Search for electroweak production of single top quarks in $p\bar{p}$ collisions.

To cite this version:

HAL Id: in2p3-00017827
http://hal.in2p3.fr/in2p3-00017827
Submitted on 12 Feb 2001

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Search for Electroweak Production of Single Top Quarks in $p\bar{p}$ Collisions

The DØ Collaboration *

Fermi National Accelerator Laboratory, Batavia, Illinois 60510

Abstract

We present a search for electroweak production of single top quarks in the electron+jets and muon+jets decay channels. The measurements use ≈ 90 pb$^{-1}$ of data from Run 1 of the Fermilab Tevatron collider, collected at 1.8 TeV with the DØ detector between 1992 and 1995. We use events that include a tagging muon, implying the presence of a b jet, to set an upper limit at the 95% confidence level on the cross section for the s-channel process $p\bar{p} \rightarrow tb + X$ of 39 pb. The upper limit for the t-channel process $p\bar{p} \rightarrow tqb + X$ is 58 pb.

*Submitted to Physical Review Letters.
PACS numbers: 14.65.Ha, 12.15.Ji, 13.85.Qk
The DØ Collaboration

<table>
<thead>
<tr>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Abbott, M. Abolins, V. Abramov, B.S. Acharya, D.L. Adams, M. Adams,</td>
<td></td>
</tr>
<tr>
<td>G.A. Alves, N. Amos, E.W. Anderson, M.M. Baarmand, V.V. Babintsev,</td>
<td></td>
</tr>
<tr>
<td>L. Babukhadia, A. Baden, B. Baldin, P.W. Balm, S. Banerjee, J. Bantly,</td>
<td></td>
</tr>
<tr>
<td>E. Barberis, P. Baringer, J.F. Bartlett, U. Bassler, A. Bean, M. Begel,</td>
<td></td>
</tr>
<tr>
<td>S.B. Beri, G. Bernardi, I. Bertram, A. Besson, V.A. Bezzubov, P.C. Bhat,</td>
<td></td>
</tr>
</tbody>
</table>
H.B. Prosper, 31 S. Protopopescu, 53 J. Qian, 46 P.Z. Quintas, 33 R. Raja, 33 S. Rajagopalan, 53
E. Ramberg, 33 P.A. Rapidis, 33 N.W. Reay, 41 S. Reucroft, 45 J. Rha, 30 M. Rijssenbeek, 52
T. Rockwell, 47 M. Roco, 33 P. Rubinov, 33 R. Ruchti, 38 J. Rutheroof, 25 A. Santoro, 2 L. Sawyer, 42
R.D. Schamberger, 52 H. Schellman, 36 A. Schwartzman, 1 J. Sculli, 50 N. Sen, 50 E. Shabalina, 22
R.D. Schamberger, 52 H. Schellman, 36 A. Schwartzman, 1 J. Sculli, 50 N. Sen, 50 E. Shabalina, 22
H. Singh, 30 J.B. Singh, 13 V. Sirotenko, 33 P. Slattery, 51 E. Smith, 55 R.P. Smith, 33 R. Snihur, 36
G.R. Snow, 48 J. Snow, 54 S. Snyder, 53 J. Solomon, 34 V. Sorín, 1 M. Sosebee, 57 N. Sotnikova, 22
K. Soustruznik, 6 M. Souza, 2 N.R. Stanton, 41 G. Steinbrück, 49 R.W. Stephens, 57
M.L. Stevenson, 26 F. Stichelbaut, 53 D. Stoker, 29 V. Stolin, 21 D.A. Stoyanova, 23 M. Strauss, 55
K. Streets, 50 M. Strovink, 26 L. Stutte, 33 A. Sznajder, 3 W. Taylor, 52 S. Tentindo-Repond, 31
J. Thompson, 43 D. Toback, 43 S.M. Tripathi, 27 T.G. Trippe, 26 A.S. Turcot, 53 P.M. Tuts, 49
P. van Gemmeren, 33 V. Vaniev, 23 R. Van Kooten, 37 N. Varelas, 34 A.A. Volkov, 23 A.P. Vorobiev, 23
A. White, 57 J.T. White, 58 D. Whiteson, 26 J.A. Wightman, 39 D.A. Wijngaarden, 19 S. Willis, 35
S.J. Wimpenny, 30 J.V.D. Wirjawan, 58 J. Womersley, 33 D.R. Wood, 45 R. Yamada, 33 P. Yanin, 53
Z.H. Zhu, 51 M. Zielinski, 51 D. Ziemińska, 37 A. Ziemiński, 57 V. Zutshi, 51 E.G. Zverev, 22
and A. Zylberstejn 12

1Universidad de Buenos Aires, Buenos Aires, Argentina
2LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
3Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
4Institute of High Energy Physics, Beijing, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Charles University, Prague, Czech Republic
7Institute of Physics, Academy of Sciences, Prague, Czech Republic
8Universidad San Francisco de Quito, Quito, Ecuador
9Institut des Sciences Nucléaires, IN2P3-CNRS, Université de Grenoble 1, Grenoble, France
10CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
11LPNHE, Universités Paris VI and VII, IN2P3-CNRS, Paris, France
12DAPNIA/Service de Physique des Particules, CEA, Saclay, France
13Panjab University, Chandigarh, India
14Delhi University, Delhi, India
15Tata Institute of Fundamental Research, Mumbai, India
16Seoul National University, Seoul, Korea
17CINVESTAV, Mexico City, Mexico
18FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands
19University of Nijmegen/NIKHEF, Nijmegen, The Netherlands
20Institute of Nuclear Physics, Kraków, Poland
21Institute for Theoretical and Experimental Physics, Moscow, Russia
22Moscow State University, Moscow, Russia
23Institute for High Energy Physics, Protvino, Russia
24Lancaster University, Lancaster, United Kingdom
25University of Arizona, Tucson, Arizona 85721
26Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
27 University of California, Davis, California 95616
28 California State University, Fresno, California 93740
29 University of California, Irvine, California 92697
30 University of California, Riverside, California 92521
31 Florida State University, Tallahassee, Florida 32306
32 University of Hawaii, Honolulu, Hawaii 96822
33 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
34 University of Illinois at Chicago, Chicago, Illinois 60607
35 Northern Illinois University, DeKalb, Illinois 60115
36 Northwestern University, Evanston, Illinois 60208
37 Indiana University, Bloomington, Indiana 47405
38 University of Notre Dame, Notre Dame, Indiana 46556
39 Iowa State University, Ames, Iowa 50011
40 University of Kansas, Lawrence, Kansas 66045
41 Kansas State University, Manhattan, Kansas 66506
42 Louisiana Tech University, Ruston, Louisiana 71272
43 University of Maryland, College Park, Maryland 20742
44 Boston University, Boston, Massachusetts 02215
45 Northeastern University, Boston, Massachusetts 02115
46 University of Michigan, Ann Arbor, Michigan 48109
47 Michigan State University, East Lansing, Michigan 48824
48 University of Nebraska, Lincoln, Nebraska 68588
49 Columbia University, New York, New York 10027
50 New York University, New York, New York 10003
51 University of Rochester, Rochester, New York 14627
52 State University of New York, Stony Brook, New York 11794
53 Brookhaven National Laboratory, Upton, New York 11973
54 Langston University, Langston, Oklahoma 73050
55 University of Oklahoma, Norman, Oklahoma 73019
56 Brown University, Providence, Rhode Island 02912
57 University of Texas, Arlington, Texas 76019
58 Texas A&M University, College Station, Texas 77843
59 Rice University, Houston, Texas 77005
60 University of Washington, Seattle, Washington 98195
The top quark is the charge +2/3 weak-isospin partner of the bottom quark in
the third generation of fermions of the standard model (SM). It is extremely massive
at \(174.3 \pm 5.1 \text{ GeV} \) [1], and, with an expected width of 1.5 GeV [2], it decays before
hadronization almost exclusively into a \(W\) boson and a \(b\) quark. At the Tevatron \(p\bar{p}\) collider,
most top quarks are pair-produced via the strong interaction through an intermediate gluon.
This was the mode used in its observation [3] and subsequent studies of its properties,
including measurements of the \(t\bar{t}\) production cross section of \(5.9 \pm 1.7 \text{ pb}\) by the DØ collabora-
tion [4], and \(6.5^{+1.7}_{-1.4} \text{ pb}\) by the CDF collaboration [5]. A second production mode is
predicted to exist, where top quarks are created singly through an electroweak \(Wtb\) vertex [6].
Measurement of the electroweak production of single top quarks could provide the magnitude
of the CKM matrix element \(V_{tb}\) [7], since the cross section is proportional to \(|V_{tb}|^2\). In this
Letter, we describe a search for single top quarks at the Tevatron, using data collected from
1992–1995 at a \(p\bar{p}\) center-of-mass energy of 1.8 TeV.

![FIG. 1. Leading order Feynman diagrams for single top quark production at the
Tevatron, where (a) shows the \(s\)-channel mode, and (b) the \(t\)-channel mode.](image)

The standard model predicts three modes for the production of single top quarks at
a hadron collider. The first is the \(s\)-channel process \(q\bar{q} \rightarrow tb\), illustrated in Fig. 1(a). For
a top quark mass \(m_t\) of 175 GeV, this has a next-to-leading-order (NLO) cross section of
\(0.73 \pm 0.04 \text{ pb}\) [8]. Following the decay of the top quark, these events contain a \(W\) boson
and two \(b\) quarks that hadronize into two central jets with high transverse momentum \((p_T)\).
The second production mode, shown in Fig. 1(b) and sometimes referred to as “\(W\)-gluon
fusion”, is a \(t\)-channel process, \(q'g \rightarrow tqb\). The NLO cross section is \(1.70 \pm 0.19 \text{ pb} \) [9]. This
process produces a \(W\) boson, a forward light-quark jet, and two central \(b\) jets, one with
high \(p_T\) and the other with low \(p_T\). We have searched for both production modes, with
decay of the \(W\) boson into \(e\nu\) or \(\mu\nu\), and identification of a \(b\) jet via a tagging muon.
A third mode occurs via both the \(s\)-channel and \(t\)-channel, \(bg \rightarrow tW\), with a final state
containing two \(W\) bosons and a single \(b\) jet. The leading-order cross section for this process
is only \(0.15 \pm 0.04 \text{ pb}\) [10], and, with \(\approx 90 \text{ pb}^{-1}\) of available data, there is no possibility of
separating it from background. Throughout this Letter, we use “\(tb\)” to refer to both \(tb\)
and the charge-conjugate process \(\bar{t}b\), and “\(tqb\)” to both \(tqb\) and \(\bar{t}q\).

The DØ detector [11] has three major components: a central tracking system including
a transition radiation detector (TRD), a uranium/liquid-argon calorimeter, and a muon
spectrometer. For the measurement in the electron channel, we use \(91.9 \pm 4.1 \text{ pb}^{-1}\) of
data collected with a trigger that required an electromagnetic (EM) energy cluster in the
calorimeter, a jet, and missing transverse momentum (E_T). For events passing the final selection, the efficiency of the trigger is 90–93%, depending on the location of the EM cluster in the calorimeter. In the muon channel, we use $88.0 \pm 3.9 \text{ pb}^{-1}$ of data acquired with several triggers, which required E_T or a muon with a jet. The combined efficiency of these triggers is 96–99%. A third data sample, obtained with a trigger requiring just three jets, is used for measuring one of the backgrounds. Since the multijet cross section is very large, this trigger was prescaled, and we have 0.8 pb^{-1} of such data. Each of the three samples contains approximately one million events.

To determine whether an EM energy cluster was generated by an electron, we require it to be isolated from other activity in the calorimeter and use a five-variable likelihood function to discriminate electrons from background. This likelihood includes the fraction of cluster energy contained in the EM region of the calorimeter ($> 90\%$ for electrons), the cluster shape (it must resemble an electron and not a pion), the presence of a well-matched track between the cluster and a primary $p\bar{p}$ interaction vertex (to discriminate against photons), the dE/dx energy loss along the track (consistent with a single particle and not from a photon conversion into a pair of charged particles), and the TRD response (matching that of an electron and not a pion). An electron is then required to have transverse energy $E_T > 20 \text{ GeV}$, and to be within the optimal region of the calorimeters with detector pseudorapidity $|\eta^{\text{det}}| < 1.1$ or $1.5 < |\eta^{\text{det}}| < 2.5$ [12]. When an electron is isolated, it is more likely to have originated from the decay of a W boson than from a b hadron. The efficiency of the combined electron identification requirements is $\approx 60\%$.

Jets, reconstructed with a cone algorithm of radius $R = 0.5$ [13], must fail the electron requirements. The jet with highest transverse energy is required to have $E_T > 15 \text{ GeV}$ and $|\eta^{\text{det}}| < 3.0$. The second jet has to have $E_T > 10 \text{ GeV}$ and $|\eta^{\text{det}}| < 4.0$. Other jets in the event are counted if they have $E_T > 5 \text{ GeV}$ and $|\eta^{\text{det}}| < 4.0$. We set the E_T thresholds low and the $|\eta^{\text{det}}|$ region wide to maximize acceptance for signal; however, the efficiency to reconstruct jets close to the 5 GeV threshold is low.

We identify a muon by the pattern of hits in the spectrometer drift tubes, and require an impact parameter $< 20 \text{ cm}$ between the spectrometer track and the primary vertex, a matching track in the calorimeter consistent with a minimum-ionizing particle, a matching central track, a signal in the scintillators surrounding the spectrometer within $\pm 12 \text{ ns}$ of the beam-crossing time, and penetration through one of the spectrometer toroids for momentum analysis. Most of these requirements are designed to reject cosmic rays and particles backscattered from the beamline magnets. Muons must be within the central region of the spectrometer, with $|\eta^{\text{det}}| < 1.7$. A muon is called “isolated” if $\Delta R (\mu, \text{jet}) \geq 0.5$ [14] for all jets with $E_T > 5 \text{ GeV}$. An isolated muon must have $p_T > 20 \text{ GeV}$ and is attributed to the decay of a W boson. A “tagging” muon has $\Delta R < 0.5$ and $p_T > 4 \text{ GeV}$. It is attributed to the semileptonic decay of a b hadron in a jet, and thus identifies a b jet. The efficiency of the combined muon identification requirements is $\approx 44\%$ for isolated muons.

Because a leptonically-decaying W boson is supposed to be present in each signal event, we require $E_T > 15 \text{ GeV}$ as evidence of a neutrino.
We use the NLO single top quark production cross sections to estimate that about 66 s-channel and 153 t-channel events were produced at DØ during Run 1. Of these, we expect that about 15 s-channel and 35 t-channel events passed the trigger requirements and were recorded for analysis.

Our analysis starts with a simple baseline selection of events that pass the triggers and have at least one reconstructed electron or isolated muon, and at least two jets with $E_T > 5$ GeV and $|\eta^{\text{det}}| < 4.0$. For the results presented in this Letter, we also demand at least one tagging muon (“/µ”), to indicate the possible presence of a b jet. These minimal requirements reduce the ≈ 1 million events in each channel to 116 e+jets/µ events and 110 μ+jets/µ events. The acceptance for single top quark events for these selections is 0.2–0.3\% per channel, which should yield ≈ 1 tagged event (tb and tqb, with electron and muon W decays combined). The expected number of events is small because the probability to identify at least one tagging muon in a single top quark event is only 6–11\%. After these selections, 90\% of the background in the electron channel is from QCD multijet production with a jet misidentified as an electron, 5\% from tt events, and 5\% from W+jets (including WW and WZ diboson events), where about two thirds of the W+jets events have a light quark or gluon jet with a false tagging muon, and a quarter of the tagging muons are from c quark decays. In the muon channel, the background is 8\% from W+jets events, 6\% from QCD $b\bar{b}$ events where a muon from a b decay mimics an isolated muon, and 4\% from tt events. The remaining 82\% of the background is from QCD multijet events with a coincident cosmic ray or beam-halo particle misidentified as an isolated muon.

Next, we apply a set of loose criteria to remove mismeasured events and to reject backgrounds that do not have the same final-state characteristics as our signal. We reject events with more than one isolated lepton and any isolated photons. We remove events with E_T close to 15 GeV and aligned with or opposite to a jet, or opposite an electron or isolated muon. We also reject events that have muons with clearly mismeasured p_T. We require two, three, or four jets. To remove the remaining contamination from cosmic rays in the isolated muon channel, we reject events where the isolated muon and tagging muon are back-to-back; in particular, we require $\Delta\phi(\text{isol} \mu, \text{tag} \mu) < 2.4$ rad. These criteria, together with the jet E_T and $|\eta^{\text{det}}|$ requirements and the E_T threshold, reject 86\% of the baseline multijet “electron” events, 95\% of the cosmic ray and misreconstructed isolated “muon” events, 90\% of the $b\bar{b}$ “isolated” muon events, 27\% of the W+jets events in the electron channel, 81\% in the muon channel, and 55–73\% of the tt background. The signal acceptances are reduced by 14–51\%. There remain 21 e+jets/µ and 8 μ+jets/µ candidates in the data.

Based on independent studies (see below), we apply the following requirements to obtain the best significance of signal over square-root of background in each channel:

Electron Channel

- $E_T(\text{jet} 1) + E_T(\text{jet} 2) + E_T(e) + E_T > 125$ GeV
- $E_T(\text{jet} 3) + 5 \times E_T(\text{jet} 4) < 47$ GeV
- $E_T(\text{jet} 1) + 4 \times E_T > 155$ GeV

7
Muon Channel

- $E_T(jet1) + E_T(jet2) + E_T(jet3) + E_T(jet4) > 70$ GeV
- $E_T(jet3) + 5 \times E_T(jet4) < 47$ GeV

The first criterion in each set was chosen by studying reconstructed CompHEP [15] and PYTHIA [16] Monte Carlo (MC) $W+$jets events, the second by examining HERWIG [17] $t\bar{t}$ MC events, and the third variable in the electron channel was determined from studies of QCD multijet data. The distributions were compared with signal MC from CompHEP. The cutoffs were optimized on combined samples of untagged and tagged events. Figure 2 shows the distribution of the second variable, designed to minimize $t\bar{t}$ background, for electron and muon events combined after all other selections have been applied.

![Graph showing variable used to reject $t\bar{t}$ background.]

FIG. 2. Variable used to reject $t\bar{t}$ background.

After final selections, there is no evidence of an excess of signal over background, and we therefore use the results to set upper limits on the s-channel and t-channel single top quark cross sections. To do this, we must first determine the signal acceptance and the background in each channel.

We obtain the signal acceptances using MC samples of s-channel and t-channel single top quark events from the CompHEP event generator, with the PYTHIA package used to simulate fragmentation, initial-state and final-state radiation, the underlying event, and leptonic decays of the W boson. The MC events are processed through a detector simulation program based on the GEANT [18] package and a trigger simulation, and are then reconstructed. We apply all selections directly to the reconstructed MC events, except for several particle identification criteria, which we correct using factors measured in other DØ data. Table I shows the acceptance for single top quark events after all selection requirements and corrections.
TABLE I. Signal acceptances (as percentages of the total cross sections), and numbers of events expected to remain after application of all selection criteria.

<table>
<thead>
<tr>
<th></th>
<th>Electron Channel</th>
<th>Muon Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tb)</td>
<td>((0.255 \pm 0.022))%</td>
<td>((0.112 \pm 0.011))%</td>
</tr>
<tr>
<td>(tqb)</td>
<td>((0.168 \pm 0.015))%</td>
<td>((0.083 \pm 0.008))%</td>
</tr>
<tr>
<td>Numbers of Events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(tb)</td>
<td>(0.18 \pm 0.03)</td>
<td>(0.08 \pm 0.01)</td>
</tr>
<tr>
<td>(tqb)</td>
<td>(0.28 \pm 0.05)</td>
<td>(0.13 \pm 0.03)</td>
</tr>
<tr>
<td>(W + \text{jets})</td>
<td>(5.59 \pm 0.64)</td>
<td>(1.12 \pm 0.17)</td>
</tr>
<tr>
<td>QCD</td>
<td>(5.92 \pm 0.58)</td>
<td>(0.40 \pm 0.09)</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>(1.14 \pm 0.35)</td>
<td>(0.45 \pm 0.14)</td>
</tr>
<tr>
<td>Total Bkgd</td>
<td>(12.65 \pm 0.93)</td>
<td>(1.97 \pm 0.24)</td>
</tr>
<tr>
<td>Data</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

The acceptance for \(t\bar{t}\) pairs is calculated in a manner similar to that for signal and then converted to a number of events using the integrated luminosity for each channel and DØ’s value of the \(t\bar{t}\) cross section [4].

The QCD multijet background with a jet misidentified as an electron is measured using multijet data. The events are weighted by the probability that a jet mimics an electron for each jet that passes the electron \(E_T\) and \(|\eta^{\text{det}}|\) requirements. These probabilities are determined from the same multijet sample, but for \(E_T < 15\) GeV, and are found to be \((0.0160 \pm 0.0016)\)% for \(|\eta^{\text{det}}| < 1.1\), and \((0.0622 \pm 0.0048)\)% for \(|\eta^{\text{det}}| > 1.5\). We normalize the integrated luminosity of the multijet sample so as to match the data sample used in the search for the signal, and correct for a small difference in trigger efficiency between the two samples.

The QCD \(b\bar{b}\) background arises when both \(b\) quarks decay semileptonically to a muon, and one muon is misidentified as isolated. There are two ways for such events to mimic the signal. First, one of the \(b\) jets may not be reconstructed, and its muon can therefore appear to be isolated. Second, a muon can be emitted wide of its jet and be reconstructed as an isolated muon. The background from each source is measured using data collected with the same triggers as used for the muon signal. The events are required to pass all selections, except that the muon, which otherwise passes the isolated muon requirements, is within a jet. Events with truly isolated muons are excluded. Each event is then weighted by the probability that a nonisolated muon is reconstructed as an isolated one. This probability is measured using the same data sample, but for \(E_T < 15\) GeV, and found to be \((2.94 \pm 0.53)\)% for the case of a “lost jet,” and \((1.38 \pm 0.25)\)% for a “wide \(\mu\),” for muons with \(p_T < 32\) GeV. The probabilities are parametrized as a function of the muon \(p_T\). We calculate a weighted average of the two results to obtain the number of expected background events.
The background from W+jets is estimated by applying a set of tag-rate functions to untagged signal candidates that pass all final event selections. These tag-rate functions are measured using multijet data and correspond to the relative probability that a jet of given E_T and η^{det} has a tagging muon, for two run periods when the muon chambers had different operating efficiencies. We then correct the samples for a small difference in trigger efficiency between untagged and tagged events. We also correct the muon channel by a factor of 0.688 ± 0.034 to account for the effect of the $\Delta \phi$ cutoff used to minimize cosmic ray backgrounds, a selection that cannot be applied directly. Finally, to avoid double counting, we subtract the fraction of events expected from $t \bar{t}$ and QCD backgrounds and single top quark signals. The remaining fraction of W+jets in the untagged signal candidates is 66–92%, depending on the location of the electron or isolated muon.

The numbers of events expected for the two signals and three backgrounds are shown in Table I, together with the final numbers of events in the candidate data samples, for the electron and muon channels.

To calculate upper limits on cross sections for single top quark production in the s-channel and t-channel modes, we use the numbers of observed events, the signal acceptances and backgrounds, and the integrated luminosities. Covariance matrices are used to describe the correlated uncertainties on these quantities. We use a Bayesian approach, with a flat prior for the single top quark cross section and a multivariate Gaussian prior for the other quantities. We calculate the likelihood functions in each decay channel and combine them to obtain the following 95% confidence level upper limits:

- $\sigma(p\bar{p} \to tb + X) < 39 \text{ pb}$
- $\sigma(p\bar{p} \to tqb + X) < 58 \text{ pb}$

To conclude, we have searched for electroweak production of single top quarks and find no evidence for such production. We set upper limits on the cross sections for s-channel production of tb and t-channel production of tqb. The limits are consistent with expectations from the standard model.

We are grateful to T. Stelzer, Z. Sullivan, S. Willenbrock, and C.-P. Yuan for valuable discussions on theoretical aspects of the analysis. We thank the staffs at Fermilab and at collaborating institutions for contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), CONICET and UBACyT (Argentina), A.P. Sloan Foundation, and the Humboldt Foundation.
REFERENCES

[12] The detector pseudorapidity η^{det} is defined as the pseudorapidity of the calorimeter cluster (electron or jet) or central track (muon) with respect to the center of the DØ detector, where $\eta^{\text{det}} = -\ln \tan(\theta^{\text{det}}/2)$, and θ^{det} is the polar angle relative to the proton direction. The pseudorapidity η and polar angle θ are defined with respect to the primary interaction point.
[13] The cone radius of a jet is defined as $R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$, where $\Delta \phi$, $\Delta \eta$ specify the width of the jet, and ϕ is the azimuthal angle around the beam axis.
[14] The opening angle between a muon and jet is defined as $\Delta R = \sqrt{[\Delta \phi (\mu, \text{jet})]^2 + [\Delta \eta (\mu, \text{jet})]^2}$.