
Time-Independent Trace Acquisition Framework – A

Grid’5000 How-to

George Markomanolis, Frédéric Suter

To cite this version:

George Markomanolis, Frédéric Suter. Time-Independent Trace Acquisition Framework – A
Grid’5000 How-to. [Technical Report] RT-0407, INRIA. 2011, pp.26. <inria-00593842>

HAL Id: inria-00593842

https://hal.inria.fr/inria-00593842

Submitted on 17 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-IN2P3

https://core.ac.uk/display/46767911?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/inria-00593842

appor t

 t e ch n i qu e

IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-0
40

7-
-F

R
+E

N
G

Domaine 3

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Time-Independent Trace Acquisition Framework
A Grid’5000 How-to

George S. Markomanolis (INRIA, LIP, ENS Lyon, Lyon, France)
Frédéric Suter (IN2P3 Computing Center, CNRS, IN2P3, Lyon-Villeurbanne, France)

N° 0407

2011

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Time-Independent Trace Acquisition Framework
A Grid’5000 How-to

George S. Markomanolis (INRIA, LIP, ENS Lyon, Lyon, France)
Frédéric Suter (IN2P3 Computing Center, CNRS, IN2P3,

Lyon-Villeurbanne, France)

Domaine : Réseaux, systèmes et services, calcul distribué
Équipe-Projet GRAAL

Rapport technique n° 0407 — 2011 — 26 pages

Abstract: This manual describes step-by-step how to create a Grid’5000 appliance
that comprises all the tools needed to acquire time-independent traces of the execution
of an MPI application. Time-independent traces are an original way to estimate the
performance of parallel applications. It allows to totally decouple the acquisition of a
trace from its replay in a simulation framework. This manual also details the differ-
ent acquisition scenarios allowed by this approach. Traces can be acquired in a very
classical way, by folding the execution on less resources, or by scattering the execution
across multiple clusters.

Key-words: Grid’5000, Trace acquisition, appliance, off-line simulation.

Environnement d’acquisition
de traces indépendantes du temps

Manuel pour Grid’5000
Résumé : Ce manuel décrit pas à pas la création d’une image système pour Grid’5000
comprenant tous les outils nécessaires à l’acquisition de traces de l’exécution d’une
application MPI qui sont indépendantes du temps. L’utilisation de telles traces
est une approche originale pour estimer les performances d’applications parallèles.
Cela permet de découpler entièrement l’acquisition d’une trace de son rejeu dans un
environnement de simulation. Ce manuel décrit également les différents scénarios
d’acquisition rendus possibles par cette approche. Les traces peuvent être obtenues
de façon classique, en repliant l’exécution sur moins de ressources, ou encore en
répartissant l’exécution sur plusieurs grappes de machines.

Mots-clés : Grid’5000, acquisition de traces, image système, simulation hors ligne

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 3

1 Introduction
Simulation is a popular approach to obtain objective performance indicators on plat-
forms that are not at one’s disposal. For instance, it may help the dimensioning of
compute clusters in large computing centers. A framework for the off-line simula-
tion of MPI applications was proposed in [4]. Its main originality with regard to the
literature is to rely on time-independent execution traces.

In time-independent traces, each event occurring during the execution of an appli-
cation, e.g., a CPU burst or a communication operation, is associated to the volume of
the operation (in number of instructions or bytes) instead of the time spent to execute
it. A time-independent trace can then been seen as a list of actions, e.g., computations
and communications, performed by each process of an MPI application. An action
is described by the id of the process that does this action, a type, e.g., a computation
or a communication operation, a volume, i.e., a number of instructions or bytes, and
some action specific parameters, e.g., the id of the receiving process for a one-way
communication.

The NAS Parallel Benchmarks (NPB) suite, version 3.3, was used to illustrate our
methodology. This suite comprises several benchmarks which can be either compu-
tation intensive, communication intensive, or both. Almost all the benchmarks can
be executed for 7 different classes, denoting different problem sizes: S (the smallest),
W, A, B, C, D, and E (the largest). For instance, a class D instance corresponds to
approximately 20 times as much work and a data set almost 16 as large as a class C
problem.

This manual describes how to build an appliance that comprises all the necessary
software to acquire such time-independent traces. For the sake of simplicity we detail
the building process of our appliance in the context of the Grid’5000 platform. The
objective of the Grid’5000 project is to ensure the availability of a scientific instrument
for experiment-driven research in the fields of large-scale parallel and distributed sys-
tems. This instrument was built as from 2003 under the initiative of the French ministry
of Research under the ACI GRID program, and equipped with hardware comparable
to that of a national scale grid (9 sites and over 5000 cores). It has since demonstrated
that its fundamental concepts and tools to support experiment-driven research in par-
allel and distributed systems are solid enough attract a large number of users and to
stay pertinent even though the focus of research in these areas has evolved in the past
7 years.

The remaining of this document is organized as follows. Section 2 describes the
different steps of the building of an appliance, i.e., a full fledged system image. Sec-
tion 3 presents the few configuration steps that have to be done in user space. Then
Section 4 details the different time-independent trace acquisition processes.

2 Building the Appliance

2.1 Selecting a Base Image
Several base system images are made available by the Grid’5000 technical staff. All
these images are based on the Debian Linux distribution and can be deployed on all
Grid’5000 sites. There exist images based on three different versions of the Debian
distribution, but one of them is aging (etch) while another one is unstable (sid).

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 4

Then we just detail the specifics of the images based on the Lenny version, which is
the stable Debian release at the time of writing.

• lenny-x64-base is a minimal environment with no support of NFS and
LDAP services. Only the drivers necessary to the support of the Grid’5000 in-
frastructure and high-speed network interconnect are installed.

• lenny-x64-nfs is based on lenny-x64-base and enables the LDAP and
NFS services.

• lenny-x64-big is based on lenny-x64-nfs and includes various pre-
installed packages such as cmake, gfortran, OpenMPI, taktuk, as well as
several packages for development, system tools, and editors. All these tools pro-
vide a stable platform for configuring the operating system and execute various
experiments.

In what follows we customize a lenny-x64-big base image to create an appli-
ance adapted to our trace acquisition purposes.

2.2 Downloading Utility Software Packages
Downloading the sources of software packages that are available on the Internet from
a node of Grid’5000 is prohibited for security reasons. Then some tools has to be
downloaded on the user’s workstation and then copied on Grid’5000 before starting
to customize the appliance. We do not detail the purpose of each of the following
software packages yet as it will be done later. The user has to download the PAPI,
PDT, TAU, and NPB3.3 source packages as well as our own programs on his/her
workstation. Note that the download of the NAS Parallel Benchmarks suite forces
users to register first. This registration is free, and just aimed for download tracking.
On https://www.nas.nasa.gov/cgi-bin/software/start, users can
select “NPB- NAS Parallel Benchmarks” and “Source Code NPB -3.3
602kb” on the next page to download the archive. For the other tools, using wget is
enough.

$ wget http://icl.cs.utk.edu/projects/papi/downloads/papi-4.1.1.tar.gz
$ wget http://tau.uoregon.edu/pdt.tgz
$ wget http://tau.uoregon.edu/tau.tgz
wget http://graal.ens-lyon.fr/˜gmarkoma/files/programs.tgz

The user can then copy the tools on one of the Grid’5000 frontend. Here we use
that of the Sophia site.

$ scp papi-4.1.1.tar.gz username@access.sophia.grid5000.fr:
$ scp pdt.tgz username@access.sophia.grid5000.fr:
$ scp tau.tgz username@access.sophia.grid5000.fr:
$ scp NPB3.3.tar.gz username@acces.sophia.grid5000.fr:
$ scp programs.tgz username@acces.sophia.grid5000.fr:

2.3 Deploying The Base Image
The first mandatory step to customize a base image on Grid’5000 is to deploy it on one
compute node in one of the Grid’5000 clusters. Here we illustrate the procedure using
a node located in the Sophia site. The user first has to log his/herself on the access node
of this site

RT n° 0407

https://www.nas.nasa.gov/cgi-bin/software/start

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 5

$ ssh username@access.sophia.grid5000.fr

and then on the frontend of the site onto which it is possible to reserve compute nodes

$ ssh frontend

On Grid’5000, resource reservations are made through the OAR resource manage-
ment system [2]. OAR distinguishes classical compute job from jobs that require to
install their own system images. Such jobs are called deployment jobs and are sub-
mitted with the -t deploy. Moreover in the objective of customizing a base image,
one requires to have a direct access to the deployed environment. The resource reser-
vation is thus submitted in the interactive mode thanks to the -I flag. In the following
example, one node is requested for three hours with the following OAR command

$ oarsub -I -t deploy -l nodes=1,walltime=3

Once the reversation request has been serviced by OAR, the user can get the list of
his/her reserved nodes by doing

$ cat $OAR_FILE_NODES

In our example, the reserved node is helios-7.sophia.grid5000.fr. The
next step is to actually deploy the base image on the reserved node. On Grid’5000 this
is done thanks to the kadeploy3 tool [5] with the following command

$ kadeploy3 -m helios-7.sophia.grid5000.fr -e lenny-x64-big \
-k ˜/.ssh/id_rsa.pub

where

• -m is either the list of the reserved nodes given by $OAR_FILE_NODES or
directly the name of the reserved node;

• -e is the name of the image to deploy. This image has to be registered by
kadeploy3 before any deployment;

• -k allows the user to copy his/her ssh key on reserved node(s). This ssh key has
be generated beforehand.

Deploying an image on a node of Grid’5000 gives to the user the possibility to con-
nect to this node as a priviledged user. From now, we will assume that the operations
are done as root, as denoted by the # prompt. To log on the reserved node as root
the user has to execute the following command

$ ssh root@helios-7.sophia.grid5000.fr

The user will be asked for the same password that has to be known by Grid’5000
users for all the deployed base images.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 6

2.4 Enabling the Access to Hardware Counters
The targeted time-independent traces use numbers of instructions as unit for computa-
tion actions. The appliance we are currently customizing thus has to enable the access
to hardware performance counters. Hardware counters are a set of special-purpose
registers built into modern microprocessors to store the counts of hardware-related ac-
tivities within computer systems.

The Performance Application Programming Interface (PAPI) [1] is a consistent
interface and methodology for use of the hardware counters. With Linux kernels
prior to 2.6.31, using PAPI requires to patch the kernel with either Perfctr [7] or
Perfmon2 [6]. These are performance counters drivers that provide patches for the
kernels to enable the access to the counters. Each patch applies for a specific kernel.

More recent kernels (above 2.6.31) include a built-in support for the
perf counter interface, also called PCL (Performance Counters for Linux). This
interface was renamed to perf event in kernel 2.6.32 and above.

While PAPI supports all of these interfaces, here we describe the procedure to patch
and recompile the kernel of our appliance. Indeed the selected image is based on a
2.6.26 kernel.

Once the node is deployed, we copy the different tools from the previous section in
the /tmp of this node.

We copy the sources from the frontend and extract them from the archive in the
/usr/local/src directory

scp username@frontend.sophia.grid5000.fr:papi-4.1.1.tar.gz /tmp
tar xvfz /tmp/papi-4.1.1.tar.gz -C /usr/local/src

To apply the perfctr patch to the base kernel, it is also necessary to down-
load the source files of the kernel and some Debian packages. For instance, the
build-essential and kernel-package are respectively needed to build De-
bian and kernel image packages. The Debian source repositories are updated before
download.

apt-get update
apt-get install linux-source-2.6.26 build-essential kernel-package

Then the kernel source files need to be installed

cd /usr/src
tar jxvf linux-source-2.6.26.tar.bz2
ln -s linux-source-2.6.26 linux
cd linux
cp /boot/config-2.6.26-2-amd64 .config

On non-Grid’5000 configurations, or if the current image already comprises source
files, the kernel source tree will need to be reset to a condition where the process of
applying a patch can be done reliably.

cp .config /tmp/config-bak
make-kpkg clean
make mrproper
cp /tmp/config-bak .config

PAPI includes a set of perfctr patches in its distribution that corresponds to
different kernel versions. It is recommended to test the patch first

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 7

/usr/local/src/papi-4.1.1/src/perfctr-2.6.x/update-kernel --test \
--patch=2.6.26

If the test did succeed, the patch can be safely installed.

/usr/local/src/papi-4.1.1/src/perfctr-2.6.x/update-kernel \
--patch=2.6.26

Once the kernel source has been patched, the kernel has to be configured to use the
new perfctr code

make oldconfig

The execution of make oldconfigwill stop to ask for perfctr configuration.

[...]
Performance monitoring counters support (PERFCTR) [N/m/y/?] (NEW) m

Enter "m" to enable perfctr as a module in the new kernel. Then you will be
prompted for additional perfctr configuration options. The most reasonable choices
are

Additional internal consistency checks (PERFCTR_DEBUG) [N/y/?] (NEW) n
Init-time hardware tests (PERFCTR_INIT_TESTS) [N/y/?] (NEW) y
Virtual performance counters support (PERFCTR_VIRTUAL) [N/y/?] (NEW) y
Global performance counters support (PERFCTR_GLOBAL) [N/y/?] (NEW) y

The new kernel can now be rebuilt.

CONCURRENCY_LEVEL=8 make-kpkg kernel-image --initrd \
--append-to-version=-perfctr0

This command creates a Debian kernel image in /usr/src. The following com-
mands install this new kernel

cd /usr/src
dpkg -i \

linux-image-2.6.26-perfctr0_2.6.26-perfctr0-10.00.Custom_amd64.deb

At this point it is useful to note the names of the vmlinuz and initrd.img
files which should be selected during the boot of the operating system (they are in the
folder /boot). In our example, we have:

initrd.img-2.6.26-perfctr0
vmlinuz-2.6.26-perfctr0

To complete the installation of the perfctr driver, it is necessary to reboot
on the new kernel. As we are building an appliance, it is possible to reboot
the node within the current reservation. However, editing the grub configuration
(/boot/grub/grub.cfg) is mandatory. The names of the kernel/initrd files has
to be those produced by the kernel image installation as follows

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 8

set timeout=0
menuentry Linux {

set root=hd0,3
linux /boot/vmlinuz-2.6.26-perfctr0 root=/dev/sda3 ro
initrd /boot/initrd.img-2.6.26-perfctr0

}

It is then possible to reboot the node.

reboot

This reboot operation closes the connection with the reserved node and let the user
on the frontend. He/She should wait for some time for the node to reboot (a couple of
minutes). This time depends on the size of the image. Note that a mistake made in the
grub configuration file, will prevent the node to boot correctly. In such a case, the user
would have to restart from the base image again.

Once the reserved node is avalaible again, we can connect to it and check the kernel
version as follows

$ ssh root@helios-7.sophia.grid5000.fr
uname -a

If the kernel is the appropriate one, we can continue the installation of the
perfctr driver.

Once the machine is rebooted with the patched kernel, the perfctr module has
to be activated to enable the performance counters.

modprobe -a perfctr

By tailing /var/log/messages it is possible to verify that the counters are
succesfully loaded.

dmesg | tail -18
Please email the following PERFCTR INIT lines to mikpe@it.uu.se
To remove this message, rebuild the driver with

CONFIG_PERFCTR_INIT_TESTS=n
PERFCTR INIT: vendor 0, family 6, model 26, stepping 5,

clock 2260996 kHz
PERFCTR INIT: NITER == 64
PERFCTR INIT: loop overhead is 292 cycles
PERFCTR INIT: rdtsc cost is 23.8 cycles (1816 total)
PERFCTR INIT: rdpmc cost is 33.6 cycles (2448 total)
PERFCTR INIT: rdmsr (counter) cost is 112.0 cycles (7460 total)
PERFCTR INIT: rdmsr (evntsel) cost is 92.5 cycles (6216 total)
PERFCTR INIT: wrmsr (counter) cost is 169.3 cycles (11132 total)
PERFCTR INIT: wrmsr (evntsel) cost is 158.4 cycles (10432 total)
PERFCTR INIT: read cr4 cost is 10.0 cycles (936 total)
PERFCTR INIT: write cr4 cost is 119.1 cycles (7920 total)
PERFCTR INIT: write LVTPC cost is 35.9 cycles (2592 total)
PERFCTR INIT: sync_core cost is 195.8 cycles (12828 total)
PERFCTR INIT: read fixed_ctr0 cost is 33.2 cycles (2420 total)
PERFCTR INIT: wrmsr fixed_ctr_ctrl cost is 166.8 cycles (10972 total)
perfctr: driver 2.6.41, cpu type Intel Nehalem at 2260996 kHz

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 9

The permissions on /dev/perfctr should also be changed to give users ac-
cess to the performance counters. This is done by adding the following line to
/etc/udev/rules.d/91-permissions.rules

KERNEL=="perfctr",MODE="0666"

anywhere, before the following line (if it exists):

LABEL="permissions_end"

This modification will be taken into account by executing the following commands
that remove the module, reset the permissions, and reload the module

rmmod perfctr
/etc/init.d/udev restart
modprobe -a perfctr
ls -l /dev/perfctr
crw-rw-rw- 1 root root 10, 182 Jan 28 00:53 /dev/perfctr

Finally, to automatically load the perfctr module at boot time, perfctr has to
be appended to /etc/modules.

echo perfctr >> /etc/modules

Then we can configure, compile, test, and finally install PAPI in
/usr/local/papi

cd /usr/local/src/papi-4.1.1/src
./configure --prefix=/usr/local/papi
make
make fulltest
make install-all

Note that this installation is only possible if the node has a kernel with an en-
abled perfctr driver. Moreover if most of the tests fail when executing make
fulltest, this indicated issues with the activation of the kernel module. The correct
loading of the module, and the permissions settings would then have to be checked.

2.5 Installing the Tracing Tools
While PAPI gives a direct access to hardware counters through the perfctr driver, we
need to rely on a higher level tracing tool to acquire execution traces. Indeed traces do
not only have to include information about computations, but also on communications,
i.e., MPI operations.

Many tracing and profiling tools exist. To build this appliance we decided to install
some components of the Tuning and Analysis Utilities (TAU) [8] suite. TAU is a well
established tracing and profiling tool that supports automatic performance instrumen-
tation at source level thanks to the Program Database Toolkit (PDT). This component
then has to be installed first.

As for PAPI, we copy the archive from the frontend and extract the source of PDT
in the /usr/local/src directory and install it.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 10

scp username@frontend.sophia.grid5000.fr:pdt.tgz /tmp
tar zxvf /tmp/pdt.tgz -C /usr/local/src
cd /usr/local/src/pdtoolkit-3.16
./configure -prefix=/usr/local/pdt
make
make install

We conclude this installation by adding the path to the directory in which PDT
binary files are stored to the $PATH environment variable.

echo "export PATH=$PATH:/usr/local/pdt/x86_64/bin" >> ˜/.bashrc
source ˜/.bashrc

Here we use TAU with the OpenMPI runtime. This requires to install the OpenMPI
development files to have access to the headers of the library and to define it as the
default runtime.

apt-get install libopenmpi-dev
echo "/usr/lib/openmpi/lib" >> /etc/ld.so.conf.d/openmpi.conf
ldconfig
ln -sf /usr/bin/mpif77.openmpi /etc/alternatives/mpif77
ln -sf /usr/bin/mpicc.openmpi /etc/alternatives/mpicc
ln -sf /usr/bin/mpirun.openmpi /etc/alternatives/mpirun

Then we repeat the same procedure with the source archive of TAU. We configure
TAU by giving it the paths to PDT, PAPI and MPI includes and binaries.

scp username@frontend.sophia.grid5000.fr:tau.tgz /tmp
tar zxvf /tmp/tau.tgz -C /usr/local/src
cd /usr/local/src/tau-2.20.1
./configure -prefix=/usr/local/tau -pdt=/usr/local/pdt \
-papi=/usr/local/papi \
-mpiinc=/usr/lib/openmpi/include \
-mpilib=/usr/lib/openmpi/lib

The call to configure should end by displaying the following message

Configuration complete!
Please add /usr/local/tau/x86_64/bin to your path
Type "make install" to begin compilation

Thus we add this path to the $PATH environment variable and execute the installa-
tion command

echo "export PATH=$PATH:/usr/local/tau/x86_64/bin" >> ˜/.bashrc
source ˜/.bashrc
make install

2.6 Instrumenting an Application
As mentioned in the introduction of this manual, we use the NAS Parallel Bench-
mark (NPB) suite as an illustrative example. More information about the NPB suite

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 11

is available on http://www.nas.nasa.gov/Resources/Software/npb.
html.

As in the previous sections, the archive is copied on the deployed node and the
sources are extracted in the /usr/local/src directory of the deployed node.

scp username@frontend.sophia.grid5000.fr:NPB3.3.tar.gz /tmp
tar zxvf /tmp/NPB3.3.tar.gz -C /usr/local/src

The source code of the NPB comes in three different versions:

/usr/local/src/NPB3.3/NPB3.3-SER contains the serial version of the
benchmark suite. These implementations are to be executed on a single pro-
cessor are there for comparison purposes, in terms of numerical accuracy, with
the following parallel implementations;

/usr/local/src/NPB3.3/NPB3.3-MPI contains the MPI version of the
benchmark suite. This version relies on message passing through the Message
Passing Interface to make the processes communicate.

/usr/local/src/NPB3.3/NPB3.3-OMP contains the OpenMP version of the
benchmark suite. This version implements inter-process communication through
shared memory and thus target SMP nodes.

We continue our illustration by focusing on the instrumentation of the MPI ver-
sion of the NPB. Then we go in the /usr/local/src/NPB3.3/NPB3.3-MPI
directory and list its contents

cd /usr/local/src/NPB3.3/NPB3.3-MPI
ls
bin BT CG common config DT EP FT IS LU Makefile MG
MPI_dummy README README.install SP sys

We see that there is one directory for each benchmark (BT, CG, DT, EP, FT, IS,
LU, MG, and SP). The common directory contains random number generators, timers,
and printing functions used by all the benchmarks.

The config and sys directories contain files relative to the compilation of the
benchmark suite that we will detail later. It is also possible to test the behavior of this
MPI implementation without any installed MPI runtime thanks to the contents of the
MPI dummy directory.

Now, we detail how to instrument one given benchmark, the LU factorization, with
the TAU profiling tool. TAU provides various options to instrument an application. The
most basic way is to instrument the whole benchmark. In this case, it is just required
to compile and link the source code with the appropriate scripts and libraries provided
by TAU. For instance, to generate a instrumented binary of the entire LU benchmark,
the user has to execute the following steps. First it is necessary to create a proper
make.def file in the config directory. This file is loaded by the Makefile of
each benchmark and defines the location of the FORTRAN and C compilers as well as
the compiler flags and libraries to use. The NPB distribution comes with a template of
the make.def that we copy and edit

cp config/make.def.template config/make.def

RT n° 0407

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 12

In this file, we define tau f77.sh as the program to use to compile MPI/FOR-
TRAN codes

MPIF77 = tau_f77.sh

This script is a wrapper on the FORTRAN compiler provided by TAU which in-
struments and compiles a source code. This script also loads a TAU Makefile
that contains more options and library links. Several files are provided by TAU
and are located in /usr/local/tau/x86 64/lib. In our particular case,
we need to load the file that links TAU with PAPI, MPI, and PDT, named
Makefile.tau-papi-mpi-pdt. To enable the load of this file by tau f77.sh
and the use of PDT, we have to set some environment variables

echo "export TAU_OPTIONS=-optPDTInst" >> ˜/.bashrc
echo "export TAU_MAKEFILE=\
/usr/local/tau/x86_64/lib/Makefile.tau-papi-mpi-pdt">> ˜/.bashrc
source ˜/.bashrc

At this point, it is possible to compile whatever instance of the LU benchmark as it
will be described later in this section.

One of the characteristics of the NPB codes, is to include a first phase in which
the data are loaded and touched to warm up the system. The performance of this
first phase may be different of the main computing part of the benchmark. Moreover,
each parallel benchmark ends by gathering the produced results and checking their
consistency. Then a user may want to instrument not the entire source code but only the
main computing part of it. For instance, the main computing part of the LU benchmark
is the SSOR(itmax) function call that occurs in the lu.f file.

In this case, which is the one chosen for our time-independent trace acquisition
framework, it is required to resort to the selective instrumentation feature of TAU.
This feature allows the user to enable or disable the tracing of the execution thanks to
specific functions of the instrumentation API of TAU. As these functions go by pair,
the basic scheme is to:

• Disable tracing at the beginning of the application;

• Enable tracing just before the interesting part of the source code;

• Disable tracing just after the traced source code;

• Enable tracing again just before the call to MPI Finalize().

To allow the user to compile either the instrumented or regular versions of a bench-
mark, these calls to the TAU instrumentation API are inserted in a copy of the main file.
In the case of the LU benchmark, we thus copy lu.f to the new file instr lu.f.
This latter file is then edited to insert the following calls.

cp LU/lu.f LU/instr_lu.f

The tracing is first disabled once all the variables have been declared. It corresponds
to line 63 in the lu.f file

integer ierr
call TAU_DISABLE_INSTRUMENTATION()

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 13

Then the instrumentation is enabled just before the call to ssor(itmax), which
is the main computing part of the benchmark. This call occurs line 128. The instru-
mentation is disabled again right after the call to ssor

call TAU_ENABLE_INSTRUMENTATION()
call ssor(itmax)
call TAU_DISABLE_INSTRUMENTATION()

Finally the tracing is enabled again before the call to MPI Finalize on line 161.

call TAU_ENABLE_INSTRUMENTATION()
call mpi_finalize(ierr)

A similar procedure can be applied to the other FORTRAN benchmarks, while the
C version of the instrumentation API has to be used for the C benchmarks.

The next step consists in defining a new compilation chain for the instrumented
versions of the benchmarks. We aim at giving access to the compiled binaries from a
standard location. Then we first create a new directory in /usr/local/bin.

mkdir /usr/local/bin/NPB3.3

The main Makefile in /usr/local/src/NPB3.3/NPB3.3-MPI includes
the config/make.def file that declares compiler locations, flags, and linked li-
braries. This Makefile also includes the sys/make.common file that defines
the compilation targets. These two files have to be modified. We start with the
config/make.def file that we create from the available template.

cp config/make.def.template config/make.def

Then we edit this file to set the location of the MPI compilers for the regular version,
add new entries for the instrumented version, and modify the destination directory for
the binaries to /usr/local/bin/NPB3.3.

MPIF77 = mpif77 # modification
INSTR_MPIF77 = tau_f77.sh # new
INSTR_FLINK = $(INSTR_MPIF77) # new
[...]
FMPI_LIB = -L/usr/lib/openmpi/lib -lmpi
[...]
FMPI_INC = -I/usr/lib/openmpi/include
[...]
MPICC = mpicc # modification
INSTR_MPICC = tau_cc.sh # new
INSTR_CLINK = ${INSTR_MPICC} # new
[...]
MPI_LIB = -L/usr/lib/openmpi/lib -lmpi # modification
[...]
CMPI_INC = -I/usr/lib/openmpi/include # modification
[...]
BINDIR = /usr/local/bin/NPB3.3 # modification

To prevent memory issues that may occur for large instances such as class D, some
flags also have to be added. The -mcmodel=medium flag allows code and data to be
bigger than 2GiB on x64 operating systems. We thus add this flag for C and FORTRAN
in the make.def file.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 14

FFLAGS = -mcmodel=medium -0 # modification
[...]
CFLAGS = -mcmodel=medium -0 # modification

Now we edit the existing sys/make.common file to add the new compilation
targets related to the instrumented versions. the following lines have to be added at the
beginning of the file.

INSTR_PROGRAM = $(BINDIR)/instr_$(BENCHMARK).$(CLASS).$(NPROCS)
INSTR_FCOMPILE = $(INSTR_MPIF77) -c $(FMPI_INC) $(FFLAGS)
INSTR_CCOMPILE = $(INSTR_MPICC) -c $(CMPI_INC) $(CFLAGS)

The next step requires to modify the Makefile of each benchmark. For example,
LU/Makefile has to be modified as follows. First we declare the objects related to
the new instrumented version target. With regard to the original OBJS rule, the only
modification is to replace lu.o by inst lu.o.

INSTR_OBJS = instr_lu.o init_comm.o read_input.o bcast_inputs.o \
proc_grid.o neighbors.o nodedim.o subdomain.o setcoeff.o \
sethyper.o setbv.o exact.o setiv.o erhs.o ssor.o exchange_1.o \
exchange_3.o exchange_4.o exchange_5.o exchange_6.o rhs.o \
l2norm.o jacld.o blts$(VEC).o jacu.o buts$(VEC).o error.o \
pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o

OBJS = lu.o init_comm.o read_input.o bcast_inputs.o proc_grid.o \
neighbors.o nodedim.o subdomain.o setcoeff.o sethyper.o \
setbv.o exact.o setiv.o erhs.o ssor.o exchange_1.o \
exchange_3.o exchange_4.o exchange_5.o exchange_6.o rhs.o
l2norm.o jacld.o blts$(VEC).o jacu.o buts$(VEC).o error.o \
pintgr.o verify.o ${COMMON}/print_results.o ${COMMON}/timers.o

Then we declare a new rule called inst exec that uses these instrumented ob-
jects.

exec: $(OBJS)
${FLINK} ${FLINKFLAGS} -o ${PROGRAM} ${OBJS} ${FMPI_LIB}

instr_exec: ${INSTR_OBJS}
${INSTR_FLINK} ${FLINKFLAGS} -o ${INSTR_PROGRAM} \
${INSTR_OBJS} ${FMPI_LIB}

To enable this new rule, we resort to a new the compilation parameter called INSTR
whose default value is 0. When set to 1, this parameter will activate the compilation of
the instrumented version. The ${PROGRAM} rule also has to be modified as follows.

${PROGRAM}: config
@if [x$(VERSION) = xvec] ; then \

${MAKE} VEC=_vec exec; \
elif [x$(VERSION) = xVEC] ; then \

${MAKE} VEC=_vec exec; \
elif [$(INSTR) -eq 1] ; then \ # modified

${MAKE} instr_exec; \ # new
else \ # new

${MAKE} exec; \
fi

The instr exec rule is applied if and only if the INSTR parameter is set to 1. Finally
the creation of the objects should be modified as follows.

.f.o :
@if [${INSTR} -eq 1] ; then \

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 15

${INSTR_FCOMPILE} $< ; \
else \

${FCOMPILE} $< ; \
fi

lu.o: lu.f applu.incl npbparams.h
instr_lu.o: instr_lu.f applu.incl npbparams.h

The final step is to modify the main NPB3.3-MPI/Makefile to initialize the
default value of the INSTR parameter and take it into account in the LU compilation
rule.

NPROCS=1
INSTR=0 #new
SUBTYPE=
[...]
LU: lu
lu: header

cd LU; $(MAKE) INSTR=$(INSTR) NPROCS=$(NPROCS) CLASS=$(CLASS) \
VERSION=$(VERSION) # modification

A similar procedure has to be applied to each benchmark to have an instrumented
version of the entire NPB benchmark suite.

2.7 Compiling the Instrumented Version
Once Makefile and configuration files have been modified as detailed in the pre-
vious section, it is possible to compile both regular and instrumented versions. The
Makefile located in /usr/local/src/NPB3.3/NPB3.3-MPI allows for the
compilation of each version thanks to different command line arguments through the
following command.

make <benchmark-name> NPROCS=<number> CLASS=<class> [INSTR=<value>]

<benchmark-name> "bt" "cg" "dt" "ep" "ft" "is" "lu" "mg" "sp"
<value> 1 for the instrumented compilation
<number> the number of processes
<class> "S", "W", "A", "B", "C", "D", or "E"

Note that class E is not available for the DT and IS benchmarks.
For instance to compile the non-instrumented version of the class C of the LU

benchmark to be executed by 64 processes we have to execute the following command
in /usr/local/src/NPB3.3/NPB3.3-MPI/

make LU NPROCS=64 CLASS=C

This will generate a binary, named lu.C.64, in /usr/local/bin/NPB3.3.
The command to produce the instrumented version is very similar as it just requires to
set the INSTR parameter to 1 on the command line.

make LU NPROCS=64 CLASS=C INSTR=1

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 16

the generated binary is named instr lu.C.64.
Compiling each possible combination of benchmark, class, number of processes,

and type in both regular and instrumented version one by one is a tedious procedure.
The NPB suite thus allows the user to compile all the desired instances in a simpler way.
First the config/suite.def file has to be created from the available template and
then edited.

cd /usr/local/src/NPB3.3/NPB3.3-MPI/config
cp suite.def.template suite.def

In this file, each line contains a benchmark name, a class, and number of pro-
cesses. The possible value for the benchmark names and classes are those listed earlier.
The different fields are separated by tabulations. For instance, the following lines in
suite.def declare that the LU benchmark has to be compiled for classes A and B
for 8 and 16 processes.

lu A 8
lu A 16
lu B 8
lu B 16

To support the generation of the instrumented version of the benchmarks with this
method, the sys/suite.awk file has to be edited as follows to handle the INSTR
parameter.

BEGIN { SMAKE = "make" } {
if ($1 !˜ /ˆ#/ && NF > 2) {
printf "cd ‘echo %s|tr ’[a-z]’ ’[A-Z]’‘; %s clean;", $1, SMAKE;
printf "%s CLASS=%s NPROCS=%s", SMAKE, $2, $3;
printf "%s INSTR=1 CLASS=%s NPROCS=%s", SMAKE, $2, $3; #new

Now we can compile all the instances listed in the suite.def file in one com-
mand.

cd /usr/local/src/NPB3.3/NPB3.3-MPI/
make suite

All the generated binaries are now in /usr/local/bin/NPB3.3.

2.8 Installing Tools for Trace Post-Processing
When the execution of an MPI application instrumented with TAU completes, many
files are produced. They fall in two categories: trace files and event files. A trace
file is a binary file that includes all the events that occur during the execution of the
application for a given process. For each event (e.g., a function call or an instrumented
block), this file indicates when this event starts and finishes. The time spent and the
number of computed instructions between these begin/end tags are also stored. For MPI
events all the parameters of the MPI call, including source, destination, and message
size, are stored. To reduce the size of the trace files, TAU stores a unique id for each
traced event instead of its complete signature. The matching between the ids and the
descriptions of the functions can be found in the event files.

To perform an off-line simulation from these traces produced by TAU, two steps are
mandatory. First we have to extract a time-independent trace from the trace and event

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 17

files produced by TAU. Second we have to gather, and sometimes merge, the extracted
traces on a single node where the replay will take place.

As the trace files generated by TAU are binary files, there is a need for an interface
to extract information. Such an API is provided by the TAU Trace Format Reader li-
brary (TFR). This tool provides the necessary functions to handle a trace file, including
a function to read events. It also defines a set of eleven callback methods, that cor-
respond to the different kinds of events that appear in a TAU trace file. For instance
there are callbacks for entering or exiting a function and triggering a counter. The
implementation of these callback methods is let to the developer.

We thus developed a C/MPI parallel application, called trace extract, that
implements the different callback methods of the TFR library. This program basi-
cally opens, in parallel, all the TAU trace files and read them line by line. For each
event, the corresponding callback function is called. To gather the traces produced by
trace extract, developed a simple program that relies on a K-nomial tree reduc-
tion allowing for log(K+1) N steps, where N is the total number of files, and K is the
arity of the tree. This program can be configured to adapt the arity to the total number
of traces and the number of compute nodes involved in the trace acquisition.

We get back this archive from the cluster frontend. We extract this archive directly
in /usr/local/src and use a classical compilation chain to install the binaries in
/usr/local/bin

scp username@frontend:programs.tgz /tmp
tar zxvf /tmp/programs.tgz -C /usr/local/src
cd /usr/local/src/programs
make
make install

Now the image should be saved and declared again at the kadeploy software suite.

2.9 Saving and Recording the Appliance
Once all the necessary tools have been installed, the appliance can be saved and
recorded by kadeploy for further usage. Tools are provided by the Grid’5000 tech-
nical staff to perform these operation. The tgz-g5k tool, which is installed in each
base image, creates a tarball of the appliance on the frontend of the cluster. The fol-
lowing call, executed on the deployed node in root mode, will create a tarball named
newimage.tgz in the home directory of the specified Grid’5000 user.

tgz-g5k username@frontend:newimage.tgz

The next step consists in recording the appliance for future deployments. This has
to be done by the user on the frontend of the cluster. First the user has to get the
description of an existing environment from kaenv3, for instance that of the base
image lenny-x64-big. Note that to list the names of all the registered appliances,
a user can call kaenv3 -l.

$ kaenv3 -p lenny-x64-big -u deploy > ˜/newimage.dsc

This file gives the name of the appliance, its version, its creator, the location of the
tarball, the names of boot kernel and initial ramdisk, plus some other general charac-
teristics. For instance the newimage.dsc includes the following information:

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 18

name : lenny-x64-big
version : 5
description : https://www.grid5000.fr/index.php/Lenny-x64-variants-2.3
author : support-staff@lists.grid5000.fr
tarball : /grid5000/images/lenny-x64-big-2.3.tgz|tgz
postinstall : /grid5000/postinstalls/debian-x64-big-2.3-post.tgz|tgz|
traitement.ash /rambin
kernel : /boot/vmlinuz-2.6.26-2-amd64
initrd : /boot/initrd.img-2.6.26-2-amd64
fdisktype : 83
filesystem : ext3
environment_kind : linux
visibility : public
demolishing_env : 0

Some fields have to be updated, name, author, tarball, kernel, initrd and visibility,
according to the specifies of the customized appliance. Note that the visibility field
should be declared as shared to allow other users to use this image. The modified
description file is

name : ti_trace_acquisition-x64-2.6.26
version : 1
description : A Debian Lenny image with enabled access to hardware \
performance counters. Available tools: PAPI, TAU, NAS benchmarks, \

trace_extract for extracting time-independent traces, \
trace_gather for gathering traces into a single node.

author : user_email
tarball : /home/username/path_to_image/newimage.tgz|tgz
postinstall : /grid5000/postinstalls/debian-x64-big-2.3-post.tgz|tgz| \

traitement.ash /rambin
kernel : /boot/vmlinuz-2.6.26-perfctr0
initrd : /boot/initrd.img-2.6.26-perfctr0
fdisktype : 83
filesystem : ext3
environment_kind : linux
visibility : shared
demolishing_env : 0

It is then possible to record the environment

$ kaenv3 -a newimage.dsc

If an already registered appliance has to be modified, the procedure is to:

1. Save the new tarball with tgz-g5k;

2. Update the version number in the description file;

3. Record again the environment with

kaenv3 -a newimage.dsc

The old and new images can have the same name.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 19

3 User Space Configuration
While the appliance built in the previous section can be deployed by any user of
Grid’5000, most of the aforementioned configuration steps have been done with su-
per user privileges. Some configuration has to be made in user space once the
ti trace acquisition-x64-2.6.26 appliance has been deployed.

Some environment variables related to TAU configuration have to be declared in
the ˜/.bashrc file:

export TAU_MAKEFILE=/usr/local/tau/x86_64/lib/Makefile.tau-papi-mpi-pdt
export TAU_TRACE=1
export TAU_COMM_MATRIX=1
export TAU_OPTIONS="-optTauSelectFile=<path>/prof.tau \
-optPDTInst -optKeepFiles"
export TAU_METRICS=TIME:PAPI_TOT_INS

TAU MAKEFILE points to the file which contain all the proper data for
the compilation of the application. TAU TRACE activates the tracing mode,
while TAU COMM MATRIX generates detailed information about senders and re-
ceivers, and TAU CALLPATH activates the tracing of each event callpath. The
optTauSelectFile option points to a file which contains information relative to
selective instrumentation. The <path> has to be set according to the correct location
of the prof.tau file. The optPDTInst option is used to declare that the instru-
mentation is done by PDT, while the optKeepFiles option indicated to keep the
intermediate .pdb and .inst files generated by PDT. Finally TAU METRICS lists
the counters that have to be traced. The first one is always the time and in our case the
second one is PAPI TOT INS which counts the total number of instructions executed
by the application.

A user also have to declare the path to the directory in which the benchmark binaries
are located by editing the ˜/.bashrc file.

export PATH=/usr/local/bin/NPB3.3:$PATH

Once modified, the /.bashrc file has to be sourced again to take the modifica-
tion into account.

$ source ˜/.bashrc

In case a user would like to acquire a trace for an instance that is not already
available in /usr/local/bin/NPB3.3, it is possible to compile and install ex-
tra instance as follows. For instance, to compile the instrumented version of the LU
benchmark, class D for 128 processes the following commands should be executed

cd /usr/local/src/NPB3.3/NPB3.3-MPI
make LU NPROCS=128 CLASS=D INSTR=1

Note that this new binary will only be available on the node where the compilation
was made. Then it has to be copied to every deployed node for immediate utilization.
This can be done by using TakTuk [3].

$ taktuk -l root -f ˜/node_file broadcast put \
{ /usr/local/bin/NPB3.3/instr_lu.D.128 } { /usr/local/bin/NPB3.3/ }

RT n° 0407

~/.bashrc
~/.bashrc

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 20

where node file is a file listing all the machines the binary has to be copied
to. Its life time will also be limited to that of the current deployment. To include
this instance as part of the appliance, the procedure described in Section 2.9 has to be
executed once again.

4 Acquiring a Time-Independent Trace
In this section we detail how to actually acquire an execution trace of an MPI appli-
cation. We focus on the LU factorization benchmark for which we get traces with
different acquisition modes. First we need to reserve some nodes of the Grid’5000
platform by submitting an allocation request to the OAR resource management sys-
tem. Such a request is submitted from the frontend of a given Grid’5000 cluster in user
mode. In the following example, we request 8 nodes of the helios cluster (located
in Sophia) for 4 hours to deploy our custom image in an interactive mode.

username@fsophia:˜$ oarsub -I -t deploy -l nodes=8,walltime=4 \
-p "cluster=’helios’"

Once the requested nodes have been allocated, the $OAR FILE NODES environ-
ment variable lists the names of all the obtained machines. As the helios cluster
comprises 4 cores per nodes, each machine name appears 4 times. Now we can deploy
our custom image on the nodes.

username@fsophia:˜$ kadeploy3 -e ti_trace_acquisition-x64-2.6.26 \
-f $OAR_FILE_NODES -k ˜/.ssh/id_rsa.pub -o ˜/deployed_nodes

The output of this command is the list of the nodes for which the deployment
did succeed. It is stored in the deployed nodes file. It may happen that the de-
ployment fails for some node. Then we have to check deployed nodes against
$OAR FILE NODES as follows.

username@fsophia:˜$ for i in ‘cat ˜/deployed_nodes‘; \
do grep -v $i $OAR_FILE_NODES; done > ˜/failed_nodes

If the failed nodes file is not empty then we should deploy again the appliance
on these nodes until all nodes are successfully deployed.

username@fsophia:˜$ kadeploy3 -e ti_trace_acquisition-x64-2.6.26 \
-f ˜/failed_nodes -k ˜/.ssh/id_rsa.pub

As $OAR FILE NODES is available only on the frontend and not on the deployed
nodes, we save its information in a separate file that will be used to run MPI programs.
We also create a file in which each machine appears only once. This file will be used
to broadcast commands to every node.

username@fsophia:˜$ cat $OAR_FILE_NODES > node_file
username@fsophia:˜$ uniq node_file > node_file_uniq

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 21

To execute an MPI application on an homogeneous network, each machine has to
execute only one MPI process. In other words, only one core is used on each multi-
core nodes. This is mandatory for timed traces analysis, and thus to compare timed
and time-independent traces. To ensure that, it is possible to disable the other cores by
setting /sys/devices/system/cpu/cpu[1-9]*/online to 0 on each node.
We rely on TakTuk [3] to broadcast the appropriate command.

username@fsophia:˜$ taktuk -l root -f node_file_uniq broadcast \
exec [’for i in /sys/devices/system/cpu/cpu[1-9]*/online; do \

echo 0 > $i ; done’]

Now we can use one of the deployed nodes, e.g., the first one, to run the instru-
mented MPI application. As large files may be produced by the tracing tool, it is
better to start the execution within a local directory than in the /home directory shared
through NFS. Moreover this allows each node to write on its own disk and thus pre-
vents concurrency issues. Every cluster of Grid’5000 does not dispose of an identified
/scratch directory. Then we use the /tmp to temporarily store the acquired traces.

username@fsophia:˜$ ssh ‘head -n 1 node_file_uniq‘
helios-7.sophia.grid5000.fr:˜$ cd /tmp
helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file_uniq \

-np 8 instr_lu.C.8

Once the execution of the instrumented version has completed, we call our
trace extract program to transform the TAU traces into equivalent time-
independent traces.

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file_uniq \
-np 8 trace_extract 8

The parameter given to trace extract correspond to the number of trace files
produced by TAU. Here, each node runs one process and thus produces one trace file,
hence this parameter is equal to the number of nodes .

Then we can gather the time-independent trace on a single node thanks to the
trace gather program

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file_uniq \
-np 8 trace_gather -a 4 -m ˜/node_file_uniq

• The flag -a declares the arity of the reduction tree (4);

• The flag -m declares the name of the machinefile which is used during the exe-
cution (node file uniq);

The last step consists in retrieving the traces from the /tmp directory to store them
in a more permanent location. Depending on the size, it can be either in the /home
directory of the user, for instance

helios-7.sophia.grid5000.fr:˜$ mv ti_traces ˜/ti_traces_lu_c_8

or on a machine outside Grid’5000. In this case, it is better to create a tarball of the
traces to reduce the transmission time.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 22

helios-7.sophia.grid5000.fr:˜$ tar czf ti_traces_lu_c_8.tgz \
ti_traces

The security policy of Grid’5000 prevents user to go out of the platform from de-
ployed nodes. To access to such a node from his/her workstation then has to configure
ssh to go through the access node of the cluster. He/She also has to copy his/her pub-
lic key in the ˜/.ssh directory on this cluster. The ˜/.ssh/config file then has
to be edited to add the following entries.

Host access.*.grid5000.fr
User username
ProxyCommand nc -q 0 %h %p

Host *.grid5000.fr
User username
ProxyCommand ssh username@access.sophia.grid5000.fr \
"nc -q 0 ‘basename %h .grid5000.fr‘ %p"
ForwardAgent no
StrictHostKeyChecking no

These declare two shortcuts called access.*.grid5000.fr and
*.grid5000.fr. The first one is for the access nodes of the different sites
while the second one is for the other nodes. The ProxyCommand line tells the system
to connect first through ssh to the access server of the Sophia’s site, and then open a
netcat connection. Finally the ForwardAgent line declares that there will be no
connection authentication agent forwarded to the remote machine. It is also necessary
to modify the user configuration of ssh on each site to add the following entry.

StrictHostKeyChecking no

Once ssh is configured, the user can retrieve the tarball of traces with a classical
scp command.

workstation:˜$ scp helios-7.sophia.grid5000.fr:\
/tmp/ti_traces_lu_c_8.tgz .

As described in [4], there exist several ways to acquire a time-independent trace
apart from running one process per node. Note that all the timed traces acquired by the
methods described hereafter are skewed and cannot be used for comparison purposes.
The first method is to use all the available cores in each node. This can be done either by
skipping the step that disables all the extra cores or by enabling them again as follows.

username@fsophia:˜$ taktuk -l root -f node_file_uniq broadcast \
exec [’for i in /sys/devices/system/cpu/cpu[1-9]*/online; do \

echo 1 > $i ; done’]

With the same number of nodes, it is now possible to acquire a trace with 4 times
as much processes. The three parameters has to be changed in the call to mpirun
with regard to the previously described acquisition method. Indeed we can now use
the original node file (in which each node appears four times), the number of processes
grows up to 32, and we change the instrumented instance to run accordingly.

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 23

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file \
-np 32 instr_lu.C.32

Again, once the execution has completed we can call trace extract to obtain
the time-independent traces.

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file \
-np 32 trace_extract 32

The call to trace gather is identical to the previous one as the same number of
physical nodes is used.

Another way to acquire traces for larger instances with the same number of physical
nodes is to fold the execution, i.e., execute several processes on each core. To enable
such a folding, we have to replicate the nodes in the machine file according to the
desired folding factor. For instance, if we want to execute 4 MPI processes on each
core of the reserved nodes, and thus run the benchmark with 128 processes, we can
execute the following command.

username@fsophia:˜$ while read line ; do yes $line | head -n 4; done \
< node_file > node_file_fold4

Then we execute the benchmark as follows

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile ˜/node_file_fold4 \
-np 32 instr_lu.C.128

To extract the time-independent traces in such a configuration, we have to run
trace extract on the eight nodes listed in node file, and tell the program that
128 processes were actually executed on these 32 cores.

helios-7.sophia.grid5000.fr:˜$ mpirun -machinefile node_file \
-np 32 trace_extract 128

To gather all the produced traces on a single node, trace gather has again to
be called exactly as in the regular mode with one process per node.

As our framework produces traces that are independent of time, it is possible to use
more than one cluster to acquire them. In this case, called scattering mode in [4], the
procedure is more complex as resources have to reserved in more than one site.

To reserve 16 nodes evenly scattered across the helios cluster (located in
Sophia) and the bordereau cluster (located in Bordeaux) for 4 hours, we use the
oargridsub submission interface.

username@fsophia:˜$ oargridsub -t deploy bordereau:rdef="/nodes=8", \
helios:rdef="/nodes=8" -w "4:00:00"

If the reservation is successful, the last lines of the output of this command should
be:

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 24

[OAR_GRIDSUB] Grid reservation id = 27585
[OAR_GRIDSUB] SSH KEY : /tmp/oargrid//oargrid_ssh_key_\
username_27585
You can use this key to connect directly to your OAR nodes with the \
oar user.

It is then possible to get extra information about the submitted job thanks to the
oargristat command with the job number as parameter. In particular, this allows
the user to obtain the local job ID for each cluster.

username@fsophia:˜$ oargristat 27585

output:
clusters with job id:
bordereau --> 404390 (name = "", resources = "/nodes=8", \
properties = "", queue = default, environment = "", partition = "")
helios --> 457948 (name = "", resources = "/nodes=8", \
properties = "", queue = default, environment = "", partition = "")

With a resource reservation on multiple sites, it is not possible to retrieve the list
of obtained nodes thanks to the $OAR FILE NODES environment variable. This list is
local to each cluster. However, it possible to call oargristat with the -l and -w
options to respectively list the nodes and ensures they are all up and running. As in the
single cluster case, we make a second version of this file, with only one occurence of
each node in it.

username@fsophia:˜$ oargridstat -w -l 27585 > node_file
username@fsophia:˜$ uniq node_file > ˜/node_file_uniq

Then the procedure is very similar to the case of a single cluster. We have to deploy
our custom image on the nodes (with the extra option --multi-server passed to
kadeploy3), disable the extra cores, connect to a deployed node, run the benchmark,
and extract the time-independent traces.

username@fsophia:˜$ kadeploy3 -e ti_trace_acquisition-x64-2.6.26 \
-f ˜/macq -k ˜/.ssh/id_rsa.pub --multi-server
username@fsophia:˜$ taktuk -l root -f node_file_uniq broadcast \

exec [’for i in /sys/devices/system/cpu/cpu[1-9]*/online; do \
echo 0 > $i ; done’]

username@fsophia:˜$ ssh ‘head -n 1 node_file_uniq‘
helios-7:˜$ cd /tmp
helios-7:˜$ mpirun -machinefile ˜/node_file -np 16 instr_lu.C.16
helios-7:˜$ mpirun -machinefile ˜/node_file_uniq -np 16 \

trace_extract 16

To be able to use trace gather across multiple sites, we have to copy the list
of reserved nodes on each frontend first as it is a parameter of the program.

username@fsophia:˜$ scp node_file_uniq bordeaux:
username@fsophia:˜$ mpirun -machinefile ˜/node_file_uniq -np 16 \

trace_gather -a 4 -m ˜/node_file_uniq

RT n° 0407

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 25

The aforementioned procedure to copy the obtained traces on the user’s workstation
can then be applied.

The final acquisition mode combines the possibility to scatter nodes across multiple
sites and to run several processes on a given core. Using the same multi-site reservation
as before, we simply have to create a new machine file, run a larger instance, and extract
the corresponding time-independent traces.

username@helios-7:˜$ while read line ; do yes $line | head -n 4; done \
< ˜/node_file_uniq > ˜/node_file_fold_4

username@helios-7:˜$ mpirun -machinefile ˜/node_file_fold_4 \
-np 64 instr_lu.C.64

username@helios-7:˜$ mpirun -machinefile ˜/node_file_fold_4 \
-np 16 trace_extract 64

Again the machine file has to be replicated on each site before gather the traces on
a single node.

fsophia:˜$ scp node_file_uniq bordeaux:
fsophia:˜$ mpirun -machinefile ˜/node_file_uniq -np 16 \

trace_gather -a 4 -m ˜/node_file_uniq

The user can finally copy the traces on his/her workstation as described earlier.

Acknowledgments
This work is partially supported by the ANR project USS SimGrid (08-ANR-SEGI-
022) and the CNRS PICS N◦ 5473. Experiments presented in this report were carried
out using the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several Univer-
sities as well as other funding bodies (see https://www.grid5000.fr).

References
[1] Shirley Browne, Jack Dongarra, Nathan Garner, George Ho, and Philip Mucci.

A Portable Programming Interface for Performance Evaluation on Modern Pro-
cessors. International Journal of High Performance Computing Applications,
14(3):189–204, 2000.

[2] Nicolas Capit, Georges Da Costa, Yannis Georgiou, Guillaume Huard, Cyrille
Martin, Grégory Mounié, Pierre Neyron, and Olivier Richard. A Batch Scheduler
with High Level Components. In Proceedings of the 5th International Symposium
on Cluster Computing and the Grid (CCGrid), pages 776–783, Cardiff, UK, May
2005.

[3] Benoit Claudel, Guillaume Huard, and Olivier Richard. TakTuk, Adaptive De-
ployment of Remote Executions. In Dieter Kranzlmüller, Arndt Bode, Heinz-
Gerd Hegering, Henri Casanova, and Michael Gerndt, editors, Proceedings of the
18th ACM International Symposium on High Performance Distributed Computing,
pages 91–100, Garching, Germany, June 2009.

RT n° 0407

https://www.grid5000.fr

Time-Independent Trace Acquisition Framework – A Grid’5000 How-to 26

[4] Frédéric Desprez, George S. Markomanolis, Martin Quinson, and Frédéric Suter.
Assessing the Performance of MPI Applications Through Time-Independent Trace
Replay. Research Report RR-7489, Institut National de Recherche en Informatique
et en Automatique (INRIA), December 2010.

[5] Emmanuel Jeanvoine, David Margery, Nicolas Niclausse, and Rémi Palancher.
Kadeploy3. https://gforge.inria.fr/projects/kadeploy3.

[6] Perfmon2. http://perfmon2.sourceforge.net/.

[7] Mikael Pettersson. Perfctr: the Linux Performance Monitoring Counters Driver.
http://user.it.uu.se/˜mikpe/linux/perfctr/2.6/.

[8] Sameer Shende and Allen Malony. The Tau Parallel Performance System. Inter-
national Journal of High Performance Computing Applications, 20(2):287–311,
2006.

RT n° 0407

https://gforge.inria.fr/projects/kadeploy3
http://perfmon2.sourceforge.net/
http://user.it.uu.se/~mikpe/linux/perfctr/2.6/

Centre de recherche INRIA Grenoble – Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-0803

	Introduction
	Building the Appliance
	Selecting a Base Image
	Downloading Utility Software Packages
	Deploying The Base Image
	Enabling the Access to Hardware Counters
	Installing the Tracing Tools
	Instrumenting an Application
	Compiling the Instrumented Version
	Installing Tools for Trace Post-Processing
	Saving and Recording the Appliance

	User Space Configuration
	Acquiring a Time-Independent Trace

