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Abstract

We show that the isotropic lines in the lattice Z2
d are the Lagrangian submodules

of that lattice and we give their number together with the number of them through
a given point of the lattice. The set of isotropic lines decompose into orbits under
the action of SL(2, Zd). We give an explicit description of those orbits as well as
their number and their respective cardinalities. We also develop two group actions
on the group ΣD(M) related to the topic.
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Introduction

Wigner distributions are a major tool of quantum mechanics. They offer a useful,
alternative way besides density matrices of representing pure and mixed states of
a quantum system. But whereas in the continuous phase space those distributions
are well-defined [1][2], there is still a need for a sound mathematical definition
over a discrete phase space. In particular, the structure of such a phase space is of
some importance. In 1974, Buot introduced a Wigner distribution over an d × d
phase space with d an odd integer [3]. In 1980, Hannay and Berry followed another
approach to build a Wigner distribution over a 2d× 2d lattice [4]. Still in another
way, in 2004, Gibbons et al. constructed Wigner distributions over a finite field
parametrised lattice [5].

More recently, in their way to set up discrete Wigner distributions on the dis-
crete phase space Z2

d, with Zd the set of integers modulo d, Chaturvedi et al [6]
encountered undetermined signs S(q, p), one at each point (q, p) of the lattice. A
natural question then arises: To what extent can these signs be fixed by demand-
ing that averages of Wigner distributions over isotropic lines in the lattice yield
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probabilities, where an isotropic line is a set of d points on the lattice such that
the symplectic product of any two of them is 0 (modulo d). In order to answer
this and related questions one needs a detailed knowledge of the structure of the
isotropic lines in Z2

d. In particular, it would be useful to know their number as
a whole or with special conditions and also how they arrange in orbits under the
action of the symplectic group SL(2, Zd).

This communication is only concerned with the mathematical properties of the
isotropic lines in Z2

d. In Section 1, we derive the number of isotropic lines in Z2
d and

then in Section 2 the number of them through a given point of the lattice. This
should be compared with the results obtained by Havlicek and Saniga in [7] and
[8] about the number of projective points in the lattice and the number of them
under the same condition. In Section 3, we give a full description of the orbits
of isotropic lines under the action of SL(2, Zd) with the help of some parameters.
All that is achieved on the basis of a work by the author on symplectic reduction
of matrices and Lagrangian submodules [9]. In a fourth section, we develop two
group actions on the group ΣD (M) relevant to the understanding of that latter
group. For any result appearing in this communication without proof, the reader
is referred to [9].

To end this introduction, we note two features of the results presented here. On
the one hand, they do not depend on the parity of d, contrary to what happened
in [3] and [4]. On the other hand, they have direct relevance to the commuting
subgroups of the Pauli group for a general d. That latter feature has been of great
importance in the building up of both Wigner ditrbutions and mutually unbiased
bases [5][10].

1 The number of isotropic lines

Let ω denote the symplectic product of two vectors of Z2
d. With matrices, it

consists in computing a determinant:

ω((α, β), (γ, δ)) =

∣∣∣∣
α γ
β δ

∣∣∣∣ = αδ − βγ. (1)

The orthogonal of a submodule M of Z2
d will be denoted Mω:

Mω = {x ∈ Z2
d; ∀y ∈ M, ω(x, y) = 0}. (2)

Isotropic submodules are defined to satisfy the set inclusion M ⊂ Mω. Lagrangian
submodules are the maximal isotropic submodules for inclusion, what is equivalent
to M = Mω.

In a first time, we are going to find the number of isotropic lines in Z2
d for d a

power of a prime, say d = ps, s ≥ 1. The way we derive this number is a strict
application of Theorem 7 in [9]. This brings about a hint for Section 4, but we
shall also see that there exists a shortcut. We then address the case of a general
d.
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1.1 Special case: d a power of a prime

Let s̃ = ⌊s/2⌋, the floor part of s/2. As shown in [9], for any Lagrangian submodule
M , there exist S ∈ SL(2, Zps) and k ∈ {0, . . . , s̃} such that M is linearly generated
by the column vectors of

S ×

(
pk 0
0 ps−k

)
. (3)

In other words, with S1 and S2 the two column vectors of S, (S1, S2) is a symplectic
computational basis of (Zps)2 and M is the set of all linear combinations of pkS1

and ps−kS2 with coefficients in Zps. As a converse, any submodule thus generated
is Lagrangian. In fact, the number k is a property of M , that is to say for any
convenient pair (S, k′) in order to generate M as in (3), we have k′ = k. We will
denote Ok(p

s) the set of all Lagrangian submodules thus obtained for a given k
and S varying. The cardinality of any M ∈ Ok(p

s) is

p(s−1)−(k−1)p(s−1)−(s−k−1) = ps. (4)

Let ℓ be an isotropic line and 〈ℓ〉 the submodule it generates, the set of all finite
linear combinations of vectors of ℓ. Any two vectors in 〈ℓ〉 are orthogonal and
hence 〈ℓ〉 is an isotropic submodule containing at least ps vectors. Thus isotropic
lines and Lagrangian submodules are the same.

The number of free vectors x in Zps is p2s − p2(s−1). The number of vectors y
such that for a given free x we have ω(x, y) = 1 is ps. The number of pairs (x, y)
such that ω(x, y) = 1 is the product of the two previous ones:

nω = |SL(2, Zps)| = p3s − p3s−2. (5)

Several symplectic matrices S may give rise to the same submodule in Ok(p
s)

according to the form (3). Let k ∈ {0, . . . , s̃} and M ∈ Ok(p
s). Let ΣD(M) be the

matrix group of the changes of computational basis such that if P ∈ ΣD(M) and
if M is generated by the column vectors of the matrix given in (3), then M is also
generated by the column vectors of the matrix

SP ×

(
pk 0
0 ps−k

)
, (6)

where SP need not be symplectic. In fact, we derived in [9] that the group ΣD(M)
is completely determined by the value of k. So, the number of symplectic matrices
that give rise to a given M ∈ Ok(p

s) is

nD(k) = |ΣD(M) ∩ SL(2, Zps)| (7)

and hence
|Ok(p

s)| =
nω

nD(k)
. (8)

Let us suppose that 2k < s. In ΣD (M), the number of matrices with determinant
1 is the same as the number of matrices with any other (invertible) determinant.
Indeed, if u ∈ U(Zps) and P = (P1|P2) ∈ ΣD(M) ∩ SL(2, Zps), with P1 and P2

the first and second columns of P respectively, then (uP1|P2) ∈ ΣD(M) but with
determinant u. This transformation is injective so that the number of matrices in
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ΣD(M) with determinant u is greater than or equal to the number of matrices in
ΣD(M) with determinant 1. The converse inequality may be shown the same way.
So we have

nD(k) =
|ΣD(M)|

|U(Zps)|
=

(ps − ps−1)2 · p(s−1)−(s−2k−1) · ps

ps − ps−1
= (ps − ps−1)ps+2k(9a)

= p2s(p2k − p2k−1) (9b)

and so

|Ok(p
s)| =

ps − ps−2

p2k − p2k−1
= ps−2k−1(p + 1). (10)

If 2k = s (what supposes that s is even), then ΣD(M) ∩ SL(2, Zps) = SL(2, Zps)
and so ∣∣Os/2(p

s)
∣∣ =

nω

nω
= 1. (11)

For s odd, then 2s̃ = s − 1,

es∑

k=0

p−2k =
1 − p−2(es+1)

1 − p−2
=

p2(es+1) − 1

p2(es+1) − p2es
=

ps+1 − 1

ps+1 − ps−1
(12)

and hence the number of isotropic lines is

nL(ps) =

es∑

k=0

|Ok(p
s)| = ps−1(p + 1)

ps+1 − 1

ps+1 − ps−1
=

ps+1 − 1

p − 1
. (13)

If s is even, then 2s̃ = s,

es−1∑

k=0

p−2k =
1 − p−2es

1 − p−2
=

p2es − 1

p2es − p2es−2
=

ps − 1

ps − ps−2
(14)

and hence the number of isotropic lines is again

nL(ps) =
es−1∑

k=0

|Ok(p
s)| + 1 = ps−1(p + 1)

ps − 1

ps − ps−2
+ 1

= p
ps − 1

p − 1
+ 1 =

ps+1 − p + p − 1

p − 1
=

ps+1 − 1

p − 1
. (15)

1.2 General case: d any integer ≥ 2

Now let d be any integer greater than or equal to 2 and

d =
∏

i∈I

psi

i (16)

be the prime factor decomposition of d. Due to the Chinese remainder theorem, we
can study the structure of an isotropic line ℓ in each of the Chinese factor (Zp

si

i

)2.

For every i ∈ I, let ℓi = πpi
(ℓ) be the i-th Chinese projection of ℓ. As a subgroup
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of (Zp
si

i

)2, 〈ℓi〉 has cardinality a power of pi, say pti
i . As an isotropic submodule of

(Zp
si

i

)2, 〈ℓi〉 is included in a Lagrangian submodule and then ti ≤ si. So

d = |ℓ| ≤
∏

i∈I

|ℓi| ≤
∏

i∈I

pti
i ≤ d, (17)

what proves that ti = si. Moreover, if ℓi ( 〈ℓi〉 for some i, the second inequality
just above would be strict, what is impossible and so ℓi = 〈ℓi〉 is a Lagrangian
submodule of (Zp

si

i

)2. As to the converse, for all i ∈ I, let ℓ′i be a Lagrangian

submodule of (Zp
si

i

)2. The set ℓ′ of all vectors x ∈ Z2
d such that for all i, πpi

(x) ∈ ℓ′i,
is an isotropic set with cardinality d, namely an isotropic line. The reader may
check that the maps ℓ 7→ (ℓi)i∈I and (ℓ′i)i∈I 7→ ℓ′ thus defined are reciprocal of one
another.

So, isotropic lines and Lagrangian submodules are the same sets of Z2
d and the

number of isotropic lines of Z2
d is

nL(d) =
∏

i∈I

nL (psi

i ) =
∏

i∈I

psi+1
i − 1

pi − 1
. (18)

Remark 1 In (3), the left-hand-side factor was a symplectic matrix. But in fact,
any invertible matrix would be convenient since we are to consider all the linear
combinations of the columns in the product. Thus we could have calculated the
cardinality of an orbit as

nω |U(Zps)|

|ΣD(M)|
instead of

nω

(|ΣD(M)| / |U(Zps)|)
(19)

and the argument between (8) and (9) could have been avoided.

Remark 2 Let us assume that s is even. It should be noticed that the formula for
the cardinality of Ok(p

s) given in (10) is not valid for k = s/2. Indeed, equation
(10) gives 1 + 1/p for that particular value of k, what is even not an integer.
Equivalently, nD(k) and |ΣD(M)| have no unique expression for all values of k.
This must be traced back to the behaviour of ΣD(M) when k is ranging up to s/2
(see [9]).

2 The number of lines through a given point

We now give the number of isotropic lines through a given point of the lattice.
We suppose that d = ps is a power of a prime. Let x ∈ Z2

d and let t = vp(x) be
the p-valuation of x. Since all the vectors in an isotropic line ℓ ∈ Ok(p

s) have
p-valuation at least k, the vector x cannot be in ℓ unless k ≤ t. Let us assume that
k is such that s−k ≤ t, what implies that k ≤ t. Then for any computational basis
(f1, f2), symplectic or not, x is a linear combination of pkf1 and ps−kf2. Hence

∀k ∈ {0, . . . , ⌊s/2⌋}, ∀ℓ ∈ Ok(p
s), (k ≥ s − t =⇒ x ∈ ℓ). (20)

That case can occur only if t ≥ ⌈s/2⌉, the ceiling part of s/2. Now, let us assume
that k is such that k ≤ t < s − k. Thus 2k < s and we search for the symplectic
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computational bases (f1, f2) such that x is a linear combination of pkf1 and ps−kf2.
Let (f1, f2) be a symplectic computational basis and x = af1 + bf2. Since

vp(ω(x, f2)) = vp(a) ≥ t ≥ k, (21)

we have no extra conditions on the choice of f2. But we must have

vp(ω(x, f1)) = vp(b) ≥ s − k, (22)

what shows that in a symplectic basis where x = (pt, 0), f1 must be of the form

f1 = (α, βps−k−t), (23)

with α, β ∈ Zd. The number of suitable vectors f1 is

(ps − ps−1) · p(s−1)−(s−k−t−1) = (ps − ps−1)pk+t. (24)

The number of suitable vectors f2 for a given f1 is ps. Then the number of suitable,
symplectic computational bases (f1, f2) is (ps − ps−1)ps+k+t. Moreover, if f is a
convenient basis and

〈
pkf1, p

s−kf2

〉
=

〈
pkf ′

1, p
s−kf ′

2

〉
, (25)

then f ′ is convenient too. With (9a), we deduce that the number of isotropic lines
in Ok(p

s) containing x is

(ps − ps−1)ps+k+t

(ps − ps−1)ps+2k
= pt−k. (26)

Thus, if t < ⌈s/2⌉, the number of isotropic lines containing x is

t∑

k=0

pt−k = pt ·
1 − p−(t+1)

1 − p−1
=

pt+1 − 1

p − 1
. (27)

If t ≥ ⌈s/2⌉ and s̃ = ⌊s/2⌋, the number of isotropic lines containing x is

s−t−1∑

k=0

pt−k +
es∑

k=s−t

|Ok(p
s)| . (28)

The first term is equal to

pt ·
1 − p−(s−t)

1 − p−1
=

pt+1 − p2t−s+1

p − 1
. (29)

For s odd, then 2s̃ = s − 1,

es∑

k=s−t

p−2k = p−2(s−t) ·
1 − p−2(es−s+t+1)

1 − p−2
=

p2t−s+1 − 1

ps−1(p2 − 1)
, (30)

and the second term in (28) is equal to

ps−1(p + 1)
p2t−s−1 − 1

ps−1(p2 − 1)
=

p2t−s+1 − 1

p − 1
. (31)
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For s even, then 2s̃ = s,

es−1∑

k=s−t

p−2k = p−2(s−t) ·
1 − p−2(es−1−s+t+1)

1 − p−2
=

p2t−s+1 − p

ps−1(p2 − 1)
, (32)

and the second term in (28) is again

ps−1(p + 1)
p2t−s+1 − p

ps−1(p2 − 1)
+ 1 =

p2t−s+1 − 1

p − 1
. (33)

Hence, in any case, the number of isotropic lines containing some given vector x
with p-valuation t is

nL(ps; x) = nL(ps; t) =
pt+1 − 1

p − 1
. (34)

In particular,
nL(ps; t = 0) = 1 and nL(ps; t = s) = nL(ps). (35)

That is to say the sole isotropic line containing a free vector is the submodule it
generates and every isotropic line goes through the null vector.

If d is not necessarily a power of a prime, then with (16) and for all i, ti = vpi
(x),

we obtain that the number of isotropic lines containing x is

nL(d; x) = nL(d; (ti)i∈I) =
∏

i∈I

pti+1
i − 1

pi − 1
. (36)

3 Orbits under the action of SL(2, Zd)

As in Section 1, we first suppose that d is a power of a prime, say d = ps, s ≥ 1.
Then it is obvious from (3) that the orbits of the left-action of SL(2, Zps) among
the isotropic lines are the Ok(p

s). Their number is ⌊s/2⌋+ 1 and we have already
seen what their cardinalities are in (10) and (11).

Now if d is a composite integer as in (16), then the set of the orbits is parametrised
by

k = (ki)i∈I ∈
∏

i∈I

{0, . . . , ⌊si/2⌋} (37)

and the orbit with index k is

Ok(d) =
{
ℓ ⊂ Z2

d; |ℓ| = N, πpi
(ℓ) ∈ Oki

(psi

i )
}

. (38)

The number of orbits is ∏

i∈I

(⌊si/2⌋ + 1) , (39)

and the cardinality of one of them is

|Ok(d)| =
∏

i∈I

|Oki
(psi

i )| . (40)
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Example Let us suppose that d contains no square factor, that is to say in
(16), for all i ∈ I, si = 1. According to (3), with k necessarily equal to 0, the
isotropic lines are the submodules that can be generated by a single free vector.
These submodules are called the projective points of Z2

d. With (18), we find that
the number of isotropic lines is

nL(d) =
∏

i∈I

(pi + 1). (41)

They all belong to the sole orbit under the action of SL(2, Zd) corresponding to
ki = 0 for all i.

4 Some group actions on ΣD(M)

In this section, we assume that d = ps is a power of a prime. In order to establish
equation (9), we showed that the number of matrices in ΣD(M) with determinant
1 is the same as the number of matrices in the same set with any other (invertible)
determinant. The simple reasoning we used was enough in the frame of Section 1.
But we are going to introduce here two other group actions that are linked to that
point and to Remarks 1 and 2. Let ρ0 be the action of U(Zps) on ΣD (M) defined
by

∀u ∈ U(Zps), ∀P = (P1|P2) ∈ ΣD (M), ρ0(u) · P = (uP1|u
−1P2) (42)

and ρ1 the action of U(Zps)2 on ΣD(M) defined by

∀(u1, u2) ∈ U(Zps)2, ∀P = (P1|P2) ∈ ΣD(M), ρ1(u1, u2) · P = (u1P1|u2P2). (43)

All the orbits of ρ0 (resp. ρ1) have the same cardinality, namely |U(Zps)| = ps−ps−1

(resp. |U(Zps)|2). In a given orbit of ρ0, every matrix has the same determinant.
Since Zps is a commutative ring, those two actions ”commute”:

ρ1(u1, u2) · (ρ0(u) · P ) = ρ0(u) · (ρ1(u1, u2) · P ). (44)

Let (u1, u2), (v1, v2) ∈ U(Zps)2 such that u1u2 = v1v2, that is to say

∀P ∈ ΣD(M), det(ρ1(u1, u2) · P ) = det(ρ1(v1, v2) · P ). (45)

With λ = u2v
−1
2 = u−1

1 v1 ∈ U(Zps), we have

(v1, v2) = (λu1, λ
−1u2). (46)

Thus we have a kind of a discrete Hopf fibration. It is given by the action h of
U(Zps) on U(Zps)2 defined by

∀λ ∈ U(Zps), ∀(u1, u2) ∈ U(Zps)2, h(λ) · (u1, u2) = (λu1, λ
−1u2). (47)

Moreover, the action ρ = ρ1/(h, ρ0) of U(Zps)2/h on ΣD (M)/ρ0 is well-defined.
For any u ∈ U(Zps), let

Du = {P ∈ ΣD(M); det P = u} . (48)
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Every orbit of ρ is transversal to Du/ρ0. Indeed, let P be in some orbit O of ρ1

with some determinant v. Then (uv−1P1|P2) is in O with determinant u so that
there is at least one orbit of ρ0 in Du ∩ O. Then if P and Q = (u1P1|u2P2) are in
O and have the same determinant, then u2 = u−1

1 and thus P and Q are in the
same orbit of ρ0.

As a conclusion, we have a partition E = {Eij} of ΣD (M): The Eij ’s are the
orbits of ρ0, i ∈ U(Zps) is the determinant of every matrix in Eij and j stands for
an orbit of ρ1 (or equivalently of ρ). The number of different values that j can
assume is

nρ =
|ΣD(M)|

|U(Zps)|2
. (49)

If 2k < s, then nρ = ps+2k according to (9a). But if k = s/2, then

nρ =
|GL(2, Zps)|

|U(Zps)|2
=

(p2s − p2(s−1)) · (ps − ps−1) · ps

(ps − ps−1)2
= p2s + p2s−1 > p2s. (50)

Let P ∈ Ei1j1 and Q ∈ Ei2j2 . On the one hand, det P = i1 and det Q =
i2. On the other hand, j1 = j2 iff Q1 and Q2 are proportional to P1 and P2

respectively. In passing, we find again that the number of matrices in ΣD(M) with
some determinant u is the same as the number of matrices in ΣD(M) with any
other (invertible) determinant v.
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