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Abstract Beyond the present technologies, Laue diffraction lenses are very
promising tools in the field of gamma-ray astrophysics. The theoretical con-
cepts of this kind of instruments are based on the Laue diffraction in crystals,
discovered almost 100 years ago. Though they are commonly used in crys-
tallography, their application to γ-ray focusing in astrophysics requires some
specific developments, e.g. in terms of energy and imaging responses. The
present article describes the physics of X-ray diffraction in crystals. In the
context of the Darwin model of mosaic crystals, some peculiar aspects, rel-
evant to the astrophysical observation, are discussed. The evaluation and
optimization of diffraction efficiency are discussed, especially w.r.t the crys-
tal’s mosaicity and thickness, its spatial extent and deviations to the “ideally
imperfect” Darwin model.

Keywords Focusing optics · Gamma-ray astrophysics · Crystal diffraction
PACS 95.55.Ka · 61.50.Ah · 61.10.-i · 41.50.+h

1 Introduction

Almost 100 years ago, Max von Laue discovered and demonstrated the diffrac-
tion of X-rays in crystals [1, 2]. The laws of the so-called Laue (or Bragg)
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Fig. 1 Diffraction geometries

diffraction in crystals are widely used in crystallography and solid states
physics. Nevertheless, their application in astrophysics is much more recent
and appears as one of the most promising way to perform the sensitivity leap
needed in the hard X- and gamma-ray regimes.

In the present paper, we will describe the bases of X-ray diffraction in
crystals, from a “practical” point of view in the aim of lens design for astro-
physics. The theoretical predictions presented here are used to design and
study the instrumental response of a crystal diffraction lens, as described in
an accompanying article ([3], this volume).

2 Diffraction lens geometry.

Since the wavelength of γ-ray photons is smaller than distances between
atoms in solid matter, coherently deviating γ-rays has long been considered
as impossible in nuclear astrophysics and only the corpuscular properties of
these photons were used. Nevertheless, Friedrich, Knipping and Laue [1, 2],
at the beginning of the 20th century demonstrated that γ-rays can interact
coherently in a crystal lattice, provided that the angles of incident photons
are very small and satisfy the Bragg relation :

2d sin θ = nλ, (1)

where d is the crystal plane spacing, θ the incident angle with respect to the
crystal planes, n is the reflection order and λ the wavelength of the photon.
Thus, by mounting and tuning (i.e. orienting the crystal to get the correct
scattering angle θ) adequate crystals on concentric rings, a parallel beam can
be focused on a single point.

Historically, the idea of focusing X-rays through the use of crystal diffrac-
tion seems to have first been proposed by Gouy in 1915 [4]. A few years later,
Dardord in 1922 [5] and Fermi in 1923 [6] independently obtained images with
monochromatic X-ray beams, following the method suggested by Gouy.

The diffraction inside the crystal can either occur near the surface (Bragg
geometry) or “in volume”, while the beam is propagating through the entire
crystal (Laue geometry, see Fig. 1). The Bragg geometry has been successfully
used in multilayer optics in the X-ray regime. On the contrary, above a few
hundreds of keV, the required incident angle (given by eq. 1) is so small that
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the Bragg geometry appears out of question. As an example, a 1x1 cm2 beam
at 511 keV, diffracted in a Ge[111] lattice, would require a 2.8 m long crystal.
Beyond the difficulty of producing such big crystals, the complexity of the
mounting and the mass of the tiles reject the Bragg geometry as a feasible
option. Eventually, the mean free path of γ-rays in crystal is usually bigger
than the optimal diffraction length, and the Laue geometry can be used in a
γ-ray lens design.

In the present article, we will describe the basics of the theory of X-ray
diffraction in crystals, assuming a Laue geometry. The following concepts
and equations are mainly taken from [7, 8, 9, 10]. Please refer to these doc-
uments for further details as well as to other articles in this volume for a
good coverage of recent works on hard X-ray and gamma-ray focusing, both
experimental and theoretical.

3 Diffraction by a single crystal

Let us consider the reflection of an X-ray beam on a given plane of a crys-
tal. k0, resp. k1, are the incident, resp. diffracted, wave vectors. With these
definitions, and ∆k = k1 − k0, it immediately follows :

∆k = |∆k| = 2k0 sin θi = 4π
sin θi
λ0

, (2)

where λ0 is the wavelength of the incident beam, and θi is the angle of k0

w.r.t. the plane orthogonal to ∆k.
The main property of a crystal is the periodicity of the elementary cell

along the lattice axes a, b and c. Due to this periodicity, the intensity of the

diffused, coherent emission is proportional to
(

sinNp
∆k

2 a/ sin ∆k2 a
)2
, where

Np is the number of cells along axis a. Thus, the intensity of the diffracted
beam is essentially zero unless :

∆k · a = 2hπ, h ∈ Z

and similarly, considering the axes b and c :

∆k · b = 2kπ, ∆k · c = 2lπ, k, l ∈ Z (3)

This set of equations forms the three Laue conditions that should be simul-
taneously satisfied [2]. From these equations ∆k is then orthogonal to the
crystal plane with Miller indexes (h, k, l). Thus, θi from eq. 2 is the incident
angle of the beam on the (hkl) plane, and the Bragg relation follows :

2dhkl sin θi = λ0, (4)

where dhkl is the planar spacing of planes (hkl).
This relation is valid for an ideally perfect crystal. Actually, even for

very good monocrystals, the reflection is not purely monochromatic and the
angular range over which the crystal reflects the beam has a small width.
Nevertheless, in practice and for monocrystals, this angular range is very
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small (a few arcseconds) and we will now consider that the measurements
integrate over this angular range (and/or over the energy range).

In that case, the integrated power P is given by :

P = I0QδV, (5)

where I0 is the beam intensity, δV the diffracting volume and Q the diffrac-
tion efficiency [10] :

Q =

(

re
Vc

)2

K2 |Fs(∆k)|2 λ3
0

sin 2θi
(6)

In this formula, the different terms correspond to :

re : classical electron radius (≈ 2.81794 · 10−13 cm).
Vc : volume of the elementary cell (=a3 for a cubic cell of parameter a).
Fs : structure factor (see below for its calculation).
λ3

0

sin 2θi
: Lorentz factor, due to the integration of the flux in the diffracted

peak.
K2: polarization factor, between 1− sin2 2θi and 1 (see below).

For compactness, it is useful to define the so-called extinction length
(whose meaning will be clarified latter) :

text =
Vc

re|Fs|λ0
≈ 0.28622

E(keV)Vc(Å
3
)

|Fs|
µm (7)

One can then write the value of Q in the form :

Q = K2 λ0

t2ext sin 2θi
(8)

Laue diffraction and polarization Let us consider a linearly polarized inci-
dent beam with a polarization angle φ, defined as the angle between the
electromagnetic vector and the “scattering plane” (i.e the plane defined by
the incident and reflected beams). The polarization direction of the scattered
beam (φ′) is then given by [11] :

sinφ′ = sinφ/

√

1− sin2 2θi cos2 φ

= sinφ
(

1 + 2θ2
i cos

2 φ
)

+O
(

θ4
i

)

So, strictly speaking, the polarization angle is unchanged (φ′ = φ) only for
parallel (φ = 0) or normal (φ = π/2) polarization.

Additionally, the intensity of the scattered beam depends on φ. More pre-
cisely, the polarization factor K2 in eq. 6 is given by K2 = 1− sin2 2θi cos

2 φ.
The polarization modulation is then maximum for φ = π/2 (K = 1) and
minimum for a parallel polarization. In case of an unpolarized beam (e.g. an
X-ray tube),K2 should be averaged on the φ values : 〈K2〉φ = 1−sin2 2θi/2 =
(1 + cos2 2θi)/2.
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For example, at 500 keV and considering a Cu111 plane, the relative po-
larization rotation and attenuation are of the order of 10−4. Thus, except for
low energy photons (E < 50 keV), the Laue lens is practically insensitive to
polarization, though its direction is preserved and can be analyzed by the
detector (e.g. through the Compton effect).

Consequently, neglecting the polarization effect,Q can be simplified, using
the Bragg relation (eq. 4) :

Q ≈
(

re
Vc

)2

|Fs(∆k)|2 λ2
0dhkl =

dhkl
t2ext

(9)

Finally, the reflectivity is defined as the diffracted integrated power (eq. 5)
divided by the incident integrated power (Pi = I0∆x∆y cos θi, where ∆x
and ∆y are the dimensions of the crystal perpendicular to the propagation
direction). Since δV = ∆x∆yt0, where t0 is the thickness of the crystal, one
has :

Rm =
P

Pi
= Q

t0
cos θi

(10)

According to this formula, Q represents the reflectivity per unit of length
and t0/ cos θi is the effective thickness, as seen by the incident beam.

3.1 Calculation of the structure factor

The structure factor Fs(∆k) is an imaginary coefficient which quantifies the
scattering “efficiency” of an elementary cell, i.e considering the diffusion by
each atom of the cell. Fs is composed of two terms : the scattering factor for a
given atom and the geometrical factor, taking into account the interferences
between atoms.

The atomic scattering factor The atomic scattering factor (f) represents the
amplitude of the wave scattered by a single atom, expressed in unit of the
contribution from a single electron. As a general rule f depends on sin θi/λ0

and approaches the electron number (Z) for small values of this ratio. The
exact calculation of the atomic scattering factor for any sin θi/λ0 is usually
difficult since it requires to consider the coherent diffusion by each electron
of an atom, taking into account screening factors and quantum physics. The-
oretical results exist (e.g the Hartree and Thomas-Fermi methods) but it is
much easier (and efficient) to use the following formulas, valid for small in-
cident angles (i.e less than ≈ 10 deg, so this condition is always satisfied in
the X and gamma ray regimes) :

f = c+

4
∑

i=1

aie
−bi

(

sin θi
λ0

)2

, (11)

that is, using the Bragg relation :

f = c+

4
∑

i=1

aie
−

bi
4d2
hkl (12)
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The c, ai and bi (in Å2) coefficients can be found in tables. As an example,
table 1 gives, for a few elements, these values, as extracted from [12].

Element Gold Copper Silicon Germanium
a1 16.8819 13.3380 5.6627 16.0816
a2 18.5913 7.1676 3.0716 6.3747
a3 25.5582 5.6158 2.6245 3.7068
a4 5.8600 1.6735 1.3932 3.6830
c 12.0658 1.1910 1.2471 2.1313
b1 0.4611 3.5828 2.6652 2.8509
b2 8.6216 0.2470 38.6634 0.2516
b3 1.4826 11.3966 0.9169 11.4468
b4 36.3956 64.8126 93.5458 54.7625

Table 1 Atomic scattering coefficients

The structure factor The atomic scattering factor gives the intensity of the
beam, as diffused by a given atom. Since these atoms are in a crystal lattice,
it is necessary to add the waves scattered by all the atoms of an elementary
cell. This summation results in the structure factor (since it depends on the
geometry of the lattice) :

Fs(∆k) =
n
∑

m=1

e−i∆k·(uma+vmb+wmc)fm, (13)

and, using the Laue conditions relation (eq. 3) :

Fs =
n
∑

m=1

e−2iπ(hum+kvm+lwm)fm,
(14)

where n is the number of atoms per elementary lattice, the mth atom being
at the position (um, vm, wm) in the unit cell defined by the lattice vectors
(a,b, c). fm is the atomic scattering factor of the mth atom. When all the
atoms of the lattice are of the same kind (e.g copper, germanium, etc), the
structure factor can be written as :

Fs = f

n
∑

m=1

e−2iπ(hum+kvm+lwm)

= fG

(15)

G is the geometrical factor, only depending on the positions of the atoms
in the lattice and on the Miller indexes. The coordinates of the four atoms
of a fcc lattice (e.g. copper) are given in table 2. With these values, the
geometrical factor is :

Gfcc = 1 + cosπ(h+ k) + cosπ(h+ l) + cosπ(k + l)

=

{

4 if h, k, l all odd or even

0 otherwise

(16)
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u v w
Origin 0 0 0
Center face (100) 0 0.5 0.5
Center face (010) 0.5 0 0.5
Center face (001) 0.5 0.5 0

Table 2 Coordinates of the atoms in a face centered cubic lattice

For a diamond lattice (e.g germanium) there are two fcc lattices with an
offset of ( 1

4 ,
1
4 ,

1
4 ) :

Gdiam = Gfcc

(

1 + e−iπ2 (h+k+l)
)

=



















4
(

1 + e−iπ2
)

if h, k, l odd and h+ k + l = 1 [4]

4
(

1− e−iπ2
)

if h, k, l odd and h+ k + l = 3 [4]

8 if h, k, l even et h+ k + l = 0 [4]

0 otherwise

(17)

This geometrical factor shows that, due to destructive interferences, some
crystal planes cannot reflect the beam.

3.2 Effect of thermal displacements on diffraction efficiency : the Debye
factor

Because of the thermal movements of the atoms in a solid, the effective emit-
ted wave should be averaged over all the vibrational displacements. Com-
pared to the ideal case of perfectly fixed atoms, the structure factor should
then be corrected :

Fs =

n
∑

m=1

e−2iπ(hum+kvm+lwm)fme
−Mm , (18)

where Mm is related to the mean amplitude of the atomic displacements
(∆Xm) [7, 9] :

Mm =
8π2 sin2 θi∆X

2
m

3λ2
0

= Bm

(

sin θi
λ0

)2

, (19)

=
Bm

4d2
hkl

using the Bragg relation (20)

Eq. 20 shows that the smaller the planar spacing (dhkl), the bigger Mm and
the smaller the intensity of the diffracted beam. Physically, this means that
the thermal displacement “blurs” the effective distance between the planes,
this effect being proportionally more important when dhkl is small.

∆Xm may be different for different kinds of atoms and (hkl) planes. If
there is only one kind of atom, the diffracted intensity should be multiplied
by the Debye (or Debye-Waller) factor D = e−2M .
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Moreover, in the case of a cubic crystal containing only one kind of atom
(e.g copper, germanium), ∆X can be calculated using [7, 9] :

∆X2 =
9h2Na

4π2MakΘ

[

1

4
+
T

Θ
ϕ

(

Θ

T

)]

(21)

where ϕ

(

Θ

T

)

=
T

Θ

∫ Θ
T

0

y

ey − 1
dy (22)

In this equation :

h is the Planck constant
k is the Boltzman constant
Na is the Avogadro number
Ma is the atomic mass
T is the temperature of the crystal
Θ is a characteristic temperature.

Numerically, it follows :

B =
1.149.104 g.mol−1.K

MaΘ

[

1

4
+
T

Θ
ϕ

(

Θ

T

)]

Å2 (23)

Additionally, 1
4 + T

Θ
ϕ
(

Θ
T

)

can be roughly approximated, with an absolute
error smaller than 0.025, by :

1

4
+
T

Θ
ϕ

(

Θ

T

)

≈ T

Θ
+

1

4
e−4 TΘ (24)

Θ is not quite the same as the Debye temperature from the specific heat
theory. Nevertheless, the difference is small and to a first approximation the
tabulated Debye temperature can be used.

4 Limitations and corrections to the kinematical model

At this point, all the elements are defined to calculate Q (in eq. 10) in the
ideal case of the kinematical theory which is based on a few assumptions :

1. The refraction index of the crystal is very close to the refraction index of
the environment. This assumption is always valid for X and γ rays.

2. The absorption in a single crystal block is negligible, each atom receiving
the same intensity from the source. This assumption is valid if the thick-
ness of the crystal block is small compared to the mean free path of the
material.

3. The interferences between direct and diffracted beams have been ne-
glected in the crystal. This assumption, not always valid and difficult
to estimate, is discussed below.
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4.1 The extinction effect

The direct and diffracted beams interfere alternatively constructively and
destructively, due to their phase difference, when propagating through the
crystal. After a given thickness, the two effects are in equilibrium and in-
creasing the size of the crystal does not result in a higher diffracted intensity
(i.e an increase of Rm, as given in eq. 10) : this effect is called the extinction
effect. For a thin crystal, the above equations (from the kinematical theory)
are valid. For a thick crystal, one should use the dynamical theory which
gives for the integrated reflectivity in Laue geometry [10] :

Rdyn =
re
Vc

1 + | cos 2θi|
2

√
D |Fs|λ2

0

2 sin 2θi

t0
cos θi

(25)

In practice, one has :

Rkin > Rm > Rdyn, (26)

where Rkin is the integrated reflectivity from the kinematical theory, given
by eq. 10, and Rm is the measured integrated reflectivity. One defines the

parameter A = K
cos θi

t0
text

, where K is the polarization factor : K = 1+| cos 2θi|
2

and K2 = 1+cos2 2θi
2 for an unpolarized beam, and t0 is the thickness of

the crystal block. With these definitions, the integrated reflectivity in Laue
geometry can be written as [10] :

Rm =
K

2 sin 2θi

λ0

text

∫ 2A

0

J0(ρ)dρ (27)

In this formula, J0 is the 0-order Bessel function. Figure 2 shows the varia-

tions of I0(2A) =
∫ 2A

0
J0(ρ)dρ as a function of A. This curve increases until

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  2  4  6  8  10  12  14

A

I0(2A)
I0(2A)/2A

Fig. 2 Relative variations of the integrated reflectivity with crystal thickness.

a maximum for A ≈ 1.202 is reached. It then oscillates around the value of
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1, showing the saturation of the reflectivity (Pendellösung effect). In the two
extreme cases, one has :

I0(2A) =

{

2A if A¿ 1

1 if AÀ 1
(28)

The transition from the kinematical to the dynamical theory is then driven
by the extinction length (eq. 7). When t0 ¿ text the crystal is thin and
the kinematical theory applies. When t0 À text the crystal is thick and
one should use the dynamical theory. Numerically one can use the following
approximation for I0(x) :

I0(x) =















xN(x2)

D(x2)
if x ≤ 8

1.0 +

√

2

πx

(

P
(

(

8

x

)

2
)

sin(x− π

4
)−

8

x
Q
(

(

8

x

)

2
)

cos(x− π

4
)

)

if x > 8

N(x) = 144725 + 15706.9297x− 73.034996x2
− 33.49237x3

+ 1.30278x4
− 0.0081205x5

D(x) = 144725 + 27781.8340x+ 1779.3622x2 + 39.6246x3

+ 0.323458x4 + 0.0087508x5

P (x) = 1.0− 0.015928x+ 0.00334056x2
− 0.00309143x3 + 0.00172450x4

Q(x) = 0.0781342− 0.0050871x+ 0.0010301x2
− 0.0000876611x3

+ 0.0000806711x4

(29)

Finally, in the intermediate regime and considering an unpolarized beam,
equation 10 for the integrated reflectivity is always valid by replacing Q with
Q′ defined as follows (in Laue geometry) [10] :

Q′ =
I0(2A0) + | cos 2θi|I0(2A0| cos 2θi|)

2A0(1 + cos2 2θi)
Q

A0 =
A

K
=

t0
cos θitext

(30)

Given the small incident angles of X and γ rays :

Q′ ≈ I0(2A0)

2A0
Q ≈ I0(2A0)

2A0

dhkl
t2ext

≈ 3.4939
I0(2A0)

2t0

dhkl(Å)
(

E(keV)Vc(Å
3
)
) |Fs| cm−1

(31)

These equations clearly show that the integrated reflectivity per unit of length
decreases when the blocks’ thickness increases. Since the “mosaic” crystals
are a conglomerate of such crystallites, one should keep their size t0 as small
as possible. Unfortunately, the thickness of the crystallites depends on the
growing process and this parameter appears difficult to control.
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The extinction length is therefore the transition thickness from “thin” to
“thick” crystals. For a given material and diffraction plane, the extinction
length is proportional to the energy. Thus, a crystal which is “thick” at low
energy may become “thin” (and so better) at higher energy. The table 3 gives
the extinction length for some materials and diffracting planes at 500 keV
and 293 K (Debye factor). A simple proportional factor applies for any other
energy.

111 200 220 222 311 331 333 400
Copper 78.82 85 109.1 133.8 127.6 178.5 230.6 159.1
Silicon 395.6 342.6 521.8 612.1 708.2 408.8
Germanium 169.1 139.7 212.1 249.7 288.5 166.8
Gold 37.6 39.5 46.4 52.8 51.2 63.5 75.7 58.9

Table 3 Extinction length in µm at 293 K and 500 keV for various elements

5 Macroscopic crystals : the Darwin model

According to the previous section, the integrated power of a “perfect” crystal
saturates after a few tenth of mm, due to the extinction effect. Nevertheless,
the measurements performed on “real” macroscopic crystals (of thickness T0)
can be explained neither by the kinematical nor by the dynamical model of
a “perfect” crystal. Actually, the angular (or energy) acceptance can be rel-
atively large (up to a few degrees), and the integrated reflectivity is much
higher than expected from a perfect crystal with a thickness T0 À text. Dar-
win (see [13, 14, 15, 10]) proposed that a macroscopic crystal is actually
an agglomerate of small, perfect crystals. The angular orientation of these
small crystals is randomly distributed (see fig. 3). Thus, the diffracted beams

Fig. 3 Scheme of a mosaic crystal

from the individual crystals blocks do not interfere and the extinction effect
(mostly) cancels out. This mosaic model is defined through the angular dis-
tribution of the crystallites W (∆) (where ∆ is the orientation of the block)
and their mean thickness (t0). Usually, the angular spread is projected on a
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given diffraction plane, and is assumed to be normally distributed :

W (∆) =
1√
2πη

e
− ∆2

2η2 (32)

The mosaicity is then the FWHM of this distribution : m = 2
√
2 ln 2η.

Another assumption of the mosaic model is that the mosaicity is much
bigger than the angular reflectivity range of a single crystal. This assumption
is usually valid for mosaicities above ≈ 10′′. In this case, the reflectivity power
of a layer of thickness t0 is given by R ≈W (θ−θB)Rm where θ is the incident
angle of the beam, θB is the Bragg angle corresponding to the beam energy
and the mean orientation of the diffraction planes, Rm is from eq. 10.

σ is then defined as the integrated reflectivity per unit of length : σ =
W (θ − θb)Rm/t0.

In case of crystallites of negligible size (i.e. smaller than the extinction
length, t0 ¿ text), the crystal is “ideally imperfect”, corresponding to the
optimum reflectivity that can be obtained according to the Darwin model.
Otherwise, the extinction effect (see § 4.1) should be taken into account. So,
using the appropriate expression for Q, depending on the mean thickness t0
(eq. 6 or 30), one obtains :

cos θBσ ≈ σ ≈
{

W (θB − θ)Q if t0 ¿ text
W (θB − θ)Q′ otherwise

(33)

When propagating through the crystal, the beam can be absorbed (lin-
ear absorption µ) or diffracted (σ). Additionally, assuming the crystal to be
homogeneous, the diffraction probability is the same from the incident to
the diffracted direction, or vice versa. So, defining P0(T ), resp. P(T ), as the
power (or intensity) of the beam in the incident, resp. diffracted, direction
at the depth T , the following set of differential equations follows (in Laue
geometry) [10] :

dP0 = −
( µ

cos θ
+ σ

)

P0dT + σPdT (34a)

dP = −
( µ

cos θ
+ σ

)

PdT + σP0dT (34b)

P0(T = 0) = P0(0),P(T = 0) = 0 (34c)

which leads to :

P(T0)

P0(0)
= sinh (σT0) e

−( µ
cos θ+σ)T0 =

1

2

(

1− e−2σT0
)

e−µ
T0

cos θ (35)

P0(T0)

P0(0)
= cosh (σT0) e

−( µ
cos θ+σ)T0 =

1

2

(

1 + e−2σT0
)

e−µ
T0

cos θ (36)

Usually, the Bragg angle is small and so :

P(T0)

P0(0)
≈ sinh (σT0) e

−(µ+σ)T0

≈ 1

2

(

1− e−2σT0
)

e−µT0

(37)
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Formula 37, along with equation 33, is of constant use to estimate the
diffraction efficiency of a mosaic crystal, and by extension, the efficiency of
a Laue lens.

There are usually two kinds of experiments performed in the laboratory
to measure the reflectivity of a mosaic crystal :

– The incident beam is monochromatic (θB is constant) and we consider
the variation of the reflectivity while changing the orientation (angle θ) of
the crystal. This method, called a rocking curve, is adequate to precisely
measure the reflectivity function, since the variation in θ doesn’t influence
any other parameter.

– The position of the crystal is fixed (θ is constant), and the variation of
reflectivity with the energy of the beam (variation of θB) is measured. In
this case, the diffracted spectrum peaks at the energy E0 that satisfies the
Bragg relation for the mean plane orientation (λ0 = 2dhkl sin θ0). Besides,
there are also 2nd order variations on µ and Q. These variations can be
neglected if the diffracted energy bandwidth is small compared to the
mean energy (i.e ∆E ¿ E0) and the two experiments are then almost
equivalent.

5.1 Some properties of the diffraction curve

In this section, the orientation of the crystallites is assumed to be normally
distributed :

W (∆θ) = 2

√

ln(2)

π

1

m
e−ln(2)( ∆θ

m/2 )
2

, (38)

Then, considering equation 37, it is useful to define the following dimension-
less parameters :

α = 4

√

ln(2)

π

dhklT0

t2extm
,u =

∆θ

m/2
(39)
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Fig. 4 Normalized reflectivity curves for different values of α.
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With these reduced parameters, the reflectivity curve has the form (see
also fig. 4) :

P(T0)

P0(0)
=

1

2

(

1− e−αe− ln(2)u2)

e−µT0 , (40)

As previously mentioned, in the case of measurements with a constant
incident angle but a variable wavelength, the variation of Q and µ in the
diffracted energy bandwidth can usually be neglected. With this assumption,
the FWHM and maximum of the diffraction curve are given by :

∆uFWHM = 2

√

− ln
(

− 1
α
ln
(

1
2 (1 + e−α)

))

ln(2)
(41a)

(P(T0)

P0(0)

)

max

=

(P(T0)

P0(0)

)

u=0

=
1

2

(

1− e−α
)

e−µT0 (41b)

From these equations, one can demonstrate that∆uFWHM > 2 (i.e∆θFWHM >
m) whatever the value of α. In other words, the FWHM of the rocking curve
is always greater than the mosaicity. Additionally, it tends to the normal
angular distribution of the crystallites for α→ 0. More precisely, the Taylor
series expansion around α = 0 of the diffraction curve and its FWHM gives :

P(T0)

P0(0)
=

1

2

+∞
∑

k=1

(−1)k−1 e
−k ln(2)u2

k!
αk (42)

∆uFWHM ≈ 2

(

1 +
α

8 ln(2)

(

1 +

(

1− 1

16 ln(2)

)

α

8 ln(2)

))

(43)

It is also often desirable to calculate the total flux diffracted by a crystal,

i.e the integration of P(T0)
P0(0)

over θ (or λ). Unfortunately, this integration

cannot be done analytically, but an good approximation can be obtained by
multiplying the FWHM of the diffraction curve with its maximum amplitude.
Mathematically, this means :

Ru(α) =
∫ +∞

−∞

1

2

(

1− e−αe− ln(2)u2)

du

≈
(

1− e−α
)

√

− ln
(

− 1
α
ln
(

1
2 (1 + e−α)

))

ln(2)

Rθ =
∫ +∞

−∞

P(T0)

P0(0)
d∆θ

≈ m

2
e−µT0

∫ +∞

−∞

1

2

(

1− e−αe− ln(2)u2)

du

≈ m

2
Ru(α)e−µT0 = 2

√

ln(2)

π
QT0
Ru(α)
α

e−µT0

Rλ =

∫ +∞

−∞

P(T0)

P0(0)
dλ ≈ 2dhklRθ

≈ dhklmRu(α)e−µT0 = 4

√

ln(2)

π
QT0dhkl

Ru(α)
α

e−µT0 ,

(44)
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where the upper indexes indicate the integration parameter (θ, λ or u). Ru

is dimensionless but this is not the case of Rθ and Rλ which are, respec-
tively, the integrated flux considering a rocking curve or a continuum energy
emission, and are consequently expressed in photons(/s). So, m should be
expressed in arcseconds in Rθ if the incident flux is in photons/arcsec (we
are only interested in the projection of the incident flux in the meridian
plane). In Rλ, m should be expressed in radians (since it indirectly comes
from the linearization of the Bragg relation) and dhkl in Å if the incident,
polychromatic flux is in (or converted to, using the E2

0/hc factor) photons/Å.
The validity of this approximation can be checked on fig. 5, where the

numerical and approximated values of Ru(α) and Ru(α)/α are plotted. This
approximation is also used and compared to a MC simulation of a broad
band Laue lens in a accompanying article ([3], this volume).
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Fig. 5 Normalized integrated reflectivity (without absorption) of a mosaic crys-
tal. Crosses represent the numerical integration, the dot line is the approximated
analytical model

Alternatively, integrating the Taylor series of the diffraction curve (see

eq. 42) gives the expansion of
∫ u

0
1
2

(

1− e−αe− ln(2)v2
)

dv :

Fα(u) =

∫ u

0

1

2

(

1− e−αe− ln(2)v2
)

dv

=
1

4

√

π

ln(2)

+∞
∑

k=1

(−1)k−1 erf(
√

k ln(2)u)√
kk!

αk
(45)

From this equation, the Taylor series expansion of the integrated reflec-
tivity (Ru(α) = 2Fα(∞)) follows :

Ru(α) = 1

2

√

π

ln(2)

+∞
∑

k=1

(−1)k−1

√
kk!

αk (46a)
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The above equations (see also fig. 5) demonstrate that Ru(α)/α decreases
with α and Ru(α)/α ≈ 1 if α ¿ 1. This means that the integrated reflec-
tivity, for a given thickness T0, asymptotically increases with the mosaicity,
approaching a constant value if m À 2dhklT0

t2ext
. This condition is not always

satisfied though. Especially, the parameters optimization can often lead to

values for which T0

m
≈ t2ext

dhkl
.

6 Crystal optimization strategies

To get an idea of the “best” parameters of a mosaic crystal, let now try to
“optimize” the reflectivity of a single crystal. In the context of the Darwin
model, two parameters can eventually be optimized to non trivial values : the
mosaicity and the thickness. The size of the crystallites (t0) should be much
smaller than the extinction length (see §4.1), so that the extinction effect is
negligible. This latter condition is assumed to be satisfied in the following
sections.

6.1 Maximum peak reflectivity for a given mosaicity

The mosaicity of a crystal is often set by “external” constraints (e.g the
growing process or the energy resolution of the detector in case of a line
observation). In that case, optimizing the peak reflectivity (see eq. 41) leads
to the following thickness :

T peakmax =

ln

(

1 + 4
√

ln(2)
π

dhkl
mt2extµ

)

4
√

ln(2)
π

dhkl
mt2ext

, (47)

Since ln(1 + x)/x is always between 0 and 1 for x > 0, the optimal thickness
is always smaller than the mean free path 1/µ, whatever the mosaicity m.

Moreover, T peakmax increases with m and tends to 1/µ if mÀ 2dhkl
t2extµ

.

Since the width of the diffracted peak increases with the crystal thickness,
the optimal significance (taking into account the background noise in the
diffracted bandwidth) could lead to a slightly different value of T0 (see below),
smaller than T peakmax .

6.2 Detection optimization for a broad band emission

Here, we assume that both mosaicity and crystal thickness are free param-
eters. The optimization criterion is the detection significance in the energy
bandwidth of the crystal. According to the approximation of eq. 44, the signal
is proportional to :

PS ∝ mf(α)
√

g(α)e−µT , (48)
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where :

f(α) =
1

2

(

1− e−α
)

g(α) = − ln

(

− ln
(

1
2 (1 + e−α)

)

α

)

Besides, the background level can be estimated by integrating its flux over the
diffracted FWHM. Thus, the detection significance (background dominated
and assuming Poisson statistics) is proportional to :

nσ ∝ f(α)

√

m
√

g(α)e−µT (49)

The maximization of nσ, w.r.t the mosaicity m and to the thickness T0 can
be performed analytically and leads to :

T σmax =
1

2µ

mσ
max = 0.57414

dhkl
µt2ext

∝ 1

E2

(50)

In that case, it is worth noticing that the optimal thickness only depends on
the material and diffracted energy, being half the mean free path, but not on
the diffracting plane. Moreover, using this optimal mosaicity as an input for
the peak reflectivity maximization procedure of the precedent section, gives
T peakmax ≈ 1.18485.T σmax, which confirms that the significance optimization
leads to thinner crystals than the peak efficiency optimization.

The optimization criterion is nevertheless quite flat around the optimum
(in both cases) and, consequently, even significant departure from optimal pa-
rameters (especially concerning the thickness) only slightly affects the “qual-
ity” of the crystal.

In practice, other constraints affect the optimal parameters. First, exper-
iments showed that the mean crystallites’ size is correlated with the mosaic-
ity : the mosaicity is due to the dislocation density inside the crystal. Hence,
the smaller the mosaicity, the bigger the mean thickness of the perfect crys-
tal blocks. Second, the flatness of the optimum may lead to choose thinner
crystal in order to save mass budget and/or increase the number of tiles.

7 Diffraction by an extended crystal

Up to now, the radial extension of the crystal has been neglected. This is
obviously not always valid in practice. Actually, if the source is at finite
distance from the crystal, the incident angle, and hence the diffracted energy,
depends on the impact radius. Since the mosaicity represents the angular
width over which a crystal “line” reflects a monochromatic beam, the radial
extension of the crystal is negligible only if the angular size of the crystal
(as seen from the source) is small compared to the mosaicity. Given a radial
crystal size of 1 cm and a mosaicity of 1 arcmin, this means a source distance
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greater than 34 m ! This condition may be hard to achieve in laboratory
experiments, unless a small slit is mounted in front of the crystal, which may
then reduce too much the diffracted flux.

Fig. 6 Diffraction of an extended crystal and a source at finite distance

Nevertheless, some crystal properties can be derived from experiments
with an extended crystal and a source at finite distance. Consider the exper-
imental setup represented in fig. 6 : a crystal with a radial extension of 2∆r
is mounted at a distance D of a source S. The detector is placed at the sym-
metrical point S′, or at any other place so that the diffracted flux is totally
intercepted (but not the direct beam). Moreover the source is assumed to be
isotropic, with an intensity I0. Two different cases are discussed hereafter : a
monochromatic or a continuum source. Besides, the angular distribution of
the crystallites is assumed to be Gaussian.

7.1 Monochromatic source

In that case, the incoming intensity, projected on the meridian plane is given
by I0 in units of ph · s−1 · cm−1. I0 is non-zero only for a given wavelength
(λ0). If θm is the incident angle on the middle of the crystal, then the incident
angle at the radius r (varying from −∆r to ∆r) is given by : θ = θm +∆θ,
where ∆θ ≈ r/D. Following the approach given in section 5.1, let us define
the reduced parameters :

um =
θB − θm
m/2

, ur =
∆θ

m/2
=

r

Dm/2
,∆ur =

∆r

Dm/2
, (51)

where θB is the Bragg angle for the incident energy (λ0). With these notations
and using the definition of Fα from eq. 45, the diffracted intensity is given
by :

Idiff =
Dm

2

∫ +∆ur

−∆ur

1

2

(

1− e−αe− ln(2)(ur−um)2
)

dur e
−µT0I0

=
Dm

2
(Fα (∆ur − um) + Fα (∆ur + um)) e−µT0I0

(52)

If the source is close enough and the crystal correctly oriented, then the
crystal’s mosaicity is much smaller than its angular size and the reflectivity
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curve can be integrated over the full angular range. Mathematically, these
conditions are :











∆ur − um À 1 ⇔ ∆r

D
− (θB − θm)À m

2

∆ur + um À 1 ⇔ ∆r

D
+ (θB − θm)À m

2

(53)

In that case, the diffracted intensity (in ph · s−1) is given by Idiff = DRθI0,
where Rθ is from eq. 44. The diffraction efficiency is then :

εMono =
Idiff
I02∆r

=
D

2∆r
Rθ, (54)

As expected, the diffraction efficiency increases with the source distance (the
diffraction “volume” increases).

7.2 Polychromatic source

In that case, the incoming, polychromatic intensity, projected on the meridian

plane is given by I0 in units of ph · s−1 · cm−1 · Å−1
. As usual, the energy

bandwidth is assumed to be small so that the crystal properties are almost
constant. With this assumption, eq. 52 is still valid for a given wavelength,
with I0 and um depending on λ. Moreover if I0 is constant over the energy
bandwidth, then integrating over λ leads to the total diffracted intensity (in
ph · s−1) :

Idiff = 2∆rRλI0 = 4∆rdhklRθI0

= (2∆r)2
2dhkl
D

εMonoI0,
(55)

where Rλ and Rθ are from eq. 44. The total diffracted intensity from a
continuum emission is then independent of the source distance. One should
nevertheless keep in mind that the energy bandwidth increases as the source
comes closer to the crystal.

Additionally and contrary to the monochromatic case, there is no obvious
definition of a global efficiency in the polychromatic case, since the diffrac-
tion process transforms a continuum emission into a band-limited spectrum.
Nevertheless, the mosaic energy spread (that is not due to the crystal angu-
lar size) is, according to the Bragg relation, ∆λ ≈ 2dhklm. So, defining the
averaged efficiency as the diffracted intensity divided by the incident flux in
the mosaic bandwidth, one gets :

εPoly =
Idiff

I02∆r2dhklm
=
Rθ
m

=
2∆r

Dm
εMono (56)

The conversion factor (2∆r/Dm) corresponds to the angular size of the crys-
tal in units of mosaicity (as expected. . . ). From the conditions expressed in
eq. 53, it follows that the efficiency for a monochromatic beam is much lower
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than the “efficiency” for a polychromatic one, provided that the source is
close to the crystal. This corresponds to the fact that only a small portion of
the crystal diffracts in case of a line emission, whereas the whole volume is
efficient when using a continuum source.

The above expressions are useful to estimate the expected diffracted in-
tensity for a continuum emission knowing the efficiency measured with a
monochromatic source, or vice versa.

7.3 Beam divergence of the diffracted beam

Finally consider the effect of the mosaic spread on the divergence of the
beam. The mosaic spread of a crystal increases its energy bandwidth and,
consequently, the astrophysical interest of a Laue lens. However the mosaic-
ity also induces a divergence of the diffracted beam in the meridian plane.
So, since the deviation angle is twice the Bragg angle, the divergence of the
beam is twice the angular width of the diffraction curve as given by equa-
tion 40. In other words, due to the “reflection” effect on the crystal planes,
the divergence of the diffracted beam is roughly twice the mosaic spread of
the crystal.

To first order, the diffraction curve is proportional to the crystallites dis-
tribution (i.e. a Gaussian whose FWHM is the mosaicity m). Consequently,
in case of an extended crystal and assuming a parallel incoming beam, the
radial spot size is then roughly proportional to the convolution of the crys-
tal footprint (2∆r) by a normal distribution, whose FWHM is 2Fdetm, Fdet
being the distance from the lens to the detector. Mathematically, this means
for the radial intensity on the detector plane :

Idet(r) ∝
1

2

(

erf

(

∆r − r√
2β

)

+ erf

(

∆r + r√
2β

))

, (57)

where β = Fdetm/
√

2 ln(2). When β ¿ 2∆r (i.e if the detector is close
to the crystal), Idet(r) tends to a rectangular shape of width 2∆r, i.e. the
projected footprint of the crystal. On the contrary, if β À 2∆r, the radial
distribution is close to a Gaussian with a FWHM of 2Fdetm. This effect of
mosaic defocusing (as introduced by N. Lund in this conference) appears
finally as the major limiting factor on the focal length and mosaicity.

8 Conclusion

The precedent sections described the basics of X-ray diffraction and their
application to X-ray and gamma-ray focusing. Based on the Laue diffraction
laws and the Darwin model of mosaic crystals, these theoretical developments
demonstrated the interest of this technique for astrophysics. An accompany-
ing article (Halloin, in this volume) describes more precisely the application
of these concepts to Laue diffraction lenses, comparing experimental results
and Monte-Carlo simulations based on the theory presented here.

From this model, the “best” crystal for a Laue lens appears as a trade-off
between the different parameters :
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– The mosaicity enables the energy overlap from one ring to another but
causes mosaic defocusing.

– The crystallites’ mean size should be as small as possible but its effect
is energy-dependent, hard to control in practice and correlated with the
mosaicity.

– The thickness of the crystal should be of the order of one half of the mean
free path but the optimum is flat enough to allow significant deviation in
benefit of, e.g., the mass budget.

– The radial extension of the tiles would ideally be very small so that the
footprint be limited by mosaic defocusing. In practice, the consequently
high number of tiles to be grown and the technical challenge of their cut
and etching will temper this wish.

One should nevertheless notice that the mosaic model, although well studied,
understood . . . and realized, may not be the “best” for our purpose. Espe-
cially, the equilibrium between the diffracted and direct beams as well as the
relatively large beam divergence (due to the wings of the crystallites’ angu-
lar distribution) limit the efficiency of the crystals. Further improvements in
crystal growth or “synthesis” may potentially overcome these issues (e.g. see
the article of R.K. Smither on gradient crystals in this volume [16]).

To conclude, one should note that a computer program exists that can
calculate many of the important crystal diffraction parameters, without the
need of knowing the complicated mathematics behind the calculations. This
program, called XOP (and available on many websites such as [17]) is exten-
sively used in the synchrotron community and could now also be useful to
the astrophysics community...
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