RHEED intensity oscillation of C_{60} layer epitaxial growth

Jiro Nishinaga1,2, Atsushi Kawaharazuka3, Yoshiji Horikoshi1,2

1School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan,
2Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051, Japan
3Waseda Institute for Advanced Study, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555, Japan

Phone: +81-3-5286-3176, FAX: +81-3-3209-3450
E-Mail: jiro247@aoni.waseda.jp

Abstract

Intensity oscillations of reflection high-energy electron diffraction are observed during a C_{60} layer epitaxial growth on GaAs (111)B, (114)A and (114)B substrates. Frequencies of the oscillations coincide well with growth rates of C_{60} layers, suggesting that C_{60} layers grow by layer-by-layer growth mode as with GaAs and other semiconductor materials. Anomalous oscillations are observed in the initial stage of a C_{60} layer growth on GaAs (111)B surface with (2x2) reconstruction. These oscillations indicate that the C_{60} first-layer growth is completed at approximately half monolayer coverage. This phenomenon is explained by a model that C_{60} adsorption sites are limited due to As-trimers adsorbed on GaAs surface.

Clear oscillations are observed during a C_{60} layer growth on GaAs (114)A substrate, and X-ray diffraction peaks of the layer are sharp. In contrast, no oscillation is detected during the growth on the (114)B substrate, and these layers exhibit poor X-ray diffraction characteristics. Thus, the C_{60} epitaxial layer growth on GaAs substrates is strongly affected
by the GaAs surface reconstruction and polarity.

PACS codes: 61.14.Hg; 61.48.+c; 68.47.Fg; 81.15.Hi

1. Introduction

Extensive investigations have been done for the physical and chemical properties of C$_{60}$ crystals, and unique potentialities of C$_{60}$ such as superconductivity [1] and photoconductivity have been revealed. C$_{60}$ molecules are highly symmetric and crystallize into a face-centered cubic structure on crystalline substrates such as Si and GaAs, in spite of the large lattice mismatch between C$_{60}$ and the substrates [2-7]. Reflection high-energy electron diffraction (RHEED) is used to observe growth and surface conditions of semiconductor films, and its specular beam intensity oscillation enables the dynamic process of epitaxial growths to be investigated [8]. Organic materials tend to be decomposed by electron beam irradiations [9]. But C$_{60}$ molecules have a stable structure, and the C$_{60}$ crystal growth may not be influenced by RHEED measurement. In the present work, to investigate the growth mechanism of C$_{60}$ layers, we observe RHEED intensity oscillations during C$_{60}$ epitaxial growth on GaAs (111)B substrates. Frequencies of the oscillations proportionally increase with the C$_{60}$ flux, and coincide well with the growth rates of C$_{60}$ layers obtained from the film thickness. This suggests that C$_{60}$ layers grow with
layer-by-layer growth mode as with growths of GaAs and other semiconductor materials. In order to investigate C$_{60}$ nucleation process more precisely, C$_{60}$ layer growth on GaAs (114)A and (114)B is performed because the surface symmetry of the (114) substrates is different from that of the (111) substrates. The RHEED intensity oscillations are observed during the C$_{60}$ layer growth on GaAs (114)A. In contrast, no periodic variation of RHEED intensity is detected during the growth on GaAs (114)B. In addition, the resulting layers on the (114)B substrate show poor crystal quality. This suggests that the nucleation of C$_{60}$ layer growth occurs much more easily on the A surface than on the B surface.

2. Experimental Procedure

C$_{60}$ layers are grown on GaAs (111)B, (114)A and (114)B substrates by using solid source molecular beam epitaxy (MBE). GaAs substrates are first etched in an alkaline etchant, and loaded in the growth chamber. Native oxide layers of GaAs surfaces are removed by a thermal flash at 580 °C in As$_4$ atmosphere. After growing a GaAs buffer layer at 500 °C, the substrate temperature is lowered to between 70 °C and 200 °C. Then, C$_{60}$ layer growth is performed. High purity (99.5%) C$_{60}$ powder is used for the C$_{60}$ source. C$_{60}$ beam equivalent pressure (BEP) is varied between 4.0x10$^{-7}$ Torr and 1.4x10$^{-6}$ Torr which correspond to the C$_{60}$ flux of 0.1 monolayer/s (ML/s) and 0.35 ML/s. RHEED measurements are performed with an electron beam along the <011> azimuth of the GaAs substrates, and the incident electron beam angle is fixed at 1°. Intensities of the RHEED specular reflection
are detected by a conventional video camera system, and the intensity oscillations are analyzed by a personal computer. After a C\textsubscript{60} layer growth, the crystalline quality of the films is investigated by X-ray diffraction (XRD) with Cu-K\(\alpha\) radiation. Both the 2\(\theta/\omega\) scan and XRD pole-figure measurements are performed and compared with the results of the RHEED intensity oscillations.

3. Results and Discussion

RHEED patterns of C\textsubscript{60} layers grown on GaAs (111)B with (2x2) structure show clear streak, and indicate that the C\textsubscript{60} epitaxial orientation is [111] direction [6]. The observed streak intervals of the patterns indicate that the lattice constant of epitaxial cubic C\textsubscript{60} films coincides well with the value of bulk cubic C\textsubscript{60} crystals.

Fig. 1 shows the intensity of the specular beam in the RHEED pattern of a C\textsubscript{60} layer growth at 200 °C with C\textsubscript{60} BEP of 1.4x10\(^{-6}\) Torr on GaAs (111)B surface with (2x2) structure. The lateral axis denotes a deposition thickness in monolayers. After a few monolayer depositions, a regular RHEED intensity oscillation is observed. Frequencies of the RHEED intensity oscillations are confirmed to proportionally increase with the C\textsubscript{60} BEP, and coincide well with growth rates of C\textsubscript{60} layers obtained from the film thickness. Therefore, the RHEED intensity oscillation during a C\textsubscript{60} layer growth may be caused by repeating surface roughening and smoothening during the formation of a single complete layer, i.e., C\textsubscript{60} layers grow with layer-by-layer growth mode [8].
In the initial stage of the C$_{60}$ layer growth on the (2x2) surface of GaAs (111)B substrate, anomalous behavior appears in the RHEED intensity variation. A clear shoulder is observed after 0.5 ML deposition as marked by an arrow. The succeeding intensity peaks appear at 1.5 ML, 2.5 ML and so on. This anomalous oscillation suggests a peculiar configuration of the first-layer C$_{60}$ molecules on the (111)B surface with (2x2) structure. Fig. 2 shows adsorption models of the C$_{60}$ first-layer on GaAs (111)B surface with (2x2) reconstruction. Since the surface of the (2x2) structure has a periodic lattice structure by adsorbed As-trimers [10], C$_{60}$ adsorption sites should, therefore, be limited due to a steric structure between C$_{60}$ molecules and As-trimers. In this case, the density of C$_{60}$ adsorption sites is estimated to be approximately 40% (Fig. 2a) or 50% (Fig. 2b) of the full coverage. Therefore, the first-layer growth should be completed at around 0.5 ML C$_{60}$ deposition. The shoulder of 0.5 ML deposition probably corresponds to this event. The first peak appears at 1.5 ML deposition, indicating that a C$_{60}$ regular layer growth takes place after first-layer deposition.

In order to verify the C$_{60}$ first-layer configuration model on the (111)B with (2x2) surface, RHEED intensity oscillation is also investigated during the growth of C$_{60}$ layers on the (111)B surface with (√19x√19) structure. Under As-rich conditions, the surface reconstruction of GaAs (111)B substrates shows (2x2) structure. On the other hand, under Ga-rich conditions, the surface structure is converted to (√19x√19) structure with hexagonal rings. This (√19x√19) structure is prepared by annealing the (2x2) structure at 500 °C in
UHV, and is confirmed by RHEED observations [10]. Fig. 3 shows RHEED intensity oscillations during a C\textsubscript{60} layer growth at 70 °C with C\textsubscript{60} BEP of 4.0x10-7 Torr on the (√19x√19) structure, and the inset shows the detail of the intensity oscillations at the C\textsubscript{60} initial growth. After a few monolayer depositions, regular RHEED intensity oscillations are observed as with the C\textsubscript{60} layer growth on the (2x2) structure. In the initial stage of the growth, intensity peaks are found to appear at 1.7 ML, 2.7 ML and so on. These results imply that the C\textsubscript{60} first-layer configuration on the (√19x√19) structure is different from those on the (2x2) structure. Fig. 4 shows adsorption models of the C\textsubscript{60} first-layer on GaAs (111)B surface with (√19x√19) structure. The (√19x√19) reconstruction has periodic structures of hexagonal rings with ±6.6° rotation with respect to the [2-1-1] direction [10]. The size of the space around the hexagonal rings is the same as that of C\textsubscript{60} molecules, and the C\textsubscript{60} molecules may be adsorbed on the space shown in Fig.4. The density of C\textsubscript{60} molecules shown in Fig. 4 is estimated to be 66% of the full coverage. If the first-layer growth is completed at around 0.7 ML C\textsubscript{60} deposition based on the above discussion, the first prominent RHEED intensity peak at 1.7 ML deposition corresponds to the completing of the 2nd monolayer growth.

In this case, since the (√19x√19) reconstruction has two type arrangements with 13° rotation between them, the C\textsubscript{60} first-layer arrangement should have two domains with 13° rotation as shown in Fig. 4. To investigate crystalline properties of C\textsubscript{60} layers, XRD pole-figure measurements are performed. Fig. 5 shows the XRD φ-scan patterns of C\textsubscript{60} layers on GaAs (111)B with (2x2) reconstruction and (√19x√19) reconstruction with C\textsubscript{60} (111)
diffraction ($2\theta = 10.83^\circ$). The C$_{60}$ layer on the ($\sqrt{19}x\sqrt{19}$) structure is confirmed to have two domains with 13° rotation between them, strongly supporting the adsorption models shown in Fig. 4.

As described above, a C$_{60}$ first-layer configuration is decided by a steric structure between C$_{60}$ molecules and surface reconstruction structures, and the flexibility of the first-layer arrangements may make a strain due to a lattice mismatch between C$_{60}$ and substrates relieved. Therefore, a C$_{60}$ regular layer growth with high-crystalline quality takes place after a C$_{60}$ first-layer deposition.

Next, to investigate the effect of substrates polarity on the C$_{60}$ epitaxial growth mechanism, we perform C$_{60}$ layer growth on GaAs (114)A and (114)B substrates. GaAs (114) surface is inclined by 19.5° against the (001) surface in the <110> direction. The size of the rectangular (1x1) unit cell is 4Å and 17Å [11]. Then, the surface symmetry structure is complex compared with (111) and (001) surfaces. Fig. 6 shows the intensity variation of the specular beam during a C$_{60}$ growth at 70 °C with C$_{60}$ BEP of 4.0×10^{-7} Torr on GaAs (114)A and (114)B substrates. Clear RHEED intensity oscillation is observed on the (114)A substrate. In the initial stage of the C$_{60}$ layer growth on the (114)A substrate, intensity peak appears at 0.3ML deposition. During the C$_{60}$ first-layer deposition, the RHEED patterns always show halo patterns. Therefore, the peak at 0.3ML deposition is caused by the halo patterns, and the peak doesn’t mean a complete layer. After the first-layer deposition, the diffraction patterns of C$_{60}$ layer appear clearly, and the intensity peak at 1.0ML indicates that
a close-packed C₆₀ layer growth takes place from the first-layer. On the other hand, no oscillation is detected for the growth on GaAs (114)B substrate. This result implies that the C₆₀ growth mode on GaAs (114)B substrate is different from that on GaAs (114)A substrate.

To compare the crystalline quality of C₆₀ films on the (114)A and (114)B substrates, XRD measurements are performed. XRD 2θ/ω scan shows that only (hhtt) diffractions are observed from the C₆₀ layers on both substrates, indicating that the both films are [111] oriented crystals. Fig. 7 shows the XRD ψ-scan patterns with ψ = 70.5° and C₆₀ (111) diffraction (2θ=10.83°). The C₆₀ layer on GaAs (114)A substrate have 12 diffraction peaks, but their diffraction peaks are relatively sharp. This indicates a clear in-plane epitaxial relationship between C₆₀ layer and the (114)A substrates. In contrast, the diffraction peaks of C₆₀ layer on GaAs (114)B substrates are very weak and broad. The growth orientation of the C₆₀ layer on the (114)B substrate is confirmed to be [111], suggesting that C₆₀ layers on (114)B substrate have many rotational domains.

Now, we discuss the difference of C₆₀ nucleation on the substrate surface polarity, i.e., the A surface and B surface. The binding energy between C₆₀ molecules and Ga atoms is expected to be higher than that between C₆₀ molecules and As atoms [12]. For C₆₀ layer growth on GaAs (114)A substrates, C₆₀ nucleation occurs on the dangling bonds of Ga, and the epitaxial orientation between C₆₀ crystal nuclei and GaAs (114)A substrate is defined clearly due to the strong bonding between C₆₀ molecules and Ga atoms. In contrast, since the binding energy between C₆₀ molecules and As atoms is weak, the epitaxial orientation
relationship between \(\text{C}_{60} \) crystal nuclei and the (114)B substrate may be less pronounced. Therefore, many rotational domains occur in the \(\text{C}_{60} \) layer growth on the B surface, and the surface flatness may be inferior from the initial stage.

4. Conclusions

Clear RHEED intensity oscillation is successfully observed during epitaxial growths of \(\text{C}_{60} \) layers on GaAs substrates. Frequencies of the oscillation proportionally increase with \(\text{C}_{60} \) BEP, and coincide well with the growth rates of \(\text{C}_{60} \) layers. Therefore, \(\text{C}_{60} \) layers grow with layer-by-layer growth mode as with the growths of GaAs and other semiconductor materials. The initial \(\text{C}_{60} \) layer growth on GaAs substrates is found to be affected strongly by the reconstruction of the substrate surface. For example, the first-layer growth on the (111)B surface with (2x2) reconstruction terminates at the deposition of approximately 0.5 ML of \(\text{C}_{60} \). This result is understood by considering the surface structure of the (2x2) reconstruction; The As-trimers on GaAs (111)B surface provide useful sites for \(\text{C}_{60} \) adsorption. The density of the sites in this case is approximately 50% of the full coverage, and therefore, the first-layer growth is completed with 0.5 ML deposition. Clear oscillations are observed during a \(\text{C}_{60} \) layer growth on GaAs (114)A substrate, and X-ray diffraction peaks of the layer are relatively sharp. Although the X-ray diffraction measurements indicate the existence of rotational domains, the epitaxial orientations between \(\text{C}_{60} \) crystal nuclei and the (114)A substrates are defined clearly due to the strong bonding between \(\text{C}_{60} \) molecules and Ga.
atoms. In contrast, no oscillation is detected for the growth on the (114)B substrate. The X-ray diffraction peaks of the resulting layers are very weak and broad, indicating poor crystal quality of C_{60} layers grown on the (114)B substrate.

Acknowledgements

This work is partly supported by Global COE Program “Practical Chemical Wisdom” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and by the Grant-in-aid for Scientific Research (A) (17206031) and Young Scientists (B) (20760203) from Japan Society for the Promotion of Science (JSPS), and by a research granted from The Murata Science Foundation.

References

Figure captions

Fig. 1. RHEED intensity oscillation during a C\textsubscript{60} growth at 200 °C with C\textsubscript{60} BEP of 1.4x10-6 Torr on GaAs (111)B surface with (2x2) structure as a function of C\textsubscript{60} deposition thickness in monolayers.

Fig. 2. Adsorption models of the C\textsubscript{60} first-layer on GaAs (111)B surface with (2x2) structure.

Fig. 3. RHEED intensity oscillation during a C\textsubscript{60} growth at 70 °C with C\textsubscript{60} BEP of 4.0x10-7 Torr on GaAs (111)B surface with \((\sqrt{19}\times\sqrt{19})\) structure. The inset shows the detail of the intensity oscillations at the C\textsubscript{60} initial growth.

Fig. 4. Adsorption models of the C\textsubscript{60} first-layer on GaAs (111)B surface with \((\sqrt{19}\times\sqrt{19})\) structure.
Fig. 5. XRD ϕ scan patterns of C_{60} films on GaAs (111)B surface with (2x2) structure and $(\sqrt{19} \times \sqrt{19})$ structure with C_{60} (111) diffraction ($2\theta=10.83^\circ$).

Fig. 6. RHEED intensity oscillation during a C_{60} growth at 70 °C with C_{60} BEP of 4.0×10^{-7} Torr on GaAs (114)A and (114)B substrates.

Fig. 7. XRD ϕ scan patterns of C_{60} films on GaAs (114)A and (114)B substrates with C_{60} (111) diffraction ($2\theta=10.83^\circ$).
Fig. 1

Fig. 2

(a) 0.4ML

(b) 0.5ML

[2-1-1] [01-1] [1-1-1] GaAs

- Adsorbed As atoms
- First-layer As atoms
- Second-layer Ga atoms
Fig. 3

- First-layer As atoms
- Second-layer Ga atoms
- Third-layer As atoms

Ts = 70°C

Deposition Thickness [ML]

Intensity [a.u.]

1.7 ML
2.7 ML

Fig. 4

[2-1-1]
[-1-1-1]$_{GaAs}$
Fig. 5

Fig. 6
Fig. 7