum von $Cs[AuCl_4]$
113	Pulverdiffraktogramm von $[Et_4N][AuCl_4]$
114	Elektronenmikroskopische Aufnahme eines $[Et_4N][AuCl_4]$ -Kristalls 164
115	Darstellung und Atombezeichung von $[AuCl_4]$ und $[Et_4N]$
116	3×3 Elementarzellen von $[Et_4N][AuCl_4]$
117	Vier Elementarzellen von $[Et_4N][AuCl_4]$
118	Ausschnitt aus der Kristallstruktur von $[Et_4N][AuCl_2]$
119	Ausschnitt aus der Kristallstruktur von $[Et_4N][AuCl_4]$
120	RAMAN-Spektrum von $[Et_4N][AuCl_4]$
121	IR-Spektrum von $[Et_4N][AuCl_4]$
122	Pulverdiffraktogramm von $[N(CH_3)_4]_2[PdCl_4]$
123	Ausschnitt aus der Kristallstruktur von $[N(CH_3)_4]_2[PdCl_4]$
124	Koordination von $[N(CH_3)_4]$ -Kationen um eine $[PdCl_4]$ -Gruppe 180
125	Schichtabfolge in $[N(CH_3)_4]_2[PdCl_4]$
126	Blick in Richtung [001] von $[N(CH_3)_4]_2[PdCl_4]$
127	Blick in Richtung [001] von $[NH_4]_2[CuCl_2]\cdot 2H_2O$
128	Pulverdiffraktogramm von $[N(CH_3)_4][Pd_2I_5]$
129	Elektronenmikroskopische Aufnahme eines $[\rm N(CH_3)_4][\rm Pd_2I_5]$ -Kristalls $~$. 184
130	$Pd(1)$ -dimer in $[N(CH_3)_4][Pd_2I_5]$
131	$Pd(2)$ -dimer in $[N(CH_3)_4][Pd_2I_5]$
132	$[N(CH_3)_4]-Kation \qquad \dots \qquad $
133	Tetramer aus den Dimeren von $Pd(1)$ und $Pd(2)$
134	Ausschnitt aus der Kristallstruktur von β -PdI ₂

135	a) ¹ _{∞} [PdI _{4/2}]-Kette in β -PdI ₂ b) ¹ _{∞} [PdI _{3/2} I ⁻ ₂]-Kette in [N(CH ₃) ₄][Pd ₂ I ₅] 193
136	Ausschnitt aus der Kristallstruktur von $[N(CH_3)_4][Pd_2I_5]$
137	4 Elementarzellen von $[N(CH_3)_4][Pd_2I_5]$ mit Blick in $[100]$
138	Kationenumgebung um dimere $[Pd_2I_6]$ -Einheiten
139	Vergleich der Kettenstruktur von a) $[N(CH_3)_4][Pd_2I_5]$ und b) $Cs[Pd_2Cl_5]$ 196
140	Vergleich der Kettenstruktur von a) $[N(CH_3)_4][Pd_2I_5]$ und b) $Cs[Pd_2Cl_5]$ 197
141	Ausschnitt aus der Kristallstruktur von $Cs[Pd_2Cl_5]$
142	RAMAN-Spektrum von $[N(CH_3)_4][Pd_2I_5]$
143	IR-Spektrum von $[N(CH_3)_4][Pd_2I_5]$
144	Pulverdiffraktogramm von trans- $[Pd(py)_2](SCN)_2$
145	Elektronenmikroskopische Aufnahme eines
	trans- $[Pd(py)_2](SCN)_2$ -Kristalls
146	Darstellung eines neutralen trans- $[Pd(py)_2](SCN)_2$ -Komplexes 207
147	Ausschnitt aus der Kristallstruktur von trans- $[Pd(py)_2](SCN)_2$ 208
148	Molekülstruktur von a) trans- $[Pd(py)_2](SCN)_2$, b) trans- $Pd(py)_2I_2$ und
	c) trans-Pd(py) ₂ Cl ₂
149	Ausschnitt aus der Kristallstruktur von trans- $Pd(py)_2Cl_2$
150	RAMAN-Spektrum von trans- $[Pd(py)_2](SCN)_2$
151	IR-Spektrum von trans- $[Pd(py)_2](SCN)_2$
152	Pulverdiffraktogramm von $[Pd(py)_4][Hg(SCN)_4)]$
153	Elektronenmikroskopische Aufnahme eines
	$[Pd(py)_4][Hg(SCN)_4)]$ -Kristalls
154	${\rm Komplexmolek} \ddot{\mathrm{ule}}\ {\rm Tetrathiocay} an atomercurat ({\rm II})\ {\rm und}\ {\rm Tetrapyridin palla-}$
	$\operatorname{dium}(\mathrm{II}) \ \ldots \ $
155	Verknüpfung von $[{\rm Hg}({\rm SCN})_4]$ mit zwei $[{\rm Pd}({\rm py})_4]$ Molekülen
156	Schichtstruktur von $[Pd(py)_4][Hg(SCN)_4)]$
157	Darstellung von $[Pd(py)_4][Hg(SCN)_4)]$
158	Abbildung 157 mit Komplexmolekülen
159	Stabpackung von $[Pd(py)_4][Hg(SCN)_4)]$
160	Ausschnitt aus der Kristallstruktur von $[P(py)_4]_2[Hg(SCN)_4]$

161	$RAMAN-Spektrum \ von \ [Pd(py)_4][Hg(SCN)_4)] \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	225
162	IR-Spektrum von $[Pd(py)_4][Hg(SCN)_4)]$	225

Tabellenverzeichnis

1	Kristallografische Daten und Messparameter von $\mathrm{Cs}_2[\mathrm{PdI}_4]I_2\ \ldots\ \ldots$	27
2	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von $Cs_2[PdI_4]I_2$	28
3	Thermische Auslenkungsparameter für $\mathrm{Cs}_2[\mathrm{PdI}_4]\mathrm{I}_2$	28
4	Ausgewählte Abstände, Multiplizitäten und Winkel in $\mathrm{Cs}_2[\mathrm{PdI}_4]\mathrm{I}_2$	28
5	Druckwerte der Röntgenbeugungsexperimente am ESRF	33
6	Kristallografische Daten und Messparameter von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$	46
7	Fraktionelle Atomlageparameter und äquivalente Temperaturfaktoren für	
	$\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	47
8	Thermische Auslenkungsparameter für $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$	47
9	Ausgewählte Abstände, Winkel und Multiplizitäten in $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$	47
10	Druckwerte der Röntgenbeugungsexperimente am ESRF	54
11	Beobachtete und berechnete 2 $\theta\text{-}$ und $hkl\text{-}Werte der Indizierung bei 92,4$	
	kbar	59
12	Kristallografische Daten von $\mathrm{Cs}_2[\mathrm{PdBr}_4\mathrm{I}_2]$ bei 104,3 kbar \hdots	61
13	Fraktionelle Koordinaten von $\mathrm{Cs}_2[\mathrm{PdBr}_4\mathrm{I}_2]$ bei 104,3 kbar	61
14	Ausgewählte Abstände, Winkel und Multiplizitäten in $Cs_2[PdBr_4I_2]$ bei	
	104,3 kbar	62
15	$\label{eq:constraint} Atomlagekoordinaten beim Symmetrieabbau von Cs_2 [PdBr_4]I_2$	
	zu $\operatorname{Cs}_2[\operatorname{PdBr}_4I_2]$	69
16	Kristallografische Daten und Messparameter von $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$	83
17	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von $Cs_2[PdCl_4]I_2$	84
18	Thermische Auslenkungsparameter für $Cs_2[PdCl_4]I_2$	84
19	Ausgewählte Abstände, Winkel und Multiplizitäten in $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$	84
20	Druckwerte der Röntgenbeugungsexperimente am ESRF	90
21	Kristallografische Daten und Messparameter von $\mathrm{Rb}_2[\mathrm{PdBr}_4]I_2\ .\ .\ .$.	100

22	Atomlageparameter und äquivalente thermische Auslenkungsparameter
	für $Rb_2[PdBr_4]I_2$
23	Thermische Auslenkungsparameter für $Rb_2[PdBr_4]I_2$
24	Ausgewählte Abstände, Winkel und Multiplizitäten in $\mathrm{Rb}_2[\mathrm{PdBr}_4]\mathrm{I}_2$ 101
25	Lage und Zuordnung der RAMAN- und IR-Schwingungsfrequenzen von
	$Rb_2[PdBr_4]I_2$
26	IR- und RAMAN-Frequenzen von $\mathrm{Rb}_4\mathrm{Au}_2\mathrm{PdCl}_{12}$ und $\mathrm{Cs}_4\mathrm{Au}_2\mathrm{PdCl}_{12}$ 112
27	Kristallografische Daten und Messparameter von $Rb_4Au_2PdCl_{12}$
	und $Cs_4Au_2PdCl_{12}$
28	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-
	kungsparameter von $Rb_4Au_2PdCl_{12}$
29	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-
	kungsparameter von $Cs_4Au_2PdCl_{12}$
30	Thermische Auslenkungsparameter für $Rb_4Au_2PdCl_{12}$
31	Thermische Auslenkungsparameter für $Cs_4Au_2PdCl_{12}$
32	Ausgewählte Abstände, Winkel und Multiplizitäten in $\rm Rb_4Au_2PdCl_{12}$ 120
33	Ausgewählte Abstände, Winkel und Multiplizitäten in $\rm Cs_4Au_2PdCl_{12}$ 121
34	Kristallografische Daten und Messparameter von $\mathrm{Cs}_4\mathrm{Au}_2\mathrm{PdI}_{12}$ 132
35	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-
	kungsparameter von $Cs_4Au_2PdI_{12}$
36	Thermische Auslenkungsparameter für $Cs_4Au_2PdI_{12}$
37	Ausgewählte Abstände, Multiplizitäten und Winkel in $\rm Cs_4Au_2PdI_{12}$ 133
38	Kristallografische Daten und Messparameter von $\mathrm{Cs}_2[\mathrm{AuBr}_2][\mathrm{AuBr}_4]$ 141
39	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-
	kungsparameter von $Cs_2[AuBr_2][AuBr_4]$
40	Thermische Auslenkungsparameter für $Cs_2[AuBr_2][AuBr_4]$ 142
41	Ausgewählte Abstände, Multiplizitäten und Winkel in $Cs_2[AuBr_2][AuBr_4]$ 143
42	IR- und RAMAN-Schwingungsfrequenzen von $Cs_2[AuBr_2][AuBr_4]$ 148
43	Vergleich der Elementarzellenparameter aus Einkristall- und Pulverdaten 151
44	Kristallografische Daten und Messparameter von $Cs[AuCl_4]$

45	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von Cs[AuCl ₄] $\dots \dots \dots$	
46	Thermische Auslenkungsparameter für Cs[AuCl ₄] $\dots \dots \dots$	
47	Ausgewählte Abstände, Multiplizitäten und Winkel in $Cs[AuCl_4]$ 154	
48	Vergleich von Cs[AuCl ₄] mit Verbindungen des Typ s $\mathrm{M}[\mathrm{AuCl}_4]$ 158	
49	IR- und RAMAN-Schwingungsfrequenzen von $Cs[AuCl_4]$	
50	Kristallografische Daten und Messparameter von $[Et_4N][AuCl_4]$ 165	
51	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von $[Et_4N][AuCl_4]$	
52	Thermische Auslenkungsparameter für $[Et_4N][AuCl_4]$	
53	Ausgewählte Abstände und Winkel in $[Et_4N][AuCl_4]$	
54	IR- und RAMAN-Schwingungsfrequenzen von $[Et_4N][AuCl_4]$	
55	Elementarzellen parameter von $[N(CH_3)_4]_2[PdCl_4]$ aus Einkristallstruk	
	tur-, Pulverstrukturverfeinerung und Literaturdaten	
56	Kristallografische Daten und Messparameter von $[\rm N(CH_3)_4]_2[\rm PdCl_4]~$ 176	
57	Atomlageparameter und äquivalente thermische Auslenkungsparameter	
	für $[N(CH_3)_4]_2[PdCl_4]$	
58	Thermische Auslenkungsparameter für $[N(CH_3)_4]_2[PdCl_4]$	
59	Ausgewählte Abstände, Multiplizitäten und Winkel von	
	$[N(CH_3)_4]_2[PdCl_4] \dots \dots$	
60	Kristallografische Daten und Messparameter von $[\rm N(CH_3)_4][\rm Pd_2I_5]$ 185	
61	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von $[\rm N(\rm CH_3)_4][\rm Pd_2I_5]$	
62	Thermische Auslenkungsparameter für $[\rm N(CH_3)_4][\rm Pd_2I_5]$	
63	Ausgewählte Abstände in $[\rm N(CH_3)_4][\rm Pd_2I_5]$	
64	Ausgewählte Winkel in $[N(CH_3)_4][Pd_2I_5]$	
65	Lage der Schwingungsbanden von $[\mathrm{N}(\mathrm{CH}_3)_4][\mathrm{Pd}_2\mathrm{I}_5]$	
66	Kristallografische Daten und Messparameter von $[Pd(py)_2](SCN)_2$ 203	
67	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-	
	kungsparameter von trans- $[Pd(py)_2](SCN)_2$	

68	Thermische Auslenkungsparameter für trans- $[Pd(py)_2](SCN)_2$ 204
69	Ausgewählte Abstände, Multiplizitäten und Winkel in
	trans- $[Pd(py)_2](SCN)_2$
70	IR- und RAMAN-Frequenzen von trans- $[Pd(py)_2](SCN)_2$
71	Kristallografische Daten und Messparameter von $[\mathrm{Pd}(\mathrm{py})_4][\mathrm{Hg}(\mathrm{SCN})_4)]$. 215
72	Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslen-
	kungsparameter von $[Pd(py)_4][Hg(SCN)_4)]$
73	Thermische Auslenkungsparameter für $[Pd(py)_4][Hg(SCN)_4)]$
74	Ausgewählte Abstände und Winkel in $[Pd(py)_4][Hg(SCN)_4)]$
75	IR- und RAMAN-Schwingungsfrequenzen von $[Pd(py)_4][Hg(SCN)_4)]$ 224

1 Einleitung

In jüngster Zeit konnten einige neue ternäre und quaternäre Halogenoverbindungen des zweiwertigen Palladiums mit isolierten und verknüpften [PdX₄]-Baugruppen (X = Cl, Br, I) synthetisiert und charakterisiert werden [1–11]. Von diesen ist die Verbindung Cs₂[Pd^{II}I₄]I₂, die durch hydrostatischen Druck in Cs₂[Pd^{IV}I₆] umgewandelt werden kann [12], von besonderem Interesse. Gegenstand aktueller Forschungen sind aufgrund ihrer physikalischen Eigenschaften gemischtvalente Metallkomplexe. Insbesondere Platinkomplexe sind ausgiebig theoretisch [13, 14] und experimentell [15–19] untersucht worden um die elektronische Struktur dieser Komplexe zu verstehen. So zeigt [Pt(en)₂][Pt(en)₂X₂](ClO₄)₄ (en = Ethylendiamin; X = Cl, Br, I) unter Einwirkung von hydrostatischem Druck einen Wechsel der Oxidationstufen.

Ebenso sind gemischtvalente Goldkomplexe wie $Cs_2[AuX_2][AuX_4]$ im Fokus der Forschung [20–24]. Hier liegen im tetragonalen Kristallgitter alternierend lineare $[AuX_2]$ und quadratisch planare $[AuX_4]$ -Moleküle vor. Hydrostatischer Druck auf die Verbindungen bedingt eine Änderung der Valenzzustände. Druckinduziert treten Phasenübergänge (tetragonal nach tetragonal) bei 55 kbar, 90 kbar und 110 kbar für X = I, Br, Cl auf [25], die mit einem Übergang in den univalenten Valenzzustand für Gold verbunden sind.

Für Untersuchungen von elektronischen Übergängen im Festkörper stellt $Cs_2[PdI_4]I_2$ in diesem Zusammenhang ein Modellsystem mit direktem Elektronenübertrag dar, anders als $[Pt(en)_2][Pt(en)_2X_2](ClO_4)_4$ oder $Cs_2[AuX_2][AuX_4]$, welche einen indirekten Elektronenübertrag aufzeigen.

Ziel dieser Arbeit war es den Übergang von $Cs_2[PdI_4]I_2$ nach $Cs_2[PdI_6]$ mittels Hochdruck-Pulverröntgenmethoden zu untersuchen und kristallografische Daten zu erhalten, um Rückschluss auf den Elektronentransfermechanismus zu ziehen und Aussagen über die Reversibilität der Festkörper-Redoxreaktion zu treffen.

Ein weiteres Ziel lag in der Synthese neuartiger ternärer und quaternärer Halogenopalladate und ihrer Charakterisierung mittels röntgenografischer Methoden. Besondere Beachtung sollte dabei auf mögliche Redoxreaktionen im Festkörper, die druckinduziert auszulösen sind, gelegt werden. Die Festkörper-Redoxreaktion sollte mittels HochdruckRöntgenpulvermethoden verfolgt und kristallografische Daten extrahiert werden, um so die Basis für quantenchemische Betrachtungen von Elektronentransferreaktionen im Festkörper zu legen.

1.1 Röntgenografische Untersuchungen

1.1.1 Einkristalldiffraktometrie^a

Die Einkristalluntersuchungen sind mit einem κ -CCD^b-Vierkreis-Diffraktometer (Nonius) durchgeführt worden. Ein Vorteil der CCD-Technik ist die höhere Geschwindigkeit der Datensammlung gegenüber seriellen Diffraktometern. Sie erlaubt es mehrere Röntgenreflexe gleichzeitig zu erfassen. Die daraus resultierende Mehrfachmessung vieler Reflexe erhöht die statistische Sicherheit der Daten. Die Datenreduktion erfolgte mit dem Programmpaket DENZO+SCALEPACK [30], wenn möglich, wurde eine Absorptionskorrektur durchgeführt. Mit den Programmen SHELXS-97 / SHELXL-97 [31,32] sind Strukturbestimmung und -verfeinerung der Kristallstrukturen durchgeführt worden, chemisch unsinnige Modelle wurden sofort verworfen. Die Beurteilung der Strukturmodelle und deren -verfeinerung erfolgte anhand von Zuverlässigkeitsfaktoren, die wichtigsten werden im Nachfolgenden kurz beschrieben.

Der R(F)-Wert gibt die mittlere Abweichung zwischen beobachtetem (o) und berechnetem (c) Strukturfaktor (F) wieder.

$$R(F) = \frac{\sum_{hkl} ||F(o)| - |F(c)||}{\sum_{hkl} |F(o)|}$$
(1)

Die Einführung von Wichtungsfaktoren w in die Verfeinerung ermöglicht es die höhere Standardabweichung von schwachen Reflexen gegenüber starken Reflexen zu berücksichtigen

$$wR(F^2) = \sqrt{\frac{\sum_{hkl} w[F^2(o) - F^2(c)]^2}{\sum_{hkl} w[F^2(o)]^2}}$$
(2)

wobei die Wichtungsfunktion in der Regel durch

^aIn der Literatur findet sich eine Vielzahl detaillierter Monographien und Aufsätze zur Theorie der Einkristallstrukturanalyse mittels Röntgenbeugungsmethoden, vgl. [26–29]

^bCharged Coupled Device

$$w^{-1} = \left(\sigma^2[F^2(o)] + q_1 \cdot P^2 + q_2 \cdot P\right) \text{ mit } P = \frac{1}{3}[F^2(o) + 2F^2(c)]$$
(3)

beschrieben wird. Die Parameter q_1 und q_2 werden so angepasst, dass möglichst eine Gleichverteilung in der Streuung der Varianzen ($\sigma^2[F^2(o)]$) über die verschiedenen Beugungswinkel und Intensitätsbereiche erreicht wird.

Ein weiteres Qualitätsmerkmal ist der "Gütefaktor" oder "Goodness of Fit (GooF)", welcher bei korrekter Struktur und Gewichtung Werte um 1 einnimmt.

$$GooF = \sqrt{\frac{\sum_{hkl} w[F^2(o) - F^2(c)]^2}{m - n}}$$
(4)

m beschreibt die Zahl der Reflexe, n die Anzahl der Parameter.

1.1.2 Pulverdiffraktometrie^c

Anhand von Röntgenpulveraufnahmen ist es möglich qualitative Phasenanalysen durchzuführen und eine Aussage über eine erfolgreiche Umsetzung oder das Vorliegen röntgenografisch phasenreiner Edukte und Produkte zu treffen^d. Aufgezeichnete Pulverdiffraktogramme wurden mit den Referenzdiagrammen möglicher Produkte und Ausgangsverbindungen verglichen, Pulversimulationen sind mit den Programmen LAZY PULVE-RIX [36] oder POWDERCELL [37] erzeugt worden. Die dazu benötigten kristallografischen Daten sind Originalzitaten, der ICSD^e [38] oder dem PDF^f [39] entnommen. Zur Aufnahme von Pulverdiffraktogrammen kamen folgende Pulverdiffraktometer zum Einsatz.

- Philips PW1050/25, $\theta/2\theta$ -Geometrie, Wellenlänge Cu-K_{$\bar{\alpha}$}, Proportionalzählrohr
- Siemens D500, $\theta/2\theta$ -Geometrie, Wellenlänge Cu-K_{$\bar{\alpha}$}, Szintillationszähler
- Huber G670, GUINIER-Kamera, Wellenlänge Cu- $K_{\alpha 1}$, Image-Plate

^dVerunreinigungen unter 5% bei gleicher Streuintensität können nicht erfasst werden ^eInorganic Crystal Structure Database

^cPulvermethoden zur Strukturaufklärung und -verfeinerung werden in der Literatur sehr ausführlich behandelt vgl. [33–35]

^fPowder Diffraction File des Joint Committee on Powder Diffraction Standards

Mit Hilfe automatischer Indizierungsprogramme wie ITO [40], TREOR90 [41] oder DICVOL91 [42] ist es möglich Pulveraufnahmen zu indizieren, sofern alle Phasen identifizierbar sind oder keine großen niedersymmetrischen Kristallstrukturen vorliegen. Gelingt eine Indizierung und kann anhand ähnlicher Strukturen eine Modellstruktur abgeleitet werden, so ist es möglich nach der Methode von RIETVELD [43] eine Strukturverfeinerung vorzunehmen. Liegt kein geeignetes Startmodell vor, kann durch Extraktion der Intensitätsdaten aus indizierten Pulveraufnahmen mittels des Programmpaketes EXPO [44] ein geeignetes Strukturmodell ermittelt werden. Die in dieser Arbeit durchgeführten RIETVELD-Verfeinerungen wurden mit dem Programmpaket GSAS (General Structure Analysis System) [45] durch Anpassung zwischen beobachtetem und berechnetem Pulverdiffraktogramm, nach der Methode der kleinsten Fehlerquadrate, durchgeführt. Hierbei wurden neben kristallografischen Parametern wie Elementarzellen-, Atomlage- und thermischen Auslenkungsparametern außerdem noch Profil-, Untergrund-, Instrumentenund Probenparameter mitverfeinert.

Die Zuverlässigkeit eines Modells wird über die Qualität der Profilanpassung (R_p, wR_p) einerseits und der Anpassung der Strukturfaktoren (R_{F^2}) andererseits bestimmt.

$$R_p = \frac{\sum ||y_i(o)| - |y_i(c)||}{\sum |y_i(o)|}$$
(5)

$$wR_p = \sqrt{\frac{\sum w_i [y_i(o) - y_i(c)]^2}{\sum w_i [y_i(o)]^2}}$$
(6)

 $y_i(o)$ bezeichnet den beobachteten Profilpunkt, $y_i(c)$ den berechneten Profilpunkt. Die Übereinstimmung zwischen den beobachteten Strukturfaktoren, extrahiert aus dem Pulverdiffraktogramm, und den berechneten Strukturfaktoren aus dem Modell gibt der $R(F^2)$ -Wert

$$R_{F^2} = \frac{\sum |F_{hkl}(o)|^2 - |F_{hkl}(c)^2|}{\sum |F_{hkl}(o)|^2}$$
(7)

wieder. Dieser ist mit dem R(F)-Wert (Gl. (1)) vergleichbar. Ein Analogon zum GooF(vgl. Gl. (4)) bildet der χ^2 -Wert

$$\chi^2 = \frac{\sum w_i [y_i(o) - y_i(c)]^2}{(m-n)}$$
(8)

mit m Anzahl der Profilpunkte, n Anzahl der verfeinerten Parameter.

1.1.3 Energiedispersive Röntgenfluoreszenzanalyse (EDX)

Die Röntgenfluoreszenzanalyse erlaubt es, zerstörungsfrei qualitative und bei Verwendung von Standardreferenzen halbquantitative Aussagen über die Zusammensetzung einer Verbindung zu machen. Dabei treffen hochbeschleunigte Elektronen auf die Probe und regen diese zum Aussenden des charakteristischen Fluoreszenzspektrums an. Anhand dieses Spektrums können die in einer Probe enthaltenen Elemente mittels eines energiedispersiven Detektorsystems eindeutig analysiert werden. Im Rahmen dieser Arbeit wurden EDX-Analysen an einem Rasterelektronenmikroskop Typ Stereoscan 360 mit energiedispersivem Detektorsystem Link/AN 10000 (Cambridge Instruments) und einem Hitachi H-S4500 F4500 durchgeführt sowie elektronenmikroskopische Aufnahmen angefertigt. Als Probenhalter dienten Aluminiumträger, die mit elektrisch leitendem, beidseitig klebendem Kohlenstoffband versehen waren.

1.1.4 Röntgenpulverexperimente bei unterschiedlichen Drücken

Am European Synchrotron Radiation Facility (ESRF) in Grenoble/Frankreich sind Röntgenbeugungsexperimente bei unterschiedlichen Drücken in Diamantstempelzellen an den Experimentierstationen ID09 (Experiment-Nr. CH-1052) und ID30 (Experiment-Nr. CH-1086) durchgeführt worden. Die aus dem Elektronenspeicherring ausgekoppelte Synchrotronstrahlung wurde über einen gebogenen Si(111)-Doppelmonochromator monochromatisiert und durch Wolframcarbid-Blenden auf eine Strahlgröße von 30 μ m × 30 μ m reduziert. Die Wellenlänge der ausgekoppelten Röntgenstrahlung wurde energiedispersiv vorbestimmt. Durch Messen eines Silizium-Pulverstandards wurden Wellenlänge, Detektorabstand und Detektorverkippung (*tilt-angle*) nach der Methode der kleinsten Fehlerquadrate verfeinert. Beide Messstationen arbeiten in DEBYE-SCHERER-Geo

Abbildung 1: Darstellung des Messrasters zur Verbesserung der Messstatistik an Messstation ID30; insgesamt wurden 10 Messpunkte aufgezeichnet, der geschwärzte Messpunkt wurde zweimal erfasst

metrie und verfügen über ein schnelles, automatisch auslesendes *image-plate* System vom Typ Mar3450, mit einem Durchmesser von 345 mm und einer Pixelgröße von 100 μ m × 100 μ m. Die Pulverproben sind an Experimentierstation ID09 während der Exposition senkrecht zur Strahlrichtung um ± 3° geschwenkt worden, um so Textureffekte zu reduzieren und die Messstatistik zu verbessern. Aus dem gleichen Grund wurden die Pulverproben an Messstand ID30 während der Exposition in Schrittweiten von 10 μ m bis 15 μ m senkrecht um den Synchrotronstrahl in x- und y-Richtung verschoben (vgl. Abb. 1).

Mit Hilfe des Programms FIT2D [46] sind die Beugungsbilder von Untergrundeffekten, Artefakten und Sättigungsüberladungen bereinigt, LORENTZ- und polarisationkorrigiert und abschließend über den gesamten Messbereich integriert worden. Die erhaltenen Pulverdiffraktogramme sind mit dem Programm DATLAB [47] für RIETVELD-Analysen aufbereitet und um eine bekannte Detektorunebenheit an Messstation ID09 bereinigt worden. Die nach der Methode der kleinsten Fehlerquadrate verfeinerten Messparameter (Si-Standard) der Experimentierstände ID09 und ID30 sind in nachfolgender Tabelle aufgeführt.

Paramter	ID09	ID30
Abstand Probe-Detektor [mm]	399,078	419,89
Verfeinerte Wellenlänge [Å]	0,41586	0,37380
tilt-angle [°]	0,124	0,050

Abbildung 2: <u>Links</u>: Digitalisiertes Beugungsbild $(Cs_2[PdI_4]I_2)$ der *image-plate*, deutlich sind einzelne Reflexe und Artefakte zu erkennen

 $\underline{\operatorname{Rechts:}}$ Teilweise überarbeitet mit Maskierung einzelner Reflexe und Artefakten von Strahlenfänger und Diamantstempelzelle

<u>Unten</u>: Pulverdiffraktogramm erhalten nach Integration über das gesamte Beugungsbild. Der hohe Untergrund wird durch COMPTON-Streuung der Diamantstempel erzeugt [48]

1.1.5 Erzeugung und Bestimmung hoher Drücke

Die Diamantstempeltechnik ermöglicht es statische Drücke bis in den Mbar-Bereich zu erzeugen. Neben der enormen Härte des Stempelmaterials und der geringen Absorption im Röntgenbereich ist dessen optische Transparenz ein weiterer Vorteil, der auch spektroskopische Messungen zulässt. Für die durchgeführten Messungen wurden gasbetriebene Membran-Diamantstempelzellen vom Typ LE TOULLEC [49] eingesetzt (vgl. Abb. 3). Heliumgas bläht eine Metallmembran auf, die den Druck auf die planparallelen Diamantstempel, zwischen denen sich eine Dichtscheibe (Gasket) aus Inconel 750X von rund 200 μ m Dicke befindet, überträgt. Das Gasket wird so bis auf eine Reststärke von 70 μ m vorgepresst. Durch Funkenerosion wird ein Loch von 120 μ m Durchmesser in die Dichtscheibe getrieben, welche das eigentliche Probenvolumen von rd. $0.8 \cdot 10^{-9}$ L darstellt (vgl. Abb. 4). Das Gasket kann so auf einem Diamantstempel fixiert und mit Probe und Druckmarker (Rubin oder $SrBr_4O_7:Sm^{2+}$) bestückt werden. Über den zweiten Diamantstempel wird die Probenkammer soweit verschlossen, dass noch druckübertragendes Medium (Ar, N₂) einkondensiert werden kann. Ist die Probenkammer mit Argon oder Stickstoff gefüllt, wird der Druck auf die Metallmembran und somit auf die Stempel erhöht und das Gasket schließt die Probenkammer gasdicht ab (vgl. Abb. 5). Die Druckbestimmung erfolgt nach der Rubinfluoreszenzmethode [50] unter Verwendung der nicht-linearen hydrostatischen Druckskala [51]. Hierbei wird die Verschiebung des Fluoreszenzliniendubletts (${}^{2}E \rightarrow {}^{4}A_{2}$) von Cr³⁺ in Al₂O₃ als Funktion des Drucks gemessen und der Druck schließlich nach folgender Formel berechnet:

$$p = 248, 4 \text{ kbar} \cdot \left[\left(\frac{\lambda_{R_1}(p)}{694, 231 \text{ nm}} \right)^{7,665} - 1 \right]$$
 (9)

Der Fehler in der Druckbestimmung kann mit 3% angenommen werden.

Ein anderer eingesetzter Lumineszenzdrucksensor ist mit Sm^{2+} dotiertes $\mathrm{SrB_4O_7}$, welches einen schärferen Singulet-Übergang ($^7D_0 \rightarrow {}^5F_0$) besitzt und weniger temperaturabhängig als Rubin ist [52]. Der Druck wird nach folgender Formel berechnet:

$$p = 1393, 3 \text{ kbar} \cdot \left[\left(\sqrt{1 + 5,788 \cdot 10^{-2} [\lambda_{R_1}(p) - 685,465 \text{ nm}]} \right) - 1 \right]$$
(10)

Der Fehler in der Druckbestimmung liegt hier bei 1,4%.

Abbildung 3: Membranbetriebene Diamantstempelzelle (LE TOULLEC-Typ aus [53]): Halbschnitte durch (A) Zentrierbolzen; (B) Führungsschrauben; 1) Haltebolzen; 2) Stahl-Membran; 3) Schiebestück für Druckübertrag auf den Kolben; 4) Kolben; 5) Drucktiegel (Stahl); 6) Wolframcarbid-Widerlager; 7) Diamantstempel; 8) Gasket; 9) Ventil; 10) Gaszuleitung

Abbildung 4: Vorgepresstes Gasket mit Bohrung der Probenkammer

Abbildung 5: Schematische Darstellung der geschlossenen Diamantstempel mit Gasket, Druckmarker und Probe

1.1.6 Röntgenabsorptionsspektroskopie

Bei Photonenanregung eines kernnahen Elektrons zeigt der Röntgenabsorptionsquerschnitt (Röntgenabsorptionskoeffizient μ) als Funktion der Energie eine sinusförmige Oszillation, welche durch die Wechselwirkung zwischen ausgehender Photonenwelle und Rückstreuung an Nachbaratomen entsteht. Diese Erscheinung wird als Extendend X-ray Absorption Fine Structure (EXAFS) bezeichnet. Bei der EXAFS-Spektroskopie wird eine Probe mit einem Röntgenstrahl definierter Energie (I₀) durchstrahlt und die Intensität (I) hinter der Probe bestimmt. Aus der Lage der Absorptionskante und der Struktur der Oszillation können Aussagen über den Valenzzustand eines Atoms sowie der lokalen Umgebung gemacht werden.

EXAFS-Experimente wurden am ESRF an der Experimentierstation BM29 (Experi ment-Nr. CH-1301) unter Verwendung einer motorbetriebenen Hydraulik-Druckzelle vom Typ PARIS-EDINBURGH V5 [54,55] durchgeführt (vgl. Abb. 6 und 7). Als Probencontainer kamen toroidförmige Bor-Epoxidharz-Kapseln mit einer 2 mm Längsbohrung zum Einsatz. Die Pulverproben sind zur Optimierung des Absorptionsquerschnitts mit h-BN im Verhältnis 1:4 verdünnt, in die Längsbohrung gefüllt und mit Kaptonfolie verschlossen worden. Die Bor-Epoxidharz-Probenträger wurden in der Druckzelle befestigt und durch automatische Routinen im Strahlengang zentriert. Von Palladium und Iod wurden die Absorptionskanten mit einer Schrittweite von 1 eV gegen die Referenzproben CsI, PdI₂ und Pd-Folie aufgezeichnet. Pulverdiffraktogramme sind über das an BM29 angebrachte energiedispersive 7-Kanal-Detektorsystem aufgezeichnet worden [56]. Anhand weniger Beugungsreflexe konnten die Elementarzellenparameter von h-BN extrahiert und nach der Methode der kleinsten Fehlerquadrate verfeinert werden. Der gemittelte Druck auf die Probe ist über die Zustandsgleichungen nach HOLZAPFEL [57] (Gl. (11)) und MURNAGHAN [58] (Gl. (12)) von h-BN berechnet worden.

$$p = \frac{3 \cdot K_0 \left[1 - \left(\frac{V}{V_0}\right)^{\frac{1}{3}}\right]}{\left(\left(\frac{V}{V_0}\right)^{\frac{1}{3}}\right)^5} exp\left[\frac{3}{2}(K_0' - 3)\left(1 - \left(\frac{V}{V_0}\right)^{\frac{1}{3}}\right)\right]$$
(11)

$$p = \frac{K_0}{K'_0} \left[\left(\frac{V}{V_0} \right)^{K'_0} - 1 \right]$$
(12)

mit V₀ = 36,17027 Å³, K₀ = 30,33 kbar und K'₀ = 7,4 [59]. K₀ beschreibt das isotherme Kompressionsmodul (K₀ = $\frac{1}{\alpha}$), K'₀ = $\frac{dK_0}{dp}$ die druckabhängige erste Ableitung, V₀ das Elementarzellenvolumen bei Normaldruck und V das Elementarzellenvolumen beim Druck p.

Die aufwendige Datenanalyse und Extraktion kristallografischer Daten wurde mit dem Programmpaket FEFF/FEFFIT [60,61] von Herrn Dr. Matthias Richwin aus der Arbeitsgruppe von Prof. Dr. R. Frahm (Universität Wuppertal) durchgeführt.

Abbildung 6: Querschnitt durch die Probenumgebung einer PARIS-EDINBURGH-Druckzelle (aus [57]). (1) Probe, im toroidalem Bor-Epoxid-Harz Container, ca. 100 mm³; (2) Synchrotronstrahl; (3) Wolframcarbid Druckstempel; (4) Wolframcarbid Widerlager; (5) Stahlhülse

Abbildung 7: Querschnitt durch die PARIS-EDINBURGH-Druckzelle (aus [57]): (1)
Probenumgebung (vgl. Abb. 6); (2),(3) Stempel und Widerlager; (4)
Drucktopf; (5) obere Abdeckplatte; (6) Führung; (7) Zylinder; (8) Führung; (9) Dichtringe; (10) Hydrauliköl-Ventil
1.2 Schwingungsspektroskopische Untersuchungen

Schwingungsfrequenzen komplexer Halogenopalladationen liegen im Bereich zwischen 400 cm⁻¹ und 50 cm⁻¹. Für quadratisch planare Baugruppen [XY₄] der Punktgruppe D_{4h} sind in Normalkoordinaten sieben Schwingungsmoden möglich (vgl. Abb. 8). Davon sind drei RAMAN-aktiv, drei IR-aktiv und eine Schwingung IR- und RAMAN-inaktiv. Zu den RAMAN-aktiven Schwingungen der Punktgruppe D_{4h} zählen die symmetrische Streckschwingung ν_s der Rasse A_{1g}, die Deformationsschwingung δ der Rasse B_{2g} sowie die Streckschwingung ν der Rasse B_{1g}. IR-aktiv sind die *out-of-plane*-Schwingung π der Rasse A_{2u} und die zweifach entartete Schwingung der Rasse E_u: ν_{as} und δ [62,63].

Anhand weniger kristallografischer Daten ist es möglich die Anzahl der IR- und RAMAN-aktiven Normalschwingungsmoden im Kristall zu berechnen [64]. Mit Hilfe von Tabellen werden die Schwingungsmoden der jeweiligen Lagesymmetrie entnommen und aufsummiert. Der in der Summe enthaltene Translationsanteil wird subtrahiert, die Zuordnung der IR- oder RAMAN-Aktivität erfolgt über die Charakterentafeln.

IR-Spektren sind mittels eines Fourier-Transform-Infrarot-Spektrometers IFS 113v (Bruker) aufgezeichnet worden. Hierzu wurden gut gemörserte Proben mit Polyethylenpulver vermengt und bei Raumtemperatur mit einem Druck von 5 t pro cm² zu dünnen Scheiben von 12 mm Durchmesser gepresst. Der Messbereich lag zwischen 450 cm⁻¹ und 35 cm^{-1} .

RAMAN-Spektren sind mit einem F6400 Spektrometer (Jobin-Yvon) unter Verwendung eines Stabilite 2017 Argon-Lasers (Spectraphysics) aufgenommen worden. Die zu untersuchenden Substanzproben wurden in Schmelzpunktbestimmungsröhrchen mit einem Innendurchmesser von 1 mm gegeben und mit Bienenwachs verschlossen. Um die thermische Last auf stark absorbierende Proben durch den Erreger-Laser gering zu halten ist die Laserleistung auf Minimalwerte eingestellt worden.

Die Zuordnung der Schwingungsfrequenzen zu den entsprechenden Schwingungsformen erfolgte durch direkten Vergleich mit Referenzspektren oder Literaturdaten.

Abbildung 8: Darstellung der Normalschwingungsmoden quadratisch planarer Baugruppen $[\mathrm{XY}_4]$

1.3 Thermoanalytische Methoden

1.3.1 Differenzthermoanalyse/Thermogravimetrie (DTA/TG)

Über thermogravimetrische Messungen lassen sich Massenveränderungen als Funktion der Temperatur erfassen, z.B. Kristallwasserabspaltung oder eine Reaktion mit der Gasphase (Oxidation). Durch eine an die Thermogravimetrie gekoppelte Differenzthermoanalyse, der Temperaturdifferenzbestimmung zwischen Probe und einer inerten Referenz, können thermische Effekte wie z. B. Kristallstrukturänderungen, Zersetzungsreaktionen oder der Schmelzpunkt erfasst werden. Alle DTA/TG-Messungen wurden an einem Thermoanalyzer TA1 (Mettler) durchgeführt. Als Referenz- und Tiegelmaterial diente Al₂O₃. Die Messungen sind in dynamischer Argonatmosphäre (Argon 4.8) bei Normaldruck und 25 °C Referenztemperatur aufgezeichnet worden.

1.3.2 Difference Scanning Calorimetry (DSC)

Eine Möglichkeit Enthalpieänderungen quantitativ zu erfassen bietet die Differential Scanning Calorimetry (Dynamische Differenz Kalorimetrie). Enthalpieänderungen werden als Funktion der Temperatur erfasst. Dabei werden Probe und Referenz auf gleiche Temperatur gebracht (Wärmekompensationsmethode) und zusätzliche Heizenergie als Abweichung registriert. Alle durchgeführten Messungen sind in Goldtiegeln an den Messgeräten DSC-2 (Perkin-Elmer) und Pyris (Perkin-Elmer) durchgeführt worden.

1.4 Dichtebestimmung

Dichtebestimmungen wurden an einem AccuPyc 1330 (Micromeritics), welches nach dem Prinzip der Gasverdrängung arbeitet, durchgeführt. Zur Messung der Dichten ist Helium (He 4.6) bei 18 °C Raumtemperatur eingesetzt worden.

1.5 Präparative Arbeitsmethoden

1.5.1 Verwendete Substanzen

Substanz	Hersteller	${f Reinheitsgrad}$
Pd-Pulver	Degussa, Hanau	99,9 %
Au-Pulver	Degussa, Hanau	99,9%
CsCl	Merck, Darmstadt	${\rm p.a.;} > 99.5~\%$
CsBr	Fluka, Deisenhofen	99,5~%
CsI	Fluka, Deisenhofen	p.a.; 99,5 $\%$
RbBr	Fluka, Deisenhofen	p.a.; 99 $\%$
RbI	Alfa-Johnson Matthey, Karlsruhe	99~%
KSCN	Merck, Darmstadt	p.a.
KCl	Merck, Darmstadt	p.a.
$[N(CH_3)_4]Cl$	Merck, Darmstadt	zur Synthese
$[N(CH_3)_4]Br$	Alfa-Johnson Matthey, Karlsruhe	98 %
$[N(CH_3)_4]I$	Alfa-Johnson Matthey, Karlsruhe	99~%
$[\mathrm{N}(\mathrm{C}_{2}\mathrm{H}_{5})_{4}]\mathrm{Cl}$	Alfa-Johnson Matthey, Karlsruhe	99+~%
$H[AuCl_4] \cdot x H_2O$	Degussa, Hanau	99,9~%
HCl (37%)	Riedel-de-Haen, Seelze	p.a.
HBr (47 %)	Merck, Darmstadt	p.a.
HI (57 %)	Chempur, Karlsruhe	p.a.
HNO ₃ (65 %)	Riedel-de-Haen, Seelze	reinst
Br_2	Fluka, Deisenhofen	$\mathrm{p.a.} > 99,5~\%$
I_2	Merck, Darmstadt	p.a.; doppelt sublimiert, $>$ 99,8 $\%$
Ethanol	Kassner & Sassner	technisch, 96 $\%$
Diethylether	Krämer & Martin	technisch
Pyridin	Merck, Darmstadt	p.a.
Argon	Messer-Griesheim	99,9998~%
Helium	Messer-Griesheim	99,9996~%
Polyethylen-		
pulver	Merck, Darmstadt	99,99~%

1.5.2 Darstellung der Ausgangssubstanzen

PdCl₂: 2 g Palladium-Pulver sind in 20 ml Königswasser unter langsamem Erwärmen gelöst worden. Die tiefrote Flüssigkeit wurde eingedampft bis keine nitrosen Gase mehr freigesetzt wurden, dann mit 10 ml konz. HCl versetzt und erneut eingeengt. Die verbleibende Lösung wurde unter einem IR-Strahler langsam eingetrocknet. Der dunkelrote bis braune mikrokristalline Feststoff entsprach der γ -Modifikation von PdCl₂, die strukturell noch nicht näher charakterisiert ist [65].

Abbildung 9: Pulverdiffraktogramm von PdCl₂, unterlegt sind Reflexlagen und Intensität nach [65]

PdBr₂: 1,5 g Palladium-Pulver wurde in einer Lösung aus 75 ml HBr (47%) und 5 ml Br₂ durch langsames Erwärmen gelöst. Die Lösung ist stark eingeengt und mit Hilfe eines IR-Strahlers bis zur Trockene eingedampft worden. Der verbleibende dunkelbraune Feststoff entsprach der α -Modifikation von PdBr₂ [66].

PdI₂: 2 g Palladium-Pulver wurden in einer Lösung aus 40 ml konz. HNO₃ unter Rückfluss gelöst, anschließend in ein Becherglas überführt und auf 200 ml mit bidest. Wasser aufgefüllt. Die Lösung ist auf 80 °C erwärmt worden und unter starkem Rühren

Abbildung 10: Pulverdiffraktogramm von PdBr₂. (+) gemessene und (-) berechnete Intensitätsdaten, (|) mögliche BRAGG-Positionen, darunter die Differenzkurve

wurden langsam 3 ml frisch destillierte HI (57%) zugegeben. Es bildete sich ein feiner schwarzer Niederschlag aus PdI₂. Nach beendeter Zugabe wurde noch 1 Stunde gerührt. Nach 4 Stunden ist die überstehende Lösung abdekantiert, der Niederschlag abfiltriert und mehrmals mit bidest. Wasser gewaschen worden. Der tiefschwarze mikrokristalline Feststoff wurde 24 Stunden bei 130 °C im dynamischen Ölpumpenvakuum getrocknet. Bei dem Feststoff handelte es sich um die strukturell noch nicht charakterisierte γ -Modifikation von PdI₂.

 $Pd(SCN)_2$: Eine Lösung aus 1,77 g $PdCl_2$ und 1,49 g KCl in 40 ml bidest. Wasser wurde zu einer Lösung aus 1,96 g KSCN in 20 ml bidest. Wasser gegeben. Es fiel sofort orangerotes $Pd(SCN)_2$ aus, das nach dem Filtrieren mit reichlich Ethanol und anschließend solange mit bidest. Wasser gewaschen wurde, bis in diesem Filtrat kein Chlorid mehr mit der AgNO₃-Probe nachweisbar war. Das Produkt lag nanokristallin vor, hiervon angefertigte Pulveraufnahmen zeigen keine Beugungsreflexe.

Abbildung 11: Pulverdiffraktogramm von PdI_2 , unterlegt sind Lage und Intensitäten von γ -PdI₂ [67]

CsI₃: 2,6 g CsI ist in 2 ml Wasser gelöst worden, hierzu kam eine Lösung aus 0,6 g Iod in 1 ml Ethanol. Es fiel phasenreines CsI₃ aus, das noch 24 Stunden im dynamischen Ölpumpenvakuum getrocknet wurde.

1.5.3 Handhabung der Ausgangssubstanzen

Um möglichst reproduzierbare Ergebnisse zu gewährleisten sind nur reinste, getrocknete Ausgangsverbindugen eingesetzt worden. Die Edukte wurden bei 130 °C im dynamischen Ölpumpenvakuum mit vorgeschalteten Stickstoffkühlfallen 24 Stunden getrocknet. Ausnahmen bildeten die Verbindungen $Pd(SCN)_2$, $[N(CH_3)_4]Cl$ und $[N(C_2H_5)_4]I$, welche lediglich bei 60 °C im Ölpumpenvakuum 48 Stunden getrocknet wurden. Alle Substanzen sind hiernach in Exsikkatoren über Trockenmittel gelagert worden. Wenn nicht anders beschrieben, sind die Reaktionen in Quarzglasampullen mit einem Außendurchmesser von 8 mm und einer Länge von rund 6 cm durchgeführt worden. Zuvor wurden die Quarzglasampullen bei 900 °C über 12 Stunden ausgeglüht. Die Reaktionskontrolle erfolgte über die Temperaturführung in Öfen aus Oxidkeramik (Pythagorasrohr) mittels elektrischer Widerstandsheizung (Kantaldraht). Temperaturregler und Öfen wurden in

Abbildung 12: Pulverdiffraktogramm von CsI₃. (+) gemessene und (-) berechnete Intensitätsdaten, (|) mögliche BRAGG-Positionen, darunter die Differenzkurve

den Institutswerkstätten der Universität Dortmund angefertigt.

1.5.4 Hydrothermalsynthese

Zur Hydrothermalsynthese werden heterogene Reaktionen in wässrigen Lösungsmitteln bei Temperaturen über 100 °C und 1 bar gezählt. Bei diesen Bedingungen können sonst schwerlösliche Verbindungen unter Beteiligung von Mineralisatoren (z. B. Säuren oder Laugen) in Lösung gehen, jedoch ist eine Mindestlöslichkeit der Edukte von 2 % bis 5 % erforderlich. Gegenüber konventioneller Reaktionsführung in der Festkörperchemie bietet die Hydrothermalsynthese daher eine Reihe von Vorteilen etwa bei der Herstellung von Tieftemperaturphasen oder metastabilen Verbindungen. Die chemischphysikalischen Daten von Wasser bzw. wässrigen Lösungen sind im interessierenden Temperatur- und Druckbereich gut bekannt. Der herrschende Druck wird zum einen über den Füllungsgrad der Reaktionsgefäße (üblicherweise 50 % bis 80 %), zum anderen über die Temperatur bestimmt. Gerade in der Kristallzucht findet die Temperaturabsenkmethode Anwendung, denn eine bei höherer Temperatur gesättigte Lösung scheidet beim langsamen Abkühlen Kristalle aus. Die in dieser Arbeit eingesetzten Quarzglasampullen können bis ca. 500 °C erhitzt werden.

2 Verbindungen vom Typ $M_2[PdX_4]I_2$ (M=Cs, X=I, Br,Cl; M=Rb, X=Br)

2.1 $Cs_2[PdI_4]I_2$ und $Cs_2[PdI_6]$

$2.1.1 \quad \mathbf{Cs}_2[\mathbf{PdI}_4]\mathbf{I}_2$

Wie SCHÜPP anhand energiedispersiver Röntgenbeugungsexperimente bei erhöhtem Druck zeigen konnte, lässt sich die tetragonale Verbindung Cs₂[PdI₄]I₂ (I4/mmm) druckinduziert in die kubische Verbindung Cs₂[PdI₆] (Fm $\bar{3}$ m, K₂PtCl₆-Typ) umwandeln [12]. Der Übergang liegt zwischen 12,4 kbar und 20,3 kbar. Dabei wechselt Palladium die Oxidationsstufe von 2+ nach 4+, das eingelagerte Iod wird reduziert und wechselt die Oxidationsstufe von 0 nach 1-. Die Koordination um Palladium wird dabei um zwei Iodatome erweitert und geht von einer quadratisch planaren Koordination mit D_{4h}-Symmetrie in eine perfekt oktaedrische Koordination mit O_h-Symmetrie über. Beide Modifikationen sind bei Raumtemperatur und Normaldruck beständig.

Abbildung 13: Darstellung der Umwandlung von $Cs_2[PdI_4]I_2$ zu $Cs_2[PdI_6]$

Die unzureichende Datenqualität und die begrenzte Anzahl an Messpunkten ließ keinen detaillierten Einblick in die ablaufende Festkörper-Redox-Reaktion zu. Aus diesem Grund sollten zunächst an der Verbindung $Cs_2[PdI_4]I_2$ Hochdruck-Pulverbeugungsexperimente durchgeführt werden, mit einer feineren Abstufung der Druckmesspunkte und einer höheren Winkelauflösung, die RIETVELD-Analysen erlauben und die somit Aussagen über den Mechanismus der Reaktion ermöglichen. Dafür wurde die Synthese der Verbindung optimiert, um eine ausreichende Menge Ausgangsprodukt zu erhalten. Für eine verlässliche Ausgangsdatenbasis der interatomaren Abstände in $Cs_2[PdI_4]I_2$ wurde die Kristallstruktur erneut bestimmt.

2.1.2 Darstellung und Charakterisierung von $Cs_2[PdI_4]I_2$

0,5 g eines Gemenges aus CsI, PdI₂ und Iod ist im molaren Verhältnis 3:1:1 in Quarzglasampullen gefüllt, mit 0,5 ml frisch destillierter HI (57 %) überschichtet, eingefroren, evakuiert und zugeschmolzen worden. Die Quarzampullen wurden mit 25 °C/h auf 150 °C aufgeheizt, 8 Stunden getempert und mit 1 °C/h auf Raumtemperatur abgekühlt. Das Reaktionsgemenge ist mit reichlich bidest. Wasser und Ethanol gewaschen und mit Diethylether getrocknet worden. Im Filter verblieben gut ausgebildete schwarze Nadeln von Cs₂[PdI₄]I₂. Die Überprüfung der Phasenzusammensetzung des Produkts erfolgte mittels Pulverdiffraktometrie. Einige kleine schwarze Nadeln sind für Einkristallaufnahmen mit einem κ -CCD-Diffraktometer in Röntgenkapillaren abgefüllt worden. Ein geeigneter Kristall wurde für die Intensitätsdatensammlung ausgewählt und triklin gemessen. Durch Transformation der primitiven Elementarzellenparameter gelangt man zu einer tetragonalen Zellaufstellung mit Innenzentrierung. Die Elementarzellenparameter stimmen mit denen der Pulververfeinerung a = 8,9860(4) Å und c = 9,2449(6) Å und denen von SCHÜPP [12] bestimmten a = 8,987(1) Å und c = 9,240(1) Å gut überein.

$$a = 7,8599(1) \text{ Å}, \quad \alpha = 107,953(1)^{\circ} \quad \underbrace{i=\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}\right)}_{0 & 1 & 1} \quad a=8,9900(2) \text{ Å}$$

$$b = 7,8594(1) \text{ Å}, \quad \beta = 110,233(1)^{\circ} \qquad \underbrace{i=\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \end{array}\right)}_{0 & 1 & 1} \quad c=9,2446(2) \text{ Å}$$

$$c = 7,8596(2) \text{ Å}, \quad \gamma = 110,234(1)^{\circ} \qquad c=9,2446(2) \text{ Å}$$

Abbildung 14: Pulverdiffraktogramm von $Cs_2[PdI_4]I_2$, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

Abbildung 15: Elektronenmikroskopische Aufnahme eines $Cs_2[PdI_4]I_2$ -Kristalls

κ-CCD Datensatznummer	1395
Summenformel	$Cs_2[PdI_4]I_2$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	I4/mmm (139); 2
Elementarzellenparameter [Å]	$\mathrm{a}=8{,}9900(2)$
	${ m c}=9{,}2446(2)$
EZ-Volumen $[Å^3]$	747,15(3)
Dichte (ber./gem.) $[10^3 \text{kg/m}^3]$	$5{,}039 \;/\; 5{,}098(4)$
Kristallgröße [mm ³]	$0.05 \times 0.05 \times 0.03$
Messung	Enraf-Nonius κ -CCD-Vierkreis-
	diffraktometer, Mo-K _{α} , $\lambda = 0,71073$ Å,
	Graphitmonochromator, CCD-Detektor;
	ω -Scans, $3^{\circ} \le \theta \le 27^{\circ}$, T = 293 K,
Reflexbereich	$-11 \leq h,k \leq 11; -12 \leq l \leq 12$
Completeness [%]	100%
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$,
	volle Matrix, SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	18,39
Absorptionskorrektur	keine
F(000)	984
Zahl der Reflexe	
gemessen	3267
unabhängige (N)	279
davon mit $I > 2\sigma(I) (N')$	271
Anzahl der Parameter	13
R_i (SHELXL-97) [%]	2,97
$R(F)_N; R(F)_{N'} [\%]$	1,56; 1,47
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$3,48;\ 3,45$
GooF	1,247
Extinktionskoeffizient	0,0039(2)
Restelektronendichte [Å ^{-3}]	-0,77 (0,70 Å von Cs)
	$0,62 \ (0,29 \ \text{\AA von I}(1))$

Tabelle 1: Kristallografische Daten und Messparameter von $Cs_2[PdI_4]I_2$

Tabelle 2: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von Cs₂[PdI₄]I₂ entsprechend $U_{eq} = \frac{1}{3} \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	х	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Pd	2a	0	0	0	0,0264(2)
\mathbf{Cs}	4d	0	$\frac{1}{2}$	$\frac{1}{4}$	0,0480(2)
I(1)	$4\mathrm{e}$	0,20618(3)	0,20618(3)	0	0,0369(2)
I(2)	8h	0	0	0,34091(7)	0,0411(2)

Tabelle 3: Thermische Auslenkungsparameter U_{ij} in Å² für Cs₂[PdI₄]I₂ (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
Pd	0,0249(3)	0,0249(3)	0,0295(4)	0	0	0
\mathbf{Cs}	$0,\!0539(3)$	$0,\!0539(3)$	0,0361(3)	0	0	0
I(1)	0,0308(2)	0,03085(2)	0,0490(3)	0	0	-0,0048(2)
I(2)	0,0454(3)	0,0454(3)	0,0324(3)	0	0	0

Tabelle 4: Ausgewählte Abstände, Multiplizitäten und Winkel in $Cs_2[PdI_4]I_2$ (Stan-
dardabweichung)

Abstand [Å]								Wink	cel [°]
Pd	—	I(1)	2,6213(4)	$4 \times$	I(1)-	Pd	-I(1)	90	$4 \times$
Ι	_	I(2)	2,777(1)	$1 \times$	I(1)-	Pd	-I(2)	90	$8 \times$
Pd	_	I(2)	3,2339(7)	$2 \times$	I(2)-	Pd	-I(2)	180	$2 \times$
\mathbf{Cs}	_	I(1)	3,9692(2)	$8 \times$					
I(2)	_	I'(1)	3,9852(3)	$8 \times$					
Cs	—	I(2)	4,5887(2)	$4 \times$					

2.1.3 Beschreibung der Kristallstruktur von Cs₂[PdI₄]I₂

In Cs₂[PdI₄]I₂ liegt Palladium in der Oxidationstufe 2+ vor und ist exakt quadratisch planar von vier Iodatomen im Abstand von 2,6213(4) Å umgeben. Durch zwei weitere Iodatome im Abstand 3,2339(7) Å senkrecht zur [PdI₄]-Ebene, die zu eingelagerten Iod-Molekülen gehören, wird die Koordination zu einem stark gestreckten Oktaeder erweitert. Die Cäsiumatome werden von acht Iodatomen im Abstand von 3,9692(2) Å in Form eines verzerrten I₈-Kubus umgeben. Vier weitere Iodatome im Abstand 4,5887(2) Å erweitern die Koordinationssphäre um Cs zu einem verzerrten Kuboktaeder (KZ = 8 + 4). Die Iodatome I(1) werden von vier Cäsiumatomen im Abstand 3,9692(2) Å und einem Palladiumatom im Abstand 2,6213(4) Å tetragonal-pyramidal umgeben. Iodatome der Lage I(2) sind von einem weiteren I(2) im Abstand 2,777(2) Å umgeben und bilden gemeinsam die eingelagerten I₂-Moleküle. Jeweils vier I(1)-Atome einer überkappenden [PdI₄]-Baugruppe sind 4,1628(5) Å von I(2) entfernt. Senkrecht zur I(2)-I(2) Bindung im Abstand von 3,9852(3) Å befinden sich vier weitere I(1)-Iodatome (I'(1)), die jeweils zu vier verschiedenen [PdI₄]-Baugruppen gehören.

Abbildung 16: Ausschnitt aus der Kristallstruktur von Cs₂[PdI₄]I₂ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 17: Koordinationspolyeder um Cäsium in $Cs_2[PdI_4]I_2$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 18: Umgebung um ein I_2 -Molekül in $Cs_2[PdI_4]I_2$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Eine weitere Möglichkeit die Kristallstruktur von $Cs_2[PdI_4]I_2$ zu betrachten ist der Vergleich mit der eng verwandten Struktur von $Cs_2[AuCl_2][AuCl_4]$. Die verzerrte Perowskit-Struktur von $Cs_2[AuCl_2][AuCl_4]$ beinhaltet quadratisch planare [AuCl_4]- Baueinheiten $(d_{Au^{3+}-Cl} = 2,291 \text{ Å})$ und senkrecht dazu lineare [AuCl_2]-Baueinheiten $(d_{Au^+-Cl} = 2,283 \text{ Å})$, die die Koordination von Au³⁺ zu einem gestreckten Oktaeder erweitern $(d'_{Au^{3+}-Cl} = 3,152 \text{ Å})$. Die Umgebung um Au⁺ wird durch vier Chloratome aus vier benachbarten Au³⁺ $(d'_{Au^{3+}-Cl} = 3,012 \text{ Å})$ ergänzt und bildet so einen gestauchten Oktaeder. Je ein gestrecktes [Au³⁺Cl_6]-Oktaeder ist mit sechs gestauchten [Au⁺Cl_2]-Oktaedern über alle sechs Ecken verbunden. Daraus resultiert ein dreidimensionales Oktaedernetzwerk mit ReO₃-Gerüststruktur, dessen Kanäle entlang der kristallografischen c-Achse mit Cäsiumatomen aufgefüllt sind.

Divalentes $Cs_2[AuCl_2][AuCl_4]$ lässt sich durch Einwirkung von erhöhtem Druck oder erhöhter Temperatur in monovalentes $Cs_2[AuCl_3]_2$ überführen [25]. Druckuntersuchungen zeigen, dass die Abstände zwischen Gold und Chlor oberhalb von 52 kbar ununterscheidbar werden. Elektronen werden von Au⁺, vermittelt über Cl, auf Au³⁺ übertragen. Es resultiert ein gleichmäßiges 3-dimensionales Oktaedernetzwerk mit Gold in der Oxidationstufe 2+ [21].

Werden die linearen [AuCl₂]-Baueinheiten durch I₂-Moleküle sowie die quadratisch planaren [AuCl₄]-Baueinheiten durch [PdI₄]-Baueinheiten ersetzt, ergibt sich formal die Summenformel von Cs₂[PdI₄]I₂. Dabei wird die nun unbesetzte Schweratomlage 2b (Au⁺: 0, 0, $\frac{1}{2}$) vom Schwerpunkt der I₂-Hantel (I–□–I) eingenommen, die als Zentrum eines Oktaeders angesehen werden soll. Daraus lässt sich ebenfalls ein dreidimensionales Oktaedernetzwerk aus gestauchten leeren [□I₂][I₄]-Oktaedern und gestreckten [PdI₄][I₂]-Oktaedern aufbauen, dessen Kanäle entlang der c-Achse mit Cäsiumatomen aufgefüllt sind (vgl. Abb 19).

Das Druckverhalten von $Cs_2[PdI_4]I_2$ sollte dem von $Cs_2[AuCl_2][AuCl_4]$ entsprechen. Zur näheren Untersuchung sind Hochdruck-Pulverbeugungsexperimente am ESRF durchgeführt worden.

Abbildung 19: Ausschnitt aus den Kristallstrukturen von $Cs_2[AuCl_2][AuCl_4]$ und $Cs_2[PdI_4]I_2$ in Polyederdarstellung

2.1.4 Röntgenbeugungsexperimente bei unterschiedlichen Drücken

Die Röntgenpulverexperimente wurden an der Experimentierstation ID09 am ESRF durchgeführt. Es konnten Beugungsaufnahmen polykristalliner Proben im Bereich zwischen Normaldruck und 37 kbar in 15 Druckstufen aufgezeichnet werden (vgl. Abb. 20). Die Aufzeichnung der Beugungsaufnahmen erfolgte im Abstand von 15 Minuten, um die Einregelung des Gleichgewichtsdrucks zu gewährleisten. Die Expositionszeit pro Beugungsbild lag zwischen 0,1 s und 0,2 s. Vor und nach jeder Aufnahme ist über die Verschiebung der Fluoreszenzlinie des Druckmarkers der Druck auf die Probe bestimmt worden. Als Drucküberträger kamen Argon und als Druckmarker SrB₄O₇:Sm²⁺ zum Einsatz. Die gemittelten Druckwerte der 15 Messpunkte sind in Tabelle 5 aufgeführt.

 Tabelle 5: Mittels Fluoreszenzmethode bestimmte Druckwerte der Röntgenbeugungsexperimente am ESRF

λ [nm]	ϑ [°C]	p [kbar]
—	25	1^{-3}
$6856,\!46$	25	$7,\!27$
$6857,\!97$	25	$13,\!32$
6859, 36	25	$18,\!86$
$6859,\!68$	25	20,13
6860, 38	25	22,91
$6860,\!87$	25	$24,\!86$
$6861,\!10$	25	25,77
$6861,\!45$	25	$27,\!15$
$6861,\!80$	25	$28,\!53$
$6862,\!08$	25	$29,\!64$
$6862,\!37$	50	30,79
$6862,\!90$	99	$32,\!88$
$6863,\!56$	197	$35,\!48$
$6863,\!99$	25	$37,\!17$

Abbildung 20: Ausgewählte Beugungsdiagramme des Übergangs von $Cs_2[PdI_4]I_2$ zu $Cs_2[PdI_6]$ in Abhängigkeit vom Druck (ϑ =25 °C)

Mit allen Hochdruck-Pulverdiffraktogrammen konnten unter Verwendung des Programmpaketes GSAS [45] RIETVELD-Verfeinerungen der Strukturmodelle von $Cs_2[PdI_4]I_2$ und $Cs_2[PdI_6]$ durchgeführt werden (vgl. Abb. 21). Einzelheiten zu den RIETVELD-verfeinerten Beugungsdiagrammen der verschiedenen Druckstufen finden sich im Anhang ab Seite 231 (vgl. auch S. 93). Das kryogene Beladen der Diamantstempelzelle verursacht die Bildung von Spuren von $Cs_2[PdI_6]$ in der $Cs_2[PdI_4]I_2$ -Phase, das Mengenverhältnis beider Phasen wurde bei den RIETVELD-Analysen berücksichtigt und mitverfeinert.

Abbildung 21: <u>Links</u>: Pulverdiffraktogramm von Cs₂[PdI₄]I₂ bei Normaldruck <u>Rechts</u>: Pulverdiffraktogramm von Cs₂[PdI₆] bei 37,17 kbar (+) gemessen, (-) berechnet, (|) BRAGG-Postion und darunter die Differenzkurve

2.1.5 Diskussion der Messergebnisse

Aufgrund der gewonnenen Daten der RIETVELD-Analysen ist der Übergangspunkt zwischen 19 kbar und 20 kbar anzusiedeln, oberhalb von 19 kbar wächst der Phasenanteil von Cs₂[PdI₆] stark an. Das sinkende Elementarzellenvolumen bei steigendem Druck bedingt die Verringerung des Abstands zwischen Iodmolekülen und Palladium und erhöht die Wechselwirkungen der Palladium- d_{z^2} -Orbitale mit den Molekülorbitalen von I₂. Gleichzeitig wirken auf jedes Iodmolekül vier benachbarte [PdI₄]-Baugruppen ein, die horizontal zum Bindungsschwerpunkt der I₂-Bindung liegen. Sie schwächen die I₂-Bindungen und verstärken so die Wechselwirkungen von Palladium und I₂. Es kommt zum Elektronenübertrag von Pd²⁺ auf I₂, dadurch werden neue Pd-I-Bindungen gebildet und gleichzeitig die I-I-Bindungen gespalten (vgl. Abb. 22). Es resultieren oktaedrische [PdI₆]-Baugruppen.

Abbildung 22: Ausschnitt aus der Kristallstruktur von Cs₂[PdI₄]I₂. Dargestellt ist die Koordination um eine Iodhantel mit ihren vier nächsten Iodnachbarn sowie den überkappenden [PdI₄]-Baugruppen

Abbildung 23: Ausgewählte Atomabstände aus der RIETVELD-Verfeinerung sowie der relative Massenanteil von $Cs_2[PdI_6]$ sind gegen den Druck aufgetragen

Inhomogene Druckverteilung in der Diamantstempelzelle erzeugt eine orthorhombische Verzerrung der Kristallstruktur von $Cs_2[PdI_4]I_2$, die im Bereich zwischen 20 kbar und 25 kbar auftritt und so dem Übergang zunächst ausweicht. Ab 26 kbar tritt auch hier die Redoxreaktion ein, wie am Verlauf der Abstände zwischen I(2)–I(2) und Pd– I(2) zu erkennen ist. Ein weiterer Anhaltspunkt für die ablaufende Redoxreaktion ist die Aufweitung des Pd–I(1) Abstands, wie er bei einer Koordinationserweiterung^g zu erwarten ist (vgl. Abb. 23).

$$[PdI_4]I_2 \longrightarrow [PdI_6]$$

^gFür druckinduzierte Phasentransformationen gelten im Allgemeinen die a) Druck-Koordinations-Regel und b) das Druck-Abstands-Paradoxon [68]: zu a) mit steigendem Druck erhöht sich die Koordinationszahl, zu b) mit Erhöhung der Koordinationszahl weiten sich die interatomaren Abstände auf

Erst durch einen abschließenden Heizzyklus ($25 \,^{\circ}C \rightarrow 176 \,^{\circ}C \rightarrow 25 \,^{\circ}C$) bei rd. 37 kbar gelingt es, Reste von Cs₂[PdI₄]I₂ ($\leq 10 \,$ Vol%) vollständig in Cs₂[PdI₆] umzuwandeln.

2.1.6 Bestimmung der Zustandsgleichung von $Cs_2[PdI_4]I_2$

Aus verfeinerten Elementarzellenparametern lässt sich das druckabhängige Volumen der Elementarzellen bestimmen, aus dessen Verlauf sich im Allgemeinen eine Zustandsgleichung ableiten lässt. Eine Zustandsgleichung, die pV-Isotherme, ermöglicht es den Druck bei beliebigen Volumen zu berechnen. Eine gängige Form der Zustandsgleichung ist die von HOLZAPFEL [57] vorgeschlagene Zustandsfunktion, die allgemeine Anwendung findet (Gl. (11)). Die Anpassung der Parameter erfolgt über die Methode der kleinsten Fehlerquadrate. K₀ entspricht dem isothermen Kompressionsmodul (K₀ = $\frac{1}{\alpha}$), K'₀ ($\frac{dK}{dp}$) der druckabhängigen ersten Ableitung und V₀ dem Elementarzellenvolumen bei Normaldruck (aus Einkristalldaten). Der Verlauf des Elementarzellenvolumens sowie der Verlauf der Zustandsgleichung (**e**quation **of s**tate) ist gegen den Druck in Abb. 24 dargestellt.

Abbildung 24: Verlauf des Elementarzellenvolumens von $Cs_2[PdI_4]I_2$ gegen den Druck. $V_0 = 746(2) \text{ Å}^3, K_0 = 105(7) \text{ kbar und } \text{K}'_0 = 7.9(6)$

2.1.7 EXAFS Experimente bei verschiedenen Drücken

Die Hochdruck-EXAFS-Experimente sind an der Experimentierstation BM29 am ESRF durchgeführt worden. In zehn Druckstufen konnten zwischen Normaldruck und 29 kbar die Absorptionskanten von Palladium und Iod aufgezeichnet werden. Vor und nach jedem EXAFS-Spektrum wurden energiedispersive Pulverdiffraktogramme mit niedriger Auflösung aufgenommen. Aus diesen Pulverdiffraktogrammen konnten die Elementarzellenparameter von $Cs_2[PdI_4]I_2$, $Cs_2[PdI_6]$ und h-BN bestimmt und über die Zustandsgleichung von h-BN (vgl. Gl. (12) und Gl. (11)) der Druck auf die Probe berechnet werden. Als Ausgangspunkt für die Verfeinerung der EXAFS-Spektren dienten die kristallografischen Daten von $Cs_2[PdI_4]I_2$ bei Normaldruck, die Atomlageparameter wurden dann sukzessive mit steigendem Druck verfeinert. Die freien Parameter der EXAFS-Verfeinerung waren DEBYE-WALLER-Faktoren, EXAFS-Amplituden und Bindungsabstände bei festgesetzen Elementarzellenparametern.

Abbildung 25: Ausgewählte Atomabstände der EXAFS-Analysen

Die Ergebnisse der EXAFS-Analyse und der Hochdruckbeugungsexperimente weisen im Bereich zwischen 17 kbar und 20 kbar beide eine Strukturänderung in $Cs_2[PdI_4]I_2$ nach, hier treten Sprünge in den Atomabständen zwischen Pd-I(2) und I(2)-I(2) auf (vgl. Abb. 23 und Abb. 25 und). Die Absolutwerte der EXAFS-Analyse sind jedoch unzuverlässig, da sich die Anpassung der EXAFS-Daten an die Strukturmodelle als problematisch erwies. Die kristallografisch unterschiedlichen Iodlagen I(1) und I(2) ließen sich im EXAFS-Spektrum nicht voneinander unterschieden. Es war nicht möglich, präzise Strukturdaten im Bereich des Übergangs aus den EXAFS-Spektren zu extrahieren. Ab 26,3 kbar traten neben den Beugungsreflexen von $Cs_2[PdI_4]I_2$ auch Beugungsreflexe von $Cs_2[PdI_6]$ in den Pulverdiffraktogrammen auf. Oberhalb von 28,5 kbar ließ sich kein $Cs_2[PdI_4]I_2$ im Pulverdiffraktogramm mehr nachweisen.

$2.2 \quad \mathbf{Cs}_2[\mathbf{PdI}_6]$

Pulverbeugungsexperimente an $Cs_2[PdI_6]$ bei erhöhten Drücken zeigten, dass ein reversibler Phasenübergang oberhalb 112 kbar auftritt. Die vermutlich hexagonale Phase, die bis zum Ende des Messbereichs bei 205 kbar stabil ist, konnte nicht indiziert werden. Nach Druckentlastung liegt wieder die Ausgangsverbindung $Cs_2[PdI_6]$ mit stark verbreiterten Reflexen vor.

Die Durchführung der Beugungsexperimente am ESRF erfolgte an der Experimentierstation ID30 in zwei Messreihen. Mit dem Druckmedium Stickstoff und dem Drucksensor Rubin konnten insgesamt 16 Druckpunkte aufgezeichnet werden. Ausgewählte Beugungsdiagramme von $Cs_2[PdI_6]$ sind in Abb. 27 abgebildet. Anhand der gewonnenen Daten aus den Messreihen an ID30 und der Messreihe von $Cs_2[PdI_4]I_2$ (ID09) konnte die Zustandsgleichung von $Cs_2[PdI_6]$ bestimmt werden (vgl. Abb. 26). Kristallografische Daten der RIETVELD-verfeinerten Pulverdiffraktogramme finden sich im Anhang ab Seite 244.

Abbildung 26: Verlauf des Elementarzellenvolumens von $Cs_2[PdI_6]$ im Bereich zwischen Normaldruck und 112 kbar. $V_0 = 1437(9)$ Å³, $K_0 = 164(16)$ kbar und K'₀ = 5,8(4)

Abbildung 27: Ausgewählte Pulverdiffraktogramme von $Cs_2[PdI_6]$ bei verschiedenen Drücken

$2.3 \quad Cs_2[PdBr_4]I_2$

Bei den Hochdruck-EXAFS-Untersuchungen an $Cs_2[PdI_4]I_2$ trat die Problematik zu Tage, dass gerade im interessierenden Bereich des Übergangs von $Cs_2[PdI_4]I_2$ nach $Cs_2[PdI_6]$ anhand der EXAFS-Analysen keine eindeutige Unterscheidung der kristallografisch verschiedenen Iod-Atomlagen möglich war und somit keine kristallografischen Daten in der Nähe des Übergangspunkt gewonnen werden konnten. Eine Verbindung, die diesen Missstand umgeht, musste gefunden werden. Ein geeigneter Ersatz schien die Substitution der planaren [PdI_4]-Baugruppen durch [PdBr_4]-Baugruppen. Diese weisen gegenüber $Cs_2[PdI_4]I_2$ zudem den Vorteil auf, dass die Symmetrieerhöhung von D_{4h} nach O_d , wie sie beim Wechsel von $Cs_2[PdI_4]I_2$ nach $Cs_2[PdI_6]$ auftritt, ausbleibt. Ein Valenzwechsel von [PdBr_4] nach [PdBr_4I_2] würde also keine Änderung der Punktsymmetrie D_{4h} bedingen. Der Ersatz von [PdI_4]-Baugruppen durch [PdBr_4]-Baugruppen konnte an der isotyp zu $Cs_2[PdI_4]I_2$ vorliegenden Verbindung $Cs_2[PdBr_4]I_2$ erfolgreich vollzogen werden.

2.3.1 Darstellung und Charakterisierung von $Cs_2[PdBr_4]I_2$

Durch solvothermale Umsetzung eines Gemenges aus CsBr, PdBr₂ und I₂ bei 150 °C im Stoffmengenverhältnis 2:1:1 in 4,7 %-iger Bromwasserstoffsäure gelang die Darstellung von röntgenografisch phasenreinem Cs₂[PdBr₄]I₂. Hierzu wurde 0,5 g Eduktgemenge in Quarzglasampullen gefüllt, mit 0,5 ml HBr überschichtet, in flüssigem Stickstoff eingefroren, evakuiert und abgeschmolzen. Nach dem Aufheizen auf Reaktionstemperatur ist die Reaktionsmischung 72 h getempert und abschließend mit 1 °C/h auf Raumtemperatur abgekühlt worden. Das gewonnene grobkristalline Produkt wurde abfiltriert und mit wenig 4,7 %-iger HBr, bidestilliertem Wasser und Diethylether gewaschen. Der aus dunkelroten Kristallen bestehende Filterrückstand enthielt neben stark verwachsen auch einzelne nadelförmige Kristalle. Vom Produkt angefertigte Röntgenpulveraufnahmen bestätigten die röntgenografische Phasenreinheit. Zur Strukturbestimmung sind unter einem Polarisationsmikroskop gut ausgebildete quaderförmige Kristalle isoliert und in Glaskapillaren mit Paraffinwachs befestigt worden. Anhand einiger Röntgenbeugungsbilder mit einem κ -CCD-Einkristalldiffraktometer konnte ein geeigneter Kristall ausgewählt und triklin vermessen werden. Die bestimmten Elementarzellenparameter lassen sich in ein tetragonales Kristallsystem mit Innenzentrierung überführen.

$$a = 7,5277(1) \text{ Å}, \quad \alpha = 111,350(1)^{\circ} \quad \vec{t} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & \overline{1} & \overline{1} \\ 1 & 0 & 1 \end{pmatrix} \quad a = 8,4896(1) \text{ Å}$$

$$b = 7,5275(1) \text{ Å}, \quad \beta = 105,765(1)^{\circ} \qquad \longrightarrow$$

$$c = 7,5278(2) \text{ Å}, \quad \gamma = 111,358(1)^{\circ} \qquad \qquad c = 9,0853(2) \text{ Å}$$

Die verfeinerten Elementarzellenparameter stimmen mit der RIETVELD-Verfeinerung a = 8,4694(3) Å und c = 9,0754(3) Å gut überein. Die Analyse der symmetrieverknüpften Reflexe und der systematischen Auslöschungen führte zu den möglichen Raumgruppentypen I422 (Nr. 97), I4mm (Nr. 107), I4m2 (Nr. 119), I42m (Nr. 121) und I4/mmm (Nr. 139), wovon sich I4/mmm (Nr. 139) im Verlauf der Strukturbestimmung als zutreffend erwies. Mit Hilfe direkter Methoden konnten die Atomlagen aufgefunden und nach der Methode der kleinsten Fehlerquadrate verfeinert werden. Die kristallografischen Daten und Messparameter sind in den Tabellen 6, 7 und 8 aufgeführt. Ausgewählte Winkel und Abstände in Cs₂[PdBr₄]I₂ sind in Tabelle 9 zusammengefasst.

Abbildung 28: Pulverdiffraktogramm von $Cs_2[PdBr_4]I_2$, (+) gemessen, (-) berechnet, (|) mögliche Reflexlagen und darunter die Differenzkurve

Abbildung 29: Elektronenmikroskopische Aufnahme eines $Cs_2[PdBr_4]I_2$ -Kristalls

$\kappa\text{-}\mathbf{CCD}$ Datensatznummer	1394
Summenformel	$Cs_2[PdBr_4]I_2$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	I4/mmm (139); 2
Elementarzellen parameter $[Å]$	${ m a}=8,\!4896(1)$
	${ m c}=9{,}0853(2)$
EZ-Volumen [Å ³]	654,8(1)
Dichte (ber./gem.) $[10^3 \ \rm kg/m^3]$	$4,79 \ / \ 4,83(4)$
Kristallgröße [mm ³]	$0,07 \times 0,07 \times 0,12$
Messung	Enraf-Nonius κ -CCD-Vierkreis-
	diffraktometer, Mo-K _{$lpha$} , $\lambda = 0,71073$ Å,
	Graphitmonochromator, CCD-Detektor;
	ω -Scans, $3^{\circ} \le \theta \le 27^{\circ}$, T = 293 K,
Reflexbereich	$-10 \le h, k \le 10; -11 \le l \le 11$
Completeness $[\%]$	100%
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$,
	volle Matrix, SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	23,75
Absorptionskorrektur	keine
F(000)	804
Zahl der Reflexe	
gemessen	2966
unabhängige (N)	247
davon mit $I > 2\sigma(I) (N')$	244
Anzahl der Parameter	13
R_i (SHELXL-97) [%]	5,04
$R(F)_N; R(F)_{N'} [\%]$	2,24; 1,88
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$4,52;\ 4,46$
GooF	1,189
Extinktionskoeffizient	0,0100(5)
Restelektronendichte $[Å^{-3}]$	-1,04 (0,93 Å von Pd)
	1,09 (1,35 Å von Cs)

Tabelle 6: Kristallografische Daten und Messparameter von $Cs_2[PdBr_4]I_2$

Tabelle 7: Fraktionelle Atomlageparameter und äquivalente Temperaturfaktoren U_{eq} für Cs₂[PdBr₄]I₂ entsprechend $U_{eq} = \frac{1}{3} \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	х	У	Z	$\mathbf{U}_{\mathbf{eq}}$
Pd	2a	0	0	0	0,0217(2)
\mathbf{Cs}	4d	0	$\frac{1}{2}$	$\frac{1}{4}$	0,0423(2)
Ι	$4\mathrm{e}$	0	0	0,34815(6)	0,0331(2)
Br	$8\mathrm{h}$	0,20356(5)	0,20356(5)	0	0,0328(2)

Tabelle 8: Thermische Auslenkungsparameter U_{ij} in Å² für Cs₂[PdBr₄]I₂ (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pd	0,0210(3)	0,0210(3)	0,0230(4)	0	0	0
\mathbf{Cs}	0,0458(3)	0,0458(3)	0,0352(3)	0	0	0
Ι	0,0367(3)	0,0367(3)	0,0259(3)	0	0	0
Br	0,0274(3)	0,0274(3)	0,0434(4)	0	0	-0,0062(2)

 $\label{eq:Tabelle 9: Ausgewählte Abstände, Winkel und Multiplizitäten in Cs_2[PdBr_4]I_2 \ (Standardabweichung)$

Abstand [Å]								Winke	l [°]
Pd	—	Br	2,4440(5)	$4 \times$	Br-	Pd	-Br	90	$4 \times$
Ι	—	Ι	2,759(1)	$1 \times$	Br-	Pd	-I	90	$8 \times$
Pd	—	Ι	3,1630(5)	$2 \times$	I-	Pd	-I	180	$2 \times$
\mathbf{Cs}	—	Br	3,8051(6)	$8 \times$					
Ι	—	$\mathrm{Br'}$	$3,\!817(3)$	$4 \times$					
Ι	_	Br	3,9972(5)	$4 \times$					
\mathbf{Cs}	_	Ι	4,3374(1)	$4 \times$					

2.3.2 Beschreibung der Kristallstruktur von Cs₂[PdBr₄]I₂

Die isotyp zu Cs₂[PdI₄]I₂ (vgl. S. 29) kristallisierende Verbindung enthält Palladium in der Oxidationstufe 2+, welches exakt quadratisch planar von vier Bromatomen im Abstand von 2,4440(5) Å umgeben ist. Senkrecht zu den Flächen der [PdBr₄]-Baueinheiten sind zwei Iodmoleküle eingelagert, deren kürzester Pd–I-Abstand 3,1630(5) Å beträgt. Somit kann die Umgebung von Palladium, bestehend aus vier Bromatomen und je zwei Iodatomen, als stark gestreckter Oktaeder beschrieben werden. Der I–I-Abstand innerhalb eines I₂-Moleküls beträgt 2,759(1) Å und ist im Vergleich zu elementarem Iod (2,715 Å [69]) um rund 1,5 % länger.

Iodeinlagerungsverbindungen wie z.B. $C_6H_{12}N_4 \cdot I_2$ [70] mit einen I–I-Abstand von 2,830 Å, oder wie in der Verbindung $C_{60}I_2(H_3-C_6H_5)$ [71] mit einen I–I-Abstand von 2,685 Å weisen intramolekulare Abstände auf, die mit denen in $Cs_2[PdBr_4]I_2$ vergleichbar sind.

Cäsium ist im Abstand von 3,8051(6) Å von acht Bromatomen umgeben, jeweils zwei Bromatome stammen aus einer [PdBr₄]-Baugruppe, so dass das resultierende Polyeder als verzerrter Kubus (vgl. Abb. 31) beschrieben werden kann. Die Umgebung von Cäsium wird durch vier Iodatome, die die Seitenflächen überkappen, im Abstand von 4,3374(1) Å ergänzt und bildet so einen verzerrten Kuboktaeder aus.

Iod wird von vier Bromatomen aus vier verschiedenen $[PdBr_4]$ -Baueinheiten im Abstand von 3,817(3) Å umgeben, weitere vier Bromatome einer $[PdBr_4]$ -Baueinheit senkrecht der kristallografischen c-Achse im Abstand von 3,9972(5) Å ergänzen die Umgebung. Eine weitere Koordinationssphäre wird durch vier Cäsiumatome im Abstand von 4,3375(1) Å aufgebaut und bildet so einen 17-flächigen Polyeder (Vgl. Abb. 32).

Abbildung 30: Ausschnitt aus der Kristallstruktur von $Cs_2[PdBr_4]I_2$ (Schwingungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit)

Abbildung 31: Darstellung des Koordinationspolyeders um Cäsium (Schwingungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit)

Abbildung 32: Darstellung des Koordinationspolyeders um Iod

2.3.3 Thermochemische Untersuchungen von $Cs_2[PdBr_4]I_2$

Das Vorliegen unendlicher Ketten aus I-I–[PdBr₄]–I-I eröffnet die Möglichkeit einer druck- und/oder temperaturinduzierten Festkörper-Redoxreaktion analog $Cs_2[PdI_4]I_2$. So sind DTA/TG- und DSC-Untersuchungen durchgeführt worden, um eine mögliche hochoxidierte Form von $Cs_2[PdBr_4]I_2$ zu erhalten. Die DTA/TG-Messung von $Cs_2[PdBr_4]I_2$ wurde mit einer Heizrate von $\frac{1}{30}$ °C pro Sekunde durchgeführt (vgl. Abb. 33). Die TG-Kurve weist eine kontinuierliche Massenabnahme zwischen 145 °C und 363 °C nach, die der Abspaltung eines Iod-Moleküls entspricht.

$$Cs_2[PdBr_4]I_2 \xrightarrow{\Delta T} Cs_2[PdBr_4] + I_2 \uparrow$$
(13)

Die Massendifferenz beträgt dabei 90% des theoretischen Iodgehaltes von $Cs_2[PdBr_4]I_2$. Zusätzlich treten bei 349 °C (1) und 390 °C (2) zwei endotherme Effekte in der DTA-Kurve auf. Punkt (1) kann nicht zugeordnet werden, eine Phasenumwandlung wäre

Abbildung 33: DTA/TG-Messung von $Cs_2[PdBr_4]I_2$

denkbar. Punkt (2) bei 390 °C entspricht dem Schmelzpunkt der Substanz, der bei DSC-Messungen mit 397,7 °C festgestellt wurde. Punkt (3), der exotherme Effekt bei 375 °C, entspricht dem Erstarrungspunkt, der bei DSC-Messungen mit 374,6 °C bestimmt wurde. Der Rückstand der DTA/TG-Messung ist röntgenografisch untersucht worden (vgl. Abb. 34). Dabei wurde festgestellt, dass das erhaltene Produkt keinem beschriebenen Cäsiumbromopalladat entspricht. Alle Indizierungsversuche blieben erfolglos, es konnte kein geeigneter Strukturvorschlag gefunden werden. Tieftemperatur-DSC-Messungen an $Cs_2[PdBr_4]I_2$ zeigen bis -175 °C keine messbaren Effekte.

2.3.4 Schwingungsspektroskopische Untersuchungen

Von den maximal sieben Schwingungsmoden für quadratisch planare Baugruppen mit D_{4h} -Symmetrie liegen drei RAMAN-aktive $\nu_s(B_{1g}) = 118 \text{ cm}^{-1}$, $\delta(B_{2g}) = 183 \text{ cm}^{-1}$ sowie $\nu(B_{1g}) = 194 \text{ cm}^{-1}$ und eine IR-aktive $\nu_{as} = 264 \text{ cm}^{-1}$ innerhalb des untersuchten Messbereiches (vgl. Abb. 35, 36). Die starke Bande bei 162 cm⁻¹ kann der Iod-Schwingung zugeordnet werden.

Abbildung 34: Pulverdiffraktogramm von $\mathrm{Cs}_2[\mathrm{PdBr}_4]I_2$ nach DTA/TG-Messung

Abbildung 35: RAMAN-Spektrum von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$

Abbildung 36: IR-Spektrum von $Cs_2[PdBr_4]I_2$

2.3.5 Druckabhängige Röntgenbeugungsuntersuchungen an $Cs_2[PdBr_4]I_2$

An den Experimentierstationen ID09 und ID30 am ESRF sind an der Verbindung $Cs_2[PdBr_4]I_2$ Röntgenbeugungsexperimente bei verschiedenen Drücken durchgeführt worden. Es konnten Druckexperimente bis zu 218 kbar in drei Messreihen durchgeführt werden. Eine Messreihe wurden mit dem Drucksensor $SrB_4O_7:Sm^{2+}$ und dem Drucküberträger Stickstoff, eine weitere mit dem Druckmedium Argon durchgeführt. Die dritte Messreihe konnte mit Drucksensoren aus Rubinsplittern und dem Druckmedium Stickstoff aufgezeichnet werden. Die einzelnen Druckstufen wurden manuell angesteuert. Zur Einstellung des Gleichgewichtsdrucks ist zwischen zwei Druckpunkten jeweils 15 Minuten abgewartet worden, bevor Beugungsaufnahmen aufgezeichnet wurden. Die Belichtung ist die Verschiebung der Fluoreszenzlinie bei 295 K aufgezeichnet und der Druck nach Gleichung (9) und Gleichung (10) berechnet worden. Tabelle 10 gibt die gemittelten Messwerte der Fluoreszenzlinienlage und die daraus berechneten Druckwerte wieder.

	II	IL)30		
Stic	kstoff	Ar	gon	Stic	kstoff
λ [nm]	p [kbar]	λ [nm]	p [kbar]	λ [nm]	p [kbar]
$685,\!594$	5,2	685,756	11,7	694,840	16,7
685,721	10,2	685,778	12,5	695,125	$24,\! 6$
$685,\!865$	16,0	$685,\!965$	20,0	695,649	39,1
$686,\!058$	23,7	686,744	$50,\!6$	696,312	$57,\! 6$
$686,\!146$	27,2	687,065	63,1	696,826	72,0
$686,\!282$	32,5	$687,\!137$	65,9	697,065	$78,\!8$
$686,\!414$	37,7	687, 192	68,0	697,478	90,4
$686,\!646$	46,8	687,274	71,1	697,548	92,4
686,749	50,8	687,351	74,1	697,613	94,3
$686,\!987$	60,0	687,434	77,2	697,758	98,4
$687,\!233$	69,5	$687,\!553$	81,8	697,967	104,3
$687,\!515$	80,3	687,634	84,9	698,060	106,9
$687,\!829$	92,2	687,786	$90,\!6$	698,131	109,0
$688,\!131$	103,6	687,928	96,0	698,253	112,4
$688,\!371$	112,6	688,061	101,0	699,193	139,3
$688,\!623$	122,0	688,064 ¹	101,1	699,786	156,4
$688,\!834$	129,7	688,048 ²	100,5	700,138	$166,\! 6$
689,008	136,2			700,532	178,1
689,101	139,6			700,852	187,4
689,214	143,7			701,260	199,4
$689,\!374$	149,6			701,564	206,8
689,565	156,5			701,912	$218,\!8$
688,745	163,0				
$690,\!143$	177,3				
$690,\!551$	191,8				
$685,\!589$	$5,0^{3}$				

Tabelle 10: Über die Fluoreszenzmethode bestimmte Druckwerte der Röntgenbeugungsexperimente an der Verbindung $Cs_2[PdBr_4]I_2$

 1 372 K, manuelle Angleichung des Membrandrucks mit steigender Temperatur 2 479 K, manuelle Angleichung des Membrandrucks mit steigender Temperatur 3 nach Druckentlastung

Die Beugungsbilder wurden wie auf Seite 7 beschrieben bearbeitet und in Pulverdiagramme umgewandelt. In Abbildung 37 sind einige ausgewählte Beugungsdiagramme in Abhängigkeit vom Druck dargestellt.

Deutlich ist ein linearer Zusammenhang zwischen der Verschiebung der Reflexlagen und Druck bis 78,8 kbar zu erkennen. Zwischen 78,8 kbar und 90,4 kbar treten neue Reflexe im Beugungsdiagramm auf, die weder dem Umgebungsmaterial noch der Probenkammer oder dem Druckmedium zugeordnet werden können. Oberhalb von 104,3 kbar tritt dann erneut ein nahezu linearer Zusammenhang zwischen Druck und Verschiebung der Reflexlagen auf, der bis zum Ende des erfassten Messbereichs zu beobachten ist. Nach Druckentlastung liegt wieder die Ausgangsverbindung mit verbreiterten Beugungsreflexen vor.

Abbildung 37: Ausgewählte Pulverdiffraktogramme von $Cs_2[PdBr_4]I_2$ bei verschiedenen Drücken der Stickstoffmessreihe an ID30. Der markierte Bereich ist in nachfolgender Abbildung vergrößert dargestellt

Abbildung 38: Ausschnittsvergrößerung von Abb. 37. (*) Reflex verursacht durch Diamantstempelzelle, (↓) neu auftretende Reflexe

2.3.6 Indizierungs- und Strukturbestimmungsversuche der Hochdruckphase von $Cs_2[PdBr_4]I_2$

Die Diffraktogramme der einzelnen Druckstufen sind unter Verwendung automatischer Indizierungsprogramme (vgl. S. 5) indiziert worden. Die Druckmedien Stickstoff und Argon erwiesen sich bei den Indizierungsversuchen jedoch als störend. Argon verfestigt sich oberhalb von 50 kbar und liegt danach über dem gesamten Messbereich als kubisch flächenzentrierte Kristallstuktur vor. Die zusätzlich erzeugten Röntgenreflexe mussten in den Diffraktogrammen identifiziert und mitverfeinert werden. Als weitaus problematischer erwies sich Stickstoff, der oberhalb von 24 kbar kristallisiert und eine Vielzahl von Phasenumwandlungen im untersuchten Druckbereich durchläuft [72]. Nicht immer konnten alle Stickstoffreflexe eindeutig im Beugungsdiffraktogramm zugeordnet werden.

$$N_2 - \text{flüssig} \xrightarrow{24kbar} \beta - N_2 \xrightarrow{49kbar} \delta - N_2 \xrightarrow{110kbar} \delta^* - N_2 \xrightarrow{165kbar} \epsilon - N_2$$
(14)

Indizierungsversuche oberhalb von 78,8 kbar blieben zunächst erfolglos. Neben den Beugungsreflexen von $Cs_2[PdBr_4]I_2$ und Stickstoff sind deutlich Reflexe einer weiteren, dritten Phase zu erkennen, deren Indizierung erst nach sorgfältiger Isolierung aller Stickstoffreflexe gelingt. Die Indizierung anhand von zwölf Einzelreflexen (vgl. Tab. 11) bei 92,4 kbar konnte mit dem Programm DICVOL91 [42] durchgeführt werden.

Die Elementarzellenparameter der monoklin indizierten Zelle sind mit a = 8,330(5) Å, b = 7,280(5) Å, c = 8,165(7) Å und β =93,66(5)° bestimmt worden. Aufgrund der Auslöschungsbedingungen wurde der Raumgruppentyp C2/m (Nr. 12) in innenzentrierter Aufstellung I2/m gewählt. Mit Hilfe des Programmpakets EXPO [44] war es möglich, Intensitätsdaten aus dem Pulverdiffraktogramm nach der Methode von LE BAIL [73] zu extrahieren und ein Strukturmodell mittels direkter Methoden zu erstellen.

Nr.	$2\theta \ [^\circ] \ ({ m gemessen})$	$2\theta \ [^{\circ}] \ (berechnet)$	Differenz [°]	h	\mathbf{k}	1
1	3,951	3,962	-0,012	1	0	-1
2	4,223	4,224	-0,001	1	0	1
3	4,388	4,390	-0,002	0	1	1
4		4,351		1	1	0
5	5,850	5,851	-0,001	0	0	2
6	6,549	6,549	0,000	0	2	0
7	7,079	7,074	0,005	-2	1	1
8	7,365	7,371	-0,007	2	1	1
9	$7,\!657$	$7,\!657$	0,001	1	2	-1
10	$7,\!933$	7,929	0,003	2	0	-2
11	8,459	8,454	0,005	2	0	2
12	8,789	8,781	0,008	0	2	2
13	8,912	8,912	0,000	3	0	-1

Tabelle 11: Beobachtete und berechnete 2θ - und hkl-Werte der Indizierung mit DICVOL91 bei 92,4 kbar

2.3.7 Kristallstrukturverfeinerung von $Cs_2[PdBr_4I_2]$

Die Verfeinerung der Kristallstruktur ist mit dem Progammpaket GSAS [45] durchgeführt worden. Dabei wurde der Untergrund aller Beugungsdiffraktogramme sorgfältig mit 12 bis 14 Parametern eines CHEBYSCHEV-Polynoms erster Ordnung (TYP 1, in GSAS implementiert) angepasst. Als Profilfunktion ist eine modifizierte Pseudo-VOIGT-Funktion (TYP 4, in GSAS implementiert) gewählt worden, die das LORENTZ-förmige Profil der Beugungsreflexe bei Verwendung von Synchrotronstrahlung am besten beschreibt. Die Vorzugsausrichtung der Kristallite konnte mit 6 bis 8 Parametern einer sphärisch-harmonischen Funktion (TYP 2, in GSAS implementiert) modelliert werden.

Elementarzellenparameter, Atomlageparameter, isotrope Auslenkungsparameter, Skalierungsfaktor, Profilparameter, Untergrund und Vorzugsorientierung wurden frei und ohne Dämpfung verfeinert, bis das Konvergenzkriterium der Verfeinerung nach der Methode der kleinsten Fehlerquadrate unterschritten wurde.

Trotz sorgfältiger Überarbeitung der Beugungsbilder war es nicht möglich alle auf-

gezeichneten Beugungdiagramme für die Strukturverfeinerung heranzuziehen. In einigen Pulverproben verhinderte die unzureichende Homogenität der Kristallitgrößen eine optimale Profilanpassung der Beugungsdiagramme und somit die Extraktion von Atomlagen- und thermischen Auslenkungsparametern. Ausnahmslos ließen sich jedoch die Elementarzellenparameter aus den Beugungsdiagrammen extrahieren und verfeinern.

2.3.8 Beschreibung der Kristallstruktur von Cs₂[PdBr₄I₂]

Zur Beschreibung der Kristallstruktur von $Cs_2[PdBr_4I_2]$ ist exemplarisch die Bestimmung bei 104,3 kbar ausgewählt worden, da hier nur noch Stickstoff und $Cs_2[PdBr_4I_2]$ nebeneinander vorliegen. Abbildung 39 zeigt das Beugungsdiagramm der RIETVELD-Verfeinerung von $Cs_2[PdBr_4I_2]$. In den Tabellen 12 und 13 sind kristallografische Daten und in Tabelle 14 ausgewählte Bindungswinkel und Abstände wiedergegeben.

Abbildung 39: Pulverdiffraktogramm von Cs₂[PdBr₄I₂] bei 104,3 kbar, (+) gemessen (-) berechnet, (|) BRAGG-Positionen und darunter die Differenzkurve; (*) Stickstoff-Reflex

Druck [kbar]	104,3
Kristallsystem	monoklin
Raumgruppentyp; Z	I2/m (Nr. 12); 2
a [Å]	8,0570(5)
b [Å]	7,1562(6)
c [Å]	8,2920(5)
β [°]	93,543(5)
V [Å ³]	477, 18(6)
λ [Å]	0,3738
Anzahl der Datenpunkte	1557
Anzahl beobachteter	
Reflexe	132 (2. Phase N_2)
Anzahl verfeinerter Parameter	42
R_p [%]	1,05
wR_P [%]	1,46
R_{F^2} [%]	8,0
χ^2	$0,\!89$

Tabelle 12: Kristallografische Daten von $Cs_2[PdBr_4I_2]$ bei 104,3 kbar

Tabelle 13: Fraktionelle Koordinaten von $Cs_2[PdBr_4I_2]$ bei 104,3 kbar (Standardabweichung)

Atom	Punktlage	х	У	Z	$\mathbf{U}_{\mathbf{eq}}$
Pd	2a	0	0	0	0,006(2)
\mathbf{Cs}	4i	0,5230(2)	0	0,2356(8)	0,024(2)
Ι	4i	0,0243(11)	0	$0,\!6803(10)$	0,073(4)
Br	8j	0,2139(8)	0,231(2)	0,0345(9)	0,005(2)

	Abstand [Å]							Winkel	[°]
Pd	—	Br	2,392(11)	$4 \times$	Br-	Pd	-Br	92,59(34)	$2 \times$
Pd	—	Ι	$2,\!670(8)$	$2 \times$	Br-	Pd	-I	87,41(34)	$2 \times$
\mathbf{Cs}	—	Br	3,347(11)	$2 \times$	I-	Pd	-I	180	$2 \times$
\mathbf{Cs}	—	Br	3,381(12)	$2 \times$	I-	Pd	-Br	88,73(18)	$4 \times$
\mathbf{Cs}	_	Br	3,427(12)	$2 \times$	I-	Pd	-Br	91,27(18)	$4 \times$
\mathbf{Cs}	—	Br	3,582(12)	$2 \times$					
\mathbf{Cs}	—	Ι	$3,\!607(1)$	$2 \times$					
\mathbf{Cs}	—	Ι	$3,\!671(9)$	$1 \times$					
\mathbf{Cs}	_	Ι	4,507(10)	$1 \times$					
Ι	_	Ι	2,998(12)	$2 \times$					

Tabelle 14: Ausgewählte Abstände, Winkel und Multiplizitäten in $Cs_2[PdBr_4I_2]$ bei104,3 kbar (Standardabweichung)

Das Bauprinzip von Cs₂[PdBr₄]I₂ bleibt auch in der Hochdruckmodifikation Cs₂[PdBr₄I₂] erhalten (vgl. Abb. 42). Cs₂[PdBr₄I₂] kristallisiert im Raumgruppentyp C2/m (Nr. 12) in der transformierten Aufstellung I2/m mit zwei Formeleinheiten pro Elementarzelle. Palladium ist im Abstand von 2,392(11) Å verzerrt, rechteckig planar von vier Bromatomen umgeben, die aufgespannten Br-Pd-Br-Winkel betragen $2\times92,59(34)^{\circ}$ und $2\times87,41(34)^{\circ}$. Im Abstand von 2,670(8) Å, mit einem Winkel von 180° , wird die Koordination um Palladium durch zwei Iodatome zu einem verzerrten Oktaeder (KZ = 4 + 2) erweitert (vgl. Abb. 40). Der I-I-Abstand ist mit 2,992(12) Å rd. 11% länger als der Pd-I-Abstand und damit kann die I₂-Bindung als gelöst angesehen werden. Für Palladium ergibt sich die Oxidationstufe 4+. Cäsium wird von acht Bromatomen mit Abständen zwischen 3,381(12) Å und 3,582(12) Å umgeben (vgl. Abb. 41). Anders als in Cs₂[PdBr₄]I₂, worin vier Iodatome die Koordination um Cäsium erweitern, sind in Cs₂[PdBr₄I₂] nur noch drei weitere Iodatome mit einem mittleren Abstand von rd. 3,6 Å zur 2. Koordinationsphäre zu zählen. Ein weiteres Iodatom befindet sich mit 4,5 Å rd. 0,9 Å weiter entfernt von Cäsium.

Abbildung 40: Darstellung des Koordinationspolyeders um Palladium in $Cs_2[PdBr_4I_2]$ bei 104,3 kbar

Abbildung 41: Umgebung von Cäsium in $Cs_2[PdBr_4I_2]$ bei 104,3 kbar

Abbildung 42: Ausschnitt aus der Kristallstruktur von $Cs_2[PdBr_4I_2]$ bei 104,3 kbar in Polyederdarstellung

2.3.9 Vergleich von $Cs_2[PdBr_4I_2]$ mit $Rb_2[AuBr_2][AuBr_4]$

In der Reihe der gemischtvalenten Alkalimetallhalogenoaurate findet sich mit $Rb_2[AuBr_2][AuBr_4]$ eine zu $Cs_2[PdBr_4I_2]$ eng verwandte Struktur, die im Raumgruppentyp I2/m (Nr. 12) mit zwei Formeleinheiten pro Elementarzelle kristallisiert. Beide Kristallstrukturen sind in Abbildung 43 mit Blick in Richtung [010] wiedergegeben.

 $Rb_2[AuBr_2][AuBr_4]$ kann direkt aus der Perowskit-Struktur abgeleitet werden [20]. Die charakteristischen linearen [AuBr_2]- und quadratischen [AuBr_4]-Baugruppen verursachen eine Verzerrung der idealen Perowskit-Struktur. Dabei werden die über Ecken verknüpften Oktaeder um die B-Kationen im Perowskit (MBX_3) entlang einer vierzähligen Drehachse abwechselnd gestreckt und gestaucht. Dadurch erniedrigt sich die Kristallsymmetrie von kubisch nach tetragonal. Die Umgebung des größeren M-Kations wird nur geringfügig gestört, so dass zunächst die M-Kationen von zwölf Nachbarn in Form eines verzerrten Kuboktaeders koordiniert sind (vgl. $Cs_2[AuCl_2][AuCl_4]$). Durch eine gekoppelte Drehung der über Ecken Verknüpften, gestauchten und gestreckten Oktaeder wird eine topologisch dichtere Struktur mit kleineren Lücken für M-Kationen ausgebildet [74]. In Rb₂[AuBr₂][AuBr₄] sind die Oktaeder um rd. 30° gegeneinander verkippt, als direkte Folge davon zählen nur noch neun Bromatome zur ersten Koordinationsschale. Die fehlenden, ursprünglich zum Kuboktaeder gehörenden Bromatome sind nun über 110 pm weiter entfernt. Die Verkippung der Oktaeder bedingt, dass die tetragonale Kristallsymmetrie verloren geht, Rb₂[AuBr₂][AuBr₄] ist monoklin.

Analog kann für $Cs_2[PdBr_4I_2]$, in dem die Lage 2d $(0, 0, \frac{1}{2})$ unbesetzt bleibt, argumentiert werden. Hier wird die Verkippung der $[PdBr_4I_2]$ -Oktaeder durch den äußeren Druck vorgegeben. Die Oktaederverkippung und die damit verbundene Erniedrigung der Koordinationszahl ermöglicht es der Struktur, die in Folge der Druckbelastung ansteigenden elektrostatischen Wechselwirkungen zu kompensieren.

Abbildung 43: Links: Ausschnitt aus der Kristallstruktur von $Rb_2[AuBr_2][AuBr_4]$. Rechts: Ausschnitt aus der Kristallstruktur von $Cs_2[PdBr_4I_2]$ bei 104,3 kbar

2.3.10 Gruppe-Untergruppe-Beziehung der Raumgruppentypen in der Strukturverwandtschaft von $Cs_2[PdBr_4]I_2$ und $Cs_2[PdBr_4I_2]$

Die strukturelle Verwandtschaft zwischen den Verbindungen $Cs_2[PdBr_4]I_2$ und $Cs_2[PdBr_4I_2]$ kann im Rahmen der Gruppentheorie diskutiert werden [75]. Der translationsgleiche Übergang t(2) von $Cs_2[PdBr_4]I_2$ im Raumgruppentyp I4/mmm (Nr. 139) führt zur maximalen Untergruppe Immm (Nr. 71) unter Wegfall der vierzähligen Drehachse. Ein weiterer translationsgleicher Übergang t(2) reduziert die vorhandenen Symmetrieelemente des Raumgruppentyps Immm (Nr. 71) um die Hälfte und man gelangt zur unkonventionellen Aufstellung der maximalen Untergruppe I2/m (Nr. 12) (vgl. Abb. 44).

Aus der Menge von Untergruppen eines Raumgruppentyps können sich eine Vielzahl von Möglichkeiten für eine Symmetriereduktion ergeben. Jede dieser Möglichkeiten muss auf ihre Richtigkeit in Bezug auf Aufstellung der Elementarzelle und der Lageparameter überprüft werden.

Die Ergebnisse der Koordinatentransformation, die aus den Symmetriereduktionen von $Cs_2[PdBr_4]I_2$ nach $Cs_2[PdBr_4I_2]$ folgen, sind in Tabelle 15 aufgeführt. Dabei werden die Erwartungswerte der Atomlageparameter von $Cs_2[PdBr_4I_2]$, ausgehend von den Lageparametern in $Cs_2[PdBr_4]I_2$, denen in $Cs_2[PdBr_4I_2]$ bestimmten gegenübergestellt. I4/mmm (Nr. 139) (p = 90,4 kbar)

 $Cs_2[PdBr_4]I_2$ $a_{gem.} = 7,669(2)$ Å $c_{gem.} = 8,315(1)$ Å $T\left(\begin{array}{rrr}1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\end{array}\right)$ $T^* \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$ t(2)Immm (Nr. 71) (p = 90.4 kbar) $Cs_2[PdBr_4]I_2$ $a'_{ber.} = 7,669(2) \text{ Å}$ $b'_{ber.} = 7,669(2) \text{ Å}$ $c'_{ber.} = 8,315(1) \text{ Å}$ $T\left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$ $T^* \left(\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$ t(2)I2/m (Nr. 12) (p = 90,4 kbar) $Cs_2[PdBr_4]I_2$ $a''_{ber} = 7,669(2)$ Å $b''_{ber.} = 7,669(2) \text{ Å}$ $c''_{ber.} = 8,315(1) \text{ Å}$ $\beta''_{ber.} = 90^{\circ}$

I2/m (Nr. 12) (Monoklin, p = 90,4 kbar)

 $Cs_{2}[PdBr_{4}]I_{2}$ $a_{gem.} = 8,086(1) \text{ Å}$ $b_{gem.} = 7,328(2) \text{ Å}$ $c_{gem.} = 8,292(2) \text{ Å}$ $\beta_{qem.} = 93,04(1)^{\circ}$

Abbildung 44: Gruppe-Untergruppe-Beziehung der Raumgruppentypen in der Strukturverwandtschaft von $Cs_2[PdBr_4]I_2$ und $Cs_2[PdBr_4I_2]$

Tabelle 15: Atomlagekoordinaten heim Symmetrieabhau von Cs₂[PdBr₄]I₂ zu Cs₂[PdBr₄]₂]

2.3.11 Diskussion der Messergebnisse

Die Analyse der RIETVELD-verfeinerten Beugungsdaten liefert folgendes Bild: Mit steigendem Druck nähern sich die planaren [PdBr₄]-Baugruppen und die Iod-Hanteln schnell aneinander an (0 kbar bis 78,8 kbar). Der sinkende Pd-I-Abstand ermöglicht stärkere Wechselwirkungen der Iod-Molekülorbitale mit den Palladium- d_z-Orbitalen. Gleichzeitig wirken vier benachbarte Bromatome von vier [PdBr₄]-Baugruppen auf die Bindung der Iodhantel ein, schwächen diese und weiten sie auf. Im Bereich zwischen 78,8 kbar und 90,4 kbar kommt es zur Spaltung der I₂-Bindungen, und zur Knüpfung neuer Pd– I-Bindungen.

$$[Pd^{2+}Br_4] + I_2 \longleftarrow [Pd^{4+}Br_4I_2] \tag{15}$$

Diese Koordinationserweiterung (KZ = 4 + 2) bedingt eine Aufweitung der Pd–Br-Abstände, wie sie deutlich aus dem Verlauf der Atomabstände in Abbildung 45 hervorgeht. Die mit einem Wechsel im Kristallsystem (vgl. S. 64) verbundene Festkörper-Redoxreaktion erstreckt sich über einen Bereich von 90,4 kbar bis 98,4 kbar und endet bei 104,3 kbar, dem Ende des Koexistenzbereiches von $Cs_2[PdBr_4]I_2$ und $Cs_2[PdBr_4I_2]$. Zwischen 106,9 kbar und 218,8 kbar tritt kein weiterer Phasenübergang auf, die Atomabstände sinken mit steigendem Druck.

Die beobachtete Festkörper-Redoxreaktion ist reversibel. Der Komplex $[PdBr_4I_2]^{2-1}$ ist nur unter hohen Drücken stabil, bei Druckentlastung wandelt sich die Hochdruckphase $Cs_2[PdBr_4I_2]$ wieder in die tetragonale Ausgangsverbindung $Cs_2[PdBr_4]I_2$ zurück.

Abbildung 45: Verlauf einiger ausgewählter Abstände als Funktion des Drucks

Abbildung 46: Änderung des monoklinen Winkels β als Funktion des Drucks

Abbildung 47: Verlauf der Elementarzellenparameter von $Cs_2[PdBr_4]I_2$ in Abhängigkeit vom Druck. Offene Symbole entsprechen der tetragonalen Phase, geschlossene Symbole der monoklinen Phase von $Cs_2[PdBr_4I_2]$

Abbildung 48: Ausschnittsvergrößerung von Abb. 47. Zusätzlich dargestellt ist der Verlauf des Volumens in Abhängigkeit vom Druck

2.3.12 Bestimmung der Zustandsgleichung von Cs₂[PdBr₄]I₂

Aus dem Verlauf des druckabhängigen Elementarzellenvolumens konnte die Zustandsgleichung [57] nach der Methode der kleinsten Fehlerquadrate bestimmt werden. K₀ entspricht dem isothermen Kompressionsmodul (K₀ = $\frac{1}{\alpha}$), K'₀ ($\frac{dK}{dp}$) der druckabhängigen ersten Ableitung und V₀ dem Elementarzellenvolumen bei Normaldruck (aus Einkristalldaten). Der Verlauf des relativen Elementarzellenvolumens sowie der Verlauf der Zustandsgleichung (equation of state) ist in Abb. 49 wiedergegeben.

Abbildung 49: Relatives Volumen von $Cs_2[PdBr_4]I_2$ in Abhängigkeit vom Druck. Verfeinerte Parameter $K_0 = 144(9)$ kbar; $K_0 = 5,6(3)$; $V_0 = 654,8(1)$ Å³.

2.3.13 Druckabhängige RAMAN-Messungen

In Kooperation mit Dr. U. Schwarz und M. Armbrüster vom Max-Planck-Institut für chemische Physik fester Stoffe in Dresden konnten Hochdruck-RAMAN-Pulveruntersuchungen an $Cs_2[PdBr_4]I_2$ durchgeführt werden. RAMAN-Messungen an orientierten Einkristallen von $Rb_2[PdBr_4]$, $Rb_2[PdBr_4]I_2$ und $Cs_2[PdBr_4]I_2$ dienten zur Bestimmung der Symmetrie der Schwingungsmoden. Eine vollständige Zuordnung aller acht möglichen Schwingungsmoden von $Cs_2[PdBr_4]I_2$ war aufgrund der unzureichenden Datenmenge nicht möglich. Folgende Tabelle gibt die ermittelten Schwingungsfrequenzen und zugeordneten Schwingungsmoden von $Cs_2[PdBr_4]I_2$ wieder.

		Pulver	Einkristall
Mode	Schwingung	RAMAN-Shift $[cm^{-1}]$	RAMAN-Shift $[cm^{-1}]$
A_{1g}	*	20,60,95	_
A_{1g}	$\nu_s(\text{I-I})$	162	158
B_{1g}	$\nu(\text{Pd-Br})$	118	116
B_{1g}	$\nu(\text{Pd-Br})$	196	194
B_{2g}	$\delta(\text{Br-Pd-Br})$	183	181
\mathbf{E}_{g}	*	20,60,95	_
\mathbf{E}_{g}	*	$20,\!60,\!9$	_
\mathbf{E}_{g}	$\delta(\text{I-I})$	162	160

* keine eindeutige Zuordnung möglich

In Abb. 50 sind einige ausgewählte RAMAN-Spektren wiedergegeben, die bei unterschiedlichen Drücken aufgezeichnet wurden.

Abbildung 50: RAMAN-Spektren von $\mathrm{Cs}_2[\mathrm{PdBr}_4]\mathrm{I}_2$ bei verschiedenen Drücken

Aus den Röntgenpulverdaten lässt sich schließen, dass mit steigendem Druck die Bindungslänge der I₂-Hantel wächst und somit die Bindung schwächer wird. Die Hochdruck-RAMAN-Messungen bestätigen dieses Verhalten. Die Iod-A_{1g}-Schwingungsmode (162 cm⁻¹) wird mit steigendem Druck zu tieferen Wellenzahlen verschoben und zeigt so die erwartete Schwächung der I₂-Bindung an (vgl. Abb. 51). Oberhalb von 96,4 kbar treten neue Schwingungsbanden im RAMAN-Spektrum auf, die für eine ablaufende Redoxreaktion sprechen. Bei 105,6 kbar ist eine deutliche Aufspaltung der Schwingungsbanden zu erkennen und die Iod-Bande ist extrem stark verbreitert.

In Abbildung 52 sind die Verschiebungen der A_{1g} -Bande und die I–I-Abstände aus den Beugungsdaten gegen den Druck aufgetragen. Deutlich ist hier zu erkennen, wie die Aufspaltung der I₂-Bindung und die Verschiebung (Schwächung) der RAMAN-Schwingung korrelieren.

Abbildung 51: Ausschnittsvergrößerung von Abb. 50. RAMAN-Spektren von $Cs_2[PdBr_4]I_2$ im Druckbereich zwischen 72,5 kbar und 105,6 kbar

Abbildung 52: Verschiebung der I₂-Schwingung (A_{1g}) zu kleineren Wellenzahlen mit steigendem Druck (links) und I₂-Bindungslänge in Abhängigkeit vom Druck (rechts)

2.3.14 Ausblick

Aufwendige quantenmechanische Berechnungen werden zur Zeit mit den erhaltenen kristallografischen Daten durchgeführt. Die Ergebnisse stehen leider noch aus und können aufgrund des Zeitrahmens in dieser Arbeit nicht mehr aufgeführt werden.

2.4 $Cs_2[PdCl_4]I_2$

Die homologe Reihe der Tetrahalogenopalladate(II) mit Iodeinlagerung wird durch die Verbindung $Cs_2[PdCl_4]I_2$ ergänzt. Durch Solvothermalsynthese eines Gemenges aus CsCl, PdCl₂ und I₂ in Chlorwasserstoffsäure bei 150 °C konnte $Cs_2[PdCl_4]I_2$ phasenrein dargestellt werden. Eine druckinduzierte Festkörper-Redoxreaktion an der Verbindung $Cs_2[PdCl_4]I_2$ scheint ebenso wie bei ihren Gruppenhomologen möglich. Um diese Vermutung zu überprüfen wurden am ESRF Pulverbeugungsexperimente bei verschiedenen Drücken an den Experimentierstationen ID09 und ID30 durchgeführt.

2.4.1 Darstellung und Charakterisierung von Cs₂[PdCl₄]I₂

0,5 g eines Gemenges aus CsCl, PdCl₂ und Iod sind im molaren Verhältnis 2:1:1 in Quarzglasampullen gefüllt, mit 0,5 ml 3,2 %-iger HCl-Lösung überschichtet, eingefroren, evakuiert und zugeschmolzen worden. Die Quarzglasampullen wurden mit 10 °C/h aufgeheizt, 72 h getempert und mit 1 °C/h auf Raumtemperatur abgekühlt. Das Reaktionsprodukt ist abfiltriert und mit wenig 3,2 %-iger HCl-Lösung, bidest. Wasser und Diethylether gewaschen worden. Im Filter verblieben dunkelrote quaderförmige Kristalle. Die hiervon angefertigten Röntgenpulverdiffraktogramme wiesen keine Verunreinigungen durch die Edukte auf. Einige Kristalle mit gut ausgebildeten Flächen konnten unter einem Polarisationsmikroskop isoliert und in Glaskapillaren mit Paraffinwachs befestigt werden. Anhand einiger Röntgenbeugungsbilder an einem κ -CCD-Einkristalldiffraktometer wurde ein gut streuender Kristall ausgewählt und Intensitätsdaten aufgezeichnet. Die triklin bestimmte Metrik der Elementarzellenparameter lässt sich in ein tetragonal innenzentriertes Bravais-Gitter überführen.

Die aus der RIETVELD-Verfeinerung erhaltenen Elementarzellenparameter a = 8,1381(1) Å und c = 8,9822(1) Å stimmen gut mit denen der Einkristallmessung überein. Die Analyse der symmetrieverknüpften Reflexe und der systematischen Auslöschungen ließ auf die möglichen Raumgruppentypen I422 (Nr. 97), I4mm (Nr. 107), I $\overline{4}$ m2 (Nr. 119), I $\overline{4}$ 2m (Nr. 121) und I4/mmm (Nr. 139) schließen, wovon sich I4/mmm (Nr. 139) im Verlauf der Strukturbestimmung als zutreffend erwies. Mit Hilfe direkter Methoden wurden die Atomlagen aufgefunden und nach der Methode der kleinsten Fehlerquadrate verfeinert. Die kristallografischen Daten und Messparameter sind in den Tabellen 16 bis 18 aufgeführt. Ausgewählte Atomabstände und Winkel sind in Tabelle 19 wiedergegeben.

Abbildung 53: Pulverdiffraktogramm von $Cs_2[PdCl_4]I_2$, (+) gemessen, (-) berechnet, (|) BRAGG-Positionen und darunter die Differenzkurve

Abbildung 54: Elektronenmikroskopische Aufnahme eines $Cs_2[PdCl_4]I_2$ -Kristalls

_

κ-CCD Datensatznummer	1420
Summenformel	$Cs_2[PdCl_4]I_2$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	I4/mmm (139); 2
Elementarzellen parameter $[{\rm \AA}]$	${ m a}=8,\!1465(2)$
	${ m c}=8,\!9910(1)$
EZ-Volumen [Å ³]	596,7(1)
Dichte (ber./gem.) $[10^3~\rm kg/m^3]$	$4,28 \ / \ 4,22(4)$
Kristallgröße [mm ³]	$0,08 \times 0,08 \times 0,1$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	Graphitmonochromator, CCD-Detektor;
	ω -Scans, $3^{\circ} \le \theta \le 30^{\circ}$, T = 293 K,
Reflexbereich	$-11 \leq h,k \leq 11; -12 \leq l \leq 12$
Completeness [%]	100%
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	13,57
Absorptionskorrektur	keine
F(000)	660
Zahl der Reflexe	
gemessen	3413
unabhängige (N)	286
davon mit $I > 2\sigma(I) (N')$	275
Anzahl der Parameter	13
R_i (SHELXL-97) [%]	3,03
$R(F)_N; R(F)_{N'}$ [%]	2,01; 1,94
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	4,53; 4,52
GooF	1,213
Extinktionskoeffizient	0,0131(6)
Restelektronendichte $[Å^{-3}]$	-0,82 (1,11 Å von I)
	1,22 (1,48 Å von Cs)

Tabelle 16: Kristallografische Daten und Messparameter von $Cs_2[PdCl_4]I_2$

Tabelle 17: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von $\operatorname{Cs}_2[\operatorname{PdCl}_4]I_2$ entsprechend $U_{eq} = \frac{1}{3}$ $\sum_i \sum_j U_{ij} a_i^* a_i^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	х	У	Ζ	$\mathbf{U}_{\mathbf{eq}}$
Pd	2a	0	0	0	0,0224(2)
\mathbf{Cs}	4d	0	$\frac{1}{2}$	$\frac{1}{4}$	0,0399(2)
Ι	$4\mathrm{e}$	0	0	0,34743(5)	0,0313(2)
Cl	$8\mathrm{h}$	0,1997(1)	0,1997(1)	0	0,0359(3)

Tabelle 18: Thermische Auslenkungsparameter U_{ij} in Å² für Cs₂[PdCl₄]I₂ (Standardabweichung). Die U_{ij} sind definiert für $exp(-2\pi^2(U_{11}h^2a^{*2} + \dots + 2U_{23}klb^*c^*))$

Atom	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
Pd	0,0230(2)	0,0230(2)	0,0213(3)	0	0	0
\mathbf{Cs}	0,0415(2)	0,0415(2)	$0,\!0368(3)$	0	0	0
Ι	0,0348(2)	0,0348(2)	0,0242(2)	0	0	0
Cl	0,0324(4)	0,0324(4)	0,0439(7)	0	0	-0,0089(5)

Tabelle 19: Ausgewählte Abstände, Winkel und Multiplizitäten in $Cs_2[PdCl_4]I_2$ (Stan-
dardabweichung)

		Abstand [Å]		Bindung			Winkel $[^{\circ}]$	
Pd –	Cl	2,299(1)	$4 \times$	Cl-	Pd	-Cl	90	$4 \times$
Ι –	Ι	2,740(1)	$1 \times$	Cl-	Pd	-I	90	$8 \times$
Pd –	Ι	3,1220(5)	$2 \times$	I-	Pd	-I	180	$2 \times$
Cs –	Cl	3,6958(2)	$8 \times$					
Ι –	Cl'	3,722(1)	$4 \times$					
Ι –	Cl	3,8796(9)	$4 \times$					
Cs –	Ι	4,1626(1)	$4 \times$					

2.4.2 Beschreibung der Kristallstruktur von Cs₂[PdCl₄]I₂

 $Cs_2[PdCl_4]I_2$ kristallisiert im Raumgruppentyp I4/mmm (Nr. 139) mit zwei Formeleinheiten pro Elementarzelle und ist isotyp zu $Cs_2[PdI_4]I_2$. Palladium der Oxidationstufe 2+ ist quadratisch planar von vier Chloratomen im Abstand von 2,299(1) Å umgeben. Senkrecht zu den Flächen der [PdCl_4]-Baueinheiten sind zwei Iodmoleküle eingelagert, deren kürzester Pd–I-Abstand 3,1220(5) Å beträgt. Somit kann die Umgebung von Palladium, bestehend aus vier Chloratomen und je zwei Iodatomen, als stark gestreckter Oktaeder beschrieben werden.

Der I–I-Abstand innerhalb eines I₂-Moleküls beträgt 2,740(1) Å und ist im Vergleich zu elementarem Iod (2,715 Å [69]) um rund 1 % länger. Iod wird von vier Chloratomen aus vier verschiedenen [PdCl₄]-Baueinheiten im Abstand von 3,722(1) Å umgeben, vier weitere Chloratome einer [PdCl₄]-Baugruppe senkrecht zur kristallografischen c-Achse im Abstand von 3,8796(9) Å ergänzen die Umgebung. Eine weitere Koordinationssphäre wird durch vier Cäsiumatome im Abstand von 4,3375(1) Å aufgebaut (vgl. Abb. 56).

Cäsium ist im Abstand von 3,6958(2) Å von acht Chloratomen umgeben, jeweils zwei Chloratome stammen aus einer [PdCl₄]-Baugruppe, so dass das resultierende Polyeder als verzerrtes Kubus (vgl. Abb. 57) beschrieben werden kann. Die Umgebung von Cäsium wird durch vier weiter entfernte Iodatome, welche die Seitenflächen des Kubus im Abstand von 4,1626(1) Å überkappen, zu einem verzerrten Kuboktaeder ergänzt.

Abbildung 55: Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ (Schwingungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit)

Abbildung 56: Darstellung des Koordinationspolyeders um Iod in $Cs_2[PdCl_4]I_2$ (Schwingungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit)

Abbildung 57: Darstellung des Koordinationspolyeders um Cäsium in $Cs_2[PdCl_4]I_2$ (Schwingungsellipsoide mit 50 % Aufenthaltswahrscheinlichkeit)
2.4.3 Themochemische Untersuchungen an $Cs_2[PdCl_4]I_2$

Durch gezielten thermischen Abbau von $Cs_2[PdCl_4]I_2$ ist es möglich $Cs_2[PdCl_4]$ zu erhalten. Hierzu wurden DTA/TG-Experimente durchgeführt, um die Abspaltung von Iod als Funktion der Temperatur zu verfolgen. Die DTA/TG-Messungen wurden mit einer Heizrate von $\frac{1}{30}$ °C/s durchgeführt. Die TG-Kurve weist einen kontinuierlichen Massenverlust beginnend bei 236 °C und endend bei 297 °C nach. Der Massenverlust entspricht 93 % des theoretischen Gesamtiodgehaltes. Es treten zwei Effekte in der DTA-Kurve auf, in der Aufheizkurve bei 272 °C (1) und in der Abkühlkurve bei 237 °C (2), die nicht zugeordnet werden können (vgl. Abb. 58). Der Schmelzpunkt von $Cs_2[PdCl_4]$ wurde aus DSC-Messungen mit 477,7 °C bestimmt [76]. Der Rückstand der DTA/TG-Messung ist röntgenografisch untersucht worden und konnte als orthorhombische Modifikation von $Cs_2[PdCl_4]$ identifiziert werden (vgl. Abb. 59).

Abbildung 58: DTA/TG-Messung von Cs₂[PdCl₄]I₂

Abbildung 59: Pulverdiffraktogramm des Rückstands der DTA/TG-Messung. Unterlegt sind berechnete Intensitätsdaten für die orthorhombische Modifikation von Cs₂[PdCl₄] [77]

2.4.4 Schwingungsspektroskopische Untersuchungen

Von den maximal sieben möglichen Schwingungsmoden für quadratisch planare [PdCl₄]-Baugruppen (D_{4h}-Symmetrie) lassen sich zwei RAMAN-aktive, $\nu_s(A_{1g}) = 312 \text{ cm}^{-1}$ und $\delta(B_{2g}) = 290 \text{ cm}^{-1}$, sowie eine IR-aktive, $\nu_{as}(E_u) = 342 \text{ cm}^{-1}$, im untersuchten Messbereich zuordnen. Die Lage der Schwingungsbanden stimmt mit den Erwartungswerten für quadratisch planare [PdCl₄]-Baugruppen überein [62]. Die RAMAN-aktive Iodschwingung $\nu(A_{1g})$ fällt mit der $\nu(B_{1g})$ -Schwingung der [PdCl₄]-Baugruppe zusammen, es resultiert eine sehr starke Schwingung bei 170 cm⁻¹ (vgl. Abb. 60 und Abb. 61).

Abbildung 60: RAMAN-Spektrum von $Cs_2[PdCl_4]I_2$

Abbildung 61: IR-Spektrum von $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$

2.4.5 Röntgenbeugungsuntersuchungen an $Cs_2[PdCl_4]I_2$ bei unterschiedlichen Drücken

Zwei Messreihen konnten an der Verbindung $Cs_2[PdCl_4]I_2$ bei verschiedenen Drücken am ESRF durchgeführt werden. Eine Messreihe mit 23 Druckpunkten zwischen Normaldruck und 178 kbar wurde an der Experimentierstation ID09 mit Stickstoff als Druckmedium und Drucksensor $SrB_4O_7:Sm^{2+}$ durchgeführt. Eine zweite Messreihe konnte an der Experimentierstation ID30 mit 17 Druckpunkten im Bereich zwischen Normaldruck und 410 kbar mit dem Drucküberträger Stickstoff und Rubinsplittern als Drucksensor aufgezeichnet werden. Um eine Gleichgewichtsdruckeinstellung zu gewährleisten ist nach jeder Druckerhöhung 15 Minuten gewartet worden, bevor Beugungsbilder mit einer Belichtungszeit von 0,1 s sowie die Verschiebung der Fluoreszenzlinien aufgezeichnet wurden. Die nach der Fluoreszenzmethode bestimmten Wellenlängen und die daraus berechneten Drücke (Gl. (9) und Gl. (10)) sind in Tabelle 20 wiedergegeben. Ausgewählte Pulverdiffraktogramme bei verschiedenen Drücken sind in Abb. 62 und eine Ausschnittsvergrößerung in Abb. 63 wiedergegeben.

	experimen	te am ES	RF				
	ID	09		ID30			
λ [nm]	p [kbar]						
685,577	4,50	688,470	$116,\!31$	694,899	$18,\!37$	$705,\!648$	330,82
685,705	9,64	$688,\!627$	$122,\!14$	696,534	$63,\!86$	706, 128	$345,\!53$
685,923	$18,\!34$	688,788	$128,\!10$	697,450	$89,\!65$	$706,\!502$	$357,\!04$
686,207	$29,\!60$	$688,\!937$	$133,\!59$	698,409	$116,\!90$	$706,\!804$	366, 36
$686,\!424$	$38,\!14$	689,089	$139,\!17$	699,641	$152,\!28$	$707,\!263$	$380,\!58$
686,737	50,37	689,212	$143,\!67$	700,495	$177,\!05$	708,215	$410,\!27$
$686,\!991$	60,22	689,447	$152,\!24$	701,203	197,73		
$687,\!249$	70,16	$689,\!625$	158,70	702,148	$225,\!56$		
$687,\!470$	$78,\!62$	689,845	$166,\!64$	703,108	$254,\!08$		
$687,\!846$	92,90	690,114	$176,\!30$	704,021	$281,\!45$		
688,042	$100,\!30$	690, 166	$178,\!16$	704,724	$302,\!69$		
$688,\!380$	$112,\!96$						

 Tabelle 20: Mittels Fluoreszenzmethode bestimmte Druckwerte der Röntgenbeugungsexperimente am ESRF

Abbildung 62: Ausgewählte Pulverdiffraktogramme von $Cs_2[PdCl_4]I_2$ bei unterschiedlichen Drücken aufgezeichnet an der Experimentierstation ID30

Abbildung 63: Ausschnittsvergrößerung von Abb. 62

Zwischen Normaldruck und 178 kbar ist ein linearer Zusammenhang zwischen Druck und Verschiebung der Reflexlage zu erkennen. Ab 226 kbar treten zusätzliche Reflexe auf und die Reflexprofile verbreitern sich stark.

Die Verfeinerung und Extraktion von kristallografischen Daten wurde mit dem Programmpaket GSAS [45] durchgeführt. Die Anpassung des Untergrunds erfolgte mit 12 bis 14 Parametern eines CHEBYSCHEV-Polynoms 1. Ordnung (GSAS, Typ 1). Die Reflexprofile konnten mittels einer modifizierten Pseudo-VOIGT-Funktion (GSAS, Typ 4) angepasst und die Vorzugsausrichtung der Kristallite mit acht Parametern einer sphärischharmonischen Funktion (GSAS, Typ 2) modelliert werden. Alle Parameter sind frei und ohne Dämpfung verfeinert bis das Konvergenzkriterium unterschritten wurde.

Im Bereich zwischen Normaldruck und 254 kbar ließ sich das Strukturmodell von Cs₂[PdCl₄]I₂ problemlos an die Pulverdaten anpassen und zeigte normales Kompressionsverhalten (vgl. Abb. 64). Oberhalb 254 kbar war aufgrund der extrem breiten Beugungsreflexe keine sinnvolle Verfeinerung der Pulverdaten mehr möglich. Die kristallografischen Daten der RIETVELD-Verfeinerungen finden sich im Anhang ab Seite 285.

Nach Druckentlastung liegt die Ausgangsverbindung mit verbreiterten Reflexen wieder vor (vgl. Abb. 62).

2.4.7 Diskussion der Messergebnisse

Die aus den RIETVELD-Verfeinerungen gewonnenen Atomabstände (vgl. Abb. 65) zeigen für den Bereich zwischen 120 kbar und 160 kbar einen Valenzwechsel in $Cs_2[PdCl_4]I_2$ an. Deutlichstes Anzeichen für eine solche Reaktion ist die Aufweitung der Pd–Cl-Abstände innerhalb der $[PdCl_4]$ -Baugruppen, wie sie typisch für eine Koordinationserweiterung im Sinne einer $[PdCl_4I_2]$ -Baugruppe ist. Diese Koordinationsaufweitung geht einher mit dem sinkenden Abstand zwischen Pd–I, der eine stärkere Wechselwirkung der Iod-Molekülorbitale mit den Pd-d_z-Orbitalen ermöglicht. Ebenso wie in $Cs_2[PdI_4]I_2$ und Cs₂[PdBr₄]I₂ ist der Einfluss der vier [PdX₄]-Baugruppen, die senkrecht zur I–I-Bindungsachse liegen, nicht zu vernachlässigen (vgl. S. 36 Abb. 22). Sie schwächen die I–I-Bindung und ermöglichen so den Elektronenübertrag vom Palladium zum Iod. Eine neue Pd–I-Bindung wird geknüpft und die I₂-Bindung wird gelöst. Zwischen 160 kbar und 254 kbar steigt der I–I-Abstand stark an und die I₂-Bindung kann als gelöst betrachtet werden, während die Pd–I- und Pd–Cl-Abstände linear mit steigendem Druck sinken.

Die beobachtete Festkörper-Redoxreaktion ist reversibel. Ebenso wie der Komplex $[PdBr_4I_2]^{2-}$ kann auch $[PdCl_4I_2]^{2-}$ nur bei hohen Drücken stabilisiert werden. Nach Druckentlastung kehrt sich die Reaktion um und die tetragonale Ausgangsverbindung $Cs_2[PdCl_4]I_2$ liegt wieder vor.

Abbildung 64: Verlauf des Elementarzellenvolumens von $Cs_2[PdCl_4]I_2$ als Funktion des Drucks. Zustandsgleichung nach [57]: $V_0 = 593(4)$ Å³, $K_0 = 165(13)$ kbar, $K'_0 = 6,1(2)$

Abbildung 65: Ausgewählte Atomabstände in $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$ mit steigendem Druck

Abbildung 66: Ausschnitt aus der Kristallstruktur von $Cs_2[PdCl_4]I_2$ bei 254,08 kbar

$\mathbf{2.5} \quad \mathbf{Rb}_2[\mathbf{PdBr}_4]\mathbf{I}_2$

Die Substitution von Cäsium durch Rubidium in $Cs_2[PdBr_4]I_2$ sollte ähnlich wie bei $Cs_2[PdI_4]I_2$ und $Rb_2[PdI_4]I_2$ möglich sein [76]. Mit $Rb_2[PdBr_4]I_2$ ist die Synthese eines weiteren Vertreters aus der Reihe der Alkalimetall-tetrahalogenopalladate(II) mit Iodeinlagerung gelungen, der durch Solvothermalsynthese eines Gemenges aus RbBr, PdBr₂ und I₂ in Bromwasserstoffsäure bei 150 °C synthetisiert werden kann.

2.5.1 Darstellung und Charakterisierung von Rb₂[PdBr₄]I₂

0,5 g eines fein gepulverten Gemenges aus RbBr, PdBr₂ und Iod wurden im Stoffmengenverhältnis 2:1:1 in Quarzglasampullen gefüllt, mit 0,5 ml HBr (4,7 %) überschichtet und in flüssigem Stickstoff eingefroren, evakuiert und abgeschmolzen. Die Quarzglasampullen sind mit 10 °C/h aufgeheizt, 72 h getempert und mit 1 °C/h auf Raumtemperatur abgekühlt worden. Das Reaktionsprodukt wurde abfiltriert und mit wenig 4,7 % iger HBr, bidest. Wasser und Diethylether gewaschen. Im Filter verblieben quaderförmige schwarze Kristalle und dunkelgrüne bis braune nadelförmige Kristalle. Hiervon angefertigte Röntgenpulverdiffraktogramme zeigten eindeutig, dass es sich um ein Gemenge aus Rb₂[PdBr₄]I₂ und Rb₂[PdBr₄] [78] handelte. Beide Phasen ließen sich unter einem Polarisationsmikroskop gut voneinander trennen. Trotz intensiver Bemühungen konnte keine Syntheseroute ausgearbeitet werden, die phasenreines $Rb_2[PdBr_4]I_2$ liefert. Unter einem Polarisationsmikroskop zeigte sich, dass die Rb₂[PdBr₄]I₂-Kristalle ausnahmslos von hoher Mosaizität waren. Einige Kristalle mit gut ausgebildeten Flächen wurden isoliert und in Glaskapillaren mit Paraffinwachs befestigt. Es wurden einige Beugungs- und Achsaufnahmen an einem κ -CCD-Einkristalldiffraktometer angefertigt und ein gut streuender Kristall für die Sammlung der Intensitätsdaten ausgewählt. Die aus den gesammelten Daten verfeinerte trikline Elementarzellenmetrik ließ sich durch Achstransformation in eine tetragonal innenzentrierte Aufstellung überführen.

Die Analyse der symmetrieverknüpften Reflexe und systematischen Auslöschungen führte zu den möglichen Raumgruppentypen I422 (Nr. 97), I4mm (Nr. 107), I4m2 (Nr. 119), I42m (Nr. 121) und I4/mmm (Nr. 139), wovon sich I4/mmm (Nr. 139) im Verlauf der Strukturbestimmung als zutreffend erwies. Mit Hilfe direkter Methoden wurden die Atomlagen aufgefunden und nach der Methode der kleinsten Fehlerquadrate verfeinert.

Der hohe $wR(F^2)$ -Wert der Strukturverfeinerung ist auf die schlechte Kristallqualität zurückzuführen, ein falsches Strukturmodell ist nach sorgfältiger Überprüfung auszuschließen. Einzelheiten der kristallografischen Daten und zu den Messparametern sind in den Tabellen 21 bis 23 aufgeführt, ausgewählte Winkel und Abstände sind in Tabelle 24 aufgeführt.

Abbildung 67: Pulverdiffraktogramm von Rb₂[PdBr₄]I₂, (+) gemessen, (-) berechnet, (|) BRAGG-Positionen und darunter die Differenzkurve

Abbildung 68: Elektronenmikroskopische Aufnahme eines Rb₂[PdBr₄]I₂-Kristalls

κ -CCD Datensatznummer	1651
Summenformel	$Rb_2[PdBr_4]I_2$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	I4/mmm (139); 2
Elementarzellen parameter $[Å]$	${ m a}=8,\!4268(2)$
	c = 9,0356(3)
EZ-Volumen [Å ³]	638,1(1)
Dichte (ber./gem.) $[10^3 \ \rm kg/m^3]$	$4,\!43 \not 4,\!49(4)$
Kristallgröße [mm ³]	$0.1\times0.1\times0.25$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	Graphitmonochromator, CCD-Detektor;
	$\omega\text{-Scans},4^\circ\leq\theta\leq30^\circ,\mathrm{T}=293$ K,
Reflexbereich	$-11 \le h \le 11; -10 \le k \le 11; -12 \le l \le 12$
Completeness [%]	100%
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$,
	volle Matrix, SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	26,18
Absorptionskorrektur	keine
F(000)	732
Zahl der Reflexe	
gemessen	4731
unabhängige (N)	297
davon mit I> $2\sigma(I)$ (N')	244
Anzahl der Parameter	13
R_i (SHELXL-97) [%]	7,11
$R(F)_N; R(F)_{N'}$ [%]	$6,25;\ 5,19$
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	16,34; 15,58
GooF	1,132
Extinktionskoeffizient	0,0011(8)
Restelektronendichte $[Å^{-3}]$	-1,81 (0,72 Å von I)
	5,56 (0,41 Å von Pd)

Tabelle 21: Kristallografische Daten und Messparameter von $Rb_2[PdBr_4]I_2$

-

Tabelle 22: Atomlageparameter und äquivalente thermische Auslenkungsparameter U_{eq} für Rb₂[PdBr₄]I₂ entsprechend $U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	x	У	Z	U_{eq}
Pd	2a	0	0	0	0,0291(7)
Rb	4d	0	$\frac{1}{2}$	$\frac{1}{4}$	0,0336(2)
Ι	4e	0	0	0,34743(5)	0,0394(6)
Br	8h	0,2045(2)	0,2045(2)	0	0,0429(7)

Tabelle 23: Thermische Auslenkungsparameter U_{ij} in Å² für Rb₂[PdBr₄]I₂ (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	$\mathbf{U_{23}}$	$\mathbf{U_{13}}$	U_{12}
Pd	0,0284(8)	0,0284(8)	0,030(1)	0	0	0
Rb	0,0371(9)	0,0371(9)	0,027(1)	0	0	0
Ι	0,0426(8)	0,0426(8)	0,0329(9)	0	0	0
Br	0,0377(8)	0,0377(8)	$0,\!053(1)$	0	0	-0,0085(7)

			Abstand	[Å]				Winke	el [°]
Pd		Br	2,438(2)	$4 \times$	Br-	Pd	-Br	90	$4 \times$
Ι	—	Ι	2,750(3)	$2 \times$	Br-	Pd	-I	90	$8 \times$
Pd	—	Ι	3,143(1)	$2 \times$	Br-	Pd	-Br	180	$2 \times$
Rb	—	Br	3,7781(3)	$8 \times$					
Ι	—	$\mathrm{Br'}$	3,780(1)	$4 \times$					
Rb	_	Ι	4,3054(3)	$4 \times$					
Ι	_	Br	3,968(1)	$4 \times$					

2.5.2 Beschreibung der Kristallstruktur von $Rb_2[PdBr_4]I_2$

Ebenso wie seine Homologen kristallisiert $Rb_2[PdBr_4]I_2$ im Raumgruppentyp I4/mmm (Nr. 139) und unterscheidet sich nur geringfügig von $Cs_2[PdBr_4]I_2$ (vgl. S. 48), darum wird an dieser Stelle auf eine Strukturbeschreibung verzichtet.

2.5.3 Schwingungsspektroskopische Untersuchungen

Von den sieben möglichen Schwingungsmoden der planaren $[PdBr_4]$ -Baugruppen treten drei RAMAN-aktive und eine IR-aktive innerhalb des untersuchten Messbereichs auf (vgl. Abb. 69, 70). Die starke RAMAN-aktive Schwingung bei 162 cm⁻¹ kann der Iod-Schwingung zugeordnet werden.

 $\label{eq:Tabelle 25: Lage und Zuordnung der RAMAN- und IR-Schwingungsfrequenzen von $$Rb_2[PdBr_4]I_2$$

Rasse	Schwingungsmode	Frequenz $[cm^{-1}]$	Aktivität
A_{1g}	$\nu_s([\mathrm{PdBr}_4])$	115	Raman
B_{2g}	$\delta([\mathrm{PdBr}_4])$	182	Raman
B_{1g}	$\nu([PdBr_4])$	194	Raman
A_{1g}	u(I–I)	162	Raman
\mathbf{E}_{u}	$\nu_{as}([\mathrm{PdBr}_4])$	263	IR

Abbildung 70: IR-Spektrum von $Rb_2[PdBr_4]I_2$

2.6 Vergleich interatomarer Abstände in der Reihe M₂[PdX₄]I₂

Die Bindungslängen der eingelagerten Iodmoleküle in der Reihe der isotypen Verbindungen $Cs_2[PdI_4]I_2$, $Cs_2[PdBr_4]I_2$, $Cs_2[PdCl_4]I_2$ und $Rb_2[PdBr_4]I_2$ sind im Vergleich zu elementarem Iod [69] leicht gestreckt. Ähnliche I₂-Bindungsaufweitungen zeigen Verbindungen wie $C_6H_{12}N_4$ · I₂ [70] oder [$Co(NH_3)_6$]I₃I₂ [79], die eingelagerte Iodmoleküle enthalten.

Die Aufweitung der I₂-Bindung in der Reihe M₂[PdX₄]I₂ ist abhängig von der Größe des Halogenatoms X, mit steigender Ordnungszahl wird die I–I-Bindung stärker gedehnt (vgl. Abb. 71). Die Pd–I-Bindungsabstände steigen linear mit dem Halogenatomradius X an, während sich das Ansteigen der Bindungsabstände zwischen I–I, Cs–X, Cs–I, X'–I und X–I durch eine quadratische Näherung beschreiben lässt (vgl. Abb. 72 bis 76).

Wachsende Wechselwirkungen zwischen den Iodmolekülorbitalen und Palladium- d_z^2 -Orbitalen sowie den benachbarten Halogenatomen X' ermöglichen eine druckinduzierte Redoxreaktion in Abhängigkeit vom Halogenatomradius schon bei niedrigeren Drücken (vgl. Abb. 77).

Auch die Bandenlage der I₂-Schwingung ändert sich mit der Größe des Halogenatoms X. In M₂[PdBr₄]I₂ liegt die Iodschwingungsbande bei 162 cm⁻¹ cm und in Cs₂[PdCl₄]I₂ bei 170⁻¹ cm. Sie verschiebt sich mit steigendem Halogenatomradius zu kleineren Wellenzahlen, was einer Schwächung der I–I-Bindung entspricht und so auf stärkere Wechselwirkungen zwischen den Iodmolekülorbitalen und Palladium-d_{z²}-Orbitalen schließen lässt.

Abbildung 71: (+) I₂-Bindungslänge in Cs₂[PdX₄]I₂; (+) Vergleichsabstände; elementares Iod 2,715 Å [69]

Abbildung 72: (+) Pd–I-Abstände in $Cs_2[PdX_4]I_2$; (+) Vergleichsabstände

Abbildung 73: (+) Cs–X-Abstände in Cs₂[PdX₄]I₂; (+) Vergleichsabstände

Abbildung 74: (+) Cs–I-Abstände in Cs₂[PdX₄]I₂; (+) Vergleichsabstände

Abbildung 75: (+) X'–I-Abstände in $Cs_2[PdX_4]I_2;$ (+) Vergleichsabstände

Abbildung 76: (+) X–I-Abstände in $Cs_2[PdX_4]I_2$; (+) Vergleichsabstände

Abbildung 77: Phasenübergangsbereiche vom $Cs_2[PdX_4]I_2$

3.1 $Rb_4Au_2PdCl_{12}$ und $Cs_4Au_2PdCl_{12}$

Im Rahmen der Suche nach redoxaktiven Festkörperverbindungen schien das System $MX/[AuX_4]_{aq}/[PdX_4]_{aq}$ (M = Alkali, X = Halogen) besonders erfolgversprechend. DSC-Untersuchungen in Goldtiegeln an den Verbindungen der Reihe Dialkalimetall-tetrahalogenopalladate(II)diiod zeigten eine chemische Reaktion mit dem Tiegelmaterial, deren Produkt keiner beschriebenen binären oder ternären Goldverbindung entsprach.

Gerade im System $[AuCl_4]_{aq}/[PdCl_4]_{aq}$ liegen die Redoxpotenziale von Au³⁺ und Pd²⁺ besonders nah beieinander und die Möglichkeit, einen thermischen- oder druckinduzierten Wechsel der Oxidationstufe herbeizuführen, scheint realisierbar.

$$[\operatorname{AuCl}_4]^- + 2 e^- \xleftarrow{} [\operatorname{AuCl}_2]^- + 2 \operatorname{Cl}^- (+1, 29 \text{ V})$$
$$[\operatorname{PdCl}_6]^{2-} + 2 e^- \xleftarrow{} [\operatorname{PdCl}_4]^{2-} + 2 \operatorname{Cl}^- (+1, 29 \text{ V})$$

TANANAJEW [80] beschreibt im System MCl/AuCl₃/PdCl₂ (M = Rb, Cs) die Existenz der Verbindungen Rb₂AuPdCl₇ und Cs₂AuPdCl₇, welche von FERRARI et al [81] als Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂ identifiziert wurden. Anhand von Weissenbergaufnahmen konnte beiden Verbindungen der Raumgruppentyp Ia3̄d (Nr. 230) mit 16 Formeleinheiten pro Elementarzelle zugeordnet werden. Die Achsparameter wurden von FERRARI mit $a_{Rb} = 20,53(2)$ Å und $a_{Cs} = 20,91(1)$ Å angegeben, die Dichte pyknometrisch mit $\rho_{Rb} = 3,894$ g·cm⁻³ und $\rho_{Cs} = 4,21$ g·cm⁻³ sowie die Zusammensetzung durch chemische Analyse bestimmt. Die mit Pulverpresslingen untersuchte Leitfähigkeit von Cs₄Au₂PdCl₁₂ zeigte nicht lineares Verhalten [82]. Über die Kristallstruktur der Verbindungen Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂ wird nicht berichtet.

	Elem. $\%$	Elem. $\%$	Elem. $\%$	Elem. $\%$	Elem. $\%$
Verbindung	\mathbf{Rb}	\mathbf{Cs}	\mathbf{Pd}	$\mathbf{A}\mathbf{u}$	Cl
$Rb_4Au_2PdCl_{12}$ (gem.)	26,95		8,58	30,82	$33,\!65$
$Rb_4Au_2PdCl_{12}$ (ber.)	$26,\!95$		8,58	$31,\!09$	$33,\!55$
$Cs_4Au_2PdCl_{12}$ (gem.)		$35,\!03$	$7,\!37$	$27,\!35$	$29,\!46$
$Cs_4Au_2PdCl_{12}$ (ber.)		$36,\!44$	$7,\!32$	$27,\!05$	$29,\!19$

Daher wurden gezielt Versuche unternommen, die Verbindungen $Rb_4Au_2PdCl_{12}$ und $Cs_4Au_2PdCl_{12}$ zu synthestisieren. Ausgehend von den Ausgangssubstanzen $PdCl_2$, $H[AuCl_4]$ ·x H_2O und MCl (M = Rb, Cs) lassen sich beide solvothermal aus verd. HCl-Lösung darstellen und umkristallisieren. Hiernach liegen tiefschwarze würfelförmige Kristalle mit Kantenlängen bis zu 5 mm und fußballartige Kristalle mit Durchmessern bis 5 mm vor. Einfacher gestaltet sich die Synthese aus den Edukten $M_2[PdCl_4]$ und $M[AuCl_4]$ (M = Cs, Rb) und die Umsetzung mit wenig HCl-Lösung in geschlossenen Ampullen.

3.1.1 Darstellung und Charakterisierung von $M_4Au_2PdCl_{12}$ (M = Rb, Cs)

346,2 mg Rb[AuCl₄] und 135,8 mg Rb₂[PdCl₄] bzw. 323,6 mg Cs[AuCl₄] und 176,4 mg Cs₂[PdCl₄] wurden innig vermengt, in Quarzglasampullen gefüllt, mit 5 μ l einer 37%igen HCl-Lösung versetzt und zugeschmolzen. In einem Sandbad wurden die Ampullen 21 Tage bei 80 °C getempert. Von außen gut sichtbar hafteten an der Ampullenwandung tiefschwarze Kristalle. Hiervon sind einige Kristalle isoliert, in Glaskapillaren überführt und mit einem κ -CCD-Diffraktometer vermessen worden. Nach Aufnahme weniger Beugungsbilder ist jeweils ein gut streuender Kristall ausgewählt worden, um Intensitätsdaten aufzuzeichnen. Die verfeinerten Elementarzellenparameter der triklinen Messung lagen sehr dicht beieinander und ließen sich in ein kubisches Kristallsystem mit Innen-zentrierung überführen.

$$\begin{array}{rclcrcrc} a & = & 17,8319(3) \ \text{\AA} & \alpha & = & 109,468(1)^{\circ} & \vec{t} = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \hline 1 & \bar{1} & 0 \end{array} \right) \\ \text{Rb}_{4}\text{Au}_{2}\text{PdCl}_{12} & b & = & 17,8310(3) \ \text{\AA} & \beta & = & 109,469(1)^{\circ} & \xrightarrow{\vec{t}} & a = 20,5900(3) \ \text{\AA} \\ c & = & 17,8325(3) \ \text{\AA} & \gamma & = & 109,481(1)^{\circ} \end{array}$$

$$a = 18,1845(4) \text{ Å} \quad \alpha = 109,468(1)^{\circ} \quad \vec{t} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \bar{1} & \bar{1} & 0 \end{pmatrix}$$

Cs₄Au₂PdCl₁₂ $b = 18,1857(4) \text{ Å} \quad \beta = 109,472(1)^{\circ} \xrightarrow{\vec{t} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \bar{1} & \bar{1} & 0 \end{pmatrix}} a = 20,9989(5) \text{ Å}$
 $c = 18,1842(5) \text{ Å} \quad \gamma = 109,462(1)^{\circ}$

Die Analyse der systematischen Auslöschungen wies auf den Raumgruppentyp Ia3d (Nr. 230) hin, in dem sich die Kristallstruktur mit Hilfe direkter Methoden lösen ließ. Die Kristallstruktur der Verbindungen Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂ wies die Besonderheit auf, dass keine Palladiumlagen innerhalb der Kristallstruktur zu bestimmen waren. Alle möglichen Lagen wurden durch Gold belegt, dies führte zu einem positiven Ladungsüberschuss. Eine Unterscheidung anhand der Bindungsabständen war nicht möglich, da Au-Cl- und Pd-Cl-Abstände im Mittel 2,27 Å bzw. 2,29 Å betragen.

Bei Besetzung von Goldatompositionen mit Palladiumatomen resultierten negative thermische Auslenkungsparameter, auch durch Symmetrieabbau bis hinunter zum Raumgruppentyp P1 (Nr.1) ließen sich keine Atompositionen auffinden, die mit Palladiumatomen besetzt werden konnten. Alle Versuche, aus hochaufgelösten Differenzfourierkarten Informationen über die Elektronendichteverteilung und somit für die Zuweisung von Gold oder Palladium belegten Atompositionen abzuleiten, führten zu keinem Ergebnis. Daraufhin wurde die Zusammensetzung der gemessenen Kristalle durch quantitative Röntgenfluoreszenzanalyse^h überprüft. Die Röntgenfluoreszenzanalyse bestätigte im Rahmen der Fehlerabweichung den Gehalt an Palladium entsprechend der erwarteten Zusammensetzung der Verbindungen Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂.

 $^{^{}h}$ Standard-Referenz: Cl-K = KCl; Pd-L = Pd-Pulver; Au-M = Au-Pulver; Cs-L, Rb-L: ohne

	Elem. %	Elem. $\%$	Elem. %	Elem. $\%$
Verbindung	Rb bzw. Cs	\mathbf{Pd}	$\mathbf{A}\mathbf{u}$	Cl
$Rb_4Au_2PdCl_{12}$ (gem. / ber.)	$28{,}24\ /\ 26{,}95$	$8,53 \ / \ 8,58$	$31,\!37 \ / \ 31,\!09$	$31,86 \ / \ 33,55$
$Cs_4Au_2PdCl_{12}$ (gem. / ber.)	37,00 / 36,44	$10{,}64\ /\ 7{,}32$	$26{,}81\ /\ 27{,}05$	$25{,}55\ /29{,}19$

112

Im Anschluss an die Röntgenfluoreszenzanalyse wurden von den Kristallen RAMANund IR-Spektren aufgezeichnet (vgl. Abb. 78 und 79). Eine Unterscheidung der Schwingungsfrequenzen von [AuCl₄]- und [PdCl₄]-Baugruppen war dabei möglich. Die aufgezeichneten Spektren von Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂ zeigten breite Absorptionsbzw. Resonanzbanden auf, die eine Vielzahl von Schwingungen überdecken können. Die Analyse der Normalschwingungen [64] ergab 30 IR- und 50 RAMAN-aktive Schwingungen für Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂, wovon nur die charakteristischen Schwingungen der quadratisch planaren Baugruppen zugeordnet wurden (s. Tab. 26).

	$\mathbf{Cs}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$	$\mathbf{Rb}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$	$\mathbf{Cs}_2[\mathbf{PdCl}_4]^a$	$\mathbf{Cs}[\mathbf{AuCl}_4]^b$	Zuordnung
	37, 95, 152	36, 97, 153			
	170	169		171	$\nu([\mathrm{AuCl}_4])$
			194		$ u([PdCl_4]) $
Raman	275	275	269		$\delta([PdCl_4])$
	307	306	301		$\nu_s([\mathrm{PdCl}_4])$
	325	323		324	$\delta([\mathrm{AuCl}_4])$
	352	351		347	$\nu_s([\mathrm{AuCl}_4])$
	391	391			
	62, 70, 80	62, 70, 81			
	92,100,117	91, 99, 117			
	133	133	129		$\pi([PdCl_4])$
	147	146		151	$\pi([\operatorname{AuCl}_4])$
IR			163		$\delta_u[\mathrm{PdCl}_4]$
	171	169		179	$\delta_u[\mathrm{AuCl}_4]$
	194	196	181		
	307	307			
	327	328	327		$\nu_{as}([\mathrm{PdCl}_4])$
	355	354		350	$\nu_{as}([\mathrm{AuCl}_4])$

 $\textbf{Tabelle 26: IR- und RAMAN-Frequenzen von } Rb_4Au_2PdCl_{12} und Cs_4Au_2PdCl_{12} in \ cm^{-1}$

^a Zuordnung nach [83] ^b Zuordnung nach [76]

— keine Zuordnung

Abbildung 78: IR- und RAMAN-Spektrum von $Rb_4Au_2PdCl_{12}$. Oben IR-, unten RAMAN-Spektrum

Abbildung 79: IR- und RAMAN-Spektrum von $Cs_4Au_2PdCl_{12}$. Oben IR-, unten RAMAN-Spektrum

Die Ergebnisse der schwingungsspektroskopischen Untersuchungen bekräftigen die EDX-Ergebnisse, dass Palladium in die Kristallstruktur von $Rb_4Au_2PdCl_{12}$ und $Cs_4Au_2PdCl_{12}$ eingebaut wurde. Alle Indizien wiesen darauf hin, dass es sich um eine statistische Verteilung von Gold und Palladium innerhalb der Kristallstruktur handelt. SHELXL [32] bietet die Möglichkeit statistische Verteilungen mittels freier Variablen zu verfeinern. Hierbei beschreibt die Variable c den Gesamtbesetzungsfaktor und c_i die anteilige Besetzung mit der Atomsorte i. Bei zwei möglichen Atomsorten (Au und Pd) lautet die lineare Randbedingung für eine Verfeinerung:

$$c = p \cdot c_{Au} + q \cdot c_{Pd} = 1 \tag{16}$$

Hierin stellen p und q die frei zu verfeinernden Größen dar. Nach Einführung dieser Randbedingung ließen sich die Kristallstrukturen unter Berücksichtigung der Elektroneutralität verfeinern.

	$\mathbf{Rb}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$	$\mathbf{Cs}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$
р	$0,\!642$	0,670
\mathbf{q}	0,342	0,331

Die verfeinerten Besetzungsfaktoren weichen von den Idealwerten $\frac{2}{3}$ und $\frac{1}{3}$ nur geringfügig ab und liegen im Rahmen der typischen Abweichungen bei freier Parameterverfeinerung. Mit diesen Erkenntnissen wurden RIETVELD-Verfeinerungen an Pulverdaten vorgenommen (vgl. Abb. 80 und 82), die verfeinerten Elementarzellenparameter stimmen sehr gut mit denen der Einkristallstrukturbestimmung überein.

	$\mathbf{Rb}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$	$\mathbf{Cs}_{4}\mathbf{Au}_{2}\mathbf{PdCl}_{12}$
a (Pulver) [Å]	$20,\!5910(10)$	20,9659(7)
a (Einkristall) [Å]	20,5900(3)	20,9989(5)

Einzelheiten der Kristallstrukturbestimmung und Messparameter sind in den Tabellen 27–31, ausgewählte Abstände und Bindungswinkel in den Tabellen 32 und 33 aufgeführt.

Abbildung 80: Pulverdiffraktogramm von Rb₄Au₂PdCl₁₂, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

Abbildung 81: Elektronenmikroskopische Aufnahme eines $Rb_4Au_2PdCl_{12}$ -Kristalls

Abbildung 82: Pulverdiffraktogramm von Cs₄Au₂PdCl₁₂, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve; (*) Reflexe vom Si-Einkristallträger, nicht mitverfeinert

Abbildung 83: Elektronenmikroskopische Aufnahme von Cs₄Au₂PdCl₁₂-Kristallen

κ-CCD Datensatznummer	1977	2019	
Summenformel	$Rb_4Au_2PdCl_{12}$	$Cs_4Au_2PdCl_{12}$	
Kristallsystem	kub	bisch	
Raumgruppentyp (Nr.); Z	Ia $\bar{3}$ d (2	230); 16	
Elementarzellenparameter [Å]	$20,\!5900(3)$	20,9989(5)	
EZ-Volumen [Å ³]	8690,9(2)	9259,5(4)	
Dichte (ber./gem.) $[10^3 \text{kg/m}^3]$	$3,\!875 \; / \; 3,\!88(2)$	$4{,}182~/~4{,}21(3)$	
Kristallgröße [mm ³]	$0,\!23\times0,\!23\times0,\!23$	$0,\!25\times0,\!25\times0,\!25$	
Messung	Enraf-Nonius κ -CCD-V	Vierkreisdiffraktometer,	
	Mo-K _{α} , λ =	= 0,71073 Å,	
	CCD-Detektor, Gra	phitmonochromator,	
	ω -Scans, ,	$\mathrm{T}=293~\mathrm{K},$	
Reflexbereich	$3^{\circ} \le \theta \le 29^{\circ},$	$3^{\circ} \le 2\theta \le 31^{\circ},$	
	$-27 \leq h,k,l \leq 27$	$-30 \le h, k, l \le 30$	
Completeness $[\%]$	10	00	
Datenreduktion	DENZO + SC	ALEPACK [30]	
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]		
Verfeinerung	minimieren von $\Sigma w [F^2(e)]$	$(o) - F^2(c)]^2$, volle Matrix	
	SHELX	L-97 [32]	
linearer Absorptions-			
koeffizient $[mm^{-1}]$	24,650	$20,\!98$	
Absorptionskorrektur	empirisch, MU	ULTISCAN [84]	
$Transmission \ min./max.$	$0,2990 \ / \ 0,8090$	$0{,}3790 \ / \ 0{,}5814$	
F(000)	8896	10048	
Zahl der Reflexe			
gemessen	138680	52838	
unabhängige (N)	946	1235	
davon mit $I > 2\sigma(I) (N')$	459	496	
Anzahl der Parameter	31	34	
R_i (SHELXL-97) [%]	16,81	18,41	
$R(F)_N; R(F)_{N'} [\%]$	6,10; 1,96	12,92; 4,58	
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	2,97; 2,82	$4,91;\ 3,91$	
GooF	0,925	1,079	
Extinktionskoeffizient	0,0000244(9)	0,000004(1)	
Restelektronendichte [Å ^{-3}]	-0,52 (0,66 Å von $Cl(1)$)	-1,07 (2,81 Å von $Cl(1)$)	
	0,62 (2,70 Å von Cl(2))	1,92 (0,88 Å von Au)	

Tabelle 28: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von Rb₄Au₂PdCl₁₂ entsprechend $U_{eq} = \frac{1}{3}$ $\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

	Bese					
Atom	$\mathbf{Punktlage}$		х	У	\mathbf{Z}	$\mathbf{U_{eq}}$
$\operatorname{Rb}(1)$	16a		0	$\frac{1}{2}$	$\frac{1}{2}$	0,081(1)
$\operatorname{Rb}(2)$	48f		0	$\frac{1}{4}$	0,50017(3)	0,0682(3)
Au	48g	$0,\!646$	0,11728(1)	0,13272(1)	$\frac{5}{8}$	0,0276(1)
\mathbf{Pd}	48g	$0,\!342$	$\mathbf{x}(\mathbf{A}\mathbf{u})$	y(Au)	$\frac{5}{8}$	0,0276(1)
$\operatorname{Cl}(2)$	96h		0,11870(8)	0,24388(5)	0,6248(1)	0,0529(4)
$\operatorname{Cl}(1)$	96h		0,11831(9)	0,02142(5)	0,62640(9)	0,0596(4)

Tabelle 29: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von $Cs_4Au_2PdCl_{12}$ entsprechend $U_{eq} = \frac{1}{3}$ $\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

	Bese					
Atom	Punktlage		х	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Cs(1)	16a		0	$\frac{1}{2}$	$\frac{1}{2}$	0,0559(8)
Cs(2)	48f		0	$\frac{1}{4}$	0,49970(5)	0,0473(4)
\mathbf{Au}	48g	$0,\!670$	0,11891(2)	0,13109(2)	$\frac{5}{8}$	0,0271(2)
\mathbf{Pd}	48g	$0,\!331$	$\mathbf{x}(\mathbf{A}\mathbf{u})$	y(Au)	$\frac{5}{8}$	0,0271(2)
$\operatorname{Cl}(1)$	96h		0,1198(1)	0,2415(1)	0,6247(1)	0,0406(7)
$\operatorname{Cl}(2)$	96h		0,1197(1)	0,0218(1)	0,6254(1)	0,0413(7)

Tabelle 30: Thermische Auslenkungsparameter U_{ij} in Å² für Rb₄Au₂PdCl₁₂ (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\operatorname{Rb}(1)$	0,081(1)	$0,\!081(1)$	0,081(1)	-0,0188(9)	0,0188(9)	-0,0188(9)
Rb(2)	0,064(1)	$0,\!071(1)$	0,069(2)	0	0	0,0022(6)
\mathbf{Au}/\mathbf{Pd}	0,0283(1)	0,0283(1)	0,0262(2)	-0,0003(1)	-0,0003(1)	0,0016(1)
$\operatorname{Cl}(1)$	0,088(1)	0,0307(6)	0,060(1)	-0,0017(7)	-0,002(1)	0,0037(9)
$\operatorname{Cl}(2)$	0,069(1)	0,0301(5)	0,060(1)	0,0031(7)	$0,\!003(1)$	-0,0020(8)

Tabelle 31: Thermische Auslenkungsparameter U_{ij} in Å² für Cs₄Au₂PdCl₁₂ (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cs(1)	0,0559(8)	0,0559(8)	0,0559(8)	-0,0160(8)	0,0160(8)	-0,0160(8)
Cs(2)	0,047(1)	0,049(1)	0,045(1)	0	0	0,0002(6)
\mathbf{Au}/\mathbf{Pd}	0,0269(3)	$0,\!0269(3)$	0,0275(4)	-0,0002(2)	-0,0002(2)	-0,0004(3)
$\operatorname{Cl}(1)$	0,045(2)	0,034(1)	0,043(2)	0,002(1)	0,002(2)	-0,000(1)
$\operatorname{Cl}(2)$	0,049(2)	0,031(1)	0,044(2)	0,000(1)	-0,005(2)	-0,001(1)

Tabelle 32: Ausgewählte Abstände, Winkel und Multiplizitäten in $Rb_4Au_2PdCl_{12}$
(Standardabweichung)

Bindung	Abstand [Å]		Bi	indu	ng	$\mathbf{Winkel} \ [^{\circ}]$	
${ m Au/Pd}$ – ${ m Cl}(2)$	2,289(1)	$2 \times$	$\operatorname{Cl}(2)$ -	Au	-Cl(2)	91,47(8)	
${ m Au/Pd}$ – ${ m Cl}(1)$	2,292(1)	$2 \times$	$\operatorname{Cl}(2)$ -	Au	$-\mathrm{Cl}(1)$	89,79(7)	$2 \times$
${ m Au/Pd}$ – ${ m Cl}(1)$	3,022(2)	$2\times$	$\operatorname{Cl}(2)$ -	Au	$-\mathrm{Cl}(1)$	178,59(6)	$2 \times$
${ m Au/Pd}$ – ${ m Rb}(2)$	4,2674(4)	$2 \times$	$\operatorname{Cl}(1)$ -	Au	$-\mathrm{Cl}(1)$	88,9(1)	
${ m Au/Pd}$ – ${ m Rb}(2)$	4,4589(4)	$2 \times$					
${ m Au/Pd}$ – ${ m Rb}(1)$	4,4571(2)	$2\times$					
${ m Au/Pd}$ – ${ m Rb}(2)$	4,6391(4)	$2\times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,584(2)	$2 \times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,585(2)	$2 \times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,592(2)	$2 \times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,729(2)	$2 \times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,730(2)	$2 \times$					
$\operatorname{Rb}(1)$ – $\operatorname{Cl}(1)$	3,738(2)	$2 \times$					
$\mathrm{Rb}(2)$ – $\mathrm{Cl}(2)$	3,538(2)	$2 \times$					
$\mathrm{Rb}(2)$ – $\mathrm{Cl}(2)$	3,544(2)	$2 \times$					
$\operatorname{Rb}(2)$ – $\operatorname{Cl}(1)$	3,546(2)	$2 \times$					
$\mathrm{Rb}(2)$ – $\mathrm{Cl}(2)$	3,732(2)	$2 \times$					
$\mathrm{Rb}(2)$ – $\mathrm{Cl}(1)$	3,739(2)	$2 \times$					
Rb(2) - Cl(1)	3,784(1)	$2 \times$					

Tabelle 33: Ausgewählte Abstände, Winkel und Multiplizitäten in $Cs_4Au_2PdCl_{12}$ (Standardabweichung)

Bindung	Abstand [Å]		Bindung			Winkel [°]	
Au/Pd – Cl(2)	2,296(3)	$2 \times$	Cl(2)-	Au	-Cl(2)	89,2(1)	
Au/Pd - Cl(1)	2,318(3)	$2 \times$	$\operatorname{Cl}(2)$ -	Au	$-\mathrm{Cl}(1)$	179,1(1)	$2 \times$
Au/Pd - Cl(1)	3,094(3)	$2 \times$	$\operatorname{Cl}(2)$ -	Au	$-\mathrm{Cl}(1)$	89,9(1)	$2 \times$
${ m Au/Pd}$ – ${ m Cs}(2)$	4,4036(7)	$2 \times$	Cl(1)-	Au	$-\mathrm{Cl}(1)$	91,0(1)	
${ m Au/Pd}$ – ${ m Cs}(2)$	4,5466(5)	$2 \times$					
${ m Au/Pd}$ – ${ m Cs}(1)$	4,5500(1)	$2 \times$					
${ m Au/Pd}$ – ${ m Cs}(2)$	4,6918(3)	$2 \times$					
Cs(2) - Cl(1)	$3,\!640(3)$	$2 \times$					
Cs(2) - Cl(1)	$3,\!650(3)$	$2 \times$					
Cs(2) - Cl(2)	$3,\!652(3)$	$2 \times$					
Cs(2) - Cl(1)	3,788(3)	$2\times$					
Cs(2) - Cl(2)	$3,\!809(3)$	$2\times$					
Cs(2) - Cl(2)	3,825(3)	$2\times$					
Cs(1) - Cl(2)	$3,\!669(3)$	$6 \times$					
Cs(1) - Cl(1)	3,798(3)	$6 \times$					

3.1.2 Beschreibung der Kristallstruktur von $M_4Au_2PdCl_{12}$ (M = Rb, Cs)

Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂ kristallisieren im Raumgruppentyp Ia3d (Nr. 230) mit 16 Formeleinheiten pro Elementarzelle und sind isotyp. Daher wird auf eine detaillierte Beschreibung der Kristallstruktur von Cs₄Au₂PdCl₁₂ verzichtet, Abstands- und Winkelwerte der Beschreibung von Rb₄Au₂PdCl₁₂ sind durch die Werte in Tabelle 33 zu ersetzen. Palladium und Gold sind statistisch auf der kristallografischen Lage 48g verteilt, wobei $\frac{1}{3}$ der möglichen Atompositionen von Palladium- und $\frac{2}{3}$ von Goldatomen eingenommen werden. Eine Unterscheidung zwischen Gold und Palladium ist nicht möglich, daher werden zur Vereinfachung der Strukturbeschreibung alle <u>möglichen</u> Atompositionen von Gold belegt.

Gold wird von zwei Chloratomen Cl(2) im Abstand von 2,289(1) Å und von zwei Chloratomen Cl(1) im Abstand von 2,292(1) Å umgeben und weist, ähnlich wie in K[AuCl₄] [85] und Rb[AuCl₄] [86], eine leichte Abweichung von der idealen quadratisch planaren [AuCl₄]-Baugruppe auf. Die aufgespannten Winkel für Cl(1)-Au-Cl(2) betragen 88,9(1)° und für Cl(2)-Au-Cl(2) 91,47(8)°. Im Abstand von 3,022(1) Å wird die Koordinationshäre um Gold von zwei weiteren Chloratomen Cl(1) benachbarter [AuCl₄]-Baugruppen, mit einem Winkel Cl(1)-Au-Cl(1) von 166,98(3)°, zu einem gestreckten Oktaeder erweitert (KZ = 4 + 2). Die koordinationserweiterten [AuCl₆]-Oktaeder knüpfen über alle vier Cl(1)-Chloratome an vier weitere [AuCl₆]-Oktaeder und bilden so ein dreidimensionales Oktaedernetzwerk aus, wobei alle Cloratome Cl(2) unverknüpft bleiben (vgl. Abb. 84).

Acht Rubidiumatome umgeben jedes Goldatom in Form eines verzerrten Kubus (vgl. Abb. 85) mit Abständen zwischen 4,2674(4) Å und 4,6391(4) Å. Die dabei aufgespannten Winkel liegen zwischen $89,96(1)^{\circ}$ und $90,04(1)^{\circ}$ und weichen vom rechten Winkel nur um $0,04^{\circ}$ ab. Zwei der acht Eckpositionen werden von Rb(1) eingenommen und liegen entlang einer Raumdiagonalen, alle anderen Positionen werden von Rb(2) eingenommen. Die Länge der Rubidium-*Würfelkanten* liegen zwischen 5,118(1) Å und 5,155(1) Å.

Auf den Seitenflächen dieser Rb-Kuben liegen zentral die Chloratome Cl(1) und Cl(2), die jeweils von drei Rubidiumatomen Rb(2) und einem Rb(1) im Abstand zwi-
schen 3,538(2) Å und 3,7840(1) Å umgeben werden. Die Koordination der Chloratome Cl(1) wird durch zwei Goldatome zu einem verzerrten Oktaeder erweitert (KZ = 4 + 2). Die Umgebung der Chloratome Cl(2) wird durch ein weiteres Goldatom zu einer verzerrten Pyramide erweitert (KZ = 4 + 1) (vgl. Abb. 87).

Die Rubidiumatome der Lagen 16a und 48f sind jeweils von zwölf Chloratomen in Form eines verzerrten Kuboktaeders im Abstand zwischen 3,538(2) Å und 3,784(2) Å koordiniert (vgl. Abb. 86).

Die Kristallstruktur lässt sich anschaulich aus Schichten von aneinandergefügten Rb₈-Würfel beschreiben, die Lage für Lage die Elementarzelle aufbauen (vgl. Abb. 88), dabei wird $\frac{1}{4}$ der Rb₈-Würfel pro Schicht nicht mit [AuCl₄]-Baugruppen belegt.

Abbildung 84: Ausschnitt aus der Polyederverknüpfung der koordinationserweiterten [AuCl₆]-Oktaeder in $M_4Au_2PdCl_{12}$ (M = Rb, Cs). Ohne Verknüpfung bleiben die grünbraun unterlegten Chloratome Cl(2)

Abbildung 85: Darstellung eines M_8 -Würfels, der durch geeignetes Aneinanderfügen die Elementarzelle von $M_4Au_2PdCl_{12}$ (M = Rb, Cs) bildet (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 86: Darstellung der Umgebung um M(1) und M(2) in M₄Au₂PdCl₁₂ (M = Rb, Cs). Die Alkalimetalle sind von zwölf Chloratomen in Form eines verzerrten Kuboktaeders umgeben (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 87: Darstellung der Umgebung um Cl(1) und Cl(2) in $M_4Au_2PdCl_{12}$ (M = Rb, Cs). Cl(1) Chloratome sind von vier Alkalimetallatomen und je zwei Goldatomen verzerrt oktaedrisch umgeben, Chloratome Cl(2) von vier Alkalimetallund einem Goldatom verzerrt pyramidenförmig

Abbildung 88: Aufbau der Kristallstruktur von M₄Au₂PdCl₁₂ (M = Rb, Cs). Dargestellt ist der schichtweise Aufbau einer Elementarzelle. Die kleinen Quadrate stellen M₈-Würfel dar, die [AuCl₄]-Baugruppen enthalten oder leer sind (vgl. Abb. 85). <u>Links</u>: Blick in Richtung [001]. <u>Rechts</u>: Blick in [100]

Abbildung 89: Ausschnitt aus der Kristallstruktur von $Rb_4Au_2PdCl_{12}$ in Polyederdarstellung mit Blick in Richtung [001]

$3.2 \quad Cs_4Au_2PdI_{12}$

 $Cs_4Au_2PdI_{12}$ konnte bei Untersuchungen im System $CsI_3/Au/PdI_2$ synthetisiert werden. Im Unterschied zur Verbindung $Cs_4Au_2PdCl_{12}$ wurden die Synthesereaktionen nicht auf solvothermalem Weg durchgeführt sondern aus einer Polyiodidschmelze, da die analogen Ausgangsverbindungen $Cs[AuI_4]$ und $Cs_2[PdI_4]$ nicht zugänglich waren. Dabei lässt sich die ablaufende Redoxgleichung wie folgt beschreiben:

$$4 \operatorname{CsI}_3 + 2\operatorname{Au} + \operatorname{PdI}_2 \longrightarrow \operatorname{Cs}_4\operatorname{Au}_2\operatorname{PdI}_{12} + \operatorname{I}_2 \tag{17}$$

Aus dem Reaktionsprodukt ließen sich nach Auswaschen von überschüssigem CsI_3 und I_2 glänzende, tiefschwarze Kristalle isolieren, die mittels röntgenographischer Methoden charakterisiert wurden.

3.2.1 Darstellung und Charakterisierung von $Cs_4Au_2PdI_{12}$

0,5 g eines Gemenges aus CsI₃, Au-Pulver und PdI₂ im Stoffmengenverhältnis 10:2:1 wurden innig vermengt und in Quarzglasampullen (l = 6 cm, $\emptyset_i = 0.8$ cm) gefüllt, evakuiert und zugeschmolzen. Das Reaktionsgemenge ist in einem computergesteuerten Widerstandsofen auf 250 °C mit 25 °C/h aufgewärmt, 240 h getempert und dann auf Raumtemperatur mit 0,5 °C/h abgekühlt worden. Der erhaltene tiefschwarze Feststoff wurde leicht gemörsert und solange mit einer Mischung aus bidest. Wasser und Ethanol (5:1) gewaschen bis das Filtrat farblos blieb. Einige der im Filter verbliebenen glänzenden, tiefschwarzen Kristalle konnten isoliert und für Einkristalluntersuchungen vorbereitet werden. Von einem gut streuenden Kristall sind Intensitätsdaten mit einem κ -CCD-Diffraktometer triklin gesammelt worden. Die aufgefundene Elementarzellenmetrik lässt sich in ein kubisches Kristallsystem mit Innenzentrierung transformieren.

$$a = 20,1213(3) \text{ Å}, \quad \alpha = 109,465(1)^{\circ} \quad \vec{t} = \begin{pmatrix} \bar{1} & \bar{1} & 0 \\ 0 & \bar{1} & 0 \\ \bar{1} & 0 & \bar{1} \end{pmatrix}$$

$$b = 20,1198(3) \text{ Å}, \quad \beta = 109,473(1)^{\circ} \xrightarrow{} a = 23,2327(4) \text{ Å}$$

$$c = 20,1202(3) \text{ Å}, \quad \gamma = 109,483(1)^{\circ}$$

Anhand der systematischen Auslöschungen wurde der Raumgruppentyp Ia $\bar{3}$ d (Nr. 230) bestimmt. Die Kristallstruktur konnte durch Einsetzen des Strukturmodells von Cs₄Au₂PdCl₁₂ gelöst und verfeinert werden. Ebenso wie Cs₄Au₂PdCl₁₂ weist Cs₄Au₂PdCl₁₂ eine statistische Verteilung von Gold und Palladium auf. Die quantitative Röntgenfluoreszenzanalyseⁱ bestätigt die Zusammensetzung der Verbindung im Rahmen der Fehlerabweichung.

	Massenprozent					
Element	gemessen	berechnet				
\mathbf{Cs}	30,20	$36,\!48$				
Au	$29,\!03$	$27,\!03$				
Ι	$33,\!21$	$29,\!19$				
Pd	$7,\!56$	$7,\!31$				

Die Elementarzellenparameter der RIETVELD-Verfeinerung a = 23,2306(5) Å stimmen mit denen der Einkristallverfeinerung sehr gut überein. Einzelheiten zur Kristallstrukturbestimmung und Messparametern sind in den Tabellen 34–36, ausgewählte Abstände und Bindungswinkel in Tabelle 37 aufgeführt.

ⁱPd-L: Pd-Pulver; Au-M: Au-Pulver; I-L: KI; Cs-L: ohne

Abbildung 90: Pulverdiffraktogramm von $Cs_4Au_2PdI_{12}$, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

Abbildung 91: Elektronenmikroskopische Aufnahme eines $Cs_4Au_2PdI_{12}$ -Kristalls

κ -CCD Datensatznummer	1837
Summenformel	$Cs_4Au_2PdI_{12}$
Kristallsystem	kubisch
Raumgruppentyp (Nr.); Z	Ia3̄d (230); 16
Elementarzellen parameter $[Å]$	23,2327(4)
EZ-Volumen [Å ³]	12542, 15(4)
Dichte (ber./gem.) $[10^3 \text{kg/m}^3]$	$5{,}41 \ / \ 5{,}39(4)$
Kristallgröße [mm ³]	$0.2 \times 0.2 \times 0.2$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	CCD-Detektor, Graphitmonochromator,
	$\omega ext{-Scans, }, \mathrm{T} = 293 \; \mathrm{K},$
Reflexbereich	$3^\circ \leq \theta \leq 29^\circ, -32 \leq h,k,l \leq 32$
Completeness $[\%]$	100
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	26,285
Absorptionskorrektur	empirisch, MULTISCAN [84]
Transmission min./max.	$0,\!3285 \not \ 0,\!7269$
F(000)	16974
Zahl der Reflexe	
gemessen	51780
unabhängige (N)	1533
davon mit $I > 2\sigma(I) (N')$	484
Anzahl der Parameter	35
R_i (SHELXL-97) [%]	28,19
$R(F)_N; R(F)_{N'}$ [%]	12,91; 2,74
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$4,95;\ 3,96$
GooF	0,730
Extinktionskoeffizient	0,0000176(6)
Restelektronendichte [Å ⁻³]	$-1,10 (0,93\text{\AA von Cs}(2))$
	$2,20 (2,82\text{\AA von I}(1))$

Tabelle 34: Kristallografische Daten und Messparameter von $Cs_4Au_2PdI_{12}$

Tabelle 35: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von $Cs_4Au_2PdI_{12}$ entsprechend $U_{eq} = \frac{1}{3}$ $\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

	Bese	tzungsf	aktor			
Atom	Punktlage		х	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Cs(1)	16a		0	$\frac{1}{2}$	$\frac{1}{2}$	0,057(1)
Cs(2)	48f		0	$\frac{1}{4}$	0,49952(3)	0,0599(5)
Au	48g	$0,\!626$	0,11970(1)	0,13030(1)	$\frac{5}{8}$	0,0292(2)
\mathbf{Pd}	48g	$0,\!353$	$\mathbf{x}(\mathbf{A}\mathbf{u})$	y(Au)	$\frac{5}{8}$	0,0292(2)
I(1)	96h		0,12135(4)	0,24448(2)	0,62515(5)	0,0472(2)
I(2)	96h		0,12124(4)	0,01693(2)	0,62541(4)	0,0487(2)

Tabelle 36: Thermische Auslenkungsparameter U_{ij} in Å² für $Cs_4Au_2PdI_{12}$ (Standardabweichung). Die U_{ij} sind definiert für $\exp\left(-2\pi^2(U_{11}h^2a^{*^2}+\cdots+2U_{23}klb^*c^*)\right)$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
Cs(1)	0,057(1)	0,057(1)	$0,\!057(1)$	-0,0049(9)	0,0049(9)	-0,0049(9)
Cs(2)	0,062(2)	0,054(2)	0,064(2)	0	0	0,0001(8)
\mathbf{Au}/\mathbf{Pd}	0,0294(2)	0,0294(2)	0,0286(3)	0,0002(2)	0,0002(2)	-0,0003(4)
I(1)	0,0550(5)	0,0310(3)	$0,\!0556(5)$	0,0016(3)	0,0013(8)	0,0007(5)
I(2)	0,0612(6)	0,0346(3)	0,0504(5)	0,0016(3)	-0,0011(5)	-0,0022(4)

Bindung	Abstand [Å]		B	indu	ng	Winkel [°]
Au - I(1)	2,634(1) 2	×	I(2)-	Au	-I(2)	88,44(5)
${ m Au}$ – ${ m I}(2)$	2,653(1) 2	×	I(2)-	Au	-I(1)	178, 37(3)
${ m Au}$ – ${ m I}(2)$	3,3068(9) 2	×	I(2)-	Au	-I(1)	89,95(4)
${ m Au}$ – ${ m Cs}(2)$) $4,8955(5)$ 2	×	I(1)-	Au	-I(1)	91,66(4)
${ m Au}$ – ${ m Cs}(2)$) $5,0269(4)$ 2	×				
$\mathrm{Au}~-~\mathrm{Cs}(1)$) $5,0330(2)$ 2	×				
${ m Au}$ – ${ m Cs}(2)$) $5,1667(4)$ 2	×				
$\mathrm{Cs}(2)$ – $\mathrm{I}(2)$	4,0502(9) 2	×				
Cs(2) - I(1)	4,055(1) 2	×				
Cs(2) - I(1)	4,060(1) 2	×				
$\mathrm{Cs}(2)$ – $\mathrm{I}(1)$	4,1715(7) 4	×				
$\mathrm{Cs}(2)$ – $\mathrm{I}(2)$	4,1933(7) 2	×				
$\mathrm{Cs}(1)$ – $\mathrm{I}(2)$	4,0716(7) 6	×				
$\mathrm{Cs}(1)$ – $\mathrm{I}(1)$	4,1669(7) 6	×				
$\mathrm{I}(1)$ – $\mathrm{I}(2)$	3,737(1)					
$\mathrm{I}(1)$ – $\mathrm{I}(1)$	$3,\!806(1)$					
$\mathrm{I}(1)$ – $\mathrm{I}(1)$	4,168(1)					
$\mathrm{I}(1)$ – $\mathrm{I}(1)$	4,297(1)					
$\mathrm{I}(1)$ – $\mathrm{I}(2)$	4,317(1)					
$\mathrm{I}(1)$ – $\mathrm{I}(1)$	4,347(1) 2	×				
I(1) - I(2)	4,371(1)					

3.2.2 Beschreibung der Kristallstruktur von Cs₄Au₂PdI₁₂

 $Cs_4Au_2PdI_{12}$ kristallisiert im Raumgruppentyp Ia $\bar{3}d$ (Nr. 230) mit 16 Formeleinheiten pro Elementarzelle und ist isotyp zu Rb₄Au₂PdCl₁₂ und Cs₄Au₂PdCl₁₂. Hier tritt ebenfalls eine statistische Verteilung von Gold und Palladium auf der kristallografischen Lage 48g auf, wobei $\frac{1}{3}$ der möglichen Atompositionen von Palladium- und $\frac{2}{3}$ von Goldatomen eingenommen werden. Eine Unterscheidung zwischen Gold und Palladium ist nicht möglich daher werden zur Vereinfachung der Strukturbeschreibung alle <u>möglichen</u> Atompositionen von Gold belegt.

Gold wird von vier Iodatomen im Abstand von $2 \times 2,634(1)$ Å und $2 \times 2,653(1)$ Å umgeben und weist, ähnlich wie in K[AuI₄] und Li[AuI₄] [87], eine leichte Abweichung von der idealen quadratisch planar koordinierten [AuI₄]-Baugruppe auf. Die aufgespannten Winkel liegen zwischen $88,44(5)^{\circ}$ für I(2)-Au-I(2) und $91,66(4)^{\circ}$ für I(1)-Au-I(1). Im Abstand von 3,307(1) Å wird die Koordination um Gold von zwei weiter entfernten Iodatomen benachbarter [AuI₄]-Baugruppen erweitert und weist somit einen um 0,153(1) Å kürzeren Abstand als in Cs₂[AuI₂][AuI₄] auf [88].

Acht Cäsiumatome umgeben jedes Goldatom in Form eines Kubus (vgl. Abb. 85) mit Abständen zwischen 4,896(1) Å und 5,167(1) Å, dabei beträgt die Abweichung vom idealen Kubuswinkel nur 0,11°. Zwei der acht Eckpositionen werden von Cs(1) eingenommen und liegen entlang einer Raumdiagonalen, alle weiteren Positionen werden von Cs(2) eingenommen. Die Länge der Cäsium-*Würfelkanten* liegt zwischen 5,786(1) Å und 5,830(1) Å.

Auf den Seitenflächen dieser Cs-Kuben liegen zentral die Iodatome I(1) und I(2), die jeweils von vier Cäsiumatomen im Abstand zwischen 4,050(1) Å und 4,193(1) Å umgeben werden (vgl. Abb. 87).

Die Cäsiumatome der Lagen 16a und 48f sind jeweils von zwölf Iodatomen in Form eines verzerrten Kuboktaeders im Abstand zwischen 4,050(1) Å bis 4,193(1) Å umgeben (vgl. Abb. 86).

3.3 Vergleich der Kristallstrukturen von M₄Au₂PdX₁₂

Alle drei Verbindungen kristallisieren im hochsymmetrischen Raumgruppentyp Ia $\overline{3}$ d (Nr. 230). Die Lage 48g wird statistisch von Gold und Palladium im Verhältnis $\frac{2}{3}$ zu $\frac{1}{3}$ besetzt. Um den Verlauf von Achslängen und interatomaren Abständen in der homologen Reihe abzuschätzen wurden Abstandsparameter der Kristallstruktur von Cs₄Au₂PdBr₁₂ aus der Verbindungsreihe Cs₂Au₂X₁₂ (X = Cl, Br, I) und Cs₄Au₂PdX₁₂ (X = Cl, I) interpoliert.

Die Größe der Elementarzellenparameter steigt mit der Größe des Halogenatoms an (vgl. Abb. 92) und wie die Verbindungsreihen $Cs_2[PdX_4]I_2$ (vgl. S. 104) und $Cs_2[AuX_2][AuX_4]$ (X = Cl, Br, I) (vgl. S. 146) keinen linearen Verlauf.

Ebenso verhalten sich die interatomaren Abstände in den $[AuX_6]$ -Oktaedern. Mit steigendem Halogenatomradius wachsen die interatomaren Abstände an (vgl. Abb. 93), die sich wie bei Cs₂[PdX₄]I₂ oder Cs₂[AuX₂][AuX₄] mit einer quadratischen Funktion nähern lassen.

Abbildung 92: Verlauf der Elementarzellenparameter in $Cs_4Au_2PdX_{12}$ (X = Cl, I), Elementarzellenparameter von $Cs_4Au_2PdBr_{12}$ interpoliert

3.4 $Cs_2[AuBr_2][AuBr_4]$

Bei den Untersuchungen im System $CsX_3/Au/PdX_2$ (X=Br, I) gelang die Einkristallsynthese der Verbindungen $Cs_2[AuBr_2][AuBr_4]$ und $Cs_2[AuI_2][AuI_4]$. Beide lassen sich durch direkte Umsetzung von $CsBr_3$ / CsI_3 und Goldpulver bei 220 °C / 260 °C in geschlossenen Quarzglasampullen synthetisieren. Die dabei ablaufende Redoxreaktion lässt sich wie folgt formulieren:

$$2 \operatorname{CsX}_3 + 2 \operatorname{Au} \longrightarrow \operatorname{Cs}_2[\operatorname{AuX}_2][\operatorname{AuX}_4] \quad (X = \operatorname{Br}, I)$$
(18)

 $Cs_2[AuBr_2][AuBr_4]$ und $Cs_2[AuI_2][AuI_4]$ zeigen druck- und temperaturinduzierte Phasenübergänge, die mit einer Änderung der Oxidationsstufe von Gold $(Au^{+/3+} \Rightarrow Au^{2+})$ einhergehen, wie KOJIMA et al [25] an Verbindungen des Typs M₂[AuX₂][AuX₄] (M=K, Rb, Cs; X=Cl, Br, I) zeigen konnten. Die Kristallstruktur von Cs₂[AuI₂][AuI₄] wird von KOJIMA et al [88] beschrieben, SLEATER et al [89] und KOJIMA et al [25] geben jedoch von Cs₂[AuBr₂][AuBr₄] nur Raumgruppentyp und Elementarzellenparameter an. Exakte Atomkoordinaten sind aber unverzichtbar für Bandstrukturrechnungen und Bestimmung physikalischer Eigenschaften. Aus diesem Grund und um die Verbindungsreihe Cs₂[AuX₂][AuX₄] (X=Cl, Br, I) zu vervollständigen wurden Einkristallmessungen an Cs₂[AuBr₂][AuBr₄] durchgeführt.

3.4.1 Darstellung und Charakterisierung von Cs₂[AuBr₂][AuBr₄]

0,4185 g CsBr₃ und 0,1815 g Au-Pulver wurden innig vermengt, in Quarzglasampullen (l = 6 cm, $\emptyset_i = 0,6$ cm) gefüllt, evakuiert und zugeschmolzen. In einem computergesteuerten Widerstandsofen wurden die Ampullen auf 220 °C erwärmt (25 °C/h), 120 Stunden getempert und anschließend auf Raumtemperatur abgekühlt (0,5 °C/h). Das tiefschwarze Reaktionsgemenge ist durch Waschen mit Ethanol und bidest. Wasser von überschüssigem CsBr₃ befreit worden. Es verblieben schwarze nadelförmige Kristalle, die für Einkristallaufnahmen in Röntgenkapillaren gefüllt wurden. Nach Auswertung einiger Einkristallaufnahmen mit einem κ -CCD-Diffraktometer konnte ein gut streuender Kristall ausgewählt und bei Raumtemperatur Intensitätsdaten aufgezeichnet werden.

$$\begin{array}{rclcrcrc} a & = & 7,8485(3) \text{ Å}, & \alpha & = & 119,525(1)^{\circ} & \vec{t} = \begin{pmatrix} 0 & 1 & 0 \\ \bar{1} & 0 & 0 \\ \bar{1} & \bar{1} & \bar{2} \end{pmatrix} & a = 7,8481(3) \text{ Å} \\ b & = & 7,8477(3) \text{ Å}, & \beta & = & 119,525(2)^{\circ} & & & \\ c & = & 7,9632(3) \text{ Å}, & \gamma & = & 89,997(2)^{\circ} & & & c = 11,4217(7) \text{ Å} \end{array}$$

Die triklin gemessene Elementarzellenmetrik lässt sich in eine tetragonal innenzentrierte Aufstellung überführen. Die aus der RIETVELD-Verfeinerung erhaltenen Elementarzellenparameter stimmen mit den Literaturdaten gut und mit denen der Einkristallstrukturanalyse sehr gut überein.

Quelle	a [Å]	c [Å]
[89]	7,78	11,38
[25]	7,759(1)	11,308(1)
Pulver	7,8427(2)	11,4139(3)
Einkristall	7,8481(3)	11,4217(7)

Anhand der systematischen Auslöschungen sind die Raumgruppentypen I4 (Nr. 79), Iā (Nr. 82), I4/m (Nr. 87), I422 (Nr. 97), I4mm (Nr. 107), Iām2 (Nr. 119), Iā2m (Nr. 121) und I4/mmm (Nr. 139) möglich. Im Laufe der Verfeinerung konnte der von SLEATER und KOJIMA angegebene zentrosymmetrische Raumgruppentyp I4/mmm (Nr. 139) als zutreffend bestätigt werden. Die Kristallstruktur wurde mittels direkter Methoden gelöst und alle Schweratompositionen anisotrop verfeinert. Einzelheiten der Kristallstrukturanalyse und Messparameter sind in den Tabellen 38 bis 40 aufgeführt, ausgewählte Bindungswinkel und -abstände sind in Tabelle 41 wiedergegeben.

Abbildung 94: Pulverdiffraktogramm von $Cs_2[AuBr_2][AuBr_4]$, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen, darunter die Differenzkurve

Abbildung 95: Elektronenmikroskopische Aufnahme eines $Cs_2[AuBr_2][AuBr_4]$ -Kristalls

κ -CCD Datensatznummer	1917
Summenformel	$Cs_2[AuBr_2][AuBr_4]$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	I4/mmm (139); 2
Elementarzellen parameter $[{\rm \AA}]$	a = 7,8481(3)
	c = 11,4217(7)
EZ-Volumen $[Å^3]$	703,49(6)
Kristallgröße [mm ³]	$0,09 \times 0,1 \times 0,12$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	CCD-Detektor, Graphitmonochromator,
	$\omega ext{-Scans, , T} = 293 ext{ K},$
Reflexbereich	$3^{\circ} \le \theta \le 29^{\circ}, -10 \le h, k \le 10, -15 \le l \le 15$
Completeness [%]	100
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	42,917
Absorptionskorrektur	keine
F(000)	956
Zahl der Reflexe	
gemessen	3542
unabhängige (N)	299
davon mit $I > 2\sigma(I) (N')$	210
Anzahl der Parameter	15
R_i (SHELXL-97) [%]	6,82
$R(F)_N; R(F)_{N'} [\%]$	4,31; 2,21
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$4,14;\ 4,03$
GooF	0,860
Extinktionskoeffizient	0,00080(8)
Restelektronendichte [Å ^{-3}]	-1,52 (0,73 Å von Br(1))
	-1,07 (0,46 Å von I(1))

Tabelle 39: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von Cs₂[AuBr₂][AuBr₄] entsprechend $U_{eq} = \frac{1}{3}$ $\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	$\mathbf{Punktlage}$	x	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Au(1)	2a	0	0	0	0,0338(3)
$\operatorname{Au}(2)$	$2\mathrm{b}$	0	0	$\frac{1}{2}$	0,0374(3)
Cs(1)	4d	$\frac{1}{2}$	0	$\frac{1}{4}$	0,0599(3)
Br(1)	$4\mathrm{e}$	0	0	0,2113(1)	0,0516(5)
Br(2)	$8\mathrm{h}$	0,22300(9)	0,22300(9)	0	0,0464(4)

Tabelle 40: Thermische Auslenkungsparameter U_{ij} in Å² für Cs₂[AuBr₂][AuBr₄] (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
$\operatorname{Au}(1)$	0,0343(3)	0,0343(3)	0,0329(5)	0	0	0
$\operatorname{Au}(2)$	0,0405(4)	0,0405(4)	0,0312(5)	0	0	0
Cs(1)	0,0603(4)	0,0603(4)	$0,\!0589(8)$	0	0	0
Br(1)	0,0616(7)	0,0616(7)	0,032(1)	0	0	0
Br(2)	0,0432(4)	0,0432(4)	0,0528(8)	0	0	-0,0107(5)

			Abstand	[Å]	1	Bindung	r	Wink	kel [°]
$\operatorname{Au}(1)$	—	Br(1)	2,413(2)	$2 \times$	Br(2)-	Au(1)	-Br(2)	90	$4 \times$
$\operatorname{Au}(1)$	—	Br(2)	3,074(1)	$2 \times$	Br(2)-	$\operatorname{Au}(1)$	-Br(2)	180	$2 \times$
$\operatorname{Au}(2)$	—	Br(2)	2,475(1)	$4 \times$	Br(1)-	Au(1)	-Br(2)	90	$8 \times$
$\operatorname{Au}(2)$	—	Br(1)	3,298(2)	$2 \times$	Br(1)-	Au(1)	-Br(1)	180	
\mathbf{Cs}	—	Br(1)	3,9489(2)	$4 \times$					
\mathbf{Cs}	—	Br(2)	3,9928(5)	$8 \times$					
$\operatorname{Au}(1)$	_	$\operatorname{Au}(2)$	5,5494(2)	$4 \times$					
$\operatorname{Au}(1)$	—	\mathbf{Cs}	4,8530(2)	$8 \times$					
$\operatorname{Au}(2)$	_	\mathbf{Cs}	4,8530(2)	$8 \times$					

Tabelle 41: Ausgewählte Abstände, Multiplizitäten und Winkel in Cs₂[AuBr₂][AuBr₄] (Standardabweichung)

3.4.2 Beschreibung der Kristallstruktur von Cs₂[AuBr₂][AuBr₄]

Die divalente Verbindung $Cs_2[AuBr_2][AuBr_4]$ ist isotyp zu $Cs_2[AuCl_2][AuCl_4]$ und kristallisiert im Raumgruppentyp I4/mmm (Nr. 139) mit zwei Formeleinheiten pro Elementarzelle. Die Kristallstruktur von $Cs_2[AuBr_2][AuBr_4]$ wird aus linearen [AuBr_2]- und quadratisch planaren [AuBr_4]-Baugruppen sowie Cäsium-Kationen aufgebaut.

Die kristallografische Lage 2a wird von Au(1) in der Oxidationstufe 3+ eingenommen, das exakt quadratisch planar von vier Bromatomen Br(2) im Abstand 2,475(1) Å umgeben wird und einen typischen Abstandswert für quadratisch planare [AuBr₄]-Baugruppen wie z. B. in Cs[AuBr₄] mit 2,447 Å [90] oder in Rb₂[AuBr₂][AuBr₄] mit 2,438(4) Å [91] aufweist. Senkrecht zu den [AuBr₄]-Ebenen stehen in 3,298(2) Å entfernt zwei weitere Bromatome Br(1), die zu einer linearen [AuBr₂]-Baugruppe gehören und die Koordination zu einem gestreckten Oktaeder entlang der Längsachse erweitern (KZ = 4 + 2).

Die kristallografische Lage 2b wird von einwertigem Au(2) belegt, das in 2,413(2) Å linear von zwei Bromatomen Br(1) umgeben wird. Vier weitere Bromatome Br(2) von vier benachbarten [AuBr₄]-Baugruppen im Abstand von 3,074(1) Å erweitern die Koordination zu einem entlang der Längsachse gestauchten Oktaeder (KZ = 2 + 4). Bindungsabstände zwischen Gold(I) und Brom von gleicher Größenordnung finden sich in der eng verwandten Struktur Rb₂[AuBr₂][AuBr₄] [91] mit 2,402(8) Å. Sämtliche koordinationserweiterte [AuBr₆]-Oktaeder sind über alle Ecken verknüpft und bilden das bekannte Strukturmotiv des verzerrten Perowskit-Typs in Cs₂[AuCl₂][AuCl₄] (vgl. Abb. 97).

Die kristallografische Lage 4d wird von Cäsium eingenommen, das von vier Bromatomen Br(1) im Abstand von 3,949(1) Å in Form eines abgeflachten Tetraeders (\angle 167°) umgeben wird. Acht weitere Bromatome Br(2) umgeben Cäsium im Abstand von 3,993(1) Å in Form eines verzerrten Quaders. Die gesamte Koordinationssphäre um Cäsium (r \leq 4 Å) kann als verzerrtes Kuboktaeder beschrieben werden (vgl. Abb. 98).

Bromatome Br(1) werden verzerrt oktaedrisch von vier Cäsiumatomen im Abstand 3,949(3) Å und jeweils einem Au(1) in 2,413(2) Å und Au(2) in 3,298(2) Å umgeben. Ebenfalls verzerrt oktaedrisch koordiniert liegen die Bromatome Br(2) der Lage 8h vor, vier Cäsiumatome im Abstand von 3,993(1) Å und jeweils ein Au(1) in 2,475(1) Å und Au(2) in 3,074(1) Å umgeben das Bromatom (vgl. Abb. 99).

Abbildung 96: Darstellung der Koordinationspolyeder um Au^+ und Au^{3+} in $Cs_2[AuBr_2][AuBr_4]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 97: Ausschnitt aus der Kristallstruktur von $Cs_2[AuBr_2][AuBr_4]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 98: Darstellung des K $Cs_2[AuBr_2][AuBr_4]$ (So wahrscheinlichkeit)

Koordinationspolyeders um Cäsium in (Schwingungsellipsoide mit 50% Aufenthalts-

Abbildung 99: Darstellung der Koordinationspolyeder um Br(1) und Br(2) in $Cs_2[AuBr_2][AuBr_4]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

3.4.3 Einordnung von $Cs_2[AuBr_2][AuBr_4]$ in die Reihe $Cs_2[AuX_2][AuX_4]$ (X = Cl, I)

 $Cs_2[AuBr_2][AuBr_4]$ gliedert sich gut in die Verbindungsreihe $Cs_2[AuX_2][AuX_4]$ (X = Cl, I) ein. Diese zeigt ebenso wie die Verbindungsreihe $Cs_2[PdX_4]I_2$ (X = Cl, Br, I) einen nicht linearen Zusammenhang zwischen der Größe der Elementarzellenparameter (vgl. S. 104) und der Größe des Halogens X.

Anders als in der Verbindungsreihe $Cs_2[PdX_4]I_2$ steigt der Abstand zwischen Gold(III) und Halogenatom der linearen [AuX_2]-Baugruppe mit größerem Anion nicht linear, sondern kann durch eine quadratischen Funktion genähert werden. Dies lässt darauf schließen, dass mit steigender Größe des Halogenatoms stärkere Wechselwirkungen zwischen Au(III) und Au(I) auftreten (*charge-transfer interactions*) die den Valenzzustand in Richtung Au(II) verschieben [88].

Abbildung 100: Verlauf der Elementarzellenparameter in der Verbindungsreihe $Cs_2[AuX_2][AuX_4]$ (X = Cl, Br, I)

Abbildung 101: Vergleich des Abstandsverlaufs zwischen Au^{3+} und Halogen der linearen [AuX₂]-Hantel in Cs₂[AuX₂][AuX₄] sowie [PdX₄] und Iod in Cs₂[PdX₄]I₂ (X = Cl, Br, I)

3.4.4 Schwingungsspektroskopische Untersuchungen

Die Analyse der Normalschwingungsmoden von $Cs_2[AuBr_2][AuBr_4]$ zeigt, dass 9 IR- und 8 RAMAN-aktive Schwingungen möglich sind. Charakteristische Schwingungsfrequenzen der [AuBr_4]- und [AuBr_2]-Baugruppen sind in Tabelle 42 zugeordnet. Die aufgezeichneten IR- und RAMAN-Spektren sind in Abb. 102 und Abb. 103 wiedergegeben.

\mathbf{IR}	RAMAN		
$\nu \ / \ { m cm}^{-1}$	$\operatorname{Zuordnung}^{a,b}$	$ u \ / \ { m cm}^{-1} $	$\operatorname{Zuordnung}^{c}$
50	Gitter	43	
60	Gitter	67	
71	$\delta[\mathrm{AuBr}_2]$	129	
80	$\delta[\mathrm{AuBr}_2]$	144	
87	$\delta[\mathrm{AuBr}_2]$	166	
96	$\pi[\mathrm{AuBr}_4]$	178	$ u[\mathrm{AuBr}_4]$
117	$\delta_u[\mathrm{AuBr}_4]$	187	$ u_s[\mathrm{AuBr}_4] $
139		223	$ u_s[\mathrm{AuBr}_4] $
166			
189	$\delta_u[\mathrm{AuBr}_6]$		
219	$\nu_{as}[\mathrm{AuBr}_6]$		
241	$\nu_{as}[\mathrm{AuBr}_4]$		
^a [91]	^b [90]	^c [92]	
		•	

 $\label{eq:tabelle 42: IR- und RAMAN-Schwingungsfrequenzen von Cs_2[AuBr_2][AuBr_4] in \ cm^{-1}$

— keine Zuordnung

Abbildung 102: RAMAN-Spektrum von $Cs_2[AuBr_2][AuBr_4]$

Abbildung 103: IR-Spektrum von $Cs_2[AuBr_2][AuBr_4]$

$3.5 Cs[AuCl_4]$

Bei den Syntheseversuchen zu redoxaktiven Verbindungen konnten Kristalle der Verbindung Cs[AuCl₄] synthetisiert werden. Die Einordnung der Kristallstruktur zeigte, dass aus der Reihe der wasserfreien Alkalimetall-tetrachloroaurate(III) nur die Verbindungen der leichteren Homologen Na, K, Rb strukturell charakterisiert sind [85,86,93]. Ebenso sind die Kristallstrukturen der Verbindungen Ag[AuCl₄] und Tl[AuCl₄] aufgeklärt [94,95]. Cs[AuCl₄] bildet hier eine Ausnahme, denn Elementarzellenparameter, Raumgruppentyp und Dichte der Verbindung sind bekannt [96], eine strukturelle Charakterisierung liegt jedoch nicht vor. Aus diesem Grund sind gezielt Kristalle von Cs[AuCl₄] synthetisiert worden um die Kristallstruktur zu charakterisieren.

3.5.1 Darstellung und Charakterisierung von Cs[AuCl₄]

0,02 g CsCl und 2 ml H[AuCl₄]-Lösung (Au-Gehalt: 2,21 mg/ml) wurden in 10 ml 3,2 % HCl-Lösung unter mäßigem Rühren gelöst und über Trockenmittel im Exsikkator gelagert. Nach fünf Tagen lagen in der Kristallisationschale gelb-transparente Kristalle vor. Unter einem Polarisationsmikroskop konnten einige gut auslöschende Kristalle isoliert, in Glaskapillaren überführt und für Einkristallmessungen mit einem κ -CCD-Diffraktometer vorbereitet werden. Nach Aufnahme einiger Beugungsbilder ist ein gut streuender Kristall ausgewählt und triklin vermessen worden. Die triklin primitive Metrik lässt sich in ein monoklines Kristallsystem mit C-Zentrierung überführen.

$$a = 6,22673(1) \text{ Å}, \quad \alpha = 104,161(1)^{\circ} \xrightarrow{t=\begin{pmatrix} \bar{1} & \bar{2} & 0 \\ \bar{1} & 0 & 1 \\ 0 & 0 & \bar{1} \end{pmatrix}} \quad a = 13,1916(4) \text{ A}$$

$$b = 7,3026(2) \text{ Å}, \quad \beta = 89,985(1)^{\circ} \xrightarrow{t=\begin{pmatrix} \bar{1} & \bar{2} & 0 \\ \bar{1} & 0 & 1 \\ 0 & 0 & \bar{1} \end{pmatrix}} \quad b = 6,2673(1) \text{ Å}$$

$$c = 9,6552(3) \text{ Å}, \quad \gamma = 115,416(1)^{\circ} \qquad \qquad \beta = 105,716(1)^{\circ}$$

Quelle	a [Å]	b [Å]	b [Å]	β [°]
Einkristall	13,1916(4)	6,2673(1)	9,6552(3)	105,716(1)
Pulver	13,1753(3)	6,2628(5)	9,645(7)	105,706(2)
Pulver $[96]^*$	13,156(5)	6,252(1)	9,596(2)	105,461(5)

Tabelle 43: Vergleich der Elementarzellenparameter aus Einkristall- und Pulverdaten

* rücktransformiert I2/c \rightarrow C2/c

Die Auslöschungsbedingungen wiesen eindeutig auf die Raumgruppentypen C2/c (Nr. 15) und Cc (Nr. 9) hin, wovon sich der zentrosymmetrische Raumgruppentyp C2/c (Nr. 15) im Verlauf der Verfeinerungzyklen als zutreffend erwies. Die Kristallstruktur wurde mit Hilfe direkter Methoden gelöst. Einzelheiten zur Bestimmung der Kristallstruktur und kristallografische Daten sind in den Tabellen 44, 45 und 46 wiedergegeben. Einige ausgewählte Abstände und Winkel sind in Tablle 47 aufgeführt.

Abbildung 104: Pulverdiffraktogramm von Cs[AuCl₄], (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

κ-CCD Datensatznummer	1849
Summenformel	$Cs[AuCl_4]$
Kristallsystem	monoklin
Raumgruppentyp (Nr.); Z	C2/c (15); 4
Elementarzellenparameter	$a{=}13,1916(4)$ Å
	$\mathrm{b}{=}~6,2673(1)~\mathrm{\AA}~~eta{=}~105,716(1)^\circ$
	$ m c=9,6552(3)~{ m \AA}$
EZ-Volumen [Å ³]	768,41(4)
Dichte (ber./gem.) $[10^3 \text{kg/m}^3]$	$4,077 \ / \ 4,07(4)$
Kristallgröße $[mm^3]$	$0,06 \times 0,06 \times 0,11$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	Graphitmonochromator, CCD-Detektor;
	$\omega\text{-Scans},3^\circ \leq \theta \leq 30^\circ$, T = 293 K,
Reflexbereich	$-18 \le h \le 18, -8 \le k \le 8, -13 \le l \le 13$
Completeness $[\%]$	100
Datenreduktion	DENZO + SCALEPACK [30]
$\operatorname{Strukturaufklärung}$	Direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w [F^2(o) - F^2(c)]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	25,087
Absorptionskorrektur	empirisch, MULTISCAN [84]
Transmission min./max.	$0,37946 \;/\; 0,6725$
F(000)	808
Zahl der Reflexe	
gemessen	4269
unabhängige (N)	1121
davon mit $I > 2\sigma(I)$ (N')	823
Anzahl der Parameter	31
R_i (SHELXL-97) [%]	4,84
$R(F)_N; R(F)_{N'} [\%]$	4,96; 3,40
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$9,55;\ 9,31$
GooF	1,06
Extinktionskoeffizient	0,0077(5)
Restelektronendichte $[A^{-3}]$	-1,49 (0,82 A von Au)
	1,73 (0,47 A von Cl(2))

Tabelle 44: Kristallografische Daten und Messparameter von Cs[AuCl₄]

Tabelle 45: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von Cs[AuCl₄] entsprechend $U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	х	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Au	4c	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	0,0383(2)
\mathbf{Cs}	$4\mathrm{e}$	0	0,6976(2)	$\frac{1}{2}$	$0,\!0575(3)$
$\operatorname{Cl}(1)$	8f	0,0732(2)	0,1950(4)	0,4316(3)	0,0572(6)
$\operatorname{Cl}(2)$	8f	0,2242(2)	0,5451(3)	0,6348(2)	0,0433(5)

Tabelle 46: Thermische Auslenkungsparameter U_{ij} in Å² für Cs[AuCl₄] (Standardabweichung). Die U_{ij} sind definiert für exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Au	0,0443(3)	0,0370(3)	$0,\!0355(3)$	0,0016(2)	0,0139(2)	-0,0036(2)
\mathbf{Cs}	0,0702(6)	0,0485(5)	0,0635(6)	0	0,0346(5)	0
$\operatorname{Cl}(1)$	0,045(1)	0,066(1)	0,060(1)	-0,006(1)	0,014(1)	-0,007(1)
$\operatorname{Cl}(2)$	$0,\!051(1)$	0,037(1)	0,049(1)	-0,0146(8)	0,0261(9)	-0,0095(8)

 Tabelle 47: Ausgewählte Abstände, Multiplizitäten und Winkel in Cs[AuCl₄] (Standardabweichung)

			Abstand [Å]		Bindung			Winkel [°]	
Au	-	$\operatorname{Cl}(1)$	2,272(2)	$2 \times$	$\operatorname{Cl}(1)$ -	Au	$-\mathrm{Cl}(1)$	180	
Au	-	$\operatorname{Cl}(2)$	2,339(2)	$2 \times$	$\operatorname{Cl}(1)$ -	Au	-Cl(2)	89,36(8)	$2 \times$
\mathbf{Cs}	-	$\operatorname{Cl}(1)$	3,528(3)	$2 \times$	$\operatorname{Cl}(1)$ -	Au	-Cl(2)	$90,\!64(8)$	$2 \times$
\mathbf{Cs}	-	$\operatorname{Cl}(1)$	3,579(3)	$2 \times$	$\operatorname{Cl}(2)$ -	Au	-Cl(2)	180	
\mathbf{Cs}	-	$\operatorname{Cl}(1)$	$3,\!607(3)$	$2 \times$					
\mathbf{Cs}	-	$\operatorname{Cl}(2)$	3,752(2)	$2 \times$					
\mathbf{Cs}	-	$\operatorname{Cl}(2)$	3,858(2)	$2 \times$					
\mathbf{Cs}	-	$\operatorname{Cl}(2)$	4,184(2)	$2 \times$					
\mathbf{Cs}	-	Au	4,501(1)	$2 \times$					
\mathbf{Cs}	-	Au	4,596(1)	$4 \times$					
\mathbf{Cs}	-	Au	4,937(1)	$4 \times$					

3.5.2 Beschreibung der Kristallstuktur von Cs[AuCl₄]

 $Cs[AuCl_4]$ kristallisiert im Raumgruppentyp C2/c (Nr. 15) mit vier Formeleinheiten pro Elementarzelle und ist isotyp zu Rb[AuCl_4] [96]. Au³⁺ ist von je zwei Chloratomen Cl(1) linear im Abstand von 2,272(2) Å und von je zwei Chloratomen Cl(2) linear im Abstand von 2,339(2) Å umgeben, dabei wird ein Winkel Cl(1)-Au-Cl(2) von 90,64(8)° aufgespannt. Die leicht verzerrt rechteckig planare Koordination um Gold tritt in einer Vielzahl von Verbindungen, die diese Baugruppe beinhalten (vgl. Tab. 48), auf.

Cäsium wird unregelmäßig von zehn Chloratomen im Abstand zwischen 3,258(3) Å und 3,858(2) Å umgeben. Zählt man zwei weiter entfernte Cäsiumatome im Abstand von 4,184(2) Å zur Umgebung von Cäsium hinzu, kann man das Koordinationspolyeder um Cäsium als verzerrtes Kuboktaeder beschreiben. Dabei stammen jeweils zwei Chloratome von einer der sechs umgebenden [AuCl₄]-Baugruppen (vgl. Abb. 106).

Die Lage 8f wird von den Chloratomen Cl(1) und Cl(2) belegt. Cl(1) wird von drei Cäsiumatomen und einem Goldatom verzerrt tetraedrisch koordiniert. Cl(2) wird von zwei Cäsiumatomen und einem Goldatom trigonal umgeben, die Koordination wird durch ein weiter entferntes Cäsiumatom zu einem verzerrten Tetraeder erweitert (vgl. Abb. 107 und Abb. 108).

Ebenso wie Rb[AuCl₄] und Tl[AuCl₄] zeigt auch die dazu isotype Kristallstruktur von Cs[AuCl₄] einen schichtartigen Aufbau von alternierenden Lagen aus [AuCl₄]-Komplexionen und Cäsium-Kationen entlang der kristallografischen c-Achse (vgl. Abb. 109 und Abb. 110).

					SHANNON-Radien in pm
	\angle_{Au-Cl} [°]	\mathbf{d}_{Au-Cl} [Å]	\mathbf{d}_{M-Au} [Å]	\mathbf{d}_{M-Cl} [Å]	M(I) mit KZ = 12 [97]
$\mathrm{K}[\mathrm{AuCl}_4]$	$93,\!73$	$2,\!195$	3,938	$3,\!115$	164
Pc; [85]		$2,\!373$			
$\mathrm{Tl}[\mathrm{AuCl}_4]$	90,89	2,271	4,295	$3,\!350$	170
C2/c; [95]		$2,\!277$			
$\operatorname{Rb}[\operatorname{AuCl}_4]$	90,46	$2,\!277$	4,363	3,394	172
I2/c; [86]		2,282			
$\mathrm{Cs}[\mathrm{AuCl}_4]$	90,64(8)	2,272(2)	4,501(6)	3,528(2)	188
$\mathrm{C2/c}$		2,339(2)			

Tabelle 48: Vergleich von $Cs[AuCl_4]$ mit Verbindungen des Typs $M[AuCl_4]$

Abbildung 106: Darstellung des Koordinationspolyeders um Cäsium in Cs[AuCl₄] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit); [AuCl₄]-Baugruppen, denen die Chloratome angehören, sind mit eingezeichnet

Abbildung 107: Koordination um Cl(1) in Cs[AuCl₄] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 108: Koordination um Cl(2) in Cs[AuCl₄] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit); die punktierte Linie stellt die Bindung des weiter entfernten Cäsiumatoms dar, die die trigonale Koordination zu einer tetraedrischen erweitert

Abbildung 109: Ausschnitt aus der Kristallstruktur von Cs[AuCl₄] mit Blick in Richtung [010] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 110: Ausschnitt aus der Kristallstruktur von Cs[AuCl₄] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit) mit Blick in Richtung [100] und Angabe der Schichtabfolge in Richtung [001]. Die Schichten A' und B' werden durch Symmetrieoperation aus den Schichten A und B erzeugt

3.5.3 Schwingungsspektroskopische Untersuchungen

Die Anzahl möglicher normaler Schwingungsmoden beträgt 21 IR- und 15 RAMANaktive Schwingungen. Auf eine vollständige Zuordnung der Schwingungsbanden ist aufgrund der Komplexität des Schwingungsspektrums verzichtet worden. Charakteristische Schwingungsbanden sind in Anlehnung an die Zuordnung von K[AuCl₄] [83] und Rb[AuCl₄] [91] vorgenommen worden.

IR		RAMAN			
60, 71, 100, 104	—	33, 57, 68, 122	_		
110, 125, 139	—	137, 155	—		
149	$\pi([\operatorname{AuCl}_4])$	177	$\delta([\mathrm{AuCl}_4])$		
167	$\delta_u([\operatorname{AuCl}_4])$	201, 234	—		
189, 202, 206	—	324	$ u([\mathrm{AuCl}_4]) $		
212	—	350	$\nu_s([\mathrm{AuCl}_4])$		
227,242,253,267	—				
280, 295, 307, 334	—				
354	$\nu_{as}([\mathrm{AuCl}_4])$				
401, 482, 633	—				

Tabelle 49: IR- und RAMAN-Schwingungsfrequenzen von $Cs[AuCl_4]$ in cm⁻¹

- keine Zuordnung

Abbildung 111: RAMAN-Spektrum von $Cs[AuCl_4]$

Abbildung 112: IR-Spektrum von $Cs[AuCl_4]$

$3.6 [N(C_2H_5)_4][AuCl_4]$

Bei Versuchen im System $[AuCl_4]_{aq}/[PdCl_4]_{aq}/HCl_{aq}$ wurde durch Umsetzung mit $[(C_2H_5)_4N]Cl$ ein hellgelber Niederschlag erhalten. Die Vermutung, dass es sich hierbei um $[Et_4N][AuCl_4]$ handelte, konnte schnell durch Röntgenstrukturanalyse bestätigt werden. Versuche, Strukturdaten über die Verbindung $[Et_4N][AuCl_4]$ zu erhalten, verliefen jedoch alle ergebnislos. Obwohl $[Et_4N][AuCl_4]$ eine handelsübliche Substanz darstellt, existiert in der zugänglichen Literatur keine Strukturbeschreibung. Aus der Reihe der Verbindungen $[Et_4N][MX_4]$ sind die Kristallstrukturen mit M = Co, Cu, Ni, Zn, Fe, Cd und X = Cl, Br bekannt. Weiterhin findet sich in der Literatur die Strukturbeschreibung der einwertigen Goldverbindung $[Et_4N][AuCl_2]$ mit linearen Cl–Au–Cl-Baugruppen [98].

Um die Struktur zu bestimmen sind gezielt Einkristalle von $[Et_4N][AuCl_4]$ durch Hydrothermalsynthese gezüchtet und röntgenografisch charakterisiert worden.

3.6.1 Darstellung und Charakterisierung von $[Et_4N][AuCl_4]$

11 mg [Et₄N]Cl ist in 2 ml 3,2 % HCl-Lösung gelöst und mit 5 ml H[AuCl₄]-Lösung (Au-Gehalt: 2,21 mg/ml) versetzt worden. Der sofort ausfallende hellgelbe Niederschlag wurde abfiltriert und mit bidest. Wasser und Diethylether gewaschen. Der Filterrückstand ist in eine Quarzglasampulle ($\emptyset_i = 0,6$ cm, l = 6 cm) überführt, mit 0,5 ml H₂O überschichtet und abgeschmolzen worden. Bei 130 °C wurde die Ampulle 12 Stunden getempert und dann mit 1 °C/h auf Raumtemperatur abgekühlt. In der Ampulle lagen zitronengelbe nadelförmige Kristalle vor, die unter einem Polarisationsmikroskop isoliert und für Einkristallmessungen vorbereitet wurden. Anhand weniger Beugungsbilder wurde ein gut streuender Kristall ausgewählt und bei -120 °C vermessen.

	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]
$\mathbf{Einkristall}_{153K}$	9,0248(2)	7,8881(2)	10,1669(2)	89,992(3)	92,069(9)	90,005(8)
\mathbf{Pulver}_{293K}	9,1017(3)	7,9179(2)	10,3120(3)	90	92,018(2)	90

Anhand der systematischen Auslöschungen konnte auf die Raumgruppentypen Pn (Nr. 7) und P2/n (Nr. 13) geschlossen werden, wovon der zentrosymmetrische Raumgruppentyp P2/n (Nr. 13) sich im Laufe der Strukturverfeinerung als zutreffend erwies. Die Lage der Wasserstoffatome konnte aus den Differenzfourierkarten bestimmt und frei verfeinert werden. Einzelheiten zu den Messparametern sowie kristallografische Daten sind in den Tabellen 50 - 52 wiedergeben. Ausgewählte Winkel und Abstände sind in Tabelle 53 aufgeführt.

Abbildung 113: Pulverdiffraktogramm von $[Et_4N][AuCl_4]$, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

Abbildung 114: Elektronenmikroskopische Aufnahme eines $[Et_4N][AuCl_4]$ -Kristalls

κ -CCD Datensatznummer	1776				
Summenformel	$[Et_4N][AuCl_4] \qquad (AuC_8Cl_4H_{20}N_4)$				
Kristallsystem	monoklin				
Raumgruppentyp (Nr.); Z	P2/n (13); 2				
Elementarzellenparameter	a=9,0248(2) Å				
	b=7,8881(2) Å $\beta = 92,069(9)^{\circ}$				
	$c{=}10{,}1669(2)$ Å				
EZ-Volumen $[Å^3]$	723,291(3)				
Kristallgröße [mm ³]	$0,12 \ge 0,12 \ge 0,14$				
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$				
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$				
	Graphitmonochromator, CCD-Detektor;				
	$\omega\text{-Scans},3^\circ \leq \theta \leq 30^\circ$, T = 153 K,				
Reflexbereich	$-12 \le h \le 12, -11 \le k \le 9, -14 \le l \le 14$				
Completeness $[\%]$	99,9				
Datenreduktion	DENZO + SCALEPACK [30]				
$\operatorname{Strukturaufklärung}$	direkte Methoden, SHELXS-97 [31]				
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix				
	SHELXL-97 [32]				
linearer Absorptions-					
koeffizient $[mm^{-1}]$	10,877				
Absorptionskorrektur	keine				
F(000)	444				
Zahl der Reflexe					
gemessen	3691				
unabhängige (N)	2121				
davon mit $I > 2\sigma(I) (N')$	1746				
Anzahl der Parameter	109				
R_i (SHELXL-97) [%]	7,04				
$R(F)_N; R(F)_{N'} [\%]$	$5,48;\ 3,98$				
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	8,35; 8,00				
GooF	0,995				
Extinktionskoeffizient	0,0115(7)				
Restelektronendichte $[Å^{-3}]$	-1,92 (0,90 Å von Au)				
	2,72 (0,87 Å von Au)				

Tabelle 50: Kristallografische Daten und Messparameter von $[Et_4N][AuCl_4]$

Tabelle 51: Fraktionelle	Atomlag	geko	ordina	ten	und	äquiva	alente	the	$\operatorname{rmische}$	Aus-
lenkungspara	ameter <i>l</i>	U_{eq}	von	[Et ₄	4N][Au	$Cl_4].$	U_{eq}	ist	definiert	als
$\frac{1}{3}\sum_i\sum_jU_{ij}a_i^*a_j$	$a_j^* a_i a_j$ in Å	Λ^2 (S	tanda	rdab	weich	ung)				

Atom	$\mathbf{Punktlage}$	х	У	\mathbf{Z}	$\mathbf{U_{eq}}$
Au	$2\mathrm{e}$	$\frac{1}{4}$	0,35607(4)	$\frac{1}{4}$	0,0222(1)
$\operatorname{Cl}(1)$	$2\mathrm{e}$	$\frac{1}{4}$	$0,\!6438(3)$	$\frac{1}{4}$	0,0363(5)
$\operatorname{Cl}(2)$	$2\mathrm{e}$	$\frac{1}{4}$	0,0665(3)	$\frac{1}{4}$	0,0369(5)
Ν	2f	$\frac{1}{4}$	0,1175(8)	$\frac{3}{4}$	0,022(2)
$\operatorname{Cl}(3)$	$4\mathrm{g}$	0,4577(2)	0,3577(2)	0,1290(2)	0,0331(3)
C(1)	$4\mathrm{g}$	0,2081(8)	0,0093(9)	$0,\!6318(6)$	0,028(1)
C(2)	$4\mathrm{g}$	0,1147(7)	0,2260(9)	0,7750(7)	0,029(1)
C(3)	$4\mathrm{g}$	$0,\!133(1)$	0,349(1)	$0,\!8886(8)$	0,041(2)
C(4)	$4\mathrm{g}$	0,322(1)	-0,119(1)	$0,\!5935(7)$	0,038(2)
H(1)	$4\mathrm{g}$	$0,\!185(7)$	0,09(1)	0,570(7)	0,04(2)
H(2)	$4\mathrm{g}$	0,125(6)	-0,041(8)	$0,\!656(5)$	0,01(1)
H(3)	$4\mathrm{g}$	$0,\!086(7)$	0,268(9)	$0,\!699(7)$	0,03(1)
H(4)	$4\mathrm{g}$	$0,\!035(9)$	0,151(8)	0,781(8)	0,04(2)
H(5)	$4\mathrm{g}$	$0,\!405(7)$	-0,081(9)	0,569(6)	0,02(2)
H(6)	$4\mathrm{g}$	$0,\!276(7)$	-0,188(9)	0,514(7)	0,03(1)
H(7)	$4\mathrm{g}$	$0,\!055(9)$	$0,\!388(9)$	$0,\!895(7)$	0,04(2)
H(8)	$4\mathrm{g}$	0,23(1)	$0,\!43(1)$	0,869(9)	0,07(3)
H(9)	$4\mathrm{g}$	0,142(8)	$0,\!286(9)$	0,954(7)	0,03(2)
H(10)	$4\mathrm{g}$	$0,\!353(8)$	-0,20(1)	$0,\!653(8)$	0,04(2)

Tabelle 52: Thermische Auslenkungsparameter U_{ij} in Å² für [Et₄N][AuCl₄] (Standardabweichung) entsprechend exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Au	0,0266(2)	0,0223(2)	0,0175(2)	0	-0,0032(1)	0
$\operatorname{Cl}(1)$	0,032(1)	0,022(1)	$0,\!055(1)$	0	-0,005(1)	0
$\operatorname{Cl}(2)$	$0,\!050(1)$	0,024(1)	0,037(1)	0	$0,\!005(1)$	0
Ν	0,019(3)	0,026(4)	0,021(3)	0	-0,002(2)	0
$\operatorname{Cl}(3)$	0,0331(8)	0,0367(9)	0,0296(7)	0,0025(7)	0,0045(6)	0,0001(7)
C(1)	0,036(4)	0,031(4)	0,016(3)	-0,001(2)	-0,002(3)	-0,004(3)
C(2)	0,029(3)	0,033(4)	0,025(3)	0,001(3)	-0,006(2)	0,003(3)
C(3)	0,041(4)	0,042(4)	0,040(4)	-0,009(4)	-0,005(3)	0,018(4)
C(4)	0,048(4)	0,041(5)	$0,\!025(3)$	-0,006(3)	0,007(3)	0,003(4)

В	Bindung		Abstand [Å]	E	Bindung		Winkel [°]
C(1)	—	H(1)	0,89(8)	C(1)-	C(4)	$-\mathrm{H}(5)$	117(5)
C(1)	—	H(2)	0,89(6)	C(1)-	C(4)	-H(6)	108(4)
C(2)	—	H(3)	0,87(7)	C(1)-	C(4)	-H(10)	120(5)
C(2)	—	H(4)	0,94(8)	C(2)-	C(3)	-H(7)	104(6)
C(3)	—	H(7)	0,77(7)	C(2)-	C(3)	-H(8)	108(5)
C(3)	—	H(8)	1,1(1)	C(2)-	C(3)	-H(9)	103(5)
C(3)	—	H(9)	0,83(7)	C(3)-	C(2)	$-\mathrm{H}(3)$	117(5)
C(4)	—	H(5)	0,86(6)	C(3)-	C(2)	$-\mathrm{H}(4)$	114(5)
C(4)	—	H(6)	1,04(7)	C(4)-	C(1)	$-\mathrm{H}(1)$	115(5)
C(4)	—	H(10)	0,94(8)	C(4)-	C(1)	-H(2)	111(4)
C(1)	—	C(4)	1,50(1)	H(1)-	C(1)	-H(2)	109(6)
C(2)	—	C(3)	1,52(1)	H(3)-	C(2)	$-\mathrm{H}(4)$	96(6)
C(1)	—	Ν	1,510(7)	H(5)-	C(4)	-H(6)	106(6)
C(2)	—	Ν	1,520(7)	H(5)-	C(4)	-H(10)	101(6)
$\operatorname{Cl}(1)$	—	Au	2,270(2)	H(6)-	C(4)	-H(10)	103(6)
$\operatorname{Cl}(2)$	—	Au	2,284(2)	H(7)-	C(3)	-H(8)	120(8)
$\operatorname{Cl}(3)$	—	Au	2,279(2)	H(7)-	C(3)	-H(9)	104(8)
				H(8)-	C(3)	-H(9)	116(7)
$\operatorname{Cl}(3)$	• • •	H(2)	2,92(6)	N-	C(1)	-H(2)	103(3)
				N-	C(2)	$-\mathrm{H}(3)$	106(5)
				N-	C(1)	$-\mathrm{H}(1)$	102(5)
				N-	C(2)	$-\mathrm{H}(4)$	107(4)
				C(1)-	Ν	-C(1)	111,2(7)
				C(1)-	Ν	-C(2)	111,4(4)
				C(1)-	Ν	-C(2)	105,8(4)
				C(1)-	Ν	-C(2)	105,8(4)
				C(1)-	Ν	-C(2)	111,4(4)
				C(2)-	Ν	-C(2)	111,4(7)
				C(3)-	C(2)	-N	115,0(5)
				C(4)-	C(1)	-N	115,7(5)
				$\operatorname{Cl}(1)$ -	Au	-Cl(3)	$89,\!68(4)$
				$\operatorname{Cl}(3)$ -	Au	-Cl(3)	179,36(8)
				$\operatorname{Cl}(1)$ -	Au	-Cl(2)	180
				$\operatorname{Cl}(3)$ -	Au	-Cl(2)	90,32(4)

Tabelle 53: Ausgewählte Abstände und Winkel in $[\mathrm{Et}_4\mathrm{N}][\mathrm{AuCl}_4]$ (Standardabweichung)

3.6.2 Beschreibung der Kristallstruktur von [Et₄N][AuCl₄]

 $[Et_4N][AuCl_4]$ kristallisiert im Raumgruppentyp P2/n (Nr. 13) mit zwei Formeleinheiten pro Elementarzelle. Die Kristallstruktur wird aus isolierten, alternierenden Schichten von Komplexkationen $[Et_4N]$ und Komplexanionen $[AuCl_4]$ in Richtung [101] ausgebildet (vgl. Abb. 116). Gold liegt darin in der Oxidationstufe 3+ vor und ist von vier Chloratomen im Abstand von 2,270(2) Å bis 2,284(2) Å umgeben. Der Winkel Cl(1)-Au-Cl(2) beträgt 180°, die transständigen Chloratome Cl(3) bilden einen Winkel Cl(3)-Au-Cl(3) von 179,36(8)° und durchbrechen dadurch die Planarität der $[AuCl_4]$ -Baugruppe (vgl. hierzu auch Tab. 48 S. 156).

Die Ethylgruppen der Komplexkationen $[Et_4N]$ (s. Abb. 115) liegen wie erwartet in gestaffelter Konformation vor. Die Bindungswinkel C(1)–N–C(1) mit 111,2(7)° sowie C(1)–N–C(2) mit 105,8(4)° weichen vom idealen Tetraederwinkel (109,47°) ab, jedoch zeigen die $[Et_4N]$ -Gruppen in der Verbindung $[Et_4N][AuCl_2]$ ähnliche Abweichungen (106,5° bis 112,4°) vom Idealwinkel. Die C–C- und C–N-Bindungsabstände liegen mit rd. 1,51 Å im Erwartungsbereich und zeigen keine signifikanten Abweichungen auf.

Auffällig ist jedoch die Verkippung der $[AuCl_4]$ -Baugruppen in Richtung der $[Et_4N]$ -Schichten, die gleichzeitig mit 2,92(6) Å auch den kürzesten Abstand zwischen H(2) des Komplexkations und Cl(3) des Komplexanions aufweist (s. Abb. 116). Hier ist von einer schwachen Wasserstoffbrückenbindung zwischen Cl(3) und H(2) auszugehen, welche die Verkippung der $[AuCl_4]$ -Baugruppe in Richtung der $[Et_4N]$ -Baueinheit verursacht. Eine solche Wechselwirkung tritt in $[Et_4N][AuCl_2]$ nicht auf, hier liegen die Komplexmolekülschichten zueinander parallel (vgl. Abb. 118).

Ein Ausschnitt aus der Kristallstruktur von $[Et_4N][AuCl_4]$ ist in Abb. 119 wiedergegeben.

Abbildung 115: Darstellung und Atombezeichung von [AuCl₄] (links) und [Et₄N] (rechts) (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit). Eingezeichnet ist die Wasserstoffbrückenbindung zwischen Cl(3) und H(2), auf eine vollständige Benennung der Wasserstoffatome wurde aus Gründen der Übersichtlichkeit verzichtet

Abbildung 116: 3×3 Elementarzellen von [Et₄N][AuCl₄] mit Blick in Richtung [010]. Gelb unterlegt sind [Et₄N]-Baugruppen, die exakt übereinander in [010] gestapelt liegen und Schichten in Richtung [101] ausbilden. Nicht unterlegt sind in Richtung [010] exakt gestapelte [AuCl₄]-Baugruppen, die in Richtung [Et₄N]-Schichten verkippt sind und ebenfalls Schichten in Richtung [101] ausbilden

Abbildung 117: Vier Elementarzellen von $[Et_4N][AuCl_4]$ mit Blick in Richtung [100]. Gelb unterlegt sind $[Et_4N]$ -Gruppen

Abbildung 118: Ausschnitt aus der Kristallstruktur von $[Et_4N][AuCl_2]$

Abbildung 119: Ausschnitt aus der Kristallstruktur von [Et₄N][AuCl₄] mit Blick in Richtung [100] (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

3.6.3 Schwingungsspektroskopische Untersuchungen

Von $[Et_4N][AuCl_4]$ wurden IR- und RAMAN-Spektren angefertigt. Aufgrund der Komplexität der Spektren (94 IR- und 96 RAMAN-aktive) und der geringen Anzahl an Literaturdaten wurde auf eine vollständige Zuordnung der Spektren verzichtet, charakteristische Banden sind zugeordnet.

	\mathbf{IR}^{a}		\mathbf{IR}^{a}		\mathbf{IR}^{a}		RAMAN^{c}
56	_	240	_	738	$CH_2 rock$	45	_
60	_	253	—	902	$\nu_s(\text{C-C})$	60	_
69	_	266	—	997	CH_3 rock	89	_
80	_	280	_	1055	$\nu_{as}(\text{C-N})$	147	_
86	_	289	_	1092	$\nu_{as}(\text{C-C})$	173	ν_s (Au-Cl)
96	_	302	_	1171	$CH_3 \operatorname{rock}$	238	_
105	_	323	_	1187	_	327	ν (Au-Cl)
118	_	327	_	1272	CH_2 twist	351	$\delta(\text{Au-Cl})$
123	_	357	$\nu_{as}(\text{Au-Cl})$	1364	$\delta_s(CH_3)$	358	_
133	_	393	_	1374	$\delta_{as}(CH_3)$	420	_
139	_	406	_	1391	—	673	_
149	$\pi(\mathrm{AuCl}_4)$	419	_	1418	$\delta_s(\mathrm{CH}_2)$	787	_
172	δ_u (Cl-Au-Cl)	431	_	1446	$\delta_{as}(\mathrm{CH}_2)$	892	_
186	_	469	δ (C-C-N)	1486	_	907	_
197	_	535	_	2946	$\nu_{as}(\mathrm{CH}_2), \nu_s(\mathrm{CH}_2)$	1003	_
212	_	549	—	2981	$\nu_{as}(CH_3), \nu_s(CH_3)$	1120	—
226	—	628	_				

Tabelle 54: IR- und RAMAN-Schwingungsfrequenzen von $[Et_4N][AuCl_4]$ in cm⁻¹

 a Zuordnung nach [83,99]

^b Zuordnung nach [100]

- ohne Zuordnung

Kursiv : FT-NIR Spektrum (4000 - 500 cm^{-1}) ohne Abb.; Probe zwischen KCl-Scheiben

Abbildung 120: RAMAN-Spektrum von $[Et_4N][AuCl_4]$ mit logarithmischer Darstellung der Intensität

Abbildung 121: IR-Spektrum von $[Et_4N][AuCl_4]$

4 Tetra-alkyl-ammonium-halogenopalladate(II)

4.1 $[N(CH_3)_4]_2[PdCl_4]$

Di-tetramethylammonium-tetrachloropalladat(II) ist ein Nebenprodukt von Syntheseversuchen im System $[N(CH_3)_4]X/[PdX_4]_{aq}/[AuX_4]_{aq}$ (X = Cl, Br, I). Über die Synthese der Verbindung sowie Elementarzellenparameter und DTA-Untersuchungen im Temperaturbereich zwischen -163 °C und 176 °C berichten SATO et al [101]. Eine Kristallstrukturanalyse liegt jedoch nicht vor. Aus diesem Grund wurden gezielt Kristalle für die Sammlung von Intensitätsdaten und zur Strukturaufklärung synthetisiert

4.1.1 Darstellung und Charakterisierung von $[N(CH_3)_4]_2[PdCl_4]$

Die Verbindung lässt sich durch sehr langsames Eintrocknen aus einer Lösung von PdCl₂ und [N(CH₃)₄]Cl (Stoffmengenverhältnis 1:1) in verdünnter Salzsäure (3,2 %) erhalten. Nach wenigen Tagen bilden sich kleine orangerote Kristallplättchen, die aus der Mutterlauge isoliert werden können. Die Kristalle sind hygroskopisch und zerfließen schnell an der Luft. Einige Kristalle wurden an einem Polarisationsmikroskop unter Paraffinöl in Markröhrchen abgefüllt und verschlossen. Mit einem κ -CCD-Diffraktometer wurden von diesen Kristalle einige Beugungsaufnahmen aufgezeichnet und ein gut streuendes Exemplar vermessen. Die verfeinerten Elementarzellenparameter der Einkristallstrukturanalyse stimmen gut mit denen der Pulververfeinerung und den von SATO gefundenen Werten überein.

Tabelle 55: Elementarzellenparameter von $[N(CH_3)_4]_2[PdCl_4]$ aus Einkristallstruktur-,
Pulverstrukturverfeinerung und Literaturdaten

Paramater	Einkristall	Pulver	SATO et al [101]
a [Å]	8,8283(2)	8,8211(4)	8,86(5)
b [Å]	8,8292(2)	8,8211(4)	8,86(5)
c [Å]	11,4262(3)	11,4145(8)	11,42(5)
$lpha=eta=\gamma$ [°]	90	90	90

Anhand der Auslöschungsbedingungen konnten die Raumgruppentypen P4₂nm (Nr. 102), $P\bar{4}n2$ (Nr. 118) und P4₂/mnm (Nr. 136) bestimmt werden, von denen sich die zentrosymmetrische Raumgruppe P4₂/mnm (Nr. 136) im Verlauf der Strukturbestimmung als zutreffend erwies. Die Lage der Wasserstoffatome wurde aus den Differenzfourierkarten bestimmt und verfeinert. Weitere kristallografische Daten und Messparameter sind den Tabellen 56, 57 und 58 zu entnehmen, ausgewählte interatomare Abstände und Bindungswinkel in Tabelle 59 aufgeführt.

Abbildung 122: Pulverdiffraktogramm von [N(CH₃)₄]₂[PdCl₄], (+) gemessene und (-) berechnete Intensitätsdaten;(|) Lage möglicher BRAGG-Reflexe und darunter die Differenzkurve

κ-CCD Datensatznummer	1987
Summenformel	$[N(CH_3)_4]_2[PdCl_4] (C_8H_{24}N_2Cl_4Pd)$
Kristallsystem	tetragonal
Raumgruppentyp (Nr.); Z	$P4_2/mnm$ (136); 2
Elementarzellenparameter [Å]	$\mathrm{a}=~8,\!8287(2)$
	${ m c}=11,\!426(2)$
EZ-Volumen [Å ³]	$890,\!65(4)$
Kristallgröße $[mm^3]$	$0.2 \times 0.17 \times 0.14$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{\AA},$
	Graphitmonochromator, CCD-Detektor;
	ω -Scans, $3^{\circ} \le \theta \le 30^{\circ}$, T = 293 K,
Reflexbereich	$-12 \le h, l \le 12; -16 \le l \le 16$
Completeness [%]	98,4
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	1,621
Absorptionskorrektur	analytisch [102]
Transmission min. $/$ max.	$0,7220 \ / \ 0,8426$
F(000)	400
Zahl der Reflexe	
gemessen	10363
unabhängige (N)	793
davon mit $I > 2\sigma(I) (N')$	545
Anzahl der Parameter	36
R_i (SHELXL-97) [%]	4,40
$R(F)_N; R(F)_{N'} [\%]$	4,64; 2,36
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	7,24;6,69
GooF	0,942
Extinktionskoeffizient	0,0008(15)
Restelektronendichte $[Å^{-3}]$	-0,52 (0,94 Å von Pd)
	$0,61 (3,02 \text{ \AA von H}(3))$

Tabelle 56: Kristallografische Daten und Messparameter von $[N(CH_3)_4]_2[PdCl_4]$

Tabelle 57: Atomlageparameter und äquivalente thermische Auslenkungsparameter U_{eq} für [N(CH₃)₄]₂[PdCl₄] entsprechend $U_{eq} = \frac{1}{3} \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	x	У	\mathbf{Z}	U_{eq}
Pd	2a	0	0	0	0,0490(1)
Ν	4d	0	$\frac{1}{2}$	$\frac{1}{4}$	0,0532(7)
$\operatorname{Cl}(1)$	4e	0	0	0,2009(1)	0,0716(3)
$\operatorname{Cl}(2)$	4f	$0,\!1849(1)$	0,1849(1)	0	0,0676(3)
С	16k	$0,\!1215(3)$	0,5640(4)	0,1752(3)	0,0817(7)
H(1)	16k	$0,\!197(3)$	$0,\!594(3)$	0,220(2)	0,095(8)
H(2)	16k	$0,\!086(3)$	$0,\!630(3)$	0,133(2)	0,098(9)
H(3)	16k	0,168(4)	$0,\!480(3)$	0,137(3)	$0,\!105(10)$

Tabelle 58: Thermische Auslenkungsparameter U_{ij} in Å² für $[N(CH_3)_4]_2[PdCl_4]$ (Standardabweichung) entsprechend exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U ₁₂
Pd	0,0378(2)	0,0378(2)	0,0714(3)	0	0	0,0019(1)
Ν	0,0473(9)	0,0473(9)	0,065(2)	0	0	0
$\operatorname{Cl}(1)$	0,0714(4)	0,0714(4)	0,0720(6)	0	0	-0,0154(4)
$\operatorname{Cl}(2)$	0,0565(3)	0,0565(3)	0,0900(6)	0	0	-0,0135(4)
\mathbf{C}	0,060(1)	0,088(2)	0,095(2)	0,016(2)	0,008(1)	-0,005(1)

Tabelle 59: Ausgewählte Abstände, Multiplizitäten und Winkel von $[N(CH_3)_4]_2[PdCl_4]$ (Standardabweichung)

Bindung		Abstand [Å]		Bindung			Winkel $[^{\circ}]$		
Pd	—	$\operatorname{Cl}(2)$	$2,\!3095(7)$	$2 \times$	Cl(1)-	Pd	-Cl(2)	90	$4 \times$
Pd	_	$\operatorname{Cl}(1)$	$2,\!296(1)$	$2 \times$	N-	\mathbf{C}	-H(2)	108(2)	$4 \times$
Ν	_	C(1)	$1,\!483(3)$	$4 \times$	N-	\mathbf{C}	-H(1)	109(2)	$4 \times$
\mathbf{C}	_	H(1)	$0,\!88(3)$	$4 \times$	N-	\mathbf{C}	-H(3)	106(2)	$4 \times$
\mathbf{C}	_	H(2)	$0,\!82(3)$	$4 \times$	H(2)-	\mathbf{C}	-H(1)	114(3)	$4 \times$
\mathbf{C}	_	H(3)	$0,\!95(3)$	$4 \times$	H(2)-	\mathbf{C}	-H(3)	100(3)	$4 \times$
					H(1)-	\mathbf{C}	-H(3)	116(3)	$4 \times$

4.1.2 Beschreibung der Kristallstruktur von [N(CH₃)₄]₂[PdCl₄]

Di-tetramethylammonium-tetrachloropalladat(II) kristallisiert im tetragonalen Kristallsystem im Raumgruppentyp P4₂/mnm (Nr. 136) mit zwei Formeleinheiten und enthält isolierte [PdCl₄]²⁺-Einheiten (vgl. Abb. 123). Pd²⁺ ist von zwei Cl(1) im Abstand von 2,296(1) Å und zwei Cl(2) im Abstand von 2,3095(7) Å rechteckig planar koordiniert.

Die Tetramethylammonium-Kationen zeigen C–N-Bindungslängen von 1,483(3) Å, die denen in $[N(CH_3)_4]_2[PdCl_6]\cdot xCl_2$ (x≤1) mit 1,45(2) Å bis 1,51(1) Å entsprechen [103]. Ebenso sind die C-N-C-Bindungswinkel mit 109,7(2)° und 109,3(2)° mit denen in $[N(CH_3)_4]_2[PdCl_6]\cdot xCl_2$ (x≤1) mit 109,5(1)° und 109,1(3)° zu vergleichen. Acht $[N(CH_3)_4]$ -Kationen umgeben eine isolierte $[PdCl_4]$ -Baueinheit in Form eines quaderförmigen Polyeders, dabei beträgt der Abstand der $[N(CH_3)_4]$ -Kationen von N zu N innerhalb der (ab)-Ebene 6,243(1) Å und in der (ac)-Ebene 5,713(1) Å (vgl. Abb. 124). Durch allseitige Kantenverknüpfung solcher Polyeder lässt sich die Struktur von $[N(CH_3)_4]_2[PdCl_4]$ aufbauen.

Eine weitere Möglichkeit die Struktur zu betrachten ist, sie aus Schichten aufgebaut zu beschreiben. Abbildung 125 gibt eine solche Schichtabfolge wieder, dargestellt sind sechs Elementarzellen mit Blick in Richtung [100]. Die Schichtabfolge in Richtung der c-Achse, bestehend aus [PdCl₄]- (A) und [N(CH₃)₄]- (B) Baueinheiten, kann mit ABA'B' beschrieben werden, wobei die Schichten A' und B' durch Schraubung aus A bzw. B erzeugt werden.

Die Kristallstruktur von $[N(CH_3)_4]_2[PdCl_4]$ kann als homöotyp zu $[NH_4]_2[CuCl_2]\cdot 2H_2O$ beschrieben werden, in der Cu²⁺ linear von zwei Chloratomen und zwei Wassermolekülen koordiniert wird. Die Koordination wird zu einem stark verzerrten Oktaeder durch zwei weiter entfernte Chloratome der Lage 4g, die in $[N(CH_3)_4]_2[PdCl_4]$ nicht besetzt wird, erweitert. Acht Ammonium-Kationen umgeben einen verzerrten Cu²⁺-Oktaeder in Form eines quaderförmigen Polyeders wie in $[N(CH_3)_4]_2[PdCl_4]$.

Abbildung 123: Ausschnitt aus der Kristallstruktur von $[N(CH_3)_4]_2[PdCl_4]$

Abbildung 124: Koordination von $[N(CH_3)_4]$ -Kationen um eine $[PdCl_4]$ -Gruppe

Abbildung 125: Schichtabfolge in $[N(CH_3)_4]_2[PdCl_4]$ mit Blick in Richtung [100], $[N(CH_3)_4]$ -Baugruppen sind als blaue Tetraeder dargestellt

Abbildung 126: Blick in Richtung [001] von $[N(CH_3)_4]_2[PdCl_4]$, $[N(CH_3)_4]$ -Kationen sind als blaue Polyeder dargestellt

Abbildung 127: Blick in Richtung [001] von [NH₄]₂[CuCl₂]·2H₂O, [NH₄]-Kationen sind als blaue Polyeder dargestellt

4.2 $[N(CH_3)_4][Pd_2I_5]$

Die Verbindung $[N(CH_3)_4][Pd_2I_5]$ konnte bei Versuchen, Iodeinlagerungsverbindung mit einwertigen Kationen herzustellen, die größer als Cäsium sind, im System $[N(CH_3)_4]I/PdI_2/I_2$ synthetisiert werden. $[N(CH_3)_4][Pd_2I_5]$ liegt als Strukturvariante des $Cs[Pd_2Cl_5]$ -Typs [1] mit eckenverknüpften dimeren $[Pd_2I_5]$ -Baugruppen vor.

4.2.1 Darstellung und Charakterisierung von $[N(CH_3)_4][Pd_2I_5]$

Ein Gemenge aus PdI_2 , I_2 und $[N(CH_3)_4]I$ im Stoffmengenverhältnis 1:1:1 (Gesamtmasse 0,5 g) wurde in 1 ml frisch destillierter HI-Lösung bei 150 °C in einer Quarzglasampulle ungesetzt. Nach acht Wochen Temperdauer ist die Ampulle auf Raumtemperatur mit 1 °C/h abgekühlt, der Inhalt abfiltriert und mit wenig Ethanol und Diethylether gewaschen worden. Im Filter verblieben wenige farblose stabförmige Kristalle, von denen einige Kristalle mit gut ausgebildeten Begrenzungsflächen unter einem Polarisationsmikroskop ausgewählt und für Einkristallmessungen in Röntgenkapillaren abgefüllt wurden. Mit einem κ -CCD-Diffraktometer sind bei -150 °C Intensitätsdaten triklin gesammelt worden. Die Elementarzellenparameter aus Pulverbeugungsaufnahmen und Einkristallmessungen bei Raumtemperatur zeigen sehr gute Übereinstimmung.

	a [Å]	b [Å]	c [Å]	$lpha[^{\circ}]$	$oldsymbol{eta}[^{o}]$	$\gamma[^{\circ}]$
Einkristall	11,8899(2)	11,4562(2)	12,2366(2)	99,3994(7)	89,9941(7)	89,9980(6)
Pulver	11,883(2)	11,446(2)	12,226(2)	$99,\!39(1)$	90	90

Anhand der Auslöschungsbedingungen konnte der zentrosymmetrische Raumgruppentyp $P2_1/c$ (Nr. 14) bestimmt werden. Die Struktur wurde mittels direkter Methoden gelöst und die Lage der Wasserstoffatome aus den Differenzfourierkarten bestimmt und verfeinert. Weitere kristallografische Daten und Messparameter sind in den Tabellen 60 bis 62 wiedergegeben, ausgewählte interatomare Abstände und Bindungswinkel sind in den Tabellen 63 und 64 aufgeführt.

Abbildung 128: Pulverdiffraktogramm von $[N(CH_3)_4][Pd_2I_5]$, (+) gemessene, (-) berechnete Intensitätsdaten, (|) Lage möglicher BRAGG-Reflexe und darunter die Differenzkurve

Abbildung 129: Elektronenmikroskopische Aufnahme eines $[N(CH_3)_4][Pd_2I_5]$ -Kristalls

κ -CCD Datensatznummer	1807				
Summenformel	$[N(CH_3)_4][Pd_2I_5]$ (C ₄ H ₁₂ I ₅ NPd ₂)				
Kristallsystem	monoklin				
Raumgruppentyp (Nr.); Z	$P2_1/c$ (14); 4				
${\it Elementarzellen parameter}$	${ m a}=11,7816(2)~{ m \AA}$				
	${ m b}=11,\!2589(2)~{ m \AA}$				
	$ m c = 12,\!1980(2)~{ m \AA}$				
	$eta=98,\!471(1)^{\circ}$				
EZ-Volumen $[Å^3]$	1600, 39(5)				
Kristallgröße $[mm^3]$	$0,08 \times 0,08 \times 0,22$				
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$				
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$				
	Graphitmonochromator, CCD-Detektor,				
	ω -Scans, $3, 8^{\circ} \le \theta \le 31^{\circ}$				
Reflexbereich	$-17 \le h, l \le 17; -16 \le k \le 16$				
Completeness [%]	100				
Datenreduktion	DENZO + SCALEPACK [30]				
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]				
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix				
	SHELXL-97 [32]				
linearer Absorptions-					
koeffizient $[mm^{-1}]$	11,858				
Absorptionskorrektur	keine				
F(000)	1600				
Zahl der Reflexe					
gemessen	16990				
unabhängige (N)	5058				
davon mit $I > 2\sigma(I) (N')$	3952				
Anzahl der Parameter	158				
R_i (SHELXL-97) [%]	6,37				
$R(F)_N; R(F)_{N'}$ [%]	$5,70;\ 3,05$				
$wR(F^2)_N; w(F^2)_{N'}[\%]$	$4,96;\ 4,65$				
GooF	1,040				
Extinktionskoeffizient	0,00068(4)				
Restelektronendichte [Å ^{-3}]	-1,239 (0,79 Å von Pd(2))				
	$1,146 \ (0,90 \ \text{\AA von I}(3))$				

Tabelle 60: Kristallografische Daten und Messparameter von $[N(CH_3)_4][Pd_2I_5]$

Tabelle 61: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von $[N(CH_3)_4][Pd_2I_5]$ entsprechend $U_{eq} = \frac{1}{3}$ $\Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Atom	Punktlage	х	У	Z	U_{eq}
C(1)	$4\mathrm{e}$	0,3639(4)	0,5004(7)	0,0489(5)	0,042(1)
C(2)	$4\mathrm{e}$	0,1997(4)	0,3693(5)	0,0318(5)	0,036(1)
C(3)	$4\mathrm{e}$	0,1713(5)	0,5822(6)	0,0102(5)	0,038(1)
C(4)	$4\mathrm{e}$	0,2412(5)	0,4997(6)	0,1923(4)	0,035(1)
H(1a)	$4\mathrm{e}$	0,388(4)	0,570(5)	0,079(4)	0,03(1)
H(1b)	$4\mathrm{e}$	0,359(4)	0,506(5)	-0,020(5)	0,04(2)
H(1b)	$4\mathrm{e}$	0,417(4)	0,441(4)	0,097(4)	0,03(1)
H(2a)	$4\mathrm{e}$	0,190(5)	0,363(6)	-0,054(6)	0,09(2)
H(2b)	$4\mathrm{e}$	0,249(5)	0,313(6)	0,084(6)	0,10(2)
H(2c)	$4\mathrm{e}$	0,116(4)	0,370(4)	0,059(4)	0,03(1)
H(3a)	$4\mathrm{e}$	0,204(5)	0,648(6)	0,026(5)	0,06(2)
H(3b)	$4\mathrm{e}$	0,094(5)	0,576(5)	0,017(5)	0,07(2)
H(3c)	$4\mathrm{e}$	0,168(4)	0,568(5)	-0,075(5)	0,05(2)
H(4a)	$4\mathrm{e}$	0,266(4)	0,576(5)	0,219(4)	0,03(1)
H(4b)	$4\mathrm{e}$	0,294(4)	0,447(5)	0,228(4)	0,03(1)
H(4c)	$4\mathrm{e}$	0,168(4)	0,485(5)	0,209(4)	0,04(1)
I(1)	$4\mathrm{e}$	0,28458(2)	0,86709(3)	0,21332(2)	0,02163(7)
I(2)	$4\mathrm{e}$	0,13353(2)	0,44329(3)	0,47627(2)	0,02183(7)
I(3)	$4\mathrm{e}$	0,44382(2)	0,64427(3)	0,46901(2)	0,02431(8)
I(4)	$4\mathrm{e}$	0,39649(2)	0,32275(3)	-0,23503(2)	0,02644(8)
I(5)	$4\mathrm{e}$	0,00450(2)	0,74778(3)	0,25073(2)	0,02520(8)
N(1)	$4\mathrm{e}$	0,2440(3)	$0,\!4883(3)$	0,0705(3)	0,0211(8)
Pd(1)	$4\mathrm{e}$	0,07494(2)	0,59503(3)	$0,\!61910(2)$	0,01771(8)
Pd(2)	$4\mathrm{e}$	0,41544(2)	$0,\!48853(3)$	0,62128(2)	0,01788(8)

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
C(1)	0,027(2)	0,060(5)	0,039(3)	-0,002(3)	0,004(2)	-0,009(3)
C(2)	0,040(3)	0,033(4)	0,032(3)	-0,003(3)	-0,004(2)	-0,006(2)
C(3)	0,045(3)	0,030(4)	0,037(3)	0,009(3)	0,003(2)	0,010(3)
C(4)	0,055(3)	0,030(4)	0,022(3)	-0,001(2)	0,007(2)	0,005(3)
I(1)	0,0179(1)	0,0260(2)	0,0210(1)	0,0056(1)	0,0028(1)	-0,0014(1)
I(2)	0,0173(1)	0,0237(2)	0,0243(1)	-0,0053(1)	0,0024(1)	0,0025(1)
I(3)	0,0303(1)	0,0213(2)	0,0230(1)	$0,\!0013(1)$	0,0094(1)	0,0065(1)
I(4)	0,0302(1)	0,0262(2)	0,0231(1)	0,0027(1)	0,0046(1)	-0,0019(1)
I(5)	0,0250(1)	0,0263(2)	0,0257(2)	0,0058(1)	0,0082(1)	-0,0016(1)
N(1)	0,025(2)	0,016(2)	0,022(2)	-0,003(2)	0,004(1)	-0,001(2)
Pd(1)	0,0167(1)	0,0186(2)	0,0181(2)	-0,0012(1)	0,0036(1)	0,0007(1)
Pd(2)	0,0166(1)	0,0205(2)	0,0164(2)	-0,0014(1)	0,0023(1)	0,0013(1)

Tabelle 62: Thermische Auslenkungsparameter U_{ij} in Å² für [N(CH₃)₄][Pd₂I₅] (Standardabweichung) entsprechend exp $(-2\pi^2(U_{11}h^2a^{*^2} + \cdots + 2U_{23}klb^*c^*))$

Tabelle 63: Ausgewählte Abstände in $[N(CH_3)_4][Pd_2I_5]$ (Standardabweichung)

Bind	lung	Abstand [Å]	Bindı	ıng	Abstand [Å]
I(1) -	Pd(1)	2,6013(3)	C(1) -	H(1a)	0,89(6)
I(1) -	Pd(2)	2,6057(4)	C(1) -	H(1b)	0,84(6)
I(2) -	$\mathrm{Pd}(1)$	2,5943(3)	C(1) -	H(1c)	1,04(5)
I(2) -	Pd(1a)	2,6048(4)	C(2) -	H(2a)	1,04(7)
I(3) -	Pd(2)	2,5954(4)	C(2) -	H(2b)	1,02(7)
I(3) -	Pd(2b)	2,6114(4)	C(2) -	H(2c)	1,09(5)
I(4) -	Pd(2)	2,5925(4)	C(3) -	H(3a)	$0,\!84(7)$
I(5) -	Pd(1)	2,6060(4)	C(3) -	H(3b)	0,93(6)
N(1) -	C(1)	1,482(6)	C(3) -	H(3c)	1,05(6)
N(1) -	C(2)	$1,\!489(7)$	C(4) -	H(4a)	0,95(6)
N(1) -	C(3)	$1,\!486(7)$	C(4) -	H(4b)	0,92(5)
N(1) -	C(4)	1,496(6)	C(4) -	H(4c)	0,93(5)

Bindung			Winkel [°]	E	Bindun	g	Winkel [°]
Pd(1)-	I(1)	$-\mathrm{Pd}(2)$	106,91(1)	N(1)-	C(1)	-H(1c)	111(3)
Pd(1)-	I(2)	-Pd(1a)	94,72(1)	H(1a)-	C(1)	-H(1b)	108(5)
Pd(2)-	I(3)	-Pd(2b)	94,11(1)	H(1a)-	C(1)	-H(1c)	102(4)
I(1)-	$\operatorname{Pd}(1)$	-I(2)	179,55(1)	H(1b)-	C(1)	-H(1c)	124(4)
I(1)-	$\operatorname{Pd}(1)$	-I(5)	89,10(1)	N(1)-	C(2)	-H(2a)	111(4)
I(1)-	$\operatorname{Pd}(1)$	-I(2a)	94,31(1)	N(1)-	C(2)	-H(2b)	103(4)
I(2)-	$\operatorname{Pd}(1)$	-I(5)	91,31(1)	N(1)-	C(2)	-H(2c)	101(2)
I(2)-	$\mathrm{Pd}(1)$	-I(2a)	85,28(1)	H(2a)-	C(2)	-H(2b)	124(5)
I(2a)-	$\mathrm{Pd}(1)$	-I(5)	175,81(1)	H(2a)-	C(2)	-H(2c)	110(4)
I(1)-	Pd(2)	-I(3)	176, 17(2)	H(2b)-	C(2)	-H(2c)	106(4)
I(1)-	Pd(2)	-I(4)	92,44(1)	N(1)-	C(3)	-H(3a)	108(4)
I(1)-	Pd(2)	-I(3b)	91,92(1)	N(1)-	C(3)	-H(3b)	114(4)
I(3)-	Pd(2)	-I(4)	89,78(1)	N(1)-	C(3)	-H(3c)	109(3)
I(3)-	Pd(2)	-I(3b)	85,89(1)	H(3a)-	C(3)	-H(3b)	118(5)
I(3b)-	Pd(2)	-I(4)	175,64(2)	H(3a)-	C(3)	-H(3c)	108(5)
C(1)-	N(1)	-C(2)	108,9(4)	H(3b)-	C(3)	-H(3c)	101(5)
C(1)-	N(1)	-C(3)	110,0(4)	N(1)-	C(4)	-H(4a)	112(3)
C(1)-	N(1)	-C(4)	109,3(4)	N(1)-	C(4)	-H(4b)	108(3)
C(2)-	N(1)	-C(3)	109,5(4)	N(1)-	C(4)	-H(4c)	111(3)
C(2)-	N(1)	-C(4)	109,5(4)	H(4a)-	C(4)	-H(4b)	106(4)
C(3)-	N(1)	-C(4)	109,6(4)	H(4a)-	C(4)	-H(4c)	110(4)
				N(1)-	C(1)	-H(1a)	105(3)
				H(4b)-	C(4)	-H(4c)	111(5)
				N(1)-	C(1)	-H(1b)	105(3)

 $\textbf{Tabelle 64:} Ausgewählte Winkel in \ [N(CH_3)_4] [Pd_2I_5] \ (Standardabweichung)$

4.2.2 Beschreibung der Kristallstruktur von [N(CH₃)₄][Pd₂I₅]

In $[N(CH_3)_4][Pd_2I_5]$ liegt Palladium in der Oxidationstufe 2+ vor und ist von vier Iodatomen im Abstand von 2,5925(4) Å bis 2,6114(4) Å umgeben, die verknüpft über eine gemeinsame Kante dimere [Pd₂I₆]-Baueinheiten bilden. Aus der Kristallstrukturanalyse resultieren fünf Iodlagen und zwei Palladiumlagen, die zwei unterschiedliche dimere Baugruppen mit Pd(1) und Pd(2) ausbilden (vgl. Abb. 131). Die Kantenverknüpfung innerhalb der $[Pd_2I_6]$ -Gruppen wird über I(2) und I(3) realisiert. Der Winkel der verbrückenden Kante im Pd(1)-Dimeren beträgt $85,28(1)^{\circ}$, im Pd(2)-Dimeren beträgt der Winkel $85,89(1)^{\circ}$, und beide sind erwartungsgemäß für eine Kantenverknüpfung gestaucht. Die $[Pd_2I_6]$ -Baueinheiten sind transständig eckenverknüpft über I(1) mit einem Winkel von $106,91(1)^{\circ}$. Dabei werden die terminalen Iodpositionen von I(5) am Pd(1)-Dimer und von I(4) am Pd(2)-Dimer, welches zugleich den kürzesten Pd–I-Abstand von 2,5925(4)Å aufweist, eingenommen. Die so gebildeten tetrameren $[Pd_4I_{11}]$ -Baugruppen stellen die kleinste repetierende Einheit dar (vgl. Abb. 133), aus der gewellte, eindimensional unendliche Ketten vom Typ $\frac{1}{\infty}[(PdI_{3/2}I)_2^-]$ gebildet werden, die die Pd–I-Teilstruktur von $[N(CH_3)_4][Pd_2I_5]$ formen. Diese Pd–I-Teilstruktur ist direkt aus der Struktur von β -PdI₂ abzuleiten, in der dimere [Pd₂I₆]-Baueinheiten allseitig eckenverknüpft gewellte Schichten ausbilden $\binom{2}{\infty}[PdI_{4/2}]$. Anders als in $[N(CH_3)_4][Pd_2I_5]$, wo I(4) und I(5) die terminalen Positionen eines unendlichen Strangs bilden, sind sie in β -PdI₂ zu parallelen Nachbarsträngen verbunden und bilden so die 2-dimensionale Netzstruktur aus (vgl. Abb. 134). Dabei ist der Bindungswinkel zweier eckenverknüpfter [Pd₂I₆]-Baugruppen mit 100,56° leicht gestaucht gegenüber $[N(CH_3)_4][Pd_2I_5]$ mit 106,91(1)°.

Die Struktur, Bindungswinkel und Abstände des $[N(CH_3)_4]$ -Kations entsprechen publizierten Werten [103, 104], auf eine weitere Beschreibung wird an dieser Stelle verzichtet.

In der Elementarzelle von $[N(CH_3)_4][Pd_2I_5]$ liegen entlang der kristallografischen a-Achse fünf parallele ${}^1_{\infty}[(PdI_{3/2}I)_2^-]$ -Ketten, die eine tetragonale Stabpackung ausbilden [74]. Die leeren Kanäle werden mit $[N(CH_3)_4]$ -Kationen aufgefüllt (vgl. Abb. 137). Der kolumnare Aufbau der Struktur von $[N(CH_3)_4][Pd_2I_5]$ ist in Abbildung 136 verdeutlicht, die $[N(CH_3)_4]$ -Kationen sind der Übersichtlichkeit wegen nicht abgebildet. $[Pd_2I_6]$ -Baueinheiten werden von jeweils acht $[N(CH_3)_4]$ -Kationen koordiniert, so dass das gebildete Polyeder als verzerrtes Quader beschrieben werden kann. In Abbildung 138 ist das Verknüpfungsmuster der verzerrten Polyeder um die beiden dimeren $[Pd_2I_6]$ -Gruppen wiedergeben. Die gewellten $\frac{1}{\infty}[(PdI_{3/2}I)_2^-]$ -Ketten werden durch gewellte Schichten aus $[N(CH_3)_4]$ -Kationen voneinander getrennt, die eine $[N(CH_3)_4]$ -Kationenröhre bilden, in die $\frac{1}{\infty}[(PdI_{3/2}I)_2^-]$ -Ketten eingelagert sind.

Abbildung 130: Pd(1)-Dimer in $[N(CH_3)_4][Pd_2I_5]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 131: Pd(2)-Dimer in $[N(CH_3)_4][Pd_2I_5]$ (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 132: [N(CH₃)₄]-Kation (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 133: Tetramer aus den Dimeren von Pd(1) und Pd(2), verbrückt über I(1) mit einem Bindungswinkel von 106,91(1)°. Weitere Bindungswinkel sind Tabelle 64 zu entnehmen

Abbildung 134: Ausschnitt aus der Kristallstruktur von β -PdI₂ mit Blick in Richtung [100]. Gelb unterlegt ist eine isolierte $\frac{1}{\infty}[(PdI_{3/2}I)_2^-]$ -Kette in $[N(CH_3)_4][Pd_2I_5]$

Abbildung 135: a) Abbildung einer ${}^{1}_{\infty}[PdI_{4/2}]$ -Kette in β -PdI₂ b) Isolierte ${}^{1}_{\infty}[(PdI_{3/2}I)_{2}^{-}]$ -Kette in [N(CH₃)₄][Pd₂I₅]

Abbildung 136: Ausschnitt aus der Kristallstruktur von $[N(CH_3)_4][Pd_2I_5]$ mit Blick entlang [101], $[N(CH_3)_4]$ -Kationen sind als blaue Tetraeder dargestellt

Abbildung 137: Blick in [100], abgebildet sind 4 Elementarzellen von $[N(CH_3)_4][Pd_2I_5]$. $[N(CH_3)_4]$ -Kationen sind als blaue Polyeder dargestellt

4.2.3 Vergleich mit Cs[Pd₂Cl₅]

 $[N(CH_3)_4][Pd_2I_5]$ enthält wie Cs $[Pd_2Cl_5]$ [1] unendliche Ketten aus $\frac{1}{\infty}[(PdX_{3/2}X)_2^-]$ (X = Cl, I), die direkt aus der Struktur von β -PdI₂ abgeleitet werden können. Dabei werden aufgrund der unterschiedlichen Anionen leicht unterschiedliche Kettenstränge ausgebildet, die sich vor allem im Bindungswinkel der dimeren Baugruppen unterscheiden (vgl. Abb. 139 und Abb. 140).

Die Kristallstruktur von $Cs[Pd_2Cl_5]$ wird durch alternierende Lagen in Richtung [100] aus unendlichen Ketten und Cäsium gebildet, wobei die $\frac{1}{\infty}[(PdCl_{3/2}Cl)_2^-]$ -Ketten in Richtung [001] übereinander gestapelt liegen (vgl. Abb. 141). In der Kristallstruktur von [N(CH₃)₄][Pd₂I₅] wird jede unendliche Kette von einem Kanal aus [N(CH₃)₄]-Kationen eingeschlossen (s. Abb. 137).

Abbildung 139: Vergleich der Kettenstruktur von a) $[N(CH_3)_4][Pd_2I_5]$ und b) $Cs[Pd_2Cl_5]$

Abbildung 140: Vergleich der Kettenstruktur von a) $[N(CH_3)_4][Pd_2I_5]$ und b) $Cs[Pd_2Cl_5]$, mit Blick in die Kettenlängsachse

Abbildung 141: Ausschnitt aus der Kristallstruktur von $Cs[Pd_2Cl_5]$ mit Blick in Richtung [001]

4.2.4 Schwingungsspektroskopische Untersuchungen von $[N(CH_3)_4][Pd_2I_5]$

Es wurden RAMAN- und IR-Spektren von $[N(CH_3)_4][Pd_2I_5]$ angefertigt. Die Anzahl möglicher Normalschwingungen weist auf komplizierte Spektren hin. So sind im IR-Spektrum 34 Schwingungen (12 B_{1u} + 10 B_{3u} + 12 B_{3u}) und im RAMAN-Spektrum 48 Banden (13 A_g + 11 B_{1g} + 13 B_{2g} + 11 B_{3g}) zu erwarten. Von einer Zuordnung wurde aufgrund der Vielzahl möglicher Schwingungen und der Komplexität der Spektren verzichtet.

RAMAN		I	R
38	100	53	193
44	108	62	203
50	117	70	213
61	124	77	238
68	132	87	281
72	140	91	290
76	148	112	313
84	156	153	453
92	175	180	
96	191	190	

Tabelle 65: Lage der Schwingungsbanden von $[N(CH_3)_4][Pd_2I_5]$ in cm⁻¹

Abbildung 142: RAMAN-Spektrum von $[N(CH_3)_4][Pd_2I_5]$

Abbildung 143: IR-Spektrum von $[N(CH_3)_4][Pd_2I_5]$

5 Pd(II)-Pyridinaddukte

5.1 $Pd(SCN)_2(C_5H_5N)_2$

Versuche mikrokristallines $Pd(SCN)_2$, dessen Kristallstruktur noch nicht charakterisiert ist, aus unterschiedlichen Lösungsmitteln umzukristallisieren führten bei Einsatz von Pyridin zur Ausbildung des Adduktes trans- $[Pd(py)_2](SCN)_2$. Die Struktur von trans- $[Pd(py)_2](SCN)_2$ reiht sich in die Gruppe der Pyridinaddukte der trans-Palladium(II)halogeniden [105–107] ein.

5.1.1 Darstellung und Charakterisierung von trans- $[Pd(py)_2](SCN)_2$

1 g Pd(SCN)₂ wurden in 5 ml Pyridin unter starkem Rühren unter Rückfluß gelöst und heiß filtriert. Das Filtrat ist im Exsikkator über Trockenmittel gelagert worden. Nach sieben Tagen kristallisierten hellgelbe bis orange stäbchenförmige Kristalle aus, die unter einem Polarisationsmikroskop gut auslöschten. Einige Kristalle sind isoliert und für Messungen an einem κ -CCD-Diffraktometer in Glaskapillaren abgefüllt worden. Anhand einiger Beugungsaufnahmen konnte ein geeigneter Kristall für die Sammlung von Intensitätsdaten ausgewählt werden, dessen verfeinerte Elementarzellenparameter gut mit denen der RIETVELD-Analyse übereinstimmen.

Parameter	Einkristall	Pulver
a [Å]	5,2918(1)	5,2726(4)
b [Å]	6,9133(2)	6,8849(7)
c [Å]	10,5353(3)	10,498(1)
lpha [°]	96,964(1)	96,962(7)
β [°]	98,121(1)	$98,\!087(7)$
γ [°]	107,282(1)	107,247(5)

Die Auslöschungsbedingungen der Einkristalldaten wiesen auf die möglichen Raumgruppentypen P1 (Nr. 1) und P $\overline{1}$ (Nr. 2) hin, wovon sich der zentrosymmetrische Raumgruppentyp P $\overline{1}$ (Nr. 2) im Laufe der Verfeinerung als zutreffend erwies. Die Schweratomlagen sind durch direkte Methoden aufgefunden, die Lage der Wasserstoffatome aus den Differenzfourierkarten ermittelt und frei verfeinert worden. Angaben zur Sammlung der Intensitäts- und kristallografischen Daten sind in den Tabellen 66, 67 und 68 aufgeführt. Ausgewählte Winkel und Abstände sind in Tabelle 69 aufgelistet.

Abbildung 144: Pulverdiffraktogramm von trans- $[Pd(py)_2](SCN)_2$, (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve. Die asymmetrische Verbreiterung der Beugungsreflexe im Bereich 4° $\leq 2\theta \leq 15°$ ist für das verwendete GUINIER-Diffraktometer (Huber G670) charakteristisch

Abbildung 145: Elektronenmikroskopische Aufnahme eines trans- $[Pd(py)_2](SCN)_2$ -Kristalls

κ -CCD Datensatznummer	1910
Summenformel	$[Pd(py)_2](SCN)_2$ $(C_{12}H_{10}N_4PdS_2)$
Kristallsystem	triklin
Raumgruppentyp (Nr.); Z	$P\bar{1}$ (2); 1
Elementarzellenparameter	$\mathrm{a}=~5{,}2918(1)~\mathrm{\AA}~~lpha=~96{,}964(1)^{\circ}$
	$\mathrm{b}=~6{,}9133(2)~\mathrm{\AA}~~eta=~98{,}121(1)^{\circ}$
	${ m c}=10{,}5353(3)~{ m \AA}~~\gamma=107{,}282(1)^{\circ}$
EZ-Volumen $[Å^3]$	358,86(2)
Kristallgröße [mm ³]	$0,25 \times 0,27 \times 0,27$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	Graphitmonochromator, CCD-Detektor;
	$\omega\text{-Scans},4^\circ \leq \theta \leq 29^\circ$, T = 293 K,
Reflexbereich	$-7 \le h \le 6; -9 \le k \le 9; -14 \le l \le 14$
Completeness [%]	98,2
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	1,573
Absorptionskorrektur	keine
F(000)	188
Zahl der Reflexe	
gemessen	3606
unabhängige (N)	1830
davon mit $I > 2\sigma(I) (N')$	1334
Anzahl der Parameter	109
R_i (SHELXL-97) [%]	2,17
$R(F)_N; R(F)_{N'} [\%]$	$3,75;\ 2,17$
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	3,40; 3,31
GooF	0,84
Extinktionskoeffizient	0,013(1)
Restelektronendichte [Å ^{-3}]	-0,30 (0,96 Å von Pd)
	0,26 (0,91 Å von S)

Tabelle 66: Kristallografische Daten und Messparameter von trans- $[Pd(py)_2](SCN)_2$

Atom	$\mathbf{Punktlage}$	x	У	\mathbf{Z}	$\mathbf{U}_{\mathbf{eq}}$
Pd	1a	0	0	0	0,0449(1)
C(1)	2i	-0,0778(4)	0,2717(3)	-0,1880(2)	0,0534(5)
C(2)	2i	-0,0579(4)	0,3534(3)	-0,2990(2)	0,0656(6)
C(3)	2i	0,0868(4)	0,2943(3)	-0,3845(2)	0,0616(5)
C(4)	2i	0,2099(4)	0,1544(3)	-0,3561(2)	0,0572(5)
C(5)	2i	0,1825(4)	0,0757(3)	-0,2444(2)	0,0532(5)
H(1)	2i	-0,169(3)	0,306(2)	-0,130(2)	0,054(5)
H(2)	2i	-0,139(4)	0,441(3)	-0,312(2)	0,075(7)
H(3)	2i	0,095(3)	0,341(3)	-0,459(2)	0,058(5)
H(4)	2i	0,310(3)	0,111(3)	-0,406(2)	0,058(5)
H(5)	2i	0,260(3)	-0,015(2)	-0,222(2)	0,056(5)
С	2i	0,4197(3)	0,2530(3)	0,2601(2)	0,0506(4)
N(1)	2i	0,0400(2)	0,13198(19)	-0,1597(1)	0,0422(3)
Ν	2i	0,4563(3)	0,2422(3)	0,3686(2)	0,0709(5)
\mathbf{S}	2i	0,38052(9)	0,27541(7)	0,10258(5)	0,0627(1)

Tabelle 67: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von trans- $[Pd(py)_2](SCN)_2$ entsprechend $U_{eq} = \frac{1}{3} \sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Tabelle 68: Thermische Auslenkungsparameter U_{ij} in Å² für trans- $[Pd(py)_2](SCN)_2$ (Standardabweichung) entsprechend exp $(-2\pi^2(U_{11}h^2a^{*2} + \cdots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pd	0,0510(1)	0,0507(1)	0,0380(1)	0,01923(9)	0,01184(8)	0,01433(9)
C(1)	0,061(1)	0,054(1)	$0,\!051(1)$	0,023(1)	$0,\!0170(1)$	0,016(1)
C(2)	0,079(1)	0,060(1)	0,068(1)	0,030(1)	0,014(1)	0,030(1)
C(3)	0,070(1)	0,065(1)	0,046(1)	0,009(1)	0,011(1)	0,025(1)
C(4)	0,057(1)	0,068(1)	0,045(1)	$0,\!014(1)$	$0,\!017(1)$	0,012(1)
C(5)	0,057(1)	0,062(1)	$0,\!049(1)$	0,027(1)	0,0152(9)	0,019(1)
С	0,052(1)	0,045(1)	$0,\!0531(1)$	0,0116(8)	0,0122(9)	0,008(1)
N(1)	0,0461(8)	0,0457(8)	$0,\!0376(8)$	0,0156(7)	0,0103(6)	0,0125(7)
Ν	0,079(1)	$0,\!075(1)$	0,048(1)	0,0108(9)	0,0094(9)	0,0102(9)
S	0,0681(3)	0,0634(3)	0,0473(3)	$0,\!0055(3)$	0,0070(2)	0,0180(3)

Tabelle 69: AusgewählteAbstände,MultiplizitätenundWinkelintrans- $[Pd(py)_2](SCN)_2$ (Standardabweichung)

Bindu	ng	Abstand	[Å]	E	Bindun	g	Winkel	[°]
С —	Ν	1,147(3)	$2 \times$	N-	С	-S	177,5(2)	
С —	\mathbf{S}	1,675(2)	$2 \times$	C(2)-	C(1)	-N(1)	121,8(2)	
C(1) —	C(2)	1,363(3)		C(2)-	C(1)	-H(1)	123(1)	
C(1) —	N(1)	1,336(3)		N(1)-	C(1)	$-\mathrm{H}(1)$	115(1)	
C(1) —	H(1)	0,89(2)		C(1)-	C(2)	-C(3)	120,1(2)	
C(2) —	C(3)	1,362(3)		C(1)-	C(2)	-H(2)	117(1)	
C(2) —	H(2)	0,85(2)		C(3)-	C(2)	-H(2)	122(1)	
C(3) —	C(4)	1,355(3)		C(2)-	C(3)	-C(4)	118,6(2)	
C(3) —	H(3)	0,88(2)		C(2)-	C(3)	$-\mathrm{H}(3)$	121(1)	
C(4) —	C(5)	1,363(3)		C(4)-	C(3)	$-\mathrm{H}(3)$	120(1)	
C(4) —	H(4)	0,88(2)		C(3)-	C(4)	-C(5)	119,2(2)	
C(5) —	N(1)	1,340(2)		C(3)-	C(4)	$-\mathrm{H}(4)$	123(1)	
C(5) —	H(5)	0,88(2)		C(5)-	C(4)	$-\mathrm{H}(4)$	117(1)	
N(1) —	Pd	2,016(1)	$2 \times$	C(4)-	C(5)	-N(1)	122,8(2)	
S —	Pd	2,3358(4)	$2 \times$	C(4)-	C(5)	-H(5)	122(1)	
				N(1)-	C(5)	-H(5)	114(1)	
				C(1)-	N(1)	-C(5)	117,4(1)	
				C(1)-	N(1)	-Pd	122,5(1)	
				C(5)-	N(1)	-Pd	120,0(1)	
				C-	\mathbf{S}	-Pd	105,2(1)	
				N(1)-	Pd	-S	85,19(4)	$2 \times$
				N(1)-	Pd	-S	94,81(4)	$2 \times$
				N(1)-	Pd	-N(1)	180	
				S-	Pd	-S	180	

5.1.2 Beschreibung der Kristallstruktur von trans-[Pd(py)₂](SCN)₂

Trans- $[Pd(py)_2](SCN)_2$ kristallisiert im Raumgruppentyp $P\bar{1}$ (Nr. 2) mit einer Formeleineit pro Elementarzelle und besteht aus neutralen trans- $[Pd(py)_2](SCN)_2$ -Komplexen. Darin ist Pd^{2+} von zwei Thiocyanat-Gruppen mit einem Pd–S-Abstand von 2 × 2,3358(4) Å transständig gebunden. Der aufgespannte Winkel zwischen S–Pd–S beträgt 180°. Pd wird von zwei weiteren Pyridin-Moleküle im Winkel N(1)–Pd–N(1) von 180° mit einem Pd–N(1)-Abstand von 2 × 2,016(1) Å koordiniert. Die so aufgespannte PdN₂S₂-Baugruppe ist planar und die Pyridinmoleküle liegen symmetriebedingt in einer Ebene. Die Geometrie der Pyridinringe ist vergleichbar mit der in den wenigen untersuchten Verbindungen, die eine $[Pd(py)]^{2+}$ Umgebung enthalten, nämlich trans-Pd(py)₂Cl₂ [106], trans-Pd(py)₂I₂ [105] und trans-Pd(py)₂I₆ [107]. Unterschiede bestehen in den aufgespannten Winkeln zwischen Palladium und (Pseudo-)Halogen. Hier beträgt der Winkel genau 180°, ebenso wie in trans-Pd(py)I₂ und trans-Pd(py)I₆, wohingegen in trans-Pd(py)Cl₂ der Winkel nur 178,3(1)° beträgt.

Die C–C-Bindungsabstände im Pyridinmolekül von trans- $[Pd(py)_2](SCN)_2$ liegen zwischen 1,355(3) Å und 1,363(3) Å und sind mit denen von trans- $Pd(py)_2I_6$ mit 1,363(15) Å bis 1,392(14) Å und denen von trans- $Pd(py)_2Cl_2$ mit 1,336(7) Å bis 1,388(8) Å vergleichbar. Ebenso verhält es sich mit den C–N-Bindungslängen im Pyridinmolekül, die zwischen 1,336(3) Å und 1,340(2) Å liegen, trans- $Pd(py)_2I_6$ d[C–N] = 1,328(9) Å bis 1,336(9) Å und trans- $Pd(py)_2Cl_2$ d[C–N] = 1,336(6) Å bis 1,356(6) Å.

Innerhalb der Thiocyanatgruppe treten S–C-Abstände mit 1,675(2) Å und C–N-Abstände mit 1,147(3) Å auf, diese sind mit denen von CuSCN (d[C-S] = 1,695 Å, d[C-N] = 1,116 Å [108]), Hg(SCN)₂ (d[C-S] = 1,623 Å, d[C-N] = 1,176 Å [109]) oder Ni(SCN)₂ (d[C-S] = 1,653 Å, d[C-N] = 1,159 Å [110]) vergleichbar. Der Pd–S-Abstand von 2,3358(2) Å zeigt keine großen Abweichungen zu typischen Abstandswerten in $[M(SCN)_4]$ -Komplexen wie z. B. d[Cu-S] = 2,367 Å [108], d[Ni-S] = 2,511 Å [110], d[Ag-S] = 2,428 Å und d[Pd-S] = 2,343 Å [111].

In der Kristallstruktur sind trans-[Pd(py)₂](SCN)₂-Komplexmoleküle entlang der kristallografischen a-Achse gestapelt, deren kürzester Pd–Pd-Abstand 5,2918(1) Å beträgt. Es treten keine ungewöhnlich kurzen intermolekularen Kontakte auf. Es existieren auch keine bemerkenswerten Wechselwirkungen zwischen den SCN-Gruppen und den Pyridinringen, der Abstand zum Ringmittelpunkt $(N \cdot \cdot \cdot M_{py})$ liegt bei 3,438(3) Å.

Genauso wie trans- $Pd(py)_2Cl_2$ [106] und trans- $Pd(py)_2I_2$ [105] bildet trans-[$Pd(py)_2$](SCN)₂ eine Kristallstruktur, die aus isolierten Komplexmolekülen aufgebaut wird (vgl. Abb. 148). Ebenso wie in trans- $Pd(py)_2Cl_2$, wo die Pyridinringe um 132,9° bzw. 109,1° aus der PdN_2X_2 -Ebene (X = Cl, I, S) gedreht sind (vgl. Abb. 148c) oder bei $Pd(py)_2I_2$, wo die Pyridinringe eine Rotation von 76,4° aus der Ebene (vgl. Abb. 148b) aufzeigen, liegen in trans-[$Pd(py)_2$](SCN)₂ die Pyridinringe um 88,1 (1)° aus der Ebene gedreht vor (vgl. Abb. 148a).

Abbildung 146: Darstellung eines neutralen $[Pd(py)_2](SCN)_2$ -Komplexes. (Schwingungsellipsoide mit 50% Aufenthaltswahrscheinlichkeit)

Abbildung 147: Ausschnitt aus der Kristallstruktur von trans- $[Pd(py)_2](SCN)_2$ mit Blick in Richtung [100]

Abbildung 148: Molekülstruktur von a) trans- $[Pd(py)_2](SCN)_2$, b) trans- $Pd(py)_2I_2$ und c) trans- $Pd(py)_2Cl_2$

Abbildung 149: Ausschnitt aus der Kristallstruktur von trans-Pd(py)₂Cl₂

5.1.3 Thermochemische Untersuchungen

An trans- $[Pd(py)_2](SCN)_2$ sind DTA/TG-Untersuchungen im Bereich zwischen Raumtemperatur und 150 °C durchgeführt worden. Innerhalb des Untersuchungsbereichs ist trans- $[Pd(py)_2](SCN)_2$ stabil und zeigt keinerlei thermische Effekte.

5.1.4 Schwingungsspektroskopische Untersuchungen

Aufgrund der niedrigen Symmetrie der Verbindung trans- $[Pd(py)_2](SCN)_2$ sind komplexe RAMAN- und IR-Spektren zu erwarten. Die Analyse der Normalschwingungsmoden [64] ergibt 87 RAMAN- und IR-aktive Schwingungen. Die aufgezeichneten Spektren (vgl. Abb. 150 und Abb. 151) zeigen wie erwartet den komplexen Verlauf, der eine vollständige Zuordnung aller Schwingungsbanden nicht ermöglicht. Charakteristische Schwingungsbanden sind in nachfolgender Tabelle der aufgezeichneten Schwingungsfrequenzen aufgeführt.

IF	ł	Raman		
56, 64, 70, 80		41, 57, 67, 98		
86,106,111,117		126, 210, 273		
123,152,175		461, 649,659, 681	$ u(\mathrm{py}) $	
195		697, 760, 772, 887	$ u(\mathrm{py})$	
214	$ u(\mathrm{Pd-NC_5H_5}) $	944	$ u(\mathrm{py}) $	
252		1025	$ u(\mathrm{py}) $	
273	$ u(\mathrm{Pd} ext{-SCN}) $	1077	$ u(\mathrm{py})$	
291	$ u(\mathrm{Pd} ext{-SCN}) $	1159	$ u(\mathrm{py}) $	
303, 390		1208, 1246	$ u(\mathrm{py}) $	
431	$\delta(SCN)$	1309		
457		1344	$ u(\mathrm{py}) $	
469		1401		
		1451, 1486, 1572, 1608	$ u(\mathrm{py}) $	
		2121	$\nu(C-N)$	
Zuordnung n	ach [62, 63]	— keine Zuordnu	ng	

Tabelle 70: IR- und RAMAN-Frequenzen von trans- $[Pd(py)_2](SCN)_2$ in cm⁻¹

Abbildung 150: RAMAN-Spektrum von trans- $[Pd(py)_2](SCN)_2$

Abbildung 151: IR-Spektrum von trans- $[Pd(py)_2](SCN)_2$

5.2 $[Pd(C_5H_5N)_4][Hg(SCN)_4]$

Tetrapyridinpalladium-tetrathiocyanatomercurat(II) entsteht bei der Umsetzung von $Pd(SCN)_2$ und $Hg(SCN)_2$ in Pyridin und bildet eine Kristallstruktur, die aus den Komplexionen $[Pd(py)_4]^{2+}$ und $[Hg(SCN)_4)]^{2-}$ besteht.

5.2.1 Darstellung und Charakterisierung von $[Pd(py)_4][Hg(SCN)_4)]$

0,222 g Pd(SCN)₂ und 0,316 g Hg(SCN)₂ wurden in 1 g Pyridin unter leichtem Erwärmen mäßig gerührt und warm filtriert. Nach dem Eintrocknen des Filtrats verblieben farblose, leicht verwachsene Kristalle mit gut ausgebildeten Begrenzungsflächen, von denen einige unter einem Polarisationsmikroskop isoliert und in Glaskapillaren für Einkristallaufnahmen gefüllt wurden. Ein gut streuender Kristall ist ausgewählt und bei Raumtemperatur mit einem κ -CCD-Diffraktometer triklin vermessen worden. Die aus der Verfeinerung über alle gemessenen Reflexe bestimmten Elementarzellenparameter lassen sich durch geeignete Transformation in ein monoklines Kristallsystem mit C-Zentrierung überführen.

$$\begin{array}{rcrcrcrc} a & = & 9,7451(1) \text{ Å}, & \alpha & = & 89,637(1)^{\circ} & \underbrace{\vec{t}=\begin{pmatrix} 1 & \bar{2} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{b & = & 10,1033(1) \text{ Å}, & \beta & = & 89,999(1)^{\circ} & \underbrace{\vec{t}=\begin{pmatrix} 1 & \bar{2} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{c & = & 16,8939(3) \text{ Å}, & \gamma & = & 61,164(1)^{\circ} & & c = 16,8939(3) \text{ Å} \\ \beta & = 90,414(1)^{\circ} \end{array}$$

Die verfeinerten Elementarzellenparameter der Pulverdaten a = 17,6825(8) Å, b = 9,7326(5) Å, c = 16,879(1) Å und β = 90,481(4)° stimmten mit denen der Einkristallmessungen gut überein. Die systematischen Auslöschungen ließen auf die möglichen Raumgruppentypen Cc (Nr. 9) und C2/c (Nr. 15) schließen, wovon sich C2/c (Nr. 15) im Laufe der Verfeinerung als zutreffend erwies. Die Schweratomlagen konnten durch direkte Methoden aufgefunden und die Lage der Wasserstoffatome aus den Differenzfourierkarten ermittelt und frei verfeinert werden. Angaben zur Sammlung der Intensitätsund kristallografischen Daten sind in den Tabellen 71, 72 und 73 aufgeführt. Ausgewählte Winkel und Abstände sind in Tabelle 74 aufgelistet.

Abbildung 152: Pulverdiffraktogramm von [Pd(py)₄][Hg(SCN)₄)], (+) gemessen, (-) berechnet, (|) mögliche BRAGG-Positionen und darunter die Differenzkurve

Abbildung 153: Elektronenmikroskopische Aufnahme eines $[Pd(py)_4][Hg(SCN)_4)]$ -Kristalls

κ -CCD Datensatznummer	1971
Summenformel	$[\mathrm{Pd}(\mathrm{py})_4][\mathrm{Hg}(\mathrm{SCN})_4)] \qquad (\mathrm{C}_{24}\mathrm{H}_{20}\mathrm{HgN}_8\mathrm{PdS}_4)$
Kristallsystem	monoklin
Raumgruppentyp (Nr.); Z	C2/c (15); 4
Elementarzellenparameter	$a{=}17,7011(2)$ Å
	${ m b}=9,7451(1)~{ m \AA}~~eta=90,414(1)^\circ$
	$c{=}16{,}8939(3)$ Å
EZ-Volumen $[Å^3]$	2914,10(7)
Kristallgröße [mm ³]	$0,18 \times 0,18 \times 0,18$
Messung	Enraf-Nonius $\kappa\text{-}\mathrm{CCD}\text{-}\mathrm{Vierkreisdiffraktometer},$
	$\text{Mo-K}_{\alpha},\lambda=0{,}71073\text{ Å},$
	Graphitmonochromator, CCD-Detektor;
	$\omega\text{-Scans},3^\circ \leq \theta \leq 30^\circ$, T = 293 K,
Reflexbereich	$-25 \le h \le 25, -14 \le k \le 15, -24 \le l \le 24$
Completeness $[\%]$	99,8
Datenreduktion	DENZO + SCALEPACK [30]
Strukturaufklärung	direkte Methoden, SHELXS-97 [31]
Verfeinerung	minimieren von $\Sigma w \left[F^2(o) - F^2(c)\right]^2$, volle Matrix
	SHELXL-97 [32]
linearer Absorptions-	
koeffizient $[mm^{-1}]$	6,195
Absorptionskorrektur	keine
F(000)	1640
Zahl der Reflexe	
gemessen	17515
unabhängige (N)	4645
davon mit $I > 2\sigma(I) (N')$	3389
Anzahl der Parameter	215
R_i (SHELXL-97) [%]	3,11
$R(F)_N; R(F)_{N'} [\%]$	3,78; 2,10
$wR(F^2)_N; wR(F^2)_{N'}[\%]$	$3,91;\ 3,71$
GooF	0,877
Extinktionskoeffizient	0,00056(3)
Restelektronendichte [Å ^{-3}]	-0.55 (0.74 Å von Hg)
	$0,49 \ (0,86 \ \text{\AA von S}(2))$

Tabelle 71: Kristallografische Daten und Messparameter von $[Pd(py)_4][Hg(SCN)_4)]$

Atom	Punktlage	x	у	Z	U_{eq}
Pd(1)	4d	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{1}{2}$	0,03616(6)
$\operatorname{Hg}(1)$	$4\mathrm{e}$	$\frac{1}{2}$	0,60440(1)	$\frac{1}{4}$	0,04913(5)
C(1)	8f	0,5754(1)	0,7531(2)	0,0948(1)	0,0578(6)
C(2)	8f	0,6584(1)	0,4825(2)	0,3292(1)	0,0449(5)
C(11)	8f	0,8026(1)	0,6545(3)	0,6566(1)	0,0471(5)
C(12)	8f	0,8232(1)	0,5647(3)	0,7156(1)	0,0567(6)
C(13)	8f	0,8204(1)	0,4266(3)	0,7005(2)	0,0590(6)
C(14)	8f	0,7969(1)	0,3829(3)	0,6281(2)	0,0559(6)
C(15)	8f	0,7771(1)	0,4759(2)	0,5707(1)	0,0467(5)
C(21)	8f	0,8990(1)	0,8594(2)	$0,\!4550(1)$	0,0444(5)
C(22)	8f	0,9709(1)	0,8602(3)	$0,\!4253(1)$	0,0518(6)
C(23)	8f	0,9998(1)	0,7435(3)	0,3942(2)	0,0659(7)
C(24)	8f	0,9561(1)	0,6280(3)	0,3927(2)	0,0748(8)
C(25)	8f	0,8840(1)	0,6321(2)	0,4231(2)	0,0570(6)
H(11)	8f	0,799(1)	0,742(2)	$0,\!665(1)$	0,067(8)
H(12)	8f	0,835(1)	0,603(2)	0,763(1)	0,059(7)
H(13)	8f	0,835(1)	0,371(2)	0,740(1)	0,065(7)
H(14)	8f	0,789(1)	0,297(3)	0,616(1)	0,072(8)
H(15)	8f	0,7564(7)	0,452(1)	0,5127(9)	0,012(3)
$\mathrm{H}(21)$	$8\mathrm{f}$	0,877(1)	0,931(2)	$0,\!480(1)$	0,040(6)
$\mathrm{H}(22)$	$8\mathrm{f}$	0,998(1)	0,936(2)	0,424(1)	0,054(7)
H(23)	$8\mathrm{f}$	1,050(1)	0,740(2)	0,375(1)	0,073(8)
H(24)	$8\mathrm{f}$	0,969(1)	0,540(3)	0,374(2)	0,10(1)
$\mathrm{H}(25)$	$8\mathrm{f}$	0,853(1)	0,546(2)	0,428(1)	0,071(7)
N(1)	8f	0,6346(1)	0,7577(3)	0,0687(2)	0,1032(9)
N(2)	8f	$0,\!6899(1)$	0,5008(2)	0,3878(1)	0,0664(6)
N(11)	8f	0,7803(8)	0,6114(1)	0,5850(1)	0,0380(4)
N(21)	8f	0,85575(8)	0,7469(1)	0,45439(9)	0,0383(4)
S(1)	8f	0,48779(3)	0,75465(6)	0,12863(4)	0,0606(2)
S(2)	8f	0,61692(3)	0,45185(7)	0,24278(3)	0,0597(2)

Tabelle 72: Fraktionelle Atomlagekoordinaten und äquivalente thermische Auslenkungsparameter U_{eq} von $[Pd(py)_4][Hg(SCN)_4)]$ entsprechend $U_{eq} = \frac{1}{3}$ $\sum_i \sum_j U_{ij} a_i^* a_j^* a_i a_j$ in Å² (Standardabweichung)

Tabelle 73: Thermische Auslenkungsparameter U_{ij} in Å² für $[Pd(py)_4][Hg(SCN)_4)]$ (Standardabweichung) entsprechend exp $(-2\pi^2(U_{11}h^2a^{*2} + \dots + 2U_{23}klb^*c^*))$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
Pd(1)	$0,\!0351(1)$	0,0349(1)	0,0384(1)	0,00330(8)	-0,00041(9)	0,00229(8)
Hg(1)	$0,\!04526(7)$	0,05552(9)	0,04658(8)	0	-0,00094(5)	0
C(1)	0,062(1)	$0,\!051(1)$	0,060(2)	0,012(1)	-0,001(1)	-0,000(1)
C(2)	0,048(1)	0,036(1)	$0,\!051(1)$	0,0001(9)	0,002(1)	0,0030(8)
C(11)	$0,\!049(1)$	0,047(1)	0,045(1)	0,001(1)	-0,003(1)	-0,003(1)
C(12)	$0,\!057(1)$	0,071(2)	0,042(1)	0,006(1)	-0,005(1)	-0,004(1)
C(13)	$0,\!054(1)$	0,065(2)	0,058(2)	0,023(1)	-0,003(1)	0,007(1)
C(14)	$0,\!058(1)$	0,041(1)	0,068(2)	0,009(1)	-0,003(1)	0,006(1)
C(15)	0,049(1)	0,042(1)	0,049(1)	0,002(1)	-0,007(1)	0,0064(9)
C(21)	0,048(1)	0,046(1)	0,039(1)	0,0013(9)	-0,000(1)	-0,000(1)
C(22)	$0,\!048(1)$	0,060(2)	0,048(1)	0,010(1)	0,001(1)	-0,007(1)
C(23)	0,047(1)	0,075(2)	0,076(2)	0,014(1)	0,018(1)	0,007(1)
C(24)	0,067(2)	0,055(2)	0,103(2)	0,002(1)	0,030(1)	0,015(1)
C(25)	$0,\!055(1)$	0,0426(1)	0,074(2)	0,001(1)	0,013(1)	0,003(1)
N(1)	0,068(2)	0,121(2)	0,121(2)	0,049(2)	0,020(2)	0,010(1)
N(2)	$0,\!079(1)$	0,061(1)	$0,\!059(1)$	-0,008(1)	-0,018(1)	0,014(1)
N(11)	$0,\!0339(8)$	0,0377(9)	0,042(1)	0,0037(7)	-0,0018(7)	0,0023(7)
N(21)	$0,\!0352(8)$	0,0389(9)	0,041(1)	0,0040(7)	0,0010(7)	0,0024(7)
S(1)	0,0542(3)	0,0697(4)	0,0580(4)	0,0166(3)	0,0000(3)	0,0050(3)
S(2)	$0,\!0509(3)$	0,0772(4)	0,0509(4)	-0,0146(3)	-0,0063(3)	0,0170(3)

	we	eichung)			[(FJ)	+J[O()	/4/] (********
В	indu	ing	Abstand [Å]]	Bindung	g	Winkel [°]
C(11)		C(12)	1,374(4)	S(2)-	Hg	-S(2a)	108,73(2)
C(12)		C(13)	1,371(4)	S(1a)-	Hg	-S(2a)	111,31(2)
C(13)		C(14)	1,357(4)	S(1)-	Hg	-S(1a)	109,20(2)
C(14)		C(15)	1,372(4)	S(1)-	Hg	-S(2a)	108, 16(2)
C(21)		C(22)	1,370(3)	S(1)-	Hg	-S(2)	111,31(2)
C(22)		C(23)	1,354(4)	S(1a)-	Hg	-S(2)	108, 16(2)
C(23)		C(24)	1,366(4)	N(11)-	Pd	-N(21b)	88,90(6)
C(24)		C(25)	1,379(4)	N(11b)-	Pd	-N(21)	88,90(6)
C(11)		H(11)	0,87(2)	N(11)-	Pd	-N(21)	91,10(6)
C(12)		H(12)	0,90(2)	N(11b)-	Pd	-N(21b)	91,10(6)
C(13)		H(13)	0,89(2)	N(11)-	Pd	-N(11b)	180
C(14)		H(14)	$0,\!87(3)$	N(21)-	Pd	-N(21b)	180
C(15)		H(15)	1,07(1)	Hg-	S(1)	-C(1)	101,53(9)
C(21)		H(21)	0,90(2)	Hg-	S(2)	-C(2)	101,97(7)
C(22)		H(22)	0,88(2)	Pd-	N(11)	-C(11)	120, 2(1)
C(23)		H(23)	0,95(3)	Pd-	N(11)	-C(15)	120,9(1)
C(24)		H(24)	0,94(3)	C(11)-	N(11)	-C(15)	118,9(2)
C(25)		H(25)	1,01(2)	Pd-	N(21)	-C(21)	121,0(1)
Hg		S(2a)	2,5519(6)	Pd-	N(21)	-C(25)	120,8(1)
Hg		S(1)	2,5275(6)	C(21)-	N(21)	-C(25)	118,2(2)
Hg		S(2)	2,5519(6)	N(11)-	C(11)	-C(12)	122,1(3)
Hg		S(1a)	2,5275(6)	C(11)-	C(12)	-C(13)	118,8(2)

C(12)-

C(13)-

N(11)-

N(21)-

C(21)-

C(22)-

C(23)-

N(21)-

S(1)-

S(2)-

C(13)

C(14)

C(15)

C(21)

C(22)

C(23)

C(24)

C(25)

C(1)

C(2)

-C(14)

-C(15)

-C(14)

-C(22)

-C(23)

-C(24)

-C(25)

-C(24)

-N(1)

-N(2)

119,1(3)

120,3(3)

120,8(2)

122,3(2)

119,5(2)

118,9(2)

119,6(3)

121,5(2)

176,2(2)

176,9(2)

Tabelle 74: Ausgewählte Abstände und Winkel in $[Pd(pv)_{4}][Hg(SCN)_{4}]$ (Standardab-

$$\begin{aligned} \mathbf{a} &= -\mathbf{x}, \mathbf{y}, \frac{1}{2}\text{-}\mathbf{z} \\ \mathbf{b} &= \frac{1}{2}\text{-}\mathbf{x}, \frac{1}{2}\text{-}\mathbf{y}, 1\text{-}\mathbf{z} \end{aligned}$$

C(11)

C(15)

C(21)

C(25)

C(1)

N(21)

N(11b)

N(21b)

N(11)

C(1)

C(2)

- C(2)

1,337(3)

1,344(2)

1,338(2)

1,336(3)

1,140(4)

1,146(3)

2,030(1)

2,040(2)

2,030(1)

2,040(2)

1,657(3)

1,658(2)

N(11)

N(11)

N(21)

N(21)

N(1)

N(2)

 Pd

 Pd

 Pd

 Pd

S(1)

S(2)

 $[Pd(py)_4][Hg(SCN)_4)]$ kristallisiert im monoklinen Kristallsystem des Raumgruppentyps C2/c (Nr. 15) mit vier Formeleinheiten pro Elementarzelle und ist aus Komplexkationen $[Pd(py)_4]$ und Komplexanionen $[Hg(SCN)_4]$ aufgebaut.

Das Komplexanion $[Hg(SCN)_4]^{2-}$: Vier Schwefelatome umgeben Quecksilber nahezu regulär tetraedrisch mit Bindungswinkeln S–Hg–S zwischen 108,16(2)° und 111,31(2)° und Bindungsabständen zwischen 2,5275(6) Å und 2,5519(6) Å. Die berechneten Hg–S-Abstände sind vergleichbar mit den Hg–S-Abständen in K₂[Hg(SCN)₄] mit 2,515 Å bzw. 2,573 Å [112] oder mit denen in Cd[Hg(SCN)₄] mit 2,577 Å [113]. Die Winkel Hg–S–C mit 101,53(9) Å und 101,97(7) Å bewegen sich im Rahmen beobachteter Bindungswinkel [113,114]. Die Bindungsabstände C–S mit 1,657(3) Å und 1,658(2) Å zeigen keine Abweichung von den Erwartungswerten [109,114]. C–N-Bindungslängen der SCN-Gruppen zeigen mit 1,140(4) Å und 1,146(3) Å typische Abstandswerte einer CN-Dreifachbindung auf.

Das Komplexkation $[Pd(py)_4]^{2+}$: Pd²⁺ ist nahezu quadratisch planar im Abstand von 2,030(1) Å bzw. 2,040(2) Å von vier Pyridinmolekülen umgeben und spannt N–Pd– N-Winkel auf, die zwischen 88,90(6)° und 91,10(6)° liegen. Transständige Pyridinringe liegen in einer Ebene, cisständige Pyridinringe bilden einen Diederwinkel von 92,5(1)°. Die mittleren C–C-Abstände der Pyridinringe liegen mit 1,367 Å im gleichen Bereich wie z. B. bei Pd(py)₄I₆ [107] mit 1,373 Å oder bei Pd(py)₂Cl₂ [106] mit 1,365 Å. Ebenso zeigen die gemittelten Bindungsabstände von C–N mit 1,338 Å und die berechneten Bindungswinkel keine auffälligen Abweichungen zu $[Pd(py)_4]F_2 \cdot \frac{3}{2}HF \cdot 2H_2O$ [115], Pd(py)₂Cl₂ [106] und Pd(py)₄I₆ [107]. Die Kompexmoleküle $[Pd(py)_4]$ und $[Hg(SCN)_4]$ sind in Abb. 154 wiedergegeben.

Zwischen terminalem N(2) der SCN-Gruppen und Palladium tritt ein kurzer Abstand von 3,255(2) Å auf, der eine gerichtete Wechselwirkung auf die Komplexmoleküle ausübt. Ein $[Hg(SCN)_4]$ -Molekül koordiniert jeweils zwei $[Pd(py)_4]$ -Moleküle, es entsteht so eine unendliche $[Pd(py)_4][Hg(SCN)_4]$ -Kette. Die beobachtete Verkippung der Pyridinringebenen gegeneinander lässt sich so verstehen, dass dadurch eine zu starke Annäherung zwischen Pyridinringen (2) und SCN-Gruppen (1) verhindert wird (vgl. Abb. 155).

Die Kristallstruktur wird aus alternierenden Lagen der Komplexmoleküle gebildet, deren Abfolge entlang der c-Achse mit ABA'B' beschrieben werden kann (vgl. Abb. 156). A' und B' bezeichnen die symmetrieverknüpften Komplexmoleküllagen zu A ($[Pd(py)_4]$) und B ($[Hg(SCN)_4]$). Die Kristallstruktur kann auch als tetragonale Stabpackung [116] betrachtet werden, die aus unendlichen Ketten von $[Pd(py)_4][Hg(SCN)_4]$ aufgebaut wird. Dies wird deutlich mit Blick in Richtung [101] in die Kristallstruktur von $[Pd(py)_4][Hg(SCN)_4]$ (vgl. Abb. 159).

Eine verwandte Struktur, die ebenfalls aus Komplexmolekülen aufgebaut ist, findet sich mit $[P(C_6H_5)_4]_2[Hg(SCN)_4]$ [114]. Sie besteht aus isolierten Komplexionenschichten von $[P(py)_4]$ und $[Hg(SCN)_4]$, die in der (ab)-Ebene liegen (vgl. Abb. 160).

Abbildung 154: Darstellung der Komplexmoleküle Tetrathiocyanatomercurat(II) und Tetrapyridinpalladium(II) in willkürlicher Konformation. Links [Pd(py)₄] und rechts [Hg(SCN)₄)]

Abbildung 155: Verknüpfung von $[Hg(SCN)_4]$ mit zwei $[Pd(py)_4]$ Molekülen

Abbildung 156: Darstellung der Schichtstruktur von $[Pd(py)_4][Hg(SCN)_4)]$ mit zwei Elementarzellen in Blickrichtung [100]. Links: schematische Abfolge der Komplexionenschichten, Rechtecke = A = A' = $[Pd(py)_4]$ und Tetraeder = B = B' = $[Hg(SCN)_4]$, rechts: Ausschnitt aus der Kristallstruktur

Abbildung 157: Schematische Darstellung von $[Pd(py)_4][Hg(SCN)_4)]$ mit Blick in Richtung [010]. Rechtecke = $[Pd(py)_4]$ und Tetraeder = $[Hg(SCN)_4)]$

Abbildung 158: Darstellung von Abb. 157 mit Komplexmolekülen

Abbildung 159: Darstellung der Stabpackung von $[Pd(py)_4][Hg(SCN)_4)]$ in Richtung [101]

Abbildung 160: Ausschnitt aus der Kristallstruktur von $[P(py)_4]_2[Hg(SCN)_4]$

5.2.3 Schwingungsspektroskopische Untersuchungen

Die von $[Pd(py)_4][Hg(SCN)_4)]$ angefertigten Schwingungsspektren zeigen wie erwartet ein komplexes Muster an Schwingungsbanden. Aufgrund der großen Anzahl an möglichen Schwingungsmoden, 171 RAMAN-aktive (85 A_g + 86 B_g) und 177 IR-aktive (88 A_u + 89 B_u), wurde von einer vollständigen Zuordnung der Schwingungsspektren abgesehen. Einzelne charakteristische Banden wurden zugeordnet.

Tabelle 75: IR- und RAMAN-Schwingungsfrequenzen von $[Pd(py)_4][Hg(SCN)_4)]$ in
 cm^{-1}

\mathbf{IR}		RAMAN		
52, 55, 61, 65		37, 45, 55, 67		
71, 99, 113, 184		104, 113 ,131 ,135		
200, 207		172, 208		
215	$\nu(\text{Pd-N})$	217		
278	$\nu({\rm Hg-S})$	237		
295	$\nu(\text{Hg-S})$	648	$\nu(\mathrm{py})$	
386		653	$\nu(\mathrm{py})$	
429	$\delta(SCN)$	661	$\nu(\mathrm{py})$	
441		1021	$\nu(\mathrm{py})$	
458		1026	$\nu(\mathrm{py})$	
466				
	Zuordnung	; nach [62]		

— keine Zuordnung

Abbildung 161: RAMAN-Spektrum von $[Pd(py)_4][Hg(SCN)_4)]$

Abbildung 162: IR-Spektrum von $[Pd(py)_4][Hg(SCN)_4)]$

6 Zusammenfassung

In der vorliegenden Arbeit wird über die Synthese und Kristallstrukturanalyse ternärer und quaternärer Halogenopalladate(II) berichtet. Als geeignete Synthesemethode hat sich die Solvothermalsynthese bei 150 °C mit 0,5 ml Lösungsmittel in Quarzglasampullen bewährt.

Im System MX/PdX₂/I₂/HX (M = Cs, X = Cl, Br, I; M = Rb, X = Br) konnten die Verbindungen Cs₂[PdBr₄]I₂, Cs₂[PdCl₄]I₂ und Rb₂[PdBr₄]I₂ synthetisiert und charakterisiert werden. Cs₂[PdBr₄]I₂, Cs₂[PdCl₄]I₂ und Rb₂[PdBr₄]I₂ kristallisieren alle im tetragonalen Kristallsystem (I4/mmm (Nr. 139)) und sind isotyp zu Cs₂[PdI₄]I₂ [12]. Typisches Merkmal der Verbindungsreihe sind die eingelagerten Iodmoleküle in der Kristallstruktur, die senkrecht zu [PdX₄]-Baugruppen entlang der kristallografischen c-Achse liegen. Die Bindungslänge der Iodmoleküle ist im Vergleich zu elementarem Iod leicht aufgeweitet und wächst mit steigender Größe des Halogenatoms X an. Die Aufweitung der I₂-Bindung spricht für eine *Charge-Transfer*-Wechselwirkung im Sinne eines Ladungsübertrags von Pd²⁺ auf I₂.

Druckinduziert lassen sich die Verbindungen $Cs_2[PdX_4]I_2$ (X = Cl, Br, I) mit Palladium im Valenzzustand 2+ in Palladium mit Valenzzustand 4+ überführen, dabei werden die I₂-Bindungen gelöst und neue Pd–I-Bindungen geknüpft. Der Übergangsdruck steigt mit der Größe des Halogenatoms X an.

Das Redoxverhalten der Verbindungen $Cs_2[PdI_4]I_2$, $Cs_2[PdBr_4]I_2$ und $Cs_2[PdCl_4]I_2$ wurde mittels Hochdruck-Pulverbeugungsexperimenten untersucht, und es konnten kristallografische Daten extrahiert werden. Die Hochdruck-Pulverexperimente wurden am European Synchrotron Radiation Facility in Grenoble/Frankreich an den Experimentierstationen ID30 und ID09 durchgeführt.

 Cs₂[PdI₄]I₂: Die Kristallstruktur von Cs₂[PdI₄]I₂ wurde neu bestimmt, und durch Hochdruckpulverdiffraktometrie ist die Festkörper-Redoxreaktion von Cs₂[PdI₄]I₂ nach Cs₂[PdI₆] untersucht worden. Der Übergang von Cs₂[PdI₄]I₂ zu Cs₂[PdI₆] erfolgt zwischen 19 kbar und 20 kbar und bestätigt somit den von SCHÜPP [12] angegebenen Übergangsbereich zwischen 12,4 kbar bis 20,3 kbar.

Durchgeführte Hochdruck-EXAFS-Experimente bestätigen den Übergangsbereich von $Cs_2[PdI_4]I_2$ zu $Cs_2[PdI_6]$ zwischen 17 kbar bis 20 kbar.

Aus temperaturabhängigen Hochdruck-Pulverexperimenten im Bereich des Übergangs kann abgeleitet werden, dass die Reaktion von $Cs_2[PdI_4]I_2$ zu $Cs_2[PdI_6]$ nicht reversibel ist. Pulverproben von phasenreinem $Cs_2[PdI_4]I_2$ können in geschlossenen Gefäßen bei Raumtemperatur über 2 Jahre gelagert werden, ohne dass eine Umwandlung zu $Cs_2[PdI_6]$ stattfindet. Stress (Temperatur oder Druck) auf $Cs_2[PdI_4]I_2$ führt jedoch zu einer vollständigen Umwandlung in $Cs_2[PdI_6]$ innerhalb weniger Wochen. Daraus lässt sich folgern, dass die Reaktion von $Cs_2[PdI_4]I_2$ zu $Cs_2[PdI_6]$ kinetisch gehemmt ist.

Theoretische Berechnungen (Dichte-Funktional, *Plane-Wave-Pseudopotentials*) [117] untermauern diese Beobachtungen, aus energetischer Sicht ist $Cs_2[PdI_6]$ bei Normaldruck rund 3 kJ/mol stabiler als $Cs_2[PdI_4]I_2$.

- Cs₂[PdI₆] : Hochdruck-Pulverbeugungsexperimente an Cs₂[PdI₆] weisen darauf hin, dass im Bereich oberhalb von 112 kbar eine neue Hochdruckphase von Cs₂[PdI₆] auftritt, deren Kristallstruktur nicht bestimmt werden konnte. Die Existenz einer dichter gepackten, vermutlich hexagonalen Kristallstruktur von Cs₂[PdI₆] kann aufgrund der durchgeführten Hochdruckexperimente nicht ausgeschlossen werden.
- Cs₂[PdBr₄]I₂: Die druckinduzierte reversible Redoxreaktion von Cs₂[PdBr₄]I₂ zu Cs₂[PdBr₄I₂] mit Phasenübergang (tetragonal nach monoklin) konnte eindeutig im Bereich zwischen 78,8 kbar und 90,4 kbar anhand von Pulverbeugungsmethoden nachgewiesen werden.

Die Ergebnisse der Hochdruck-RAMAN-Spektroskopie, die den Übergangsbereich bei rd. 90 kbar anzeigt, untermauern die Ergebnisse der Röntgenbeugungsexperimente.

Aus theoretischen Berechnungen (Dichte-Funktional, *Plane-Wave-Pseudopotentials*) [117] lässt sich der Phasenübergang um 73 kbar festlegen, und zeigt im Rahmen der Genauigkeit der Methode gute Übereinstimmung mit dem Experiment. Ebenso stimmen die berechneten Strukturparameter gut mit den experimentellen bestimmten überein und bestätigen die Spaltung der I₂-Bindung und Bildung neuer Pd–I-Bindungen. Der Koexistenzbereich von tetragonaler Phase ($Cs_2[PdBr_4]I_2$) und monokliner Phase ($Cs_2[PdBr_4I_2]$) wird für den Bereich zwischen 55 kbar und 80 kbar vorhergesagt. Die Energie-Volumen-Zustandsgleichung der Kristallstrukturen von $Cs_2[PdBr_4]I_2$ und $Cs_2[PdBr_4I_2]$, liegen in diesem Druckbereich sehr dicht beieinander, und können so die Koexistenz beider Phasen in diesem Druckbereich erklären.

Die Hochdruckverbindung $Cs_2[PdBr_4I_2]$ ist bis 218 kbar stabil und zeigt keine weiteren Phasenübergänge. Nach Druckentlastung wandelt sich $Cs_2[PdBr_4I_2]$ in die Ausgangsverbindung $Cs_2[PdBr_4]I_2$ zurück.

• $\mathbf{Cs}_{2}[\mathbf{PdCl}_{4}]\mathbf{I}_{2}$: Die druckinduzierte reversible Redoxreaktion von $\mathbf{Cs}_{2}[\mathbf{PdCl}_{4}]\mathbf{I}_{2}$ nach $\mathbf{Cs}_{2}[\mathbf{PdCl}_{4}]$ mit Phasenübergang (tetragonal nach tetragonal) konnte im Bereich zwischen 120 kbar und 160 kbar anhand von Pulverbeugungsmethoden nachgewiesen werden. Die Hochdruckverbindung von $\mathbf{Cs}_{2}[\mathbf{PdCl}_{4}]\mathbf{I}_{2}$ ist bis 254 kbar stabil und wandelt sich nach Druckentlastung in die Ausgangsverbindung $\mathbf{Cs}_{2}[\mathbf{PdBr}_{4}]\mathbf{I}_{2}$ zurück.

Einen tieferen Einblick in die Festkörper-Redoxreaktionen können Hochdruck-Einkristallmessungen liefern. EXAFS- und MÖSSBAUER-Spektroskopie im Bereich des Phasenübergangs können definierte Aussagen über die Oxidationszustände von Cs₂[PdBr₄]I₂ und Cs₂[PdCl₄]I₂ während des Übergangs ermöglichen.

Die Umsetzung von PdI_2 und Iod mit $[N(CH_3)_4]I$ in wässriger Iodwasserstoffsäure führte zur Verbindung $[N(CH_3)_4][Pd_2I_5]$. Die Kristallstruktur von $[N(CH_3)_4][Pd_2I_5]$ enthält dimere $[Pd_2I_6]$ -Baugruppen, die eindimensional unendliche Ketten in Form einer tetragonalen Stabpackung ausbilden. $[N(CH_3)_4][Pd_2I_5]$ stellt eine Strukturvariante des $Cs[Pd_2Cl_5]$ -Typs [1] dar.

Einkristalle der Verbindung $[N(CH_3)_4]_2[PdCl_4]$ konnten aus einer Lösung von

 $[N(CH_3)_4]Cl$ und PdCl₂ in verd. Salzsäure in Form orangeroter Kristallplättchen isoliert werden. Von der Verbindung waren nur die Elementarzellenparameter aus Röntgenpulveraufnahmen bekannt. Anhand von Einkristallaufnahmen konnte die Kristallstruktur bestimmt werden. $[N(CH_3)_4]_2[PdCl_4]$ kristallisiert im tetragonalen Kristallsystem P4/mnm (Nr. 136).

Durch die Umsetzung von $[PdCl_4]_{aq}$ und $[AuCl_4]_{aq}$ mit MCl (M = Cs, Rb) bzw. durch Umsetzung von CsI₃, PdI₂ und Au-Pulver konnten die Verbindungen **Rb**₄**Au**₂**PdCl**₁₂, **Cs**₄**Au**₂**PdCl**₁₂ und **Cs**₄**Au**₂**PdI**₁₂ synthetisiert und röntgenografisch charakterisiert werden. Die Verbindungen sind isotyp und kristallisieren im höchstsymmetrischen Raumgruppentyp Ia $\bar{3}$ d (Nr. 230). Allen Verbindungen gemeinsam ist die statistische Verteilung der Gold- und Palladiumatompositionen im Verhältnis $\frac{2}{3}$ zu $\frac{1}{3}$ in der Kristallstruktur.

Aus Leitfähigkeituntersuchungen an den Verbindungen $Cs_4Au_2PdCl_{12}$, $Cs_4Au_2PdBr_{12}$ sowie $Cs_4Au_2CuCl_{12}$ und $Cs_4Au_2CuBr_{12}$ im Vergleich zu $Cs_2Au_2I_6$ [82] lässt sich ableiten, dass die Leitfähigkeit in Abhängigkeit von der Größe des Halogenatoms anwächst. Durch die stärkere Überlappung der gefüllten d_z^2 -Orbitalen von Gold und Palladium mit den gefüllten p_z -Orbitalen der Halogenatome entsteht ein gefülltes Valenzband. Eine Überlappung der leeren hochenergetischen p_z -Orbitale führt zu einem leeren Leitungsband. Letzteres würde durch eine stärkere Überlappung der Palladium- und Gold-Orbitale mit den größer werdenden Halogenatom-Orbitalen zu breiteren Leitungsbändern und einer verbesserten Leitfähigkeit führen.

Bei der Umsetzung von $CsBr_3$ mit Au-Pulver und $PdBr_2$ konnten Einkristalle der Verbindung $Cs_2[AuBr_2][AuBr_4]$ erhalten werden. Die Kristallstruktur von $Cs_2[AuBr_2][AuBr_4]$ konnte aufgeklärt und als isotyp zu $Cs_2[AuCl_2][AuCl_4]$, die Gold in den Oxidationsstufen 1+ und 3+ enthält, beschrieben werden.

Als Nebenprodukte der Untersuchungen im System $[AuCl_4]_{aq}/PdCl_4]_{aq}/MCl$ (M = Cs, N(CH₃)₄ konnten Einkristalle der Verbindungen **Cs**[AuCl₄] und [Et₄N][AuCl₄] erhalten werden.

- Cs[AuCl₄]: Die Struktur von Cs[AuCl₄] konnte aufgeklärt werden, sie ist isotyp zu Rb[AuCl₄] und kristallisiert im Raumgruppentyp C2/c (Nr. 15).
- Die Struktur von [Et₄N][AuCl₄] konnte anhand von Einkristallen, die durch Fällung mit [N(C₂H₅)₄] aus einer Lösung von [AuCl₄]_{aq} und [PdCl₄]_{aq} erhalten wurden, aufgeklärt werden.

Bei Versuchen Einlagerungsverbindungen mit $[Pd(SCN)_4]$ -Baugruppen zu kristallisieren konnten die Verbindungen $[Pd(py)_2](SCN)_2$ und $[Pd(py)_4][Hg(SCN)_4)]$ synthetisiert und charakterisiert werden.

- [Pd(py)₂](SCN)₂ kristallisiert im Raumgruppentyp P1
 (Nr. 2) und wird aus zwei Molekülen Pyridin und einem Molekül Pd(SCN)₂ gebildet. [Pd(py)₂](SCN)₂ gliedert sich in die Reihe der Palladium(II)-dihalogenid-dipyridinaddukte ein.
- [Pd(py)₄][Hg(SCN)₄)] kristallisiert im monoklinen Kristallsystem C2/c (Nr. 15) und besteht aus voluminösen Komplexmolekülen, die einzeln für sich in einer Reihe von Verbindungen enthalten und gut charakterisiert sind. In der Kristallstruktur von [Pd(py)₄][Hg(SCN)₄)] binden ein Molekül [Hg(SCN)₄)] zwei Moleküle [Pd(py)₄] und formen so unendliche Ketten, die eine tetragonale Stabpackung ausbilden.
A Anhang

Kristallografische Daten und Pulverdiffraktogramme von $Cs_2[PdI_4]I_2$ gemessen am ESRF an der Experimentierstation ID09 (Experiment-Nr. CH-1052)

Druck [kbar]	0,001
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	8,9873(7)
c [Å]	9,2415(7)
V [Å ³]	746,4(2)
Anzahl der Datenpunkte	1484
Anzahl beobachteter	
Reflexe	178
Anzahl verfeinerter Parameter	43
R_p [%]	1,66
wR_p [%]	2,21
R_{F^2} [%]	$6,\!54$
χ^2	0,42
Atom v v	$z \qquad \qquad$

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 0,001 kbar

Atom	х	У	\mathbf{Z}	U_{iso} / Å^2
Pd	0	0	0	0,011(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,051(2)
I(1)	0,2036(2)	0,2036(2)	0	0,037(2)
I(2)	0	0	0,3502(5)	0,032(2)

Kristallogra	fische Dater	n von Cs_2	$[PdI_4]I_2$ be	ei 7,27 kbar	
Druck [kba	ar]		7,27		
Kristallsystem			tetragona	al	
Raumgrup	pentyp		I4/mmm	(Nr. 139)	
a [Å]			8,8292(7))	
c [Å]			9,0497(8))	
V $[Å^3]$			705,4(2)		
Anzahl der	r Datenpunl	ste	1482		
Anzahl be	obachteter				
Reflexe			166		
Anzahl ver	rfeinerter Pa	arameter	45		
R_p [%]			$1,\!45$		
$wR_p \ [\%]$			$1,\!96$		
R_{F^2} [%]			$5,\!64$		
χ^2			0,31		
Atom	х	У	Z	U_{iso} / Å ²	
Pd	0	0	0	0,007(2)	

Pd	0	0	0	0,007(2)
Cs	0	$\frac{1}{2}$	$\frac{1}{4}$	0,041(2)
I(1)	0,2076(2)	0,2076(2)	0	0,028(2)
I(2)	0	0	0,3474(5)	0,025(2)

Druck [k	bar]		13,32	<u> </u>
Kristallsystem			tetragon	al
Raumgr	Raumgruppentyp			n (Nr. 139)
a [Å]			8,736(1)	
c [Å]			8,945(1)	
V $[Å^3]$			682, 8(2)	
Anzahl o	ler Daten	punkte	1484	
Anzahl l	peobachte	ter		
Reflexe	<u>)</u>		163	
Anzahl v	verfeinerte	er Parameter	45	
R_p [%]			1,77	
$wR_p \ [\%]$			$2,\!44$	
R_{F^2} [%]			6,37	
χ^2			0,46	
				TT (8.2
Atom	х	У	\mathbf{Z}	U_{iso} / A^2

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 13,32 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,007(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,038(3)
I(1)	0,2093(3)	0,2093(3)	0	0,023(2)
I(2)	0	0	0,3428(5)	0,022(2)

Kristalle	ografische D	aten von Cs	$s_2[PdI_4]I_2$ be	ei 18,86 kbar	
Drue	Druck [kbar]				
Kris	tallsystem		orthorh	nombisch	
Rau	mgruppenty	р	Immm	(Nr. 71)	
a [Å]]		8,358(1	.)	
b [Å]		8,978(1	.)	
c [Å]			8,8680((8)	
V [Å	³]		665,5(1	.)	
Anza	ahl der Date	enpunkte	1515		
Anzahl beobachteter					
Re	flexe		268	268	
Anza	ahl verfeiner	ter Paramet	ter 43	43	
R_p [%]		$1,\!99$		
wR_p	[%]		2,76	2,76	
R_{F^2}	[%]		9,74	9,74	
χ^2			$0,\!58$		
Atom	х	У	Z	U_{iso} / Å ²	
Pd	0	0	0	0,007(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	0,2363(7)	0,030(3)	
I(1)	0,2171(5)	0,2020(5)	0	0,032(2)	

Cs2[PdI4]I2 @ 19 kbar Hist 1 Lambda 0.4159 A, L-S cycle 6293 Obsd. and Diff. Profiles 4.0 X10E 3.0 2.0 1.0 h Counts 0.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 4.0 6.0 2-Theta, deg

0

0,3398(7)

0,044(2)

I(2)

0

IXII5tan		aten von Os	2[1 014]12 De	1 20,13 KDai	
Druc	Druck [kbar]			20,13	
Krist	tallsystem		orthorh	ombisch	
Rau	mgruppenty	р	Immm	(Nr. 71)	
a [Å]			8,313(1)	
b [Å]		8,993(1)	
c [Å]			8,8527(9)	
V [Å	3]		661,9(2)	
Anza	ahl der Date	enpunkte	1601		
Anza	ahl beobacht	teter			
Ret	flexe		295	295	
Anza	Anzahl verfeinerter Parameter			47	
R_p [R_p [%]				
wR_p [%]			2,96		
R_{F^2}	[%]		10,76		
χ^2			$0,\!66$	0,66	
Atom	х	У	\mathbf{Z}	U_{iso} / Å ²	
Pd	0	0	0	0,004(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	0,2346(8)	0,026(3)	
I(1)	0,2182(6)	0,2022(6)	0	0,025(2)	
I(2)	0	0	0,3445(7)	0,026(2)	

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 20,13 kbar

Kristalle	ografische D	aten von Cs	$_{2}[PdI_{4}]I_{2}$ be	i 22,91 kbar	
Drue	Druck [kbar]			22,91	
Kris	tallsystem		orthorh	nombisch	
Rau	mgruppenty	р	Immm	(Nr. 71)	
a [Å			8,236(1)	
b [Å]		9,019(1)	
c [Å]			8,820(1)	
V [Å	3]		655,3(2	2)	
Anza	ahl der Date	enpunkte	1500		
Anza	ahl beobacht	teter			
Re	flexe		246	246	
Anza	ahl verfeiner	ter Paramet	ter 57	57	
R_p [R_p [%]				
wR_p	[%]		$1,\!98$	1,98	
R_{F^2}	[%]		5,77	5,77	
χ^2	χ^2			0,30	
Atom	х	У	Z	U_{iso} / Å ²	
Pd	0	0	0	0,016(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	0,2260(8)	0,015(3)	
I(1)	0,2227(5)	0,2020(6)	0	0,013(3)	

0

0,3434(7)

0,026(2)

I(2)

0

Druc	k [khar]	24 86	<u></u>			
Krist	Kristallsystem			orthorhombisch		
Raun	orunnentvr)	Immm	(Nr 71)		
م [گ]	igi uppentyr)	8 107((1(1,1,1))		
a [A] 5 [Å]			0,197(2	2)))		
D [A]			9,027(2	2)		
c [A]			8,802(2	2)		
V [Å ³	3]		651,3(2	2)		
Anza	hl der Dater	npunkte	1539			
Anza	hl beobacht	eter				
Ref	exe		274	274		
Anza	hl verfeinert	er Paramet	er 60	60		
R_p [%	0]		$1,\!25$	1,25		
wR_p	[%]		1,71			
R_{F^2}	[%]		$4,\!27$	4,27		
χ^2			$0,\!23$			
Atom	х	У	Z	$\mathbf{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,008(9)		
\mathbf{Cs}	0	$\frac{1}{2}$	0,222(1)	0,012(4)		
I(1)	0,2264(8)	0,2015(8)	0	0,014(3)		
I(2)	0	0	0,342(1)	0,019(2)		

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 24,86 kbar

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 25,77 kbar					
Druck [kbar]			25,77	25,77	
Krista	llsystem		ortho	rhombisch	
Raum	gruppentyp)	Immr	n (Nr. 71)	
a [Å]			8,246	(2)	
b [Å]			8,902	(2)	
c [Å]			8,768	(2)	
$V [Å^3]$			643,7	(2)	
Anzah	l der Dater	npunkte	1523		
Anzah	l beobacht	eter			
Refle	exe		271	271	
Anzah	l verfeinert	er Parame	ter 53		
R_p [%]		1,75		
wR_p [%]		$2,\!31$		
R_{F^2} [2	%]		6,75	6,75	
χ^2			$0,\!40$	0,40	
Atom	х	У	\mathbf{Z}	$U_{iso} / Å^2$	
Pd	0	0	0	0,05(1)	
\mathbf{Cs}	0	$\frac{1}{2}$	0,239(1)	0,027(8)	
I(1)	0,222(1)	0,198(1)	0	0,053(7)	
I(2)	0	0	0,324(2)	0,2(1)	

Druck	[kbar]	27.15	$\frac{11412}{27.15}$ ber 21,10 kbas			
Krista	llsystem	ortho	orthorhombisch			
Raum	gruppentyp	Immr	n (Nr. 71)			
a [Å]			8,281	(3)		
b [Å]			8,847	(5)		
c [Å]			8,760	(6)		
V $[Å^3]$			641,9	(5)		
Anzah	l der Date	npunkte	1523			
Anzah	l beobacht	eter				
Refle	exe		263	263		
Anzah	l verfeinert	ter Parame	ter 43	43		
R_p [%]		$2,\!04$	2,04		
wR_p [%]		2,79	2,79		
R_{F^2} [2	76]		$7,\!84$	7,84		
χ^2			$0,\!57$			
Atom	Х	У	Z	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,018(2)		
\mathbf{Cs}	0	$\frac{1}{2}$	0,238(3)	0,069(2)		
I(1)	0,224(2)	0,199(2)	0	0,1(1)		
I(2)	0	0	0,330(3)	0,070(1)		

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 27,15 kbar

Kristallog	rafische Da	aten von Ca	$s_2[PdI_4]I_2$ k	bei 28,53 kbar		
Druck	[kbar]	$28,\!53$				
Krista	llsystem		ortho	rhombisch		
Raum	gruppentyp)	Immr	n (Nr. 71)		
a [Å]			8,240	8,240(4)		
b [Å]			8,871	(5)		
c [Å]			8,752	(5)		
$V [Å^3]$			639,9	(4)		
Anzah	l der Date	npunkte	1523			
Anzah	l beobacht	eter				
Refle	exe	270	270			
Anzah	l verfeinert	ter 40				
R_p [%]]	$1,\!68$				
wR_p [%]		$2,\!46$			
R_{F^2} [2]	76]		$5,\!39$			
χ^2			$0,\!50$			
Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	$0,\!05$		
\mathbf{Cs}	0	$\frac{1}{2}$	0,220(3)	$0,\!05$		
I(1)	0,226(2)	0,193(2)	0	$0,\!05$		

0,330(3) 0,05

0

I(2)

0

Druck	[kbar]		$\frac{52[1 \text{ u14}]12}{29.64}$	<u></u>		
Krista	llsystem		ortho	rhombisch		
Raum	gruppentyr)	Immr	n (Nr. 71)		
a [Å]	8. appond1	- -	8.268	(4)		
] b [Å]			8.832	(5)		
c [Å]			8.752	(6)		
V [Å ³]			639.1	(4)		
Anzah	ı 11 der Date	npunkte	1523	(-)		
Anzah	l beobacht	eter	10-0			
Refle	exe	425	425			
Anzahl verfeinerter Parameter			ter 35			
$B_{\rm T}$ [%]			2.25			
wR_{n} [%]	3.11				
R_{E^2}	70] %]		14.61			
γ^2	0]		0.78	0,78		
<u></u>						
Atom	х	У	Z	U_{iso} / Å ²		
Pd	0	0	0	0,06		
\mathbf{Cs}	0	$\frac{1}{2}$	0,225(4)	0,06		
I(1)	0,222(3)	0,191(3)	0	0,06		
I(2)	0	0	0,323(3)	0,06		

Kristallografische Daten von $Cs_2[PdI_4]I_2$ bei 29,64 kbar

Kristallografische Daten von Cs_2	$[PdI_4]I_2$ bei 37,17 kbar
Druck [kbar]	37,17
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,7252(9)
$V [Å^3]$	1233,7(3)
Anzahl der Datenpunkte	1542
Anzahl beobachteter	
Reflexe	61 (2. Phase Argon)
Anzahl verfeinerter Parameter	27
R_p [%]	2,64
wR_p [%]	3,78
R_{F^2} [%]	$3,\!97$
χ^2	1,06

Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$
Pd	0	0	0	0,004(4)
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,006(2)
Ι	0,2451(3)	0	0	0,008(1)

Kristallografische Daten und Pulverdiffraktogramme von $Cs_2[PdI_6]$ gemessen am ESRF an den Experimentierstationen ID09 (Experiment-Nr. CH-1052) und ID30 (Experiment-Nr. CH-1086)

Kristallografische Daten von $Cs_2[PdI_6]$ bei 0,001 kbar			
Druck [kbar]	0,001		
Kristallsystem	kubisch		
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)		
a [Å]	11,314(1)		
V [Å ³]	1448,4(7)		
Anzahl der Datenpunkte	1484		
Anzahl beobachteter			
Reflexe	178		
Anzahl verfeinerter Parameter	43		
R_p [%]	1,66		
wR_p [%]	2,21		
R_{F^2} [%]	6,54		
χ^2	0,42		

Atom	х	У	\mathbf{Z}	U_{iso} / Å^2
Pd	0	0	0	0,02
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,02
Ι	0,233(1)	0	0	0,02

	1 (10) bei 1,21 Kbai
Druck [kbar]	7,27
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	11,127(2)
V $[Å^3]$	1377, 6(9)
Anzahl der Datenpunkte	1482
Anzahl beobachteter	
Reflexe	178
Anzahl verfeinerter Parameter	45
R_p [%]	1,45
wR_p [%]	1,96
R_{F^2} [%]	5,64
χ^2	0,31

Kristallografische	Daten	von	$\mathrm{Cs}_2[\mathrm{PdI}_6]$	bei	7,27	kbar

Atom	х	У	\mathbf{Z}	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,02
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$0,\!02$
Ι	0,234(1)	0	0	$0,\!02$

Kristallografische Daten von $Cs_2[PdI_6]$ bei 13,32 kbar			
Druck [kbar]	13,32		
Kristallsystem	kubisch		
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)		
a [Å]	11,014(3)		
$V [Å^3]$	1336(1)		
Anzahl der Datenpunkte	1484		
Anzahl beobachteter			
Reflexe	163		
Anzahl verfeinerter Parameter	45		
R_p [%]	1,77		
wR_p [%]	2,44		
R_{F^2} [%]	$6,\!37$		
χ^2	0,46		

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,02
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,02
Ι	0,238(2)	0	0	$0,\!02$

instanogranische Daten von 052[1 d16] DCI 10,00 KDa
Druck [kbar]	18,86
Kristallsystem	kubisch
Raumgruppentyp	${\rm Fm}\bar{3}{\rm m}$ (Nr. 225)
a [Å]	10,924(3)
V $[Å^3]$	1303(1)
Anzahl der Datenpunkte	1515
Anzahl beobachteter	
Reflexe	268
Anzahl verfeinerter Parameter	43
R_p [%]	1,99
wR_p [%]	2,76
R_{F^2} [%]	9,74
χ^2	0.58

Kristallografische Daten von $Cs_2[PdI_6]$ bei 18,86 kbar

Atom	х	у	\mathbf{Z}	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,02
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,02
Ι	0,251(1)	0	0	0,02

Kristallografische Daten von $Cs_2[H]$	PdI_6] bei 20,13 kbar
Druck [kbar]	20,13
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,935(3)
$V [Å^3]$	1307(1)
Anzahl der Datenpunkte	1601
Anzahl beobachteter	
Reflexe	295
Anzahl verfeinerter Parameter	47
R_p [%]	2,12
wR_p [%]	2,96
R_{F^2} [%]	10,76
χ^2	0,66

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,02
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,02
Ι	0,227(1)	0	0	$0,\!02$

Kristallografische Daten von Cs ₂ []	PdI ₆] bei 22,91 kbar
Druck [kbar]	22,91
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,892(1)
$V [Å^3]$	1292,3(4)
Anzahl der Datenpunkte	1500
Anzahl beobachteter	
Reflexe	246
Anzahl verfeinerter Parameter	57
R_p [%]	1,46
wR_p [%]	1,98
R_{F^2} [%]	5,77
χ^2	0,30

Atom	х	у	Z	U_{iso} / Å ²
Pd	0	0	0	0,006(5)
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$0,\!02$
Ι	0,2412(4)	0	0	0,022(2)

Kristallografische Daten von $Cs_2[I]$	PdI_6] bei 24,86 kbar
Druck [kbar]	24,86
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,8718(7)
$V [Å^3]$	1285,0(2)
Anzahl der Datenpunkte	1539
Anzahl beobachteter	
Reflexe	274
Anzahl verfeinerter Parameter	60
R_p [%]	1,25
wR_p [%]	1,71
R_{F^2} [%]	4,27
χ^2	0,23

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,01(2)
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,004(2)
Ι	0,234(1)	0	0	0,024(1)

Kristallografische Daten von Cs ₂ []	PdI ₆] bei 25,77 kbar
Druck [kbar]	25,77
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,8516(4)
V $[Å^3]$	1277,8(1)
Anzahl der Datenpunkte	1523
Anzahl beobachteter	
Reflexe	271
Anzahl verfeinerter Parameter	53
R_p [%]	1,75
wR_p [%]	2,31
R_{F^2} [%]	6,75
χ^2	0,40

 U_{iso} / Å² Atom \mathbf{Z} у х Pd 0,01(3)0 0 0 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ \mathbf{Cs} 0,006(3)0,2512(8)Ι 0 0 0,005(1)

Kristallografische Daten von $Cs_2[I$	PdI_6] bei 27,15 kbar
Druck [kbar]	27,15
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,839(1)
$V [Å^3]$	1273,7(3)
Anzahl der Datenpunkte	1523
Anzahl beobachteter	
Reflexe	263
Anzahl verfeinerter Parameter	43
R_p [%]	2,04
wR_p [%]	2,79
R_{F^2} [%]	7,84
χ^2	0,57

Atom	х	у	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,009(2)
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,012(1)
Ι	0,234(1)	0	0	0,014(1)

Kristallografische Daten von Cs ₂ []	PdI_6] bei 28,53 kbar
Druck [kbar]	28,53
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,8270(8)
V $[Å^3]$	1269, 2(3)
Anzahl der Datenpunkte	1523
Anzahl beobachteter	
Reflexe	270
Anzahl verfeinerter Parameter	40
R_p [%]	1,68
wR_p [%]	2,46
R_{F^2} [%]	$5,\!39$
γ^2	0.50

 U_{iso} / Å² Atom \mathbf{Z} у х Pd 0 0,002(2)0 0 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ \mathbf{Cs} 0,017(2)0,234(1)0 Ι 0 0,021(1)

Kristallografische Daten von $Cs_2[I]$	PdI_6] bei 29,64 kbar
Druck [kbar]	29,64
Kristallsystem	kubisch
Raumgruppentyp	$Fm\bar{3}m$ (Nr. 225)
a [Å]	10,815(1)
$V [Å^3]$	1265, 1(3)
Anzahl der Datenpunkte	1523
Anzahl beobachteter	
Reflexe	425
Anzahl verfeinerter Parameter	35
R_p [%]	2,25
wR_p [%]	3,11
R_{F^2} [%]	14,61
χ^2	0,78

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,002(3)
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,009(2)
Ι	0,2451(4)	0	0	0,011(1)

Kristallografische Daten von Cs_2	PdI ₆] bei 22,0 kbar
Druck [kbar]	22,0
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,901(1)
$V [Å^3]$	1295,5(4)
Anzahl der Datenpunkte	1544
Anzahl beobachteter	
Reflexe	59
Anzahl verfeinerter Parameter	27
$R_p \ [\%]$	1,37
wR_p [%]	2,32
R_{F^2} [%]	8,93
χ^2	0,97

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,025
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$0,\!025$
Ι	0,2408(4)	0	0	0,025

Kristallografische Daten von Cs_2	PdI ₆] bei 44,5 kbar
Druck [kbar]	44,5
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,7015(7)
$V [Å^3]$	1225,5(3)
Anzahl der Datenpunkte	1545
Anzahl beobachteter	
Reflexe	56
Anzahl verfeinerter Parameter	21
R_p [%]	1,43
wR_p [%]	2,43
R_{F^2} [%]	5,33
χ^2	1,60

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,025
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,025
Ι	0,2414(2)	0	0	0,025

Kristallografische Daten von Cs_2	PdI_6] bei 66,2 kbar
Druck [kbar]	66,2
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,4995(9)
$V [Å^3]$	1157,4(3)
Anzahl der Datenpunkte	1544
Anzahl beobachteter	
Reflexe	56
Anzahl verfeinerter Parameter	21
$R_p \ [\%]$	1,76
wR_p [%]	$3,\!17$
R_{F^2} [%]	5,56
χ^2	1,60

Atom	х	у	Z	U_{iso} / Å ²
Pd	0	0	0	0,025
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$0,\!025$
Ι	0,2440(4)	0	0	$0,\!025$

Kristallografische Daten von Cs_2	PdI_6] bei 88,9 kbar
Druck [kbar]	88,9
Kristallsystem	kubisch
Raumgruppentyp	${\rm Fm}\bar{3}{\rm m}$ (Nr. 225)
a [Å]	10,356(1)
$V [Å^3]$	1110,8(4)
Anzahl der Datenpunkte	1544
Anzahl beobachteter	
Reflexe	56
Anzahl verfeinerter Parameter	21
R_p [%]	2,18
wR_p [%]	4,06
R_{F^2} [%]	5,37
χ^2	4,34

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,025
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,025
Ι	0,2465(6)	0	0	0,025

	ון 110 ו 110 ו
Kristallografische Daten von Cs ₂	PdI_6 bei 113,0 kbar
Druck [kbar]	113,0
Kristallsystem	kubisch
Raumgruppentyp	$\mathrm{Fm}\bar{3}\mathrm{m}$ (Nr. 225)
a [Å]	10,2173(8)
$V [Å^3]$	1066, 6(2)
Anzahl der Datenpunkte	1544
Anzahl beobachteter	
Reflexe	70 (2. Phase N_2)
Anzahl verfeinerter Parameter	22
R_p [%]	3,00
wR_p [%]	4,86
R_{F^2} [%]	7,66
χ^2	8.87

Atom	х	у	\mathbf{Z}	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,025
\mathbf{Cs}	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	0,025
Ι	0,247(1)	0	0	$0,\!025$

Kristallografische Daten und Pulverdiffraktogramme von $Cs_2[PdBr_4]I_2$ gemessen am ESRF an der Experimentierstation ID30 (Experiment-Nr. CH-1086)

1 mibeanogra				<u>, 10,1 Roal</u>		
Druck [kb	ar]		16,7			
Kristallsy	Kristallsystem			tetragonal		
Raumgruj	Raumgruppentyp			(Nr. 139)		
a [Å]			8,2213(6	8,2213(6)		
c [Å]			8,8015(7)		
$V [Å^3]$			594,9(1)			
Anzahl de	er Daten	punkte	1545			
Anzahl be	eobachte	ter				
Reflexe			131			
Anzahl ve	erfeinerte	er Parameter	33			
R_p [%]			0,94			
$wR_p \ [\%]$			1,51			
R_{F^2} [%]			$11,\!07$			
χ^2			$0,\!50$			
Atom	x	У	Z	U_{iso} / Å ²		

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 16,7 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,022(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,017(1)
Br	0,2066(3)	0,2066(3)	0	0,010(2)
Ι	0	0	0,3444(4)	0,051(1)

Kristallog	rafische D	aten von $Cs_2[$	$PdBr_4]I_2$ l	pei 24,6 kbar		
Druck []	kbar]		24,6			
Kristalls	system		tetragon	al		
Raumgr	uppentyp		I4/mmm	n (Nr. 139)		
a [Å]			8,1357(6)		
c [Å]			8,7136(7)		
V $[Å^3]$			576,7(1)			
Anzahl	Anzahl der Datenpunkte			1586		
Anzahl	beobachte	eter				
Reflex	е		127			
Anzahl	verfeinert	er Parameter	33			
$R_p \ [\%]$			$0,\!97$			
wR_p [%]		$1,\!61$			
R_{F^2} [%]			8,73			
χ^2			$0,\!51$			
Atom	х	У	\mathbf{Z}	\mathbf{U}_{iso} / $\mathrm{\AA}^2$		

Atom	х	У	\mathbf{Z}	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,005(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,012(1)
Br	0,2082(3)	0,2082(3)	0	0,005(1)
Ι	0	0	0,3437(5)	0,047(1)

Druck [kbar]	39,1
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	8,0087(7)
c [Å]	8,5890(7)
V $[Å^3]$	550,9(1)
Anzahl der Datenpunkte	1586
Anzahl beobachteter	
Reflexe	99
Anzahl verfeinerter Parameter	39
R_p [%]	1,03
wR_p [%]	1,61
R_{F^2} [%]	7,15
χ^2	0,58
Atom v v	$z \qquad U_{\text{curr}} / \text{Å}^2$

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 39,1 kbar

Atom	х	у	Z	U_{iso} / Å ²
Pd	0	0	0	0,005(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,005(1)
Br	0,2100(3)	0,2100(3)	0	0,005(1)
Ι	0	0	0,3408(5)	0,044(1)

Druck [kbar]	$57,\!6$
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,8808(9)
c [Å]	8,4734(9)
V $[Å^3]$	526,2(2)
Anzahl der Datenpunkte	1593
Anzahl beobachteter	
Reflexe	120
Anzahl verfeinerter Parameter	37
R_p [%]	$1,\!15$
wR_p [%]	1,80
R_{F^2} [%]	8,74
χ^2	$0,\!69$

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,005(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,005(1)
Br	0,2144(4)	0,2144(4)	0	0,004(1)
Ι	0	0	0,3391(6)	0,043(1)

Druck [kbar]		72		
Kristallsystem	n	tetragonal		
Raumgrupper	ntyp	I4/mmm (Nr. 139)		
a [Å]		7,798(1)		
c [Å]		8,404(1)		
V $[Å^3]$		511,1(2)		
Anzahl der D	atenpunkte	1472		
Anzahl beoba	chteter			
Reflexe		112		
Anzahl verfein	nerter Parameter	36		
R_p [%]		1,33		
$wR_p \ [\%]$		2,05		
R_{F^2} [%]		9,76		
χ^2		0,86		
Atom x	У	z U _{iso} / Å ²		

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 72 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,017(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,001(2)
Br	0,2183(5)	0,2183(5)	0	0,004(2)
Ι	0	0	0,3358(9)	0,037(1)

Kristallo	grafische Da	aten von Cs_2 [.	$PdBr_4 I_2$	g bei 78,8 kbai	
Druck	[kbar]		78,8		
Krista	llsystem	tetrage	onal		
Raum	gruppentyp		I4/mm	m (Nr. 139)	
a [Å]			7,798(1	L)	
c [Å]			8,404(1	L)	
$V [Å^3]$			504,6(2	2)	
Anzah	l der Daten	punkte	1463		
Anzah	l beobachte	ter			
Refle	exe	132 (2. Phase N_2)			
Anzah	l verfeinerte	29			
R_p [%]		$1,\!45$			
wR_p [76]	2,18			
R_{F^2} [%	76]		10,85		
χ^2			0,97		
Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$	
Pd	0	0	0	0,005(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,007(2)	
Br	0,2177(6)	0,2177(6)	0	0,004(3)	

Kristallografische Date CalPdBrilla hei 78.8 khar

0,3383(9)

0,043(2)

0

Ι

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 90,4 kbar					
Druck [kbar]	90,4				
Kristallsystem	tetragonal	monoklin			
Raumgruppentyp	I4/mmm (Nr. 139)	I2/m(Nr. 15)			
a [Å]	$7,\!699(2)$	8,292(2)			
b [Å]	$7,\!669(2)$	7,328(2)			
c [Å]	8,315(1)	8,086(1)			
β [°]	90	93,04(1)			
V $[Å^3]$	493,0(2)	490,7(2)			
Anzahl der Datenpunkte	1543				
Anzahl beobachteter					
Reflexe	511 (3. Pha	se N_2)			
Anzahl verfeinerter Parameter	43				
R_p [%]	1,36				
wR_p [%]	1,78				
R_{F^2} [%]	$22,\!33$				
χ^2	$0,\!55$				

Atom		х		У		Z		U_{iso} / Å ²
Pd	0	/ 0	0	/ 0	0	/	0	$0,\!014(4)/0,\!02$
\mathbf{Cs}	0	$/0,\!751(2)$	$\frac{1}{2}$	/ 0	$\frac{1}{4}$	/0,	472(2)	$0,\!015(3)/0,\!02$
Br	0,2177(0	$6)/0,\!986(2)$	0,2177(6)/0,763	(3) 0	/0,	786(2)	$0,\!035(5)/0,\!02$
Ι	0	$/0,\!673(2)$	0	/ 0	0,338	3(9)/0,	022(2)	$0,\!059(3)/0,\!02$

Kristallografische Daten v	von $Cs_2[PdBr_4]I_2$ bei 9	92,4 kbar	
Druck [kbar]	92,4		
Kristallsystem	tetragonal	monoklin	
Raumgruppentyp	I4/mmm (Nr. 139)	I2/m(Nr. 15)	
a [Å]	$7,\!684(1)$	8,294(1)	
b [Å]	$7,\!684(1)$	7,293(1)	
c [Å]	8,311(2)	8,093(1)	
β [°]	90	$93,\!088(9)$	
$V [Å^3]$	490,7(2)	488,9(2)	
Anzahl der Datenpunkte	1575		
Anzahl beobachteter			
Reflexe	510 (3. Pha	se N_2)	
Anzahl verfeinerter Parameter	55		
R_p [%]	1,25		
wR_p [%]	1,61		
R_{F^2} [%]	14,36		
χ^2	$0,\!41$		

Atom	х	У	Z	U_{iso} / Å ²
Pd	0 / 0	0 / 0	0 / 0	$0,\!006(6)/0,\!02$
\mathbf{Cs}	0 /0,761(1)	$rac{1}{2}$ / 0	$rac{1}{4}$ /0,473(1)	$0,\!009(5)/0,\!02$
Br	$0,\!217(1)/0,\!976(1)$	$0,\!217(1)/0,\!769(1)$	$0 /0,\!783(1)$	$0,\!006(6)/0,\!02$
Ι	$0 /0,\!671(1)$	0 / 0	$0,\!336(2)/0,\!019(1)$	$0,\!066(5)/0,\!02$

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 94,3 kbar					
Druck [kbar]	94,3				
Kristallsystem	tetragonal	monoklin			
Raumgruppentyp	I4/mmm (Nr. 139)	I2/m(Nr. 15)			
a [Å]	$7,\!689(3)$	8,285(1)			
b [Å]	$7,\!689(3)$	7,280(1)			
c [Å]	8,298(2)	8,086(1)			
eta [°]	90	93,199(8)			
$V [Å^3]$	490,7(4)	486,9(2)			
Anzahl der Datenpunkte	1527				
Anzahl beobachteter					
Reflexe	511 (3. Pha	se N_2)			
Anzahl verfeinerter Parameter	62				
R_p [%]	1,01				
wR_p [%]	1,33				
$R_{F^2} \ [\%]$	9,06				
χ^2	0,41				

Atom	Х			у			\mathbf{Z}		U_{iso} / Å ²
Pd	0 /	0	0	/	0	0	/	0	$0,\!013(9)/0,\!02$
\mathbf{Cs}	0 /0,	7624(8)	$\frac{1}{2}$	/	0	$\frac{1}{4}$	/0,4	4746(9)	$0,\!006(5)/0,\!02$
Br	0,201(2)/0,	9744(9)	0,201(2)	2)/0,	768(1)	0	/0,7	7846(9)	$0,\!034(9)/0,\!02$
Ι	0 /0,	6760(7)	0	/	0	0,342(2	2)/0,0	0216(8)	$0,\!103(9)/0,\!02$

Druck [kbar]	98,4	
Kristallsystem	tetragonal	$\operatorname{monoklin}$
Raumgruppentyp	I4/mmm (Nr. 139)	I2/m(Nr. 15)
a [Å]	$7,\!643(2)$	8,2954(8)
b [Å]	7,642(2)	7,2075(8)
c [Å]	8,267(4)	8,0805(9)
β [°]	90	93,391(6)
$V [Å^3]$	483,1(3)	482,2(1)
Anzahl der Datenpunkte	1538	
Anzahl beobachteter		
Reflexe	486 (3. Pha	se N_2)
Anzahl verfeinerter Parameter	57	
R_p [%]	1,09	
wR_p [%]	$1,\!47$	
R_{F^2} [%]	8,16	
χ^2	0,27	

Atom	х	у	\mathbf{Z}	U_{iso} / Å ²
Pd	0 / 0	0 / 0	0 / 0	$0,\!025/0,\!002(2)$
\mathbf{Cs}	0 /0,7619(7)	$rac{1}{2}$ / 0	$rac{1}{4}$ /0,4711(7)	$0,\!025/0,\!014(2)$
Br	$0,\!257(5)/0,\!9656(8)$	$0,\!257(5)/0,\!7684(9)$	0 /0,7886(8)	$0,\!025/0,\!003(2)$
Ι	$0 / \ 0,\!680(1)$	0 / 0	$0,\!356(4)/\ 0,\!020(1)$	$0,\!025/0,\!068(4)$

Kristallografische Daten von Cs ₂ [PdI	$3r_4]I_2$ bei 104,3 kbar
Druck [kbar]	104,3
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 12)
a [Å]	8,2920(5)
b [Å]	7,1562(6)
c [Å]	8,0570(5)
β [°]	93,543(5)
V [Å ³]	477, 18(6)
Anzahl der Datenpunkte	1557
Anzahl beobachteter	
Reflexe	132
Anzahl verfeinerter Parameter	42
R_p [%]	1,05
wR_p [%]	1,46
R_{F^2} [%]	8,0
χ^2	0,89

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,006(2)
\mathbf{Cs}	0,2356(8)		0,5230(2)	0,024(2)
Br	0,0345(9)	0,231(2)	0,2139(8)	0,073(4)
Ι	$0,\!680(1)$	0	0,0239(8)	0,005(2)

Kristallografische Daten von Cs ₂ [P	$dBr_4]I_2$ bei 106,9 kbar
Druck [kbar]	106,9
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	8,2884(9)
b [Å]	7,1403(9)
c [Å]	8,0503(9)
β [°]	$93,\!586(7)$
$V [Å^3]$	475,2(1)
Anzahl der Datenpunkte	1504
Anzahl beobachteter	
Reflexe	$380 (2. Phase N_2)$
Anzahl verfeinerter Parameter	46
R_p [%]	1,03
wR_p [%]	1,37
R_{F^2} [%]	11,07
χ^2	0,59

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	$0,\!02$
\mathbf{Cs}	0,7649(6)		0,4650(6)	$0,\!02$
Br	0,9628(9)	0,7646(8)	0,7814(8)	0,02
Ι	$0,\!6833(7)$	0	0,0288(8)	$0,\!02$

I VI ISUAIIO	Stansene D	aten von Ob	$2[1 \text{ uD}_14]_{12}$	001 105 Kbai		
Druck	x [kbar]	109	109			
Krista	allsystem	monokli	monoklin			
Raum	gruppentyp		I2/m (N	r. 15)		
a [Å]			8,2798(7)		
b [Å]			7,1248(7)		
c [Å]			8,0428(5	i)		
β [°]			$93,\!586(7$	·)		
V [Å ³]		473,52(4)		
Anzal	nl der Daten	punkte	1538			
Anzal	nl beobachte	eter				
Refl	exe		351 (2. l	351 (2. Phase N_2)		
Anzal	nl verfeinert	er Paramete	er 45	45		
R_p [%	5]		1,08	1,08		
wR_p	[%]		$1,\!44$	1,44		
R_{F^2} [%]		$12,\!33$	12,33		
χ^2			0,60			
Atom	х	У	Z	U_{iso} / Å ²		
Pd	0	0	0	0,02		
\mathbf{Cs}	0,7666(7)	0	0,4655(6)	0,02		
Br	0,9648(9)	0,7636(8)	0,7826(7)	0,02		
Ι	0.6809(7)	0	0.0283(8)	0.02		

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 109 kbar

$ristallografische Daten von Cs_2[H]$	$PdBr_4]I_2$ bei 112,4 kba
Druck [kbar]	112,4
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	8,2726(6)
b [Å]	7,0993(5)
c [Å]	8,0289(5)
β [°]	$93,\!675(5)$
$V [Å^3]$	470,58(3)
Anzahl der Datenpunkte	1536
Anzahl beobachteter	
Reflexe	$346 (2. Phase N_2)$
Anzahl verfeinerter Parameter	49
R_p [%]	1,13
wR_p [%]	$1,\!65$
R_{F^2} [%]	10,34
χ^2	0,76

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,004(3)
\mathbf{Cs}	0,7656(9)	0	0,4645(8)	0,17(2)
Br	0,9615(9)	0,762(1)	0,7834(8)	0,002(2)
Ι	$0,\!679(1)$	0	0,026(1)	0,065(4)

Kristallografis	che Daten	von $Cs_2[Pd]$	Br ₄]I ₂ b	ei 139,3 kbar	
Druck [k	bar]	`	139,3		
Kristalls	ystem		monol	klin	
Raumgru	ıppentyp		I2/m	(Nr. 15)	
a [Å]			8,1997	7(7)	
b [Å]			6,9863	B(7)	
c [Å]			7,9631	L(8)	
β [°]			93,899	$\Theta(5)$	
V $[Å^3]$			455,1(1)		
Anzahl d	ler Datenp	unkte	1533		
Anzahl b	eobachtete	er			
Reflexe					
Anzahl v	rerfeinerter	Parameter	47		
R_p [%]			$1,\!20$		
wR_p [%]			$1,\!68$		
R_{F^2} [%]			$10,\!18$		
χ^2			$0,\!83$		
Atom	х	У	Z	U_{iso} / $\mathrm{\AA^2}$	
Pd	0	0	0	0,023(3)	

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,023(3)
\mathbf{Cs}	0,7739(9)	0	0,4653(8)	0,004(2)
Br	0,961(1)	0,761(1)	0,7851(9)	0,006(2)
Ι	$0,\!680(1)$	0	0,027(1)	0,044(3)

-

Kristallografische Daten von $Cs_2[P]$	$dBr_4]I_2$ bei 156,4 kbar
Druck [kbar]	156,4
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	8,1546(8)
b [Å]	6,9270(8)
c [Å]	7,9285(8)
β [°]	94,015(5)
$V [Å^3]$	446,7(1)
Anzahl der Datenpunkte	1530
Anzahl beobachteter	
Reflexe	342 (2. Phase N ₂)
Anzahl verfeinerter Parameter	50
R_p [%]	1,13
wR_p [%]	1,55
R_{F^2} [%]	9,44
χ^2	0,71

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,038(3)
\mathbf{Cs}	0,7748(8)	0	0,4677(8)	0,005(2)
Br	0,9575(9)	0,758(1)	0,7888(8)	0,001(2)
Ι	$0,\!6791(9)$	0	0,026(1)	$0,\!033(3)$

2011D000110	stansene Da	von von Ob	2[1 aD14]12 k	JCI 100,0 KDa		
Druck	[kbar]	166,6	166,6			
Krista	llsystem	monokl	monoklin			
Raum	gruppentyp	I2/m (N	Nr. 15)			
a [Å]			8,1266(9)		
b [Å]			6,8896(9)		
c [Å]			7,9100(3	8)		
β [°]			94,100(6)		
V $[Å^3]$			441,7(1))		
Anzah	l der Daten	punkte	1523			
Anzahl beobachteter						
Refle	exe		340(2.	$340 (2. \text{ Phase } N_2)$		
Anzahl verfeinerter Parameter			er 50	50		
R_p [%]		$1,\!16$			
wR_p [%]		1,64			
R_{F^2} [9]	%]		8,86	8,86		
χ^2			0,80	0,80		
Atom	х	У	Z	U_{iso} / Å^2		
Pd	0	0	0	0,039(4)		
\mathbf{Cs}	0,7715(8)	0	0,4654(7)	0,002(2)		
Br	0,956(1)	0,758(1)	0,7869(8)	0,003(2)		
Ι	$0,\!678(9)$	0	0,028(1)	0,037(4)		

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 166,6 kbar

Druck [kbar]	178,1
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	8,0946(9)
b [Å]	6,8505(7)
c [Å]	7,8807(8)
β [°]	94,188(6)
$V [Å^3]$	435,8(1)
Anzahl der Datenpunkte	1525
Anzahl beobachteter	
Reflexe	376 (2. Phase N_2)
Anzahl verfeinerter Parameter	71
R_p [%]	1,05
wR_p [%]	1,46
R_{F^2} [%]	5,92
χ^2	0,62

Atom	х	У	Z	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,008(3)
\mathbf{Cs}	0,7773(9)	0	0,4692(7)	0,017(2)
Br	0,954(1)	0,763(1)	0,7845(6)	0,017(2)
Ι	$0,\!678(1)$	0	0,021(1)	0,061(3)

ring anos	ansene Do	von von Or	52[1 GD14]12	ы 101,4 кы		
Druck	[kbar]	187,4	187,4			
Kristal	lsystem	monok	monoklin			
Raumg	gruppentyp		I2/m (I	Nr. 15)		
a [Å]			8,0700((9)		
b [Å]			6,8213((8)		
c [Å]			7,8629((8)		
β [°]			94,279((6)		
V $[Å^3]$			431,6(1)		
Anzahl	der Dater	punkte	1519			
Anzahl	beobachte	eter				
Reflex	xe		369(2.	$369 (2. \text{Phase N}_2)$		
Anzahl	verfeinert	ter 71	71			
R_p [%]			$1,\!10$	1,10		
wR_p [%	6]		1,52			
R_{F^2} [%	<u>[</u>		$5,\!29$	5,29		
χ^2			0,64	0,64		
Atom	х	У	Z	U_{iso} / Å ²		
Pd	0	0	0	0,014(3)		
\mathbf{Cs}	0,776(1)	0	0,4666(7)	0,026(2)		
Br	0,954(1)	0,759(1)	0,7836(7)	0,009(2)		
Ι	0,679(1)	0	0,022(1)	0,063(3)		

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 187,4 kbar

Kristallografische Daten von Cs ₂ [I	$PdBr_4]I_2$ bei 199,4 kbai
Druck [kbar]	199,4
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	8,0442(9)
b [Å]	6,7853(9)
c [Å]	7,8504(9)
β [°]	94,396(6)
$V [Å^3]$	427,2(1)
Anzahl der Datenpunkte	1508
Anzahl beobachteter	
Reflexe	353 (2. Phase N_2)
Anzahl verfeinerter Parameter	47
R_p [%]	1,13
wR_p [%]	1,58
R_{F^2} [%]	6,51
χ^2	0,60

Atom	х	У	Z	\mathbf{U}_{iso} / Å ²
Pd	0	0	0	0,003(3)
\mathbf{Cs}	0,7740(8)	0	0,4638(7)	0,015(2)
Br	0,9586(9)	0,7523(8)	0,7839(7)	0,002(2)
Ι	$0,\!6845(9)$	0	0,028(1)	0,054(3)

_ _

Source	Jansene Da	von von Ob	$2 1 \mathbf{u} \mathbf{D} 1 4 1 2 \mathbf{v}$	200,0 Rbai			
Druck	[kbar]	206,8	206,8				
Krista	llsystem	monokl	monoklin				
Raum	gruppentyp		I2/m (N	Nr. 15)			
a [Å]			8,026(1))			
b [Å]			6,766(1))			
c [Å]			7,827(1))			
β [°]			94,416(8)			
V $[Å^3]$			423,8(1))			
Anzah	l der Daten	punkte	1530				
Anzah	l beobachte	ter					
Reflexe			363(2.	$363 (2. Phase N_2)$			
Anzah	l verfeinerte	er 44	44				
$R_p \ [\%]$		$1,\!47$	1,47				
wR_p [%]			2,06				
R_{F^2} [%]			11,06	11,06			
χ^2			$1,\!15$				
Atom	х	У	Z	U_{iso} / Å ²			
Pd	0	0	0	0,017(3)			
\mathbf{Cs}	0,773(1)	0	0,466(1)	0,025(3)			
Br	0,9586(9)	0,752(1)	0,7855(9)	0,003(2)			
Ι	$0,\!679(1)$	0	0,022(1)	$0,\!073(3)$			

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 206,8 kbar

ristallografische Daten von $Cs_2[P$	dBr_4] I_2 bei 218,8 kba
Druck [kbar]	218,8
Kristallsystem	monoklin
Raumgruppentyp	I2/m (Nr. 15)
a [Å]	7,994(1)
b [Å]	6,729(1)
c [Å]	7,804(1)
β [°]	94,416(8)
$V [Å^3]$	418,6(2)
Anzahl der Datenpunkte	1531
Anzahl beobachteter	
Reflexe	$363 (2. \text{ Phase } N_2)$
Anzahl verfeinerter Parameter	44
R_p [%]	1,55
wR_p [%]	2,15
R_{F^2} [%]	8,07
χ^2	0,93
Atom x v	$z \qquad \text{II} \cdot / \hat{A}^2$

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 218,8 kbar

Atom	х	У	\mathbf{Z}	U_{iso} / Å^2
Pd	0	0	0	0,025(3)
\mathbf{Cs}	0,774(1)	0	0,463(1)	0,029(3)
Br	0,958(1)	0,749(1)	0,784(1)	0,002(2)
Ι	$0,\!679(1)$	0	0,027(2)	0,075(5)

283

11000011081		on ton ob	2[1 (12)14]12	001 22 0, 1 mou	
Druck [kbar]	228,4	228,4		
Kristall	system	monok	monoklin		
Raumg	ruppentyp	I2/m (Nr. 15)		
a [Å]			7,974(2	1)	
b [Å]			6,715(2	1)	
c [Å]			7,775(2	1)	
β [°]			94,58(1	1)	
V $[Å^3]$			415,0(1	1)	
Anzahl der Datenpunkte			1521		
Anzahl	beobachtet	er			
Reflex	æ		415 (2	. Phase N_2)	
Anzahl	verfeinerte	r Paramet	er 51		
R_p [%]			$1,\!34$		
wR_p [%			$1,\!87$		
R_{F^2} [%]		$6,\!29$		
χ^2			$0,\!56$		
Atom	Х	У	Z	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$	
Pd	0	0	0	0,026(4)	
\mathbf{Cs}	0,774(1)	0	0,462(1)	0,033(3)	
Br	0,953(1)	0,755(1)	0,787(1)	0,002(2)	

Kristallografische Daten von $Cs_2[PdBr_4]I_2$ bei 228,4 kbar

 $0,031(1) \quad 0,053(4)$

Ι

0,675(1)

Kristallografische Daten und Pulverdiffraktogramme von Cs₂[PdCl₄]I₂ gemessen am ESRF an den Experimentierstationen ID09 (Experiment-Nr. CH-1052) und ID30 (Experiment-Nr. CH-1086).

Kristallog	rafische I	Daten von Cs_2	$[PdCl_4]I_2$	bei 0,8 kbar		
Druck [k	bar]		0,8			
Kristalls	Kristallsystem			nal		
Raumgr	uppentyp		I4/mm	m (Nr. 139)		
a [Å]			8,1337(2)		
c [Å]			8,9772(3)		
V $[Å^3]$			$593,\!91($	2)		
Anzahl o	der Dater	punkte	2019			
Anzahl	peobachte	eter				
Reflexe	e		117			
Anzahl	Anzahl verfeinerter Parameter			37		
R_p [%]			1,75			
wR_p [%]			2,79			
R_{F^2} [%]			$10,\!37$			
χ^2			0,34			
Atom	х	У	Z	\mathbf{U}_{iso} / $\mathrm{\AA}^2$		
Pd	0	0	0	0.015(2)		

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,015(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,031(2)
Cl	0,2022(9)	0,2022(9)	0	0,022(4)
Ι	0	0	0,3455(6)	0,015(1)

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 9,6 kbar					
Druck [kbar]		9,6			
Kristallsyster	m	tetragon	al		
Raumgruppe	ntyp	I4/mmn	n (Nr. 139)		
a [Å]		$7,\!9940(2$	2)		
c [Å]		8,8299(4	.)		
V $[Å^3]$		564,28(3	3)		
Anzahl der E	Datenpunkte	1567			
Anzahl beob	achteter				
Reflexe		119			
Anzahl verfei	inerter Para	meter 29			
R_p [%]		$2,\!11$			
wR_p [%]		$3,\!45$			
R_{F^2} [%]		$13,\!73$			
χ^2		$0,\!49$			
Atom x	У	Z	U_{iso} / Å ²		

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,016(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,022(2)
Cl	0,1972(1)	0,1973(1)	0	0,048(6)
Ι	0	0	0,3464(6)	0,026(2)

Druck [kbar]	18,3
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,8980(2)
c [Å]	8,7328(3)
$V [Å^3]$	544,78(3)
Anzahl der Datenpunkte	1571
Anzahl beobachteter	
Reflexe	115
Anzahl verfeinerter Parameter	40
R_p [%]	1,89
wR_p [%]	3,08
R_{F^2} [%]	8,43
χ^2	0,38

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 18,3 kbar

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,013(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,026(1)
Cl	0,200(1)	0,200(1)	0	0,030(4)
Ι	0	0	0,3451(5)	$0,\!034(1)$

Druck [kbar]	29,6
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,7968(2)
c [Å]	8,6334(3)
$V [Å^3]$	524,83(3)
Anzahl der Datenpunkte	1514
Anzahl beobachteter	
Reflexe	103
Anzahl verfeinerter Parameter	31
R_p [%]	2,03
wR_p [%]	3,33
R_{F^2} [%]	12,60
χ^2	0,46

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,010(1)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,024(2)
Cl	0,208(1)	0,208(1)	0	0,027(1)
Ι	0	0	0,3392(7)	0,030(1)

Druck [kbar]	38,1
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,7298(1)
c [Å]	8,5717(3)
$V [Å^3]$	512,17(2)
Anzahl der Datenpunkte	1530
Anzahl beobachteter	
Reflexe	102
Anzahl verfeinerter Parameter	30
R_p [%]	1,87
wR_p [%]	2,88
R_{F^2} [%]	10,94
χ^2	0,34
Atom v v	r II. $/ \lambda^2$

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 38,1 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,003(1)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	$0,\!021(1)$
Cl	0,2053(8)	0,2053(8)	0	0,036(4)
Ι	0	0	0,3399(5)	0,029(1)

Druck [kbar]	50,3
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,6536(2)
c [Å]	8,4992(3)
$V [Å^3]$	497,87(3)
Anzahl der Datenpunkte	1511
Anzahl beobachteter	
Reflexe	101
Anzahl verfeinerter Parameter	30
R_p [%]	2,19
wR_p [%]	3,44
R_{F^2} [%]	12,61
χ^2	$0,\!48$

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,003(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,017(1)
Cl	0,206(1)	0,206(1)	0	0,035(5)
Ι	0	0	0,3392(6)	0,019(1)

60,2
tetragonal
I4/mmm (Nr. 139)
7,5968(2)
8,4453(3)
487,39(3)
1560
101
28
2,54
3,89
12,56
0,61

Kristallografische Daten von $\mathrm{Cs}_2[\mathrm{PdCl}_4]\mathrm{I}_2$ bei 60,2 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,007(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,025(1)
Cl	0,205(1)	0,205(1)	0	0,057(6)
Ι	0	0	0,3385(6)	0,023(1)

Druck [kbar]	70,1
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,5453(2)
c [Å]	8,4004(3)
V $[Å^3]$	478, 38(3)
Anzahl der Datenpunkte	1553
Anzahl beobachteter	
Reflexe	101
Anzahl verfeinerter Parameter	28
R_p [%]	2,45
wR_p [%]	3,69
R_{F^2} [%]	13,35
χ^2	$0,\!65$

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,019(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,026(1)
Cl	0,211(1)	0,211(1)	0	0,048(5)
Ι	0	0	0,3380(6)	0,023(1)

Druck [kbar]	78,6
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,4879(2)
c [Å]	8,3495(3)
$V [Å^3]$	468, 16(3)
Anzahl der Datenpunkte	1552
Anzahl beobachteter	
Reflexe	98
Anzahl verfeinerter Parameter	28
R_p [%]	2,44
wR_p [%]	3,98
R_{F^2} [%]	9,40
χ^2	0,75

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 78,6 kbar

Atom	х	У	Z	U_{iso} / Å ²
Pd	0	0	0	0,011(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,021(2)
Cl	0,218(1)	0,218(1)	0	0,044(6)
Ι	0	0	0,3369(6)	0,015(1)

Kristallografische Daten von Cs ₂ [$PdCl_4]I_2$ bei 92,9 kbar	
Druck [kbar]	92,9	
Kristallsystem	tetragonal	
Raumgruppentyp	I4/mmm (Nr. 139)	
a [Å]	7,4230(2)	
c [Å]	8,2928(3)	
$V [Å^3]$	456,93(3)	
Anzahl der Datenpunkte	1545	
Anzahl beobachteter		
Reflexe	96	
Anzahl verfeinerter Parameter	30	
R_p [%]	2,36	
wR_p [%]	3,90	
R_{F^2} [%]	9,59	
χ^2	0,71	
Atom x y	z U _{iso} / Å ²	

Atom	х	У	\mathbf{Z}	U_{iso} / A^2
Pd	0	0	0	0,003(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,019(2)
Cl	0,215(1)	0,215(1)	0	0,055(6)
Ι	0	0	0,3331(6)	0,015(1)

100,2
tetragonal
I4/mmm (Nr. 139)
7,3941(2)
8,2677(2)
452,02(3)
1545
97
30
2,58
3,98
11,53
0,74

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 100,2 kbar

Atom	х	У	\mathbf{Z}	U_{iso} / Å ²
Pd	0	0	0	0,005(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	$0,\!017(1)$
Cl	0,211(1)	0,211(1)	0	0,049(6)
Ι	0	0	0,3325(6)	0,017(1)

Kristallog	rafische Da	aten von $Cs_2[$	PdCl ₄]I	₂ bei 112,9 kbar	
Druck	Druck [kbar]			112,9	
Kristall	lsystem		tetrag	gonal	
Raumg	ruppentyp		I4/mr	nm (Nr. 139)	
a [Å]			7,3451	1(3)	
c [Å]			8,2279	9(4)	
$V [Å^3]$			443,90	$\mathcal{D}(3)$	
Anzahl	Anzahl der Datenpunkte				
Anzahl	beobachte	ter			
Reflex	Reflexe		124(2	124 (2. Phase N_2)	
Anzahl	Anzahl verfeinerter Parameter		37		
R_p [%]	R_p [%]				
wR_p [%	[]		4,03		
R_{F^2} [%]		$9,\!34$		
χ^2			0,75		
Atom	х	У	\mathbf{Z}	U_{iso} / $\mathrm{\AA}^2$	
Pd	0	0	0	0,011(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,015(2)	
Cl	0,211(1)	0,211(1)	0	0,040(6)	

Cs2[PdCl4]I2 @ 113 kbar Hist 1 Lambda 0.4159 A, L-S cycle Obsd. and Diff. Profiles 913 \sim X10E 1.5 1.0 0.5 0.0 in a final barra a standar barra taba ta anto fi barra baha tamata ta ana baha barra barra barra barra barra b ł. 11 May Arenthe Counts -0.5 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 4.0 6.0 2-Theta, deg

0,3325(6)

0,015(1)

0

Ι

Druck [kbar]	116,3
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,3322(3)
c [Å]	8,2186(4)
V $[Å^3]$	441,85(3)
Anzahl der Datenpunkte	1542
Anzahl beobachteter	
Reflexe	124 (2. Phase N_2)
Anzahl verfeinerter Parameter	37
R_p [%]	2,47
wR_p [%]	3,87
R_{F^2} [%]	10,86
χ^2	0,70
Atom x y	$\overline{z \qquad U_{iso} / A^2}$

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 116,3 kbar

Tistallog	rafische Da	aten von Cs_2	PdCl ₄]I	₂ bei 122,1 kba		
Druck [kbar]			122,1	122,1		
Kristallsystem			tetrag	tetragonal		
Raumgruppentyp			I4/m	mm (Nr. 139)		
a [Å]	a [Å]			8(3)		
c [Å]	c [Å]			2(4)		
$V [Å^3]$			438,2	9(3)		
Anzahl	der Daten	punkte	1522			
Anzahl	beobachte	ter				
Reflexe			124 (2	124 (2. Phase N_2)		
Anzahl verfeinerter Parameter			37			
R_p [%]	R_p [%]					
wR_p [%	[]		4,20			
R_{F^2} [%]		8,55	8,55		
χ^2			0,81			
Atom	х	У	\mathbf{Z}	$\mathbf{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,023(3)		
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,023(2)		
Cl	0,220(1)	0,220(1)	0	0,035(5)		

Cso[PdCl4]Io bei 122,1 kbar Kristallografische Date

0,3314(7)

0,017(1)

Ι

0

Druck [kbar]	128,1			
Kristallsystem	tetragonal			
Raumgruppentyp	I4/mmm (Nr. 139)			
a [Å]		7,2898(3)		
c [Å]		8,1839(4)		
V $[Å^3]$		434,91(3)		
Anzahl der Datenpur	nkte	1451		
Anzahl beobachteter				
Reflexe	124 (2. Phase N_2)			
Anzahl verfeinerter H	Parameter	39		
R_p [%]		2,43		
wR_p [%]		$3,\!98$		
R_{F^2} [%]		10,99		
χ^2		0,73		
		TT / 82		
Atom x	У	$z = U_{iso} / A^2$		

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 128,1 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,026(4)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,020(2)
Cl	0,232(2)	0,232(2)	0	0,045(6)
Ι	0	0	0,3330(6)	0,005(1)

Kristallog	rafische Da	aten von Cs_2	PdCl ₄]I	$_2$ bei 133,6 kbar	
Druck	Druck [kbar]			133,6	
Kristall	system		tetrag	gonal	
Raumg	ruppentyp		I4/m	mm (Nr. 139)	
a [Å]			$7,\!274$	3(3)	
c [Å]			8,169	3(4)	
$V [Å^3]$			432,2	9(3)	
Anzahl	der Daten	punkte	1578		
Anzahl	beobachte	ter			
Reflex	Reflexe		119 (2	119 (2. Phase N_2)	
Anzahl	Anzahl verfeinerter Parameter				
R_p [%]	R_p [%]				
wR_p [%	5]		3,71		
R_{F^2} [%]		13,43		
χ^2			$0,\!61$		
Atom	х	У	\mathbf{Z}	U_{iso} / $\mathrm{\AA}^2$	
Pd	0	0	0	0,014(3)	
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,015(2)	
Cl	0,227(2)	0,227(2)	0	0,039(5)	

Cs2[PdCl4]I2 @ 134 kbar Hist 1 Obsd. and Diff. Profiles Lambda 0.4159 A, L-S cycle 854 m X10E 1.5 1.0 0.5 Counts 0.0 . No se este e esta de la terra de la decendaria de la constance d 1 II pop-Apha ٨. 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 4.0 6.0 2-Theta, deg

0,3305(6)

0,016(1)

Ι

0

Druck [k]	harl		139.2	<u></u>
Kristallsystem			totrog	onal
Kristallsystem			tetrag	onai
Raumgru	Raumgruppentyp			nm (Nr. 139)
a [Å]			7,2537	7(3)
c [Å]			8,1572	2(4)
$V [Å^3]$			429,21	.(3)
Anzahl d	er Daten	punkte	1489	
Anzahl b	eobachte	ter		
Reflexe			121(2	2. Phase N_2)
Anzahl v	erfeinerte	er Parameter	30	
R_p [%]			$2,\!68$	
wR_p [%]			$4,\!15$	
R_{F^2} [%]			9,96	
χ^2			0,76	
Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$
- D 1	0	0	0	0.000(0)

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 139,2 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,033(2)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,026(2)
Cl	0,233(2)	0,233(2)	0	0,060(6)
Ι	0	0	0,3304(6)	0,012(1)

Tistallog	rafische Da	aten von Cs_2	PdCl ₄]I	$_2$ bei 143,7 kba		
Druck [kbar]			143,7	143,7		
Kristallsystem			tetrag	gonal		
Raumg	ruppentyp		I4/m	mm (Nr. 139)		
a [Å]			7,244	1(3)		
c [Å]			8,146	8(4)		
$V [Å^3]$			427,52	2(3)		
Anzahl	der Daten	punkte	1511			
Anzahl	beobachte	ter				
Reflex	ce	115 (2	115 (2. Phase N_2)			
Anzahl	verfeinerte	37	37			
R_p [%]			$2,\!20$	2,20		
wR_p [%	[]		$3,\!46$	3,46		
R_{F^2} [%]		$11,\!47$			
χ^2			0,52			
Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,010(3)		
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,012(2)		
Cl	0,229(2)	0,229(2)	0	0,033(5)		

Kristallografische Date Cso[PdCL]La bei 143.7 kb łr

0

0,3299(6)

0,006(1)

Ι

0

Druck [kbar]	152,2
Kristallsystem	tetragonal
Raumgruppentyp	I4/mmm (Nr. 139)
a [Å]	7,2187(3)
c [Å]	8,1262(4)
V $[Å^3]$	423,46(3)
Anzahl der Datenpunkte	1500
Anzahl beobachteter	
Reflexe	112 (2. Phase N_2)
Anzahl verfeinerter Parameter	36
R_p [%]	2,46
$wR_p \ [\%]$	4,10
R_{F^2} [%]	13,10
χ^2	0,73
Atom x y	z U _{iso} / Å ²

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 152,2 kbar

ristallog	rafische Da	aten von Cs_2	PdCl ₄]I	<u>2</u> bei 158,7 kba:		
Druck [kbar]			152,7	152,7		
Kristall	lsystem	tetrag	tetragonal			
Raumg	ruppentyp		I4/m	mm (Nr. 139)		
a [Å]			7,199	8(3)		
c [Å]			8,112	3(4)		
$V [Å^3]$			420,52	2(3)		
Anzahl	der Daten	punkte	1515			
Anzahl	beobachte	ter				
Reflex	ke	112 (2	112 (2. Phase N_2)			
Anzahl	verfeinerte	35	35			
R_p [%]			2,76	2,76		
wR_p [%	ó]		4,39	4,39		
R_{F^2} [%)]		11,55			
χ^2	χ^2					
Atom	х	У	Z	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,014(3)		
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,021(2)		
Cl	0,221(2)	0,221(2)	0	0,035(6)		

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 158,7 kbar

0

0,3325(8)

0,019(2)

Ι

0

Druck [kbar]	166,7		
Kristallsystem	tetragonal		
Raumgruppentyp	I4/mmm (Nr. 139)		
a [Å]	7,1880(3)		
c [Å]	8,0941(5)		
V $[Å^3]$	417,05(3)		
Anzahl der Datenpunkte	1473		
Anzahl beobachteter			
Reflexe	$105 (2. \text{ Phase } N_2)$		
Anzahl verfeinerter Parameter	33		
R_p [%]	2,73		
wR_p [%]	4,30		
R_{F^2} [%]	10,18		
χ^2	0,80		
Atom x y	$z = U_{iso} / A^2$		

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 166,7 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,023(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,027(2)
Cl	0,218(2)	0,218(2)	0	0,029(6)
Ι	0	0	0,3326(8)	0,023(2)

Kristallog	rafische Da	aten von Cs_2	PdCl ₄]I	$_2$ bei 177,2 kbar		
Druck	kbar]	177,2				
Kristall	system	tetrag	gonal			
Raumg	ruppentyp		I4/m	mm (Nr. 139)		
a [Å]			$7,\!151'$	7(3)		
c [Å]			8,073	5(5)		
V $[Å^3]$			412,93	3(3)		
Anzahl	der Daten	1500				
Anzahl	beobachte					
Reflex	æ	108 (2	108 (2. Phase N_2)			
Anzahl	verfeinerte	33	33			
R_p [%]			2,82	2,82		
wR_p [%	[]		4,42	4,42		
R_{F^2} [%]		$10,\!18$	10,18		
χ^2	χ^2					
Atom	х	У	Z	U_{iso} / $\mathrm{\AA}^2$		
Pd	0	0	0	0,014(3)		
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,029(2)		
Cl	0,216(2)	0,216(2)	0	0,043(7)		

Cs2[PdCl4]I2 @ 176 kbar Hist 1 Obsd. and Diff. Profiles Lambda 0.4159 A, L-S cycle 911 2.0 С X10E 1.5 2 1.0 0.5 1 an ta j - հայ ուսելու վել այլերի կուս և հակարակ հետաստան հատուտի н. 0.0 ī. Counts -0.5 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 4.0 6.0 2-Theta, deg

0

0,3298(8)

0,024(2)

Ι

0

Druck [k]	parl		178.1			
Kristallsv	vstem		tetrag	tetragonal		
Raumgru	ppentyp	I4/mn	am (Nr. 139)			
a [Å]		7,1461	.(4)			
c [Å]			8,070(1)		
$V [Å^3]$			412,11	.(6)		
Anzahl d	er Daten	punkte	1500			
Anzahl b	eobachte	ter				
Reflexe			106 (2	2. Phase N_2)		
Anzahl v	erfeinerte	er Parameter	33			
R_p [%]			3,76			
$wR_p \ [\%]$			$5,\!93$			
R_{F^2} [%]			$9,\!92$			
χ^2			$1,\!47$			
Atom	х	У	\mathbf{Z}	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
DJ	0	0	Ο	0.000(4)		

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 178,1 kbar

Atom	х	У	Z	U_{iso} / Å^2
Pd	0	0	0	0,009(4)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,015(2)
Cl	0,208(3)	0,208(3)	0	0,054(1)
Ι	0	0	0,3299(1)	0,012(3)

Kristallogra	fische Da	aten von $Cs_2[]$	PdCl ₄]I ₂	$_2$ bei 196,6 kbar		
Druck [k]	bar]		196,6	196,6		
Kristallsy	Kristallsystem			tetragonal		
Raumgru	Raumgruppentyp			nm (Nr. 139)		
a [Å]			7,1185	5(9)		
c [Å]			8,0284	4(4)		
V $[Å^3]$			406,8((1)		
Anzahl d	Anzahl der Datenpunkte			1488		
Anzahl b	Anzahl beobachteter					
Reflexe	Reflexe			101		
Anzahl v	erfeinert	er Parameter	29			
$R_p \ [\%]$			2,01			
wR_p [%]			2,93			
R_{F^2} [%]	R_{F^2} [%]			17,08		
χ^2			1,81			
Atom	х	у	Z	$\overline{\mathrm{U}_{iso}}$ / $\mathrm{\AA}^2$		
Pd	0	0	0	0,029(3)		

1100111		J	-	0180 / 11
Pd	0	0	0	0,029(3)
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	$0,\!083(3)$
Cl	0,216(1)	0,216(1)	0	0,005(4)
Ι	0	0	0,3234(7)	0,069(2)

Druck [kbar	:]	224,4	224,4		
Kristallsyst	em	tetragonal			
Raumgrupp	entyp		I4/mm	m (Nr. 139)	
a [Å]			7,062(1	L)	
c [Å]			7,9549	(6)	
V $[Å^3]$			396,7(1	L)	
Anzahl der	Datenpun	1488			
Anzahl beo	bachteter				
Reflexe		101			
Anzahl verf	einerter Pa	arameter	29		
R_p [%]			2,00		
$wR_p \ [\%]$			2,88		
$R_{F^2}\ [\%]$			$16,\!99$		
χ^2			$1,\!54$		
				TT (89	
Atom	х	У	Z	U_{iso} / A^2	

Kristallografische Daten von $Cs_2[PdCl_4]I_2$ bei 224,4 kbar

Aristallogra	fische Da	ten von Cs_2	PdCl ₄]I	₂ bei 252,9 kbai		
Druck [kb	oar]		252,9	252,9		
Kristallsy	stem	tetrag	tetragonal			
Raumgru	Raumgruppentyp			mm (Nr. 139)		
a [Å]			7,001	(2)		
c [Å]			7,891	7(8)		
V $[Å^3]$			386,8	(1)		
Anzahl de	er Daten	1488				
Anzahl be	eobachte					
Reflexe	Reflexe			86		
Anzahl ve	erfeinerte	er Parameter	30	30		
R_p [%]			$2,\!11$	2,11		
wR_p [%]			2,95			
R_{F^2} [%]			$21,\!50$			
χ^2			$1,\!52$			
Atom	х	У	Z	$\mathrm{U}_{iso} \ / \ \mathrm{\AA}^2$		
Pd	0	0	0	0,023(4)		
\mathbf{Cs}	0	$\frac{1}{2}$	$\frac{1}{4}$	0,125(6)		

0,224(2) 0,224(2)

0

0

0

0,042(9)

0,311(2) 0,081(4)

 Cl

Ι

Kristallo Cas[PdCL]Ia hei 252.9 khar grafische Date

Die original Messdaten sind im Dekanat des Fachbereich Chemie der Universität Dortmund hinterlegt und können dort eingesehen werden.

Literatur

- [1] B. Schüpp, H.-L. Keller, Eur. J. Inorg. Chem., 2001 (2001) 1431.
- [2] B. Schüpp, P. Heines, H.-L. Keller, Z. Anorg. Allg. Chem., 626 (2000) 202.
- [3] B. Schüpp, H.-L. Keller, Z. Anorg. Allg. Chem., 625 (1999) 379.
- [4] B. Schüpp, H.-L. Keller, Z. Anorg. Allg. Chem., 625 (1999) 241.
- [5] B. Schüpp, H.-L. Keller, Z. Anorg. Allg. Chem., 625 (1999) 1944.
- [6] L. Schröder, H.-L. Keller, J. Less-Common Met., 154 (1989) 295.
- [7] L. Schröder, H.-L. Keller, J. Less-Common Met., 153 (1989) 35.
- [8] L. Schröder, H.-L. Keller, Z. Anorg. Allg. Chem., 603 (1991) 69.
- [9] L. Schröder, H.-L. Keller, Z. Anorg. Allg. Chem., 622 (1996) 1231.
- [10] L. Schröder, H.-L. Keller, Z. Anorg. Allg. Chem., 562 (1988) 123.
- [11] L. Schröder, H.-L. Keller, J. Less-Common Met., 132 (1987) 287.
- [12] B. Schüpp, P. Heines, A. Savin, H.-L. Keller, Inorg. Chem., 39 (2000) 732.
- [13] K. Nasu, J. Phys. Soc. Jpn., 53 (1984) 427.
- [14] J. T. Gammel, A. Saxena, I. Batistic, A. R. Bishop, S. R. Phillpot, *Phys. Rev.*, B45 (1992) 6408.
- [15] M. Kurmoo, R. J. H. Clark, Inorg. Chem., 24 (1985) 4420.
- [16] Y. Wada, T. Mitami, K. Toriumi, M. Yamashita, J. Phys. Soc. Jpn., 58 (1989) 3013.
- [17] N. Kuroda, M. Sakai, M. Suezawa, Y. Nishina, K. Sumino, J. Phys. Soc. Jpn., 59 (1990) 3049.
- [18] L. Degiorgi, P. Wachter, M. Haruki, S. Kurita, *Phys. Rev.*, **B40** (1989) 3285.

- [19] R. J. Donohoe, R. B. Dyer, B. I. Swanson, Solid State Commun., 73 (1990) 521.
- [20] N. Elliott, L. Pauling, J. Am. Chem. Soc., 60 (1938) 1864.
- [21] W. Denner, H. Schultz, H. D'Amour, Acta Crystallogr., A35 (1979) 360.
- [22] M. Matsushita, H. Kitagawa, N. Kojima, Acta Crystallogr., C53 (1997) 663.
- [23] J. C. M. van Tindemans-v. Eijndhoven, G. C. Verschoor, *Mat. Res. Bull.*, 9 (1974) 1667.
- [24] B. Winkler, C. J. Pickard, M. D. Segall, V. Milman, Phys. Rev., B63 (2001) 214103.
- [25] N. Kojima, N. Matsushita, Coord. Chem. Rev., 198 (2000) 251.
- [26] W. Massa, Kristallstrukturbestimmung, B. G. Teubner, Stuttgart, 2. Auflage (1996).
- [27] J. P. McGlusker, K. N. Trueblood, Crystal Structure Analysis, Oxford University Press (1985).
- [28] G. Giacovazzo, Hg., Fundamentals of Crystallography, Oxford University Press (1992).
- [29] G. H. Stout, L. H. Jensen, X-Ray Structure Determination, Wiley & Sons, New York, 2. Auflage (1989).
- [30] Z. Otwinowsky, W. Minor, Methods Enzymol., 276 (1997) 307.
- [31] G. M. Sheldrick, Program for Crystal Structure Determination, Universität Göttingen (1997).
- [32] G. M. Sheldrick, Program for Crystal Structure Refinement, Universität Göttingen (1997).
- [33] R. A. Young, Hg., *The Rietveld Method*, IUCr, Oxford University Press (1993).

- [34] W. I. F. David, K. Shankland, L. B. McCusker, C. Baerlocher, Hg., Structure Determination from Powder Diffraction Data, IUCr, Oxford University Press (2002).
- [35] H. Krischner, Einführung in die Röntgenfeinstrukturanalyse, Friedrich Vieweg & Sohn, Braunschweig - Wiesbaden, 3. Auflage (1987).
- [36] W. Jeitschko, E. Parthé, K. Yvon, J. Appl. Crystallogr., 10 (1973) 73.
- [37] W. Kraus, G. Nolze, *PowderCell for Windows V2.3 (1.12.99)*, BAM, Berlin (1999).
- [38] M. Berndt, ICSD/RETRIEVE 2.01, Inorganic Crystal Structure Database, FIZ Karlsruhe (1999).
- [39] PDF2, Powder Diffraction File, compiled by the Joint Committee on Powder Diffraction Standards, 1601 Park Lane, Swarthmore, Pennsylvania 19081, USA (1999).
- [40] J. W. Visser, J. Appl. Crystallogr., 2 (1969) 89.
- [41] P.-E. Werner, L. Eriksson, M. Westdahl, J. Appl. Crystallogr., 18 (1985) 367.
- [42] A. Boultif, D. Louër, J. Appl. Crystallogr., 24 (1991) 987.
- [43] H. M. Rietveld, J. Appl. Crystallogr., 2 (1969) 65.
- [44] A. Altomare, M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, G. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Rizzi, J. Appl. Crystallogr., 32 (1999) 339.
- [45] A. C. Larson, R. B. von Dreele, GSAS, Version June 2001, Los Alamos National Laboratory Report No. LA-UR-86-748 (1987).
- [46] A. P. Hammersley, S. O. Svensson, M. Hanfland, A. N. Fitch, D. Häusermann, FIT2D V10.132, High Press. Res., 14 (1996) 235.
- [47] K. Syassen, *DATLAB 1.12*.

- [48] M. Hanfland, I. Loa, K. Syassen, U. Schwarz, K. Takemura, Solid State Commun., 112 (1999) 123.
- [49] R. Le Toullec, J. Princeaux, P. Loubeyre, *High Press. Res.*, 1 (1988) 77.
- [50] G. J. Piermarini, S. Block, J. D. Barnett, R. A. Forman, J. Appl. Phys., 46 (1974) 2774.
- [51] H. K. Mao, J. Xu, P. M. Bell, J. Geophys. Res., **91** (1986) 4673.
- [52] F. Datchi, R. Le Toullec, P. Loubeyre, J. Appl. Phys., 81 (1997) 3333.
- [53] R. Le Toullec, P. Loubeyre, J. P. Pinceaux, H. K. Mao, J. Hu, *High Press. Res.*,
 6 (1992) 379.
- [54] A. Filipponi, M. Borowski, D. T. Borown, S. Ansell, S. De Panfilis, A. Di Cicco, J.-P. Itiè, *Rev. Sci. Instrum.*, **71** (2000) 2422.
- [55] M. Besson, R. J. Nelmes, G. Hamel, J. S. Loveday, G. Weil, S. Hull, *Physica*, B180 & B181 (1992) 907.
- [56] A. Filipponi, V. M. Giordano, S. De Panfilis, A. Di Cicco, E. Principi, A. Trapananti, M. Borowski, J.-P. Itiè, *Rev. Sci. Instrum.*, **75** (2003) 2654.
- [57] W. B. Holzapfel, N. S. Isaacs, Hg., High-pressure Techniques in Chemistry and Physics, L. M. Harwood and C. J. Moody, Oxford University Press (1997).
- [58] F. Murnaghan, Proc. of the Nat. Academy of Sciences (USA), **30** (1944) 244.
- [59] M. Mezouar, Y. Le Godec, interne Mitteilung am ESRF.
- [60] A. L. Ankudinov, C. E. Bouldin, J. J. Rehr, J. Sims, H. Hung, FEFF8.2, Phys. Rev., B65 (2002) 104107.
- [61] M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, Y. Yacoby, *FEFFIT 2.98*, *Physica*, **B208 & B209** (1995) 154.

- [62] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley & Sons, New York, 4. Auflage (1986).
- [63] J. Weidlein, U. Müller, K. Dehnicke, Schwingungsfrequenzen II, Georg-Thieme-Verlag, Stuttgart / New York (1986).
- [64] D. L. Rousseau, R. P. Bauman, S. P. S. Porto, J. Raman Spectrosc., 10 (1981)
 253.
- [65] G. Thiele, K. Brodersen, Fortsch. Chem. Forsch., 10 (1968) 631.
- [66] K. Brodersen, G. Thiele, H. Gaedcke, Z. Anorg. Allg. Chem., 348 (1966) 162.
- [67] G. Thiele, K. Brodersen, E. Kruse, B. Holle, Chem. Ber., 101 (1968) 2771.
- [68] U. Müller, Anorganische Strukturchemie, B. G. Teubner, Stuttgart, 3. Auflage (1993).
- [69] R. M. Ibberson, O. Moze, C. Patrillo, Mol. Phys., 76 (1992) 395.
- [70] H. Pritzkow, Acta Crystallogr., B31 (1975) 1589.
- [71] P. R. Birkett, C. Christides, P. B. Hitchcock, H. W. Kroto, K. Prassides, R. Taylor,
 R. R. M. Walton, J. Chem. Soc., Perkin Trans., 2 (1993) 1407.
- [72] M. Hanfland, M. Lorenzen, C. Wassilew-Reul, F. Zontone, Rev. High Pressure Sci. Technol., 7 (1998) 787.
- [73] A. Le Bail, H. Duroy, J. L. Fourquet, Mater. Res. Bull., 23 (1988) 447.
- [74] M. O'Keefe, B. G. Hyde, Acta Crystallogr., B33 (1977) 3802.
- [75] H. Bärnighausen, Comm. Math. Chem., 9 (1980) 139.
- [76] B. Schüpp, Dissertation, Universität Dortmund (1999).
- [77] B. Schüpp, L. Schröder, H. Schulte, C. Bähtz, N. Mattern, H.-L. Keller, Z. Anorg. Allg. Chem., 628 (2002) 1708.

- [78] M. Duchâteau, Dissertation, Universität Dortmund (1994).
- [79] K.-F. Tebbe, A. Kavoosian, Z. Naturforsch., **B48** (1993) 438.
- [80] N. A. Tananajew, Z. Anal. Chem., 88 (1932) 343.
- [81] A. Ferrari, L. Cavalaca, M. Nardelli, *Gazz. Chim. Ital.*, 85 (1955) 137.
- [82] P. S. Gomm, A. E. Underhill, Inorg. Nucl. Chem. Lett., 10 (1974) 309.
- [83] P. J. Hendra, J. Chem. Soc., A (1967) 1298.
- [84] R. H. Blessing, Acta Crystallogr., A51 (1995) 33.
- [85] M. Bonamico, G. Dessy, Acta Crystallogr., **B29** (1973) 1735.
- [86] J. Strähle, H. Bärnighausen, Z. Naturforsch., B25 (1970) 1186.
- [87] E. Schulz-Lang, U. Abram, J. Strähle, Z. Anorg. Allg. Chem., 623 (1997) 1791.
- [88] N. Matsushita, H. Kitagawa, H. Kojima, Acta Crystallogr., C53 (1997) 663.
- [89] G. Brauer, G. Sleater, J. Less-Common Met., 21 (1970) 283.
- [90] P. Gütlich, B. Lehnis, K. Römhild, J. Strähle, Z. Naturforsch, B37 (1982) 550.
- [91] J. Strähle, J. Gelinek, M. Kölmel, Z. Anorg. Allg. Chem., 456 (1979) 241.
- [92] X. J. Liu, K. Matsuda, Y. Moritomo, A. Nakamura, N. Kojima, *Phys. Rev.*, B59 (1999) 7925.
- [93] P. G. Jones, R. Hohbein, E. Schwarzmann, Acta Crystallogr., C44 (1988) 1164.
- [94] W. Werner, J. Strähle, Z. Naturforsch., B32 (1977) 741.
- [95] P. G. Jones, R. Schelbach, E. Schwarzmann, Acta Crystallogr., C43 (1987) 1674.
- [96] G. Sleater, H. Bärnighausen, G. Brauer, Z. Anorg. Allg. Chem., 372 (1970) 9.
- [97] R. D. Shannon, Acta Crystallogr., A32 (1976) 751.

- [98] G. Helgesson, S. Jagner, Acta Chem. Scand., A41 (1987) 556.
- [99] M. A. Kandhaswamy, V. Srinivasan, Bull. Mater. Sci., 25 (2002) 41.
- [100] Y. M. Bosworth, J. H. Clark, Inorg. Chem., 14 (1975) 170.
- [101] S. Sato, R. Ikeda, D. Nakamura, Ber. Bunsen-Ges. Phys. Chem., 91 (1987) 122.
- [102] J. de Meulenaar, H. Tompa, Acta Crystallogr., A19 (1965) 1014.
- [103] P. Storck, A. Weiss, Z. Naturforsch., **B46** (1991) 1214.
- [104] R. Minkwitz, R. Bröchler, Z. Naturforsch., B51 (1996) 126.
- [105] P. A. Lord, B. C. Noll, M. Olmstead, A. L. Balch, J. Am. Chem. Soc., 123 (2001) 10554.
- [106] B. Viossat, N.-H. Dung, F. Robert, Acta Crystallogr., C49 (1993) 84.
- [107] K. F. Tebbe, A. Gräfe-Kavoosian, B. Freckmann, Z. Naturforsch., B51 (1996)
 999.
- [108] M. Kabesova, M. D. Jurco, M. Serator, J. Gazo, *Inorg. Chim. Acta*, **17** (1976)
 161.
- [109] A. L. Beauchamp, D. Goutier, Can. J. Chem., 50 (1971) 977.
- [110] E. Dubler, A. Reller, H. R. Oswald, Z. Krist., 161 (1982) 265.
- [111] T. Giraldi, M. R. Taylor, M. I. Moreno-Vida, J. Ruiz-Sanchez, J. M. Salas-Peregrín, E. Colacio, Acta Crystallogr., C49 (1993) 580.
- [112] Z. V. Zvonkova, Zh. Fiz. Khim., 26 (1952) 1798.
- [113] P. M. Fedorov, L. S. Andreyanova, V. I. Pachomov, Koord. Khim., 1 (1975) 252.
- [114] A. Sakhri, A. Beauchamp, Acta Crystallogr., B31 (1975) 409.
- [115] J. Holzbock, W. Sawodny, U. Thewalt, Z. Anorg. Allg. Chem., 626 (2000) 2563.

- $[116]\,$ M. O'Keefe, S. Anderson, Acta Crystallogr., A33 (1977) 914.
- [117] Dr. John Tse, persönliche Mitteilung (2004).

LEBENSLAUF

Persönliche Daten

Name, Vornamen	Heines, Günther \underline{Peter}
Geburtsdatum/-ort	2. Juni 1971, Viersen
Anschrift	Holunderweg 2
	41751 Viersen
Familienstand	ledig

Schulausbildung

9/1977 - 6/1981	Grundschule Körnerstraße, Viersen
9/1981 - 5/1987	Gemeinschafts-Hauptschule Overberg, Viersen
	Abschluss: Fachoberschulreife
9/1987 - 5/1990	Höhere Berufsfachschule mit gymnasialer Oberstufe,
	Mönchengladbach
	Abschluss: Allgemeine Hochschulreife

Zivildienst

Studium

10/1992 - 9/1999	Studium der Chemie, Universität Dortmund
	Diplomarbeit bei Prof. Dr. HL. Keller
	Abschluss: Diplom-Chemiker
seit $11/1999$	Promotionsstudium der Chemie, Universität Dortmund