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1.1.3 Sequential Monté-Carlo Methods . . . . . . . . . . . . . . . . . . . 8

1.2 Acoustic Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Narrow-band Observation Model . . . . . . . . . . . . . . . . . . . 16

1.2.2 State Model Based on Constant Velocity Motion . . . . . . . . . . 18

1.2.3 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Calibration: the Dual of Target Tracking . . . . . . . . . . . . . . . . . . . 24

1.4 Joint State-Space Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II GENERAL DIRECTION OF ARRIVAL TRACKING USING ACOUS-

TIC NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Data Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.1 State Model-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 State Model-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2.4 Observability of the Motion Model . . . . . . . . . . . . . . . . . . 42

2.3 PDF Constructions for the IPPF . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 Data Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.2 State Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vi



2.3.3 The proposal function . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Partitioning and Data Association . . . . . . . . . . . . . . . . . . . 46

2.4.2 Effects of the Frequency Variable . . . . . . . . . . . . . . . . . . . 49

2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.1 Single Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.2 Multiple Target Tracking with Varying Narrow-band Frequencies . 53

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III AN ACOUSTIC MULTIPLE TARGET TRACKER . . . . . . . . . . . 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 State-Space Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Particle Filter Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

IV CALIBRATION: THE DUAL OF TARGET TRACKING . . . . . . . 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 A Maximum-Likelihood Solution for the Calibration Problem . . . . . . . 72

4.2.1 ML Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Newton Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.3 Effects of the GPS Errors on the Estimation Performance . . . . . 76

4.2.4 Cramér-Rao Lower Bound for the Estimate of ξ . . . . . . . . . . . 77

4.3 DOA-Based Calibration Algorithms . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Angle Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.2 Synthetic Aperture Calibration Method . . . . . . . . . . . . . . . 80

4.3.3 Metropolis-Hastings Calibration Method . . . . . . . . . . . . . . . 86

4.3.4 Performance of the DOA Calibration Algorithms . . . . . . . . . . 87

4.3.5 Sufficiency of the Auxiliary DOA Estimates in the Calibration Problem 89

4.4 Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5.1 Effects of the GPS Errors on the Estimation Performance . . . . . 92

vii



4.5.2 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Field Data Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

V FAST INITIALIZATION OF PARTICLE FILTERS USING A MOD-

IFIED METROPOLIS-HASTINGS ALGORITHM: MODE-HUNGRY

APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Mode-Hungry Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Acoustic Target Tracker Initialization . . . . . . . . . . . . . . . . . . . . . 105

5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.1 Single Mode Gaussian Example . . . . . . . . . . . . . . . . . . . . 109

5.5.2 multimodal Example . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VI PROPOSAL STRATEGIES FOR JOINT STATE-SPACE TRACKING

WITH PARTICLE FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2 State-Space Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Proposal Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

VII CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

viii



LIST OF TABLES

Table 1 Acceptance-Rejection Sampling . . . . . . . . . . . . . . . . . . . . . 6

Table 2 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . . . . . . 8

Table 3 Pseudo Code for the IPPF . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 4 Simulation Parameters (A) . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 5 Simulation Parameters (B) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 6 Simulation Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 7 Pseudo Code for the MH Calibration . . . . . . . . . . . . . . . . . 87

Table 8 Mode-Hungry Metropolis-Hastings . . . . . . . . . . . . . . . . . . . 106

Table 9 Metropolis-Hastings Initialization Algorithm . . . . . . . . . . . . 108

Table 10 Pseudo Code for Joint Proposal Strategy . . . . . . . . . . . . . . . 120

Table 11 RMS errors for χt and ψt. Large numbers in the table are caused by
tracking divergence. The underlying model S is closer to S1 when ω is
small, whereas it is closer to S2 when ω is large. . . . . . . . . . . . . . . 122

ix



LIST OF FIGURES

Figure 1 The pdf in (13) is represented by particles directly generated using the
distribution itself. The analytical expression for the ellipse is given by (15). 11

Figure 2 The pdf in (13) is represented by N = 1000 particles generated using the
proposal distribution g(x) described by (20). The analytical expression
for the ellipse (solid line) is expressed by (15). This ellipse shows the pdf
we would like to represent using the particles. The ellipse drawn with the
dashed line is given by (x − µg)

T Σ−1
g (x − µg) = 4. The dashed ellipse

shows how the particles are distributed. . . . . . . . . . . . . . . . . . . . 13

Figure 3 Microphone positions are shown with black dots. When the target is in
the near-field of the array, acoustic sounds can be used to determine the
location of the target described by the polar coordinates: (R, θ). When
the target is in the far-field of the array, only angle information can be ex-
tracted. In this case, multiple arrays are needed to determine the location
of the target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4 The true DOA track is shown with the dashed line. Black dots are the
MVDR estimates with a batch size of 1/20s, whereas the solid horizontal
line corresponds to a batch size of 1s. The sampling frequency of the
acoustic data is Fs = 1000Hz and the center frequency of the target is
f0 = 40Hz. A uniform circular array with 15 microphones is used, where
the minimum microphone distance is 0.45 times the wavelength of the
target sinusoid signal. The array signal-to-noise ratio is 7dB. . . . . . . . 19

Figure 5 The target is at position 1 at time t and moves to position 2 in T seconds
with a constant speed. The target is assumed to be in the far-field of the
sensor array whose center coincides with the origin. . . . . . . . . . . . . 20

Figure 6 (a) The acoustic array is situated at the origin. The target moves away
from the sensor with constant acceleration for about 30s. Then it has
almost constant speed for t > 30s. (b) Target speed vs. time. At time
t = 30s, the target also starts to maneuver. . . . . . . . . . . . . . . . . . 21

Figure 7 (a) Diamonds correspond to the true target DOA track. DOAs estimated
by the IPPF algorithm are shown with the dashed line. (b) Dashed line
shows the target track estimate constructed using the IPPF estimates. . . 22

Figure 8 (a,b) IPPF estimates (dashed lines) are compared to the true motion pa-
rameter values (diamonds). . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 9 Thesis outline. New contributions are shown in the rectangular boxes. . . 32

Figure 10 Chapter outline with the new contributions shown in rectangular boxes. 33

Figure 11 Motion geometry for a target moving with constant velocity . . . . . . . 37

Figure 12 Motion geometry for a target moving with constant acceleration . . . . . 39

x



Figure 13 The mechanics of the necessary derivations needed by the particle filter.
X is chosen to be the predicted state vector by the state update relation
without any noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 14 (a) One target initially heading in the positive x-direction with speed ap-
proximately equal to 7 mph, starts to maneuver at t = 30s. The sensor
node is situated at the origin. (b) The target has almost constant accel-
eration between t = 0 and t = 35. For t > 35, the speed of the target is
almost constant during the maneuver. . . . . . . . . . . . . . . . . . . . 52

Figure 15 (a) The diamonds are the true DOA track. The dashed line is the estimate
from State Model-I while the solid line is the estimate from State Model-II.
The two estimates are nearly identical in tracking the target DOAs. (b)
Small errors in the DOAs are accentuated by the range. State Model-II
obtains a good estimate of the true target track because it uses acceleration. 53

Figure 16 (a) State Model-I tries to explain target accelerations through the heading
parameter; hence, it fails to capture the true target parameters. The true
target heading direction has additive Gaussian noise with σφ = 4◦, which
is marked with diamonds. The solid line is the State Model-II estimate.
(b) Note that eQ(t) corresponds to v(t)/r(t) for the target. State Model-II
has a better Q(t) estimate since the target headings are close to the true
headings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 17 Three targets move with constant speed but with some Brownian distur-
bance acting on their heading directions. State Model-I is sufficient for the
tracking in this case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 18 (a) Initial target frequencies are 19.50Hz, 19.60Hz, and 19.60Hz. (b) As
the targets 1 and 2 get close to each other, their motion parameters are
not sufficient to distinguish their DOAs; hence, the IPPF’s DOA tracking
performance deteriorates. . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 19 (a) Only the frequency track corresponding to the target marked with
circles is changed from the previous example. (b) The tracking is now
improved due to the difference in the frequency of the targets that move
close to each other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 20 Chapter outline with the new contributions shown in rectangular boxes. . 57

Figure 21 The circles and squares are the DOA estimates at different frequencies
calculated using the acoustic data received during a period of length τ .
Given the observations yt,f , the objective of the tracker is to determine
the state xk(t) that completely parameterizes the solid curve. . . . . . . 61

Figure 22 Top: Black dots are the DOA observations generated by adding Gaussian
noise to the true target DOA track. The filter estimate is indistinguishable
from the true DOA track. Left: Ground truth vs. filter estimate. The
sensor array is shown with the star. The filter track estimate is calculated
by using the filter outputs along with the correct initial target position.
Right: Filter heading estimates vs. the true target heading. . . . . . . . 66

xi



Figure 23 DOAs represented by diamonds and dots are generated by independent
noise and are input to the filter unsorted. . . . . . . . . . . . . . . . . . . 67

Figure 24 The DOA bias in the MVDR beamformer estimates is negligible, since the
number of samples used for the estimation is small. The filter automatically
separates DOAs with respect to the frequency planes defined by fk in the
state. This way the filter survives the period between times t = 5s and
t = 8s where the motion vectors for both targets are very similar. Without
the help of the frequency association, the filter confuses the targets. Note
that due to the spacing of the sensors, there is spatial aliasing for target
2. That is why some of the spurious peaks (circles) form a track similar to
the true target track. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 25 Chapter outline with the new contributions shown in rectangular boxes. . 69

Figure 26 Black dots are the centers of acoustic nodes (arrays) and the solid arrows
through the nodes represent their reference orientations for the local DOA
estimates. The DOAs are measured counterclockwise from the reference.
If the node centers and orientations are known, then it is possible to tri-
angulate the target position (xt, yt). . . . . . . . . . . . . . . . . . . . . . 70

Figure 27 The node position is shown with a circle at the position (x, y). As the
target moves (dashed line), the node can calculate two angles θ(t) and
ψ(t) that should be matched to determine the unknown parameter vector
ξ. The parameter β is called the synthetic aperture radar (SAR) angle, as
explained in the next section. . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 28 The moving calibration source can be interpreted as a moving pseudo-
receiver that creates a synthetic aperture. Pseudo-receiver positions can
then be grouped into subarrays and used to estimate DOAs assuming the
signals are coming from the fixed sensor node. This does not require addi-
tional transmission of the recorded target sounds from the node, since this
estimation can be done at the node. . . . . . . . . . . . . . . . . . . . . 81

Figure 29 Two different targets may have the same DOA at all times. It is impossible
to distinguish target #1 from target #2 given the DOA measurements
alone. Hence, a range estimate is needed to track the target position
correctly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Figure 30 The track generated by node 1 is superposed on the reference node coor-
dinate system. Note that both nodes are tracking scaled versions of the
original calibration target track. The unknown node orientation, relative
to the reference node, is simply the difference between the orientation esti-
mates both nodes estimate. This is equivalent to finding the rotation angle
that aligns tracks R0 and R1. Triangle ∆O0A1B1 is similar to ∆O1A0B0

because of the scaling property of the track estimates. Since the angles ∆θ1
and β1 estimated by node 1 are known, O1 can be determined geometri-
cally. The whole system is scalable and a reference distance is required for
absolute estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



Figure 31 (a). The likelihood surface J with GPS errors. The GPS error standard
deviation is σχ = 1m and it is circularly symmetric in the x and y direc-
tions. The star indicates the true node position at [ 100, 50 ]m , whereas
the dot is the estimated position [ 100.5899, 50.0289 ]m using the Newton
algorithm. The ellipse is the Cramér-Rao bound on the position estimates.
(b). The likelihood surface J without any GPS errors. The Newton method
estimates the node position as [ 100.5811, 50.0360 ]m . The solutions are
almost identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Figure 32 The Cramér Rao lower bounds’ dependency on the calibration target center
frequency. The calculated CRLB from the ML formulation is shown with
the dotted line; the CRLB from the DOA calibration formulations is shown
with the diamonds. The bounds are exceptionally close even though they
are derived from different formulations, as indicated earlier. . . . . . . . . 95

Figure 33 The node is situated at [ 250, 100 ]m. The calibration is repeated 100
times with different noise realizations at SNR = 8.5 dB. The solid line
is the performance of the synthetic aperture method, where (115) is used
to solve for the position. The dotted solid line is also the synthetic aperture
method, except the least squares (113) approach is used for the solution.
Full ML estimates using the acoustic data are shown with the dashed line. 96

Figure 34 The acoustic node (star) is situated at the origin. The calibration heli-
copter completes two sorties around the node for the calibration, corre-
sponding to a four-minute run. The actual helicopter track as well as its
projection on the x-y plane are shown. . . . . . . . . . . . . . . . . . . . 97

Figure 35 The helicopter spectrum displays strong harmonic lines. The ten highest
peaks in the time-frequency plane are picked using the magnitude of the
Fourier transform once per second. These frequencies as well as their time-
frequency amplitudes are used in determining the DOA estimates. . . . . 97

Figure 36 Top figure shows the GPS track coming from the helicopter (dashed line),
the time-warped GPS track using (106), and the MVDR beamformer es-
timates of the field data. The bottom left plot is the resulting MHMH
algorithm distribution with estimate ξ = [ 6.43, −6.52 ]m using time syn-
chronization, whereas, at the bottom right, the distribution with estimate
ξ = [ −31.66, 43.77 ]m is the MHMH result without time synchronization.
The estimated orientation for both cases is 1◦. The true node location is
shown with the diamond. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 37 Chapter outline with the new contributions shown in rectangular boxes. . 99

Figure 38 The Metropolis-Hastings scheme is demonstrated. Each circle represents
a sample from the chain in the respective state space. The algorithm
uses its current state to generate new candidates for its next state using
a candidate generating function q. The new candidates are accepted or
rejected in a way that the Markov chain asymptotically converges to the
target posterior π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



Figure 39 Particles corresponding to the partition P2 are shown in black. In the
figure, the particles in P2 are distributed over the states defined by P1

uniformly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 40 MHMH (solid) and MH (dashed) algorithms are run 100 times and the
averaged estimates are displayed. MHMH is about an order of magnitude
faster in this case. The jumps in the MHMH curves are attributed to the
redistribution of the low probability particles over the high ones. . . . . . 110

Figure 41 Output distribution of MHMH after 30 iterations. A similar distribution
can be obtained by the MH scheme using approximately 100 iterations. . 111

Figure 42 Chapter outline with the new contributions shown in rectangular boxes. . 113

Figure 43 The supports, gi’s, for the posterior distribution in each state space, Si,
are shown on the axes χt vs. ψi,t. Particles for the joint state are gener-
ated by first generating χt’s from the combined supports of the marginal
distributions of χt. ψi,t’s are then sampled from gi’s as constrained by the
given χt realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 44 Example tracking realization with ω = 1/50: Even though the particle
filter designed using S2 is unable to track after t = 35s, the joint tracker
still does a good job since it uses the information from coming both state-
space models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xiv



SUMMARY

For multiple target tracking using acoustic signals, we introduce a new motion model

that incorporates an acceleration component along the heading direction of the target. We

also show that the target motion parameters can be considered part of a more general

feature set for target tracking, e.g., target frequencies, which may be unrelated to the target

motion, can be used to improve tracking performance. To include the frequency variable, a

new array steering vector is defined for direction-of-arrival (DOA) estimation problems. The

independent partition particle filter (IPPF) is used to compare the performances of the two

motion models by tracking multiple maneuvering targets using the acoustic sensor outputs

directly. To decrease the dependence on the observation model, we rework the acoustic

tracker using a flexible observation model based on an image tracking approach. Assuming

that the DOA observations might contain clutter and that some of the DOAs might be

missing in the observation set, we develope a new tracker to track multiple maneuvering

targets. The tracker has a sampling strategy that is robust under the observation noise.

Acoustic nodes, each containing an array of microphones, can track targets in x-y space

from their received acoustic signals, if the node positions and orientations are known exactly.

However, it is not always possible to deploy the nodes precisely, so a calibration phase is

needed to estimate the position and orientation of each node before doing any tracking

or localization. An acoustic node can be calibrated from sources of opportunity such as

beacons or a moving source. We derive and compare several calibration methods for the

case where the node can hear a moving source whose position can be reported back to the

node. Since the microphone array can track the angle to the moving source, three DOA-

based calibration methods can be formulated based on combining angle estimates, geometry,

and the motion dynamics of the moving source. In addition, a maximum-likelihood (ML)

solution is presented, along with a Newton-based search algorithm that avoids calculating

the whole ML surface. The ML estimate serves as a basis for comparison, so the Cramér-Rao

xv



lower bound on the node position estimates is also derived to show that the effect of position

errors from the moving source on the estimated node position is much less severe than the

variance in angle estimates from the microphone array. Since calibration from a moving

source is, in effect, the dual of a tracking problem, methods derived from particle-filter

trackers are used to obtain a robust calibration process.

As a recursive algorithm, the particle filter requires an initialization phase prior to

tracking a state vector. These initial samples must be generated from the received data

and usually obey a complicated probability distribution. The Metropolis-Hastings (MH)

algorithm has been used for sampling from intractable multivariate target distributions and

is well suited for the initialization problem. Asymptotically, the MH scheme creates sam-

ples drawn from the exact distribution. For the particle filter to track the state, the initial

samples need to cover only the region around its current state, marked by the presence of

modes. Since the particle filter only needs samples around the mode, we have modified the

MH algorithm to generate samples distributed around the modes of the target posterior.

By simulations, we show that this “mode hungry” algorithm converges an order of magni-

tude faster than the original MH scheme for both unimodal and multimodal distributions.

Finally, we develope a general framework for the joint state-space tracking problem. A

proposal strategy for joint state-space tracking using the particle filters is defined by care-

fully placing the random support of the joint filter in the region where the final posterior is

likely to lie. Computer simulations demonstrate improved performance and robustness of

the joint state-space when using the new particle proposal strategy.
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CHAPTER I

INTRODUCTION

Target tracking is a broad subject area extensively studied in many engineering disciplines.

In this thesis, target tracking implies the temporal estimation of target features such as the

target’s direction-of-arrival (DOA), the target’s boundary pixels in a sequence of images,

and/or the target’s position in space. Target tracking becomes a signal processing problem

when an observer demands automated tracking in the presence of noise or interferance.

Some of the challenges addressed in this thesis are (i) developing robust algorithms with

high estimation accuracy, (ii) correctly identifying the cases where the algorithms fail to

sufficiently explain the phenomena, and (iii) merging independent information streams from

two or more sensors to improve tracking capabilities.

The tracking problem is formulated in terms of state-space models. State-space mod-

els are mathematical relations used for describing a system’s evolution and have extensive

applications in many practical problems in control theory, signal processing, and telecommu-

nications. Since exact state-space models of real systems are extremely rare, approximate

models are used. Hence, during analytical modelling of some natural phenomena, empha-

sis is placed on choosing a minimum set of variables essential for completely describing a

system’s internal status relevant to the problem at hand. This way, satisfactory results

can still be achieved despite incomplete modelling of a system due to ignorance or lack of

knowledge [14,44].

Once a system’s state-space is described in a probabilistic fashion, sequential Monté-

Carlo methods, also known as particle filters, can be used to track the state vector as the

observations arrive in sequence. In a particle filter, the posteriors describing the state vector

are represented by randomly distributed discrete state realizations, called the particles,

along with some weights. A proposal function determines the internal distribution of the

particles and directly affects the efficiency of the filter in representing a target posterior.
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Given the random particle support, the particle filter can estimate any statistics of the

posterior by proper weighting, and the estimation accuracy can be improved up to the

theoretical bounds by increasing the number of particles [25, 48].

This thesis first focuses on the familiar acoustic tracking problem using microphone

arrays. Although the problem is a classical one, the advent of particle filters in the late 90’s

and the increase in computing power, following Moore’s law, rejuvenated the problem and

has enabled researchers to consider more involved state-space models as alternatives. For

example, Chapters 2 and 3 look at some complex state-spaces that can be used for acoustic

target tracking using particle filters. We then consider a dual problem to target tracking and

discuss ways to determine an observer’s position given the on-board measurements of the

target track (e.g., GPS). This is known as the calibration problem because it determines the

sensor location, which is usually assumed to be known. Various algorithms, such as Monté-

Carlo Markov chain sampling methods, are presented for the solution of the calibration

problem. Then, an interesting accelerated sampling method is described that speeds up

the initialization procedure for the particle filter trackers as well as the convergence of the

Monté-Carlo calibration algorithm.

Finally, we consider the fundamental problem of merging two independent sensor sys-

tems for target tracking. The motivation for joint estimation is basically two-fold: (i)

improve the performance of the estimates by merging different information streams and (ii)

maintain adequate robustness of the estimates in the face of unexpected model variations

or noisy data. For the joint state-space estimation problem, the particle filter is used be-

cause it propagates the probability density function (pdf) of the state vectors. Hence, it

allows for heuristic combination methods, which may be problem specific [23], or a general

probabilistic framework for combining information.

A Bayesian framework is described for tracking a single joint state vector by merging

two overlapping state-space models. A proposal strategy is given that carefully combines

the proposal strategies optimal for the individual state-spaces such that the random support

of the particle filter is concentrated where the final posterior of the joint state-space lies.

The resulting filter has better estimation accuracy than the individual filters while using
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comparable computational power. Finally, the framework is applied to a synthetic target

tracking problem where both acoustic and video observations of a target are available.

The organization of this chapter is as follows. Because Monté Carlo sampling methods

form the basis of the solution techniques in this thesis, a representative review is first pro-

vided. Then, the acoustic tracking problem is introduced using a narrow-band observation

model along with a locally linear motion model. Next, the calibration problem is presented

and its duality to the tracking problem is discussed. Finally, a motivation for joint state-

space tracking is given using a specific application scenario. The chapter concludes with a

summary of the original contributions of this thesis.

1.1 Monté-Carlo Markov Chain Methods

Consider yourself trying to cross a street where there are no traffic lights. Because of your

self-preservation instinct, you first process your visual and auditory inputs to determine

whether or not there are any moving cars near by. If there is any, then the problem

becomes finding their positions, speeds, and headings to determine a crossing path that

avoids collusion.

In many practical situations, we are asked to make some inference on some parameter

vector x (e.g., target motion parameters) given some observations y (e.g., a sequence of

images) about that parameter vector. If there is some function that relates x to y such as

y = h(x) (1)

then, the solution is intuitively easy: a single (point) estimate for the parameter vector

x can be made by using the inverse functional dependence x = h−1(y). This problem is

commonly known as the parameter inversion/estimation problem [63]. Later on, the reader

will recognize that the many problems in this thesis can be formulated in this generic format.

At this point, it should be noted that solving the parameter using the inverse functional

is not easy task. It has many sensitivity and robustness issues and should be avoided if

possible.

The Bayesian framework treats this problem as one where the continuous parameter x
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is a random quantity that is statistically related to the observations y1. Instead of making

point parameter estimates, a probability density function (pdf) on the parameter is obtained

given the observations:

p(x|y) : Probability density of x given y. (2)

Probability density functions constitute a self-consistent mathematical modelling of the

information about a parameter that allows us to conveniently make various inferences [61].

Mean, mode, median, and high order moment estimates are commonly used in the literature

to understand or explain a parameter given its pdf. The pdfs are of particular importance in

this thesis because multimodality of a pdf might be more important than its single statistics.

The Bayes’ rule is used to determine the pdf (2) by reversing the order:

p(x|y) ∝ p(y|x)p(x) (3)

where the pdf p(x|y) is also called the posterior (or the target density) for the vector x,

p(y|x) is called the data-likelihood given the state, and p(x) is the state prior. Equation

(3) simply implies that the target posterior distribution is proportional to the product of

the reactive effect of the measurements and our initial belief. The proportionality2 in (3) is

independent of the state x and is given by the reciprocal of the following expression

∫

p(y|x)p(x)dx. (4)

To determine the target posterior, p(y|x) (or y = h(x)) should be known in the Bayesian

framework. However, analytical relationships might not be available. However, if the pa-

rameter space is discretized, then other methods can be used to determine the target density

pointwise. This would be analogous to using an A/D converter to digitize a continuous sig-

nal to use the digital signal processing methods to represent the signal.

Monté Carlo Markov chain (MCMC) methods provide a general statistical framework to

simulate multivariate distributions using computer simulations. The key idea of the MCMC

1In the later sections, we will consider the case where the parameter vector x is also evolving as the
observations arrive in sequence. For the purposes of this section, x is assumed to be static.

2The symbol ∝ implies that the left hand side of the expression is equal to the right hand side multiplied
by a constant.
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algorithms is that it is possible to construct a Markov chain whose stationary distribution is

the target distribution that we would like to simulate. MCMC methods can then be applied

to simulate the pdfs by sampling from the density functions. Since directly sampling from a

distribution is a difficult task in itself, a Markov chain is simulated with a transition kernel

so that the stationary distribution of the Markov chain can be used to represent the target

distribution.

Among the MCMC methods, the Gibbs sampling algorithm, Metropolis-Hastings algo-

rithm, and acceptance-rejection (AR) schemes are well-known in the literature [15, 24, 26,

29, 31, 32, 37, 51, 68, 74, 75]. The Gibbs sampler can be shown to be special case of the MH

algorithm [30]. In the next subsection, we will describe how to calculate samples from a

complex distribution (i.e., a general posterior) using the AR and MH algorithms. Then, for

evolving systems where it is required that a posterior be updated as the observations arrive,

we will illustrate how other methods, called the sequential Monté-Carlo methods, can be

used to decrease the computational cost required by the brute force MCMC algorithms.

1.1.1 Acceptance-Rejection Algorithm

The objective of the acceptance-rejection (AR) algorithm is to generate samples from a

density π(x) ∝ α(x), where α(x) is called the unnormalized density. Table 1 gives the

pseudo-code for generating samples x from π(x) by using another density β(x) to be defined

later3. The Markov chain generated by this process has the target posterior distribution

in the limit [75]. For completeness, we present a brief proof to show that the stationary

distribution of the simulated Markov chain has the desired density.

Let β(x) be a density that satisfies α(x) ≤ cβ(x) for some constant c. By using the

scheme in Table 14, we show that the cumulative distribution of the chain has the desired

3The function β(x) should be easier to sample than the function α(x).
4The symbol ∼ means ”is sampled from.”
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form:

P

(

x ≤ t
∣

∣

∣
u ≤ α(x)

cβ(x)

)

=
P (x ≤ t, u ≤ α(x)

cβ(x))

P (u ≤ α(x)
cβ(x))

=

∫ t
−∞

∫

α(x)
cβ(x)

−∞ β(x)dudx

∫∞
−∞

∫

α(x)
cβ(x)

−∞ β(x)dudx

=

∫ t
−∞

α(x)
cβ(x)β(x)dx

∫∞
−∞

α(x)
cβ(x)β(x)dx

=

∫ t
−∞ π(x)dx
∫∞
−∞ π(x)dx

.

(5)

Table 1: Acceptance-Rejection Sampling

i. Generate a sample y from β(y).

ii. Generate a sample u ∼ U(0, 1) , the uniform distribution on (0, 1).

iii. if u ≤ α(y)
cβ(y) , then x = y. Otherwise go to step i.

Even though the algorithm generates the candidate samples from an independent func-

tion, it manages to distribute them according to the target distribution. Note that the

movement of the chain is global. As it iterates, the chain can move to a random location on

the pdf regardless of its current position. This is in contrast to how the Metropolis-Hastings

sampling is done, which is explained below.

1.1.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm borrows from the popular AR sampling method.

The difference between the algorithms comes from how the chain moves from one iteration

to another iteration. Denote q(x, y) as a candidate generating density that can produce

some candidates y in the numerical sense given x. Since we are interested in Markov chains,

the candidate-generating density is written as a function of both the current state x and

the proposed state y. Now, when the generated samples are both from the underlying
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distribution π(x), the following condition should be satisfied:

π(x)q(x, y) = π(y)q(y, x) (6)

Equation (6) is also known as the reversibility condition or the detailed balance [24]. This

equation implies that the density π(·) is the invariance distribution of the transition kernel

q(x, y) in Markov chain terminology. This equation is very important since it not only gives

us a condition to be satisfied, but also tells us what to do when it is not satisfied.

Let us assume that

π(x)q(x, y) > π(y)q(y, x) (7)

which implies that the Markov chain moves from x to y more often than it moves from y to

x. The simplest solution to correct this imbalance is to accept the moves from x to y with

some probability α(x, y)5. Now, to determine the correct move probability, we use (6):

π(x)q(x, y) × α(x, y) = π(y)q(y, x) × 1 (8)

Hence, we obtain the acceptance probability of a move as

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

(9)

Note that if a new candidate is rejected, the algorithm keeps the current state as the new

one. Moreover, if the candidate-generating density is symmetric, then the MH algorithm

simply accepts moves that increase the likelihood of the state. Table 2 shows the algorithm

pseudo-code.

An important final remark on the MH sampling algorithm is in order here. As in all

MCMC algorithms, the convergence of this algorithm is very slow. Considerable attention

needs to be given to the choice of the candidate-generating function q(·, ·) since it deter-

mines the length of the transient stages of the algorithm. Unfortunately, there is no easy

way to determine whether or not the algorithm has converged. The literature contains some

ad-hoc ways of determining the convergence speed of this algorithm in the literature [32,70].

Because this algorithm is crucial in initializing the acoustic trackers in Chapter 2 and 3,

5Implicity, we assume that since the moves from y to x are less often, we accept them with probability 1.
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Table 2: Metropolis-Hastings Algorithm

i. Generate a candidate y using q(x, y) and x.

ii. Calculate the acceptance ratio α(x, y):

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

.

iii. Sample u ∼ U(0, 1).

iv. If u ≤ α(x, y), set x = y (accept the move), else, reject it.

and also for the Monté-Carlo calibration solution in Chapter 4, we will show a modifica-

tion in Chapter 5 that increases the convergence rate significantly under some regularity

assumptions. The resulting distribution of the modified MH scheme is an approximation of

the true density by Gaussian distributions around the modes of the density.

1.1.3 Sequential Monté-Carlo Methods

The MH algorithm can be implemented to determine the target density function for a

dynamically varying system by solving the target density at each iteration separately. To

solve for the target density, the algorithm would be initialized uninformed and then would

be run until convergence is reached. This would not be particularly clever if the system is

not changing drastically at each time iteration because the results from the previous time

estimation would be discarded when the system evolves to the next time step.

If the system is changing slowly, as in the case of most target tracking scenarios con-

sidered here, the distance between the target densities at each time step is expected to be

small. Hence, it would be a good idea to keep the previous target density and reuse it to

help reconstruct the current target density. Monté Carlo methods that use this strategy to

sample target posteriors are known as sequential Monté Carlo methods [25, 48]. They are

also known as particle filters.
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Under the Markovian assumption6, consider the following state-space model described

by

xt ∼ qt(xt|xt−1)

yt ∼ ft(yt|xt)
(10)

The function qt is called the state density function; and the observations are explained

through the observation density function ft. Here, we also introduce the cumulative nota-

tion: xt = {x0, x1, . . . , xt}. The target posterior p(xt|yt) has the form

p(xt|yt) = p(x0, x1, . . . , xt|y0, y1, . . . , yt)

=
p(yt|xt,yt−1)p(xt|yt−1)

p(yt|yt−1)

=
p(yt|xt,yt−1)p(xt|xt−1,yt−1)

p(yt|yt−1)
× p(xt−1|yt−1)

(11)

or equivalently in terms of the state update and observation functions:

p(xt|yt) ∝ ft(yt|xt)qt(xt|xt−1)p(xt−1|yt−1)

∝
t
∏

s=1

fs(ys|xs)qs(xs|xs−1)p(x0|y0)
(12)

where the proportionality is independent of the state. Here we emphasize that the inherent

recursive structure in (11) will be exploited while devising the sequential sampling strategy.

Now, we would like to determine the target distribution at time t given the distribution

p(xt−1|yt−1). However, before we do that, we will explain how to represent a pdf by using

a properly weighted set of discrete samples.

The distribution p(xt−1|yt−1) can be given numerically by a set of discrete state real-

izations of x
(j)
t−1, j = 1, 2, . . . , N where N is the number of particles. These realizations can

be (i) distributed exactly according to p(xt−1|yt−1), or (ii) distributed according to some

other function g(xt−1|yt−1) with some proper weights w
(j)
t−1, j = 1, 2, . . . , N to be discussed

later. We now give an example of the first case where the representation is exact:

6The Markovian assumption is a term commonly used in the signal processing and statistics literature.
It implies that the current state distribution, given the previous state and the current observation, is inde-
pendent of the other states and observations [64].
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Example 1: In this example, we will visualize what it means to represent a pdf using

discrete realizations. Suppose that the target distribution that we would like to represent

is the following Gaussian density:

p(x) =
1

√

2πdet (Σ)
exp

{

−1

2
(x − µ)T Σ−1 (x − µ)

}

(13)

where

µ =







1

1






Σ =







1 .6

.6 4






. (14)

We first generate N = 1000 particles drawn exactly from the target distribution by using

the Cholesky decomposition of the covariance matrix and an i.i.d. Gaussian noise generator

(shown in Fig. 1). In the figure, an ellipse is shown to emphasize the correlation of how the

particles are distributed. This ellipse is generated by the following equation:

(x − µ)T Σ−1 (x − µ) = 4. (15)

The discrete representation of p(x) shown in Fig. 1 is useful because, given the particles, it

is easy to calculate the sample mean and the sample covariance of the Gaussian numerically:

E {x} =
1

N

N
∑

j=1

x(j) =







1.0883

0.9293






(16)

and

E
{

(x − µ)(x − µ)T
}

=
1

N

N
∑

j=1

(

x(j) − 1

N

N
∑

i=1

x(i)

)(

x(j) − 1

N

N
∑

i=1

x(i)

)T

=







1.0663 0.6189

0.6189 3.9222







(17)

where the last covariance expression is known to be biased [66]. These estimates converge

to the true estimates asymptotically (i.e., N → ∞)�

For the second case, i.e., when the particles are distributed according to another function,

the attached weights w(j) are chosen so that we can do inferences on the state, we can do

it by using

E {h(x)} ≈
∑N

j=1 h(x
(j))w(j)

∑N
j=1w

(j)
(18)
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Figure 1: The pdf in (13) is represented by particles directly generated using the distri-
bution itself. The analytical expression for the ellipse is given by (15).

for any integrable function h. Equation (18) is a convenient way of evaluating the expecta-

tion without any integration. This second way of representing the posterior is the result of

the Bayesian importance sampling method where the basic idea is to distribute the particles

according to some function g called the proposal function so that the weights satisfy (18).

This way, if we choose a proposal function that is easy to sample from (e.g., a Gaussian

distribution), significant computational power can be saved because the numerical integra-

tion of h is replaced by a pointwise evaluation in (18). This requires that the support of

g should cover the support of the target distribution [25]. The weights can be calculated

using a simple ratio of the target density to the proposal density:

w(j) ∝ p(x(j))

g(x(j))
(19)

The following example explains why this is the case.

Example 2: Assume that the target distribution is the same Gaussian as in Example 1,

with µ and Σ given in (14). Also, assume that it is difficult to generate correlated samples

(e.g., the Cholesky decomposition is not available), hence, instead of the target distribution,
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the following proposal function is used to represent the target density:

g(x) ∼ N (µg,Σg) (20)

where µg is the same as µ in (14) and Σg is just the diagonal entries of Σ:

Σg =







1 0

0 4






. (21)

Figure 2 shows the distribution of the particles generated by this proposal function. Note

the mismatch between the two ellipses caused by the correlation in the original pdf. To

determine the proper weights, consider the expectation integral:

E {h(x)} =

∫

h(x)p(x)dx

=

∫

h(x)
p(x)

g(x)
g(x)dx

= Eg

{

h(x)
p(x)

g(x)

}

(22)

By noting the similarity of (22) to (11) and (26), it is straightforward to show that the

weights are given by (19).

Then, given the weights, the following estimates can be made:

E {x} =
N
∑

j=1

w
(j)
∗ x(j) =







0.9834

0.9885






(23)

and

E
{

(x − µ)(x − µ)T
}

=
N
∑

j=1

w
(j)
∗

(

x(j) −
N
∑

i=1

w
(i)
∗ x(i)

)(

x(j) −
N
∑

i=1

w
(i)
∗ x(i)

)T

=







1.0133 0.6382

0.6382 3.9980







(24)

where

w
(j)
∗ =

w(j)

∑

j w
(j)
. (25)

Note that although the particles are misaligned with the true distribution, the estimated

mean and variance are very good because of the correction effect of the weights. Also, the

estimation performance is again expected to improve as we increase the number particles
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Figure 2: The pdf in (13) is represented by N = 1000 particles generated using the
proposal distribution g(x) described by (20). The analytical expression for the ellipse (solid
line) is expressed by (15). This ellipse shows the pdf we would like to represent using the
particles. The ellipse drawn with the dashed line is given by (x − µg)

T Σ−1
g (x − µg) = 4.

The dashed ellipse shows how the particles are distributed.
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because, in the limit, the random support of the particles generated by the proposal function

will cover the whole space of x.�

For the state-space described by (10), the posterior at time t can be represented by the

pair (x
(j)
t , w

(j)
t ) where

w
(j)
t ∝ w

(j)
t−1

ft(yt|xt)qt(xt|xt−1)

g(xt|xt−1, yt)
(26)

and x
(j)
t ∼ g(x

(j)
t |xt−1, yt). The choice of the proposal function g(xt|xt−1, yt) is important

because it creates a trade-off between the performance of the filter and its computational

complexity. For a given number of particles, the performance of the filter increases as the

proposal function better approximates the target posterior. In general, the mismatch of

the proposal function and the target pdf, as in Example 2, will decrease the estimation

performance. However, to better approximate the posterior, more computation might be

required while generating the samples from the proposal function (e.g., extra computation

is required to generate correlated samples in Example 1.)

Although the above scheme of updating weights sequentially as the data arrive seems

to be mathematically convenient, another step, called resampling, is required. As the filter

iterates, all the weights, except for a few, that represent the posterior tend to zero after a few

steps [25]. Hence, after a few iterations, not only is the posterior under-represented, but also

computation is wasted on calculating particles with weights that have no contribution to the

final estimates. This is known as the degeneracy of the particle filter algorithm [25]. The

objective of the resampling stage is to rejuvenate the important particles to produce better

future states as the system evolves and, therefore, to keep the variance of the (normalized)

weights as small as possible7.

There are many modifications to this general sequential sampling algorithm. Auxiliary

particle filters use an index variable to increase robustness, whereas Rao-Blackwellization

uses a partitioning idea to decrease the computational complexity [17, 48, 62]. There are

also various resampling schemes such as simple random sampling, residual sampling, and

Monté Carlo resampling [48]. Regardless of the modifications, the structure of the filter is

7If the weights in (26) are all ones, then the proposal function is pointwise equal to the posterior (Example
1). Obviously, this is the best representation of the posterior.
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very simple:

• Generate particles using a proposal function,

• Evaluate the proper weights,

• Do inference and then, if required, resample.

Equipped with the basics of Monté-Carlo methods, we now move onto tracking problems

formulated in a probabilistic fashion. Specifically, we will first consider the acoustic target

tracking problem.

1.2 Acoustic Target Tracking

Acoustic arrays consist of multiple microphones, possibly directional, that listen to ambient

sounds emitted by objects in the surrounding environment. They are attractive in target

tracking because they operate passively, allow random deployment in the field, are cheap

compared to other sensor modalities (e.g., IR cameras), and have relatively low power

requirements. They can also be employed as an integral part of an intelligent collaborative

sensing network, which may also include different types of sensors such as seismic sensors,

magnetic sensors, imaging sensors, and so on.

Acoustic arrays can track a target’s position if the target is in the near-field of the array.

If the array size (also known as the aperture size) is relatively large such that the acoustic

waves are seen as spherical waves by the array, then spatial filtering algorithms can be used

to determine the target position in polar coordinates (R, θ) where R refers to the range of

the target and θ is the DOA of the target measured with respect to the array reference

(Fig. 3). However, in most practical cases, the sounds arrive as plane waves because the

target is far away from the array and only DOA information can be extracted [42].

We will focus on far-field tracking problems where the target DOA track needs to be

calculated given the acoustic microphone outputs. Accordingly, the acoustic microphone

outputs first need to be related to the target DOAs under some target signal assumptions.

One important observation model that achieves this objective is called the narrow-band

observation model. This model relates the acoustic array response to a constant frequency
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R

Figure 3: Microphone positions are shown with black dots. When the target is in the
near-field of the array, acoustic sounds can be used to determine the location of the tar-
get described by the polar coordinates: (R, θ). When the target is in the far-field of the
array, only angle information can be extracted. In this case, multiple arrays are needed to
determine the location of the target.

source at DOA θ through some steering vectors under isotropic and non-dispersive medium

assumptions.

1.2.1 Narrow-band Observation Model

To derive the narrow-band observation model, consider K far-field targets coplanar with

a sensor node consisting of P acoustic sensors. The sensor node (or microphone array) is

not assumed to possess any special structure. A steering vector associated with the array

defines the array response for a source at DOA θ. The complex envelope of the received

narrow-band signal with center frequency8 f0 at the pth sensor corresponding to the kth

target can be written as

sk(t) ∝ e−j2πf0t ⇒ sk
(

t− (αk
T zp)

)

= sk(t)e
−j2πf0(αk

T zp), k = 1, 2, · · · ,K (27)

where zp is the pth sensor position and αk , (1/c) [ cos θk , sin θk ]T is the kth slowness

vector in Cartesian coordinates (c is the speed of sound.) Equation (27) leads to the

8Each target is assumed to have the same narrow-band frequency f0. Although counterintuitive, the case
where each target has a different frequency is easier to handle through temporal filtering.
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following array steering vector for the kth source signal:

a(θk) =



















e−j2πf0(αk
T z1)

e−j2πf0(αk
T z2)

...

e−j2πf0(αk
T zP )



















(28)

Then, the array outputs are a mixture of K target signals impinging on the array as follows:

y(t) = A(Θ(t))s(t) + n(t) (29)

where y(t) ∈ C
P×1 is the noisy array output vector, n(t) ∈ C

P×1 is a complex additive

noise, and s(t) ∈ C
K×1 is the signal vector. A(Θ(t)) ∈ C

P×K is called the steering matrix

and has the steering vectors in its columns:

A(Θ(t)) =

[

a(θ1), a(θ2), · · · , a(θK)

]

, Θ(t) =

[

θ1, θ2, · · · , θK
]

(30)

This model possesses an interesting mathematical structure and has a significant impact

on the DOA estimation problem. It has led to many practical and fast DOA estimation

techniques such as MUSIC, MVDR, and eigenvalue beamformers [16,42,71,76].

Beamforming is the name given to a wide variety of array processing algorithms that

focus an array’s signal processing capabilities in a particular direction [42]. Narrow-band

beamformers use a batch of data and the array model (29) to determine an array covariance

matrix assuming target stationarity. Then, this covariance matrix and the steering vectors

(30) are used to generate power-vs-angle patterns whose peaks correspond to the target

DOAs.

In general, the estimation performance of algorithms using the narrow-band model de-

teriorates when the target signals have a wide-band structure, or when rapid target motion

spreads the array spatial spectrum [33,77]. Unfortunately, the complexity of the observation

model increases significantly as some of the assumptions in this model are relaxed to more

accurately represent reality.

DOA estimation methods based on batch processing (e.g., MUSIC, MVDR, etc.) do not

reuse the information from the previous batch to help refine the estimates at the current
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batch. Some tracking algorithms achieve information transfer from the previous batch to

a priori information in the current batch by imposing motion constraints on the target

[18, 60, 77]. This way, the estimated DOAs avoid the bias effects caused by non-stationary

array covariances at the expense of more computational power.

1.2.2 State Model Based on Constant Velocity Motion

In many problems, the DOAs are calculated by a beamformer and are assumed to have

a normal distribution around the true DOA track. Then, a motion model (e.g., modified

polar coordinates [38]) is used to refine the DOA estimates using Kalman filtering [2, 4, 27,

43, 54]. Unless the batch period used to calculate the DOAs is small, the DOAs will be

biased because the array covariance matrix becomes non-stationary [77]. Figure 4 shows

an example where, due to rapid target movement, the target DOA changes from 90 to 83.5

degrees in 1 second. If the acoustic data generated by the narrow-band model is processed

by the MVDR beamformer using a batch period of 1 second, the target DOA is estimated

around 87 degrees (shown with the solid horizontal line). Note that MVDR reports this

DOA as the target DOA at time t = 0 s. However, if MVDR uses a batch period of 1/20

seconds, the estimated DOAs distribute themselves around the true DOA track with a

negligible bias. In this case, it is possible to also estimate motion parameters as well as a

better target DOA estimate at time t = 0s. Later chapters will show how to use motion

models to improve DOA estimates.

The constant velocity motion model described below is used in acoustic target tracking

problems because it is strongly locally observable given the acoustic data [77]. We will

discuss the importance of observability in this scenario later on, but first, we make the

following distinction in the application of motion models: Motion models can filter the

pre-calculated DOA estimates to project the noisy estimates on to a space constrained by

the motion (smoothing), or they can assist in the calculation of the DOA estimates in

conjunction with the smoothing operation.

The motion model can be derived by assuming that the targets have constant speeds

with a Brownian disturbance acting on their heading directions [18,60,77]. This model has
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Figure 4: The true DOA track is shown with the dashed line. Black dots are the MVDR
estimates with a batch size of 1/20s, whereas the solid horizontal line corresponds to a
batch size of 1s. The sampling frequency of the acoustic data is Fs = 1000Hz and the
center frequency of the target is f0 = 40Hz. A uniform circular array with 15 microphones
is used, where the minimum microphone distance is 0.45 times the wavelength of the target
sinusoid signal. The array signal-to-noise ratio is 7dB.

the following state vector:

x(t) ,













θ(t)

Q(t)

φ(t)













(31)

where θ(t) and φ(t) are the target DOA and the heading direction. The compound variable

Q(t) , log q(t) is the logarithm of target velocity over range: q(t) , v/r(t). Figure 5

illustrates the geometry of the problem. Target DOAs are measured clockwise with respect

to the y-axis, whereas the target heading directions are measured counterclockwise with

respect to the x-axis.

The state update equation can be derived by relating the DOAs of the target at times t

and t+T using the geometrical relation of position 1 at (r(t) sin θ(t), r(t) cos θ(t)) to position

2 at (r(t) sin θ(t) + vT cosφ(t), r(t) cos θ(t) + vT sinφ(t))) (Fig. 5). Then, it is straightfor-

ward to obtain the following update relations:

tan θ(t+ T ) =
r(t) sin θ(t) + vT cosφ(t)

r(t) cos θ(t) + vT sinφ(t)
(32)
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Figure 5: The target is at position 1 at time t and moves to position 2 in T seconds with
a constant speed. The target is assumed to be in the far-field of the sensor array whose
center coincides with the origin.

and

r(t+ T ) =
√

r2(t) + 2r(t)vT sin (θ(t) + φ(t)) + v2T 2 (33)

Equations (32) and (33) form a scalable system for the target motion dynamics at hand.

To elaborate on this, consider scaling the range and the speed of the target by the same

factor. It can be shown that this scaled target has the same set of update equations as above

since the scale factor can be cancelled out. This, in fact, leads to the introduction of the

compound variable q(t) defined earlier. In the state update, however, the logarithm of q(t)

is used since an additive noise component can be employed (as opposed to multiplicative

noise when q(t) is used) for notational convenience. Also, note that target maneuvers (e.g.,

perpendicular accelerations) are modelled in the state update through the state noise on

φ(t):

x(t+ T ) = f̂(x(t),u(t+ T )) = f(x(t)) + u(t+ T )

=













arctan
{

sin θ(t)+eQ(t)T cosφ(t)

cos θ(t)+eQ(t)T sinφ(t)

}

Q(t) − 1/2log[1 + 2eQ(t)T sin (θ(t) + φ(t)) + (eQ(t)T )2]

φ(t)













+













uθ(t+ T )

uQ(t+ T )

uφ(t+ T )













(34)

where u ∼ N
(

0,diag{σ2
θ , σ

2
Q, σ

2
φ}
)

. When the target speed becomes negative due to ac-

celeration, the Q term becomes complex due to the logarithm. This problem can be solved
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by updating only the real part of Q, and adding the imaginary part (which is π when q

is negative) to the heading parameter φ, which, in effect, will reverse the direction of the

target.

This model is useful for explaining the motion of the targets whose velocity is changing

slowly. However, when the targets are actually accelerating, the model might lead to incor-

rect motion estimates. Figures 6, 7, and 8 illustrate the performance of the independent

partition particle filter (IPPF) [60] that uses the constant velocity motion model applied

to an accelerating target. Chapter 2 will discuss this filter in more detail. The target track

and velocity evolutions are given in Fig. 6. Even though the IPPF DOA estimates are close

to the true DOA estimates as illustrated in Fig. 7(a), the target track generated using the

state estimates and the correct initial target position is not correct (Fig. 7(b)). This is be-

cause the target acceleration is explained through the changes in the target heading variable

(Fig. 8(b)). The simulation parameters for this example are given in Chapter 2 because

this example will be reused to compare the constant velocity model with the acceleration

model developed in this thesis.
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Figure 6: (a) The acoustic array is situated at the origin. The target moves away from
the sensor with constant acceleration for about 30s. Then it has almost constant speed for
t > 30s. (b) Target speed vs. time. At time t = 30s, the target also starts to maneuver.

1.2.3 State-of-the-Art

The IPPF algorithm is an application of the particle filter algorithm to the tracking frame-

work developed by Zhou et al. [60, 77]. The algorithm is novel due to (i) the usage of the
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Figure 7: (a) Diamonds correspond to the true target DOA track. DOAs estimated by
the IPPF algorithm are shown with the dashed line. (b) Dashed line shows the target track
estimate constructed using the IPPF estimates.
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Figure 8: (a,b) IPPF estimates (dashed lines) are compared to the true motion parameter
values (diamonds).
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partitioning approach and the derivation of the related proposal functions, (ii) application

of local linearization techniques for approximating the acoustic state posterior, and (iii) a

novel Monté Carlo Markov chain initialization for the state vector. Also, the authors use

reference priors to derive a probability density function for the observations given the state

by marginalizing out the signal vectors and the unknown signal variance in the narrow-band

observation model [11].

The state partitioning approach is useful to decrease the computational cost of particle

filters when multiple objects are being tracked [49, 50]. Partitioned sampling allows you to

operate in several lower dimensional state-spaces as opposed to working on the full state-

space [50]. To generate the combined state vector for multiple targets, each target vector

is considered as an independent partition as they are generated. Thus, the filter proposal

function generates each partition independently to be combined as a particle. To do this,

it also assigns each partition a probability from the data, and the particles are formed

by concatenating the vectors sampled from the generated partitions with respect to their

partition probability. This way, partitions for each target with high partition probabilities

are selected more often than other partitions with low probability, resulting in better particle

proposals. Hence, the filter can avoid sampling the whole state space, effectively beating

the curse of dimensionality.

The IPPF paper [60] presents the particle filter backbone for the state-space model

developed by Zhou et al. [77]. The multiple target tracking algorithm developed by Zhou

employs the Newton search algorithm to minimize the negative of a maximum-likelihood

cost function derived from the narrow-band observation model and the constant velocity

motion model. Their paper [77] also also derive the gradient and the Hessian terms needed

for the Newton algorithm and also demonstrates approximations for making the filter more

robust. Moreover, it appears that [77] was the first paper to demonstrate the spatial spec-

trum spread caused by rapid target movement. This biasing effect is the main cause for

DOA errors in some tracking scenarios and hence its derivation is one of the main contri-

butions of [77]. The data association problem is also handled automatically by the Newton

search algorithm by simultaneously estimating the target vectors using a global ML cost
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function.

The multiple target tracking algorithms by Zhou [77] and Orton [60], and also another

acoustic tracking algorithm by Sword et al. [72], have built-in mechanisms that handle data

association issues. In general, DOA tracking algorithms handle data association in various

ways: (i) probabilistic data association methods estimate the states by summing over all the

association hypotheses weighted by the probabilities obtained by the likelihood [6,7,22,58],

(ii) smoothness assumptions on the target (motion) states allows a natural ordering of

the data [45], (iii) computationally costly ML/EM methods use the likelihood functions to

search for a global maximum [65], and (iv) nearest neighbor methods provide easy heuristics

to perform measurement updates. Most of these methods use mean and the covariance

approximations on the sufficient statistics of the state, which may be estimated with a

Kalman filter. However, for nonlinear state-spaces with non-Gaussian noise assumptions,

Monté-Carlo methods are needed to adequately capture dynamic, possibly multimodal,

statistics.

Observation models, motion models, noise assumptions, multiple observers, and data

association problems all add to the complexity of the acoustic target tracking problem.

These models are needed to assume away many issues in the tracking problem so that the

resulting systems are implementable under some criterion. Quite often, this criterion is not

always the best estimation performance. In most cases, signal processing algorithms must

be developed under a power-performance trade-off. Also, algorithm designs must be flexible

for fusing other information streams provided by sensor networks.

In the later chapters, we will show our improvements to the observation/motion models.

For now, a dual problem to acoustic tracking is considered in the following section.

1.3 Calibration: the Dual of Target Tracking

In the far-field tracking problem, we know that an acoustic array can determine the DOA

of a target given the acoustic observations. Now, consider the acoustic tracking problem

where the unknown target sounds propagate in air and are collected at a stationary acoustic

array. In this problem, a crucial assumption is that the array center position and a reference
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angle for the array orientation are known, so that the DOA measurement of the target is

meaningful. Now, assume that the target has an on-board GPS system that provides

reasonably accurate position estimates that are then communicated to the acoustic array.

Then, we can reverse the acoustic tracking problem statement: given the maneuvering target

position information and its acoustic data, how can the array determine its own position

and orientation?

According to the results of Nardone’s paper [55], it is possible to determine the ar-

ray position because the acoustic array is stationary, and hence the target is always out-

maneuvering the array. The orientation estimation problem is introduced as a side problem

in this case because the acoustic array is only capable of estimating angles. Hence, the

orientation can be treated as an auxiliary parameter in the system9. Here, it is important

to note that the array solves for its own position and orientation by receiving the missing

information: the target GPS track.

The reader, naturally, might be asking why the acoustic array would not have a GPS

receiver to eliminate this calibration problem? There are a few reasons: (i) having an

accurate GPS receiver increases the battery requirements for the acoustic array, (ii) it also

makes the array more susceptible to jamming by outside sources, and (iii) an independent

calibration method can refine the node position and orientation information even if a GPS

receiver is available (self-diagnostic).

Sensor array calibration might imply different problems, depending on the context.

One common problem is the calibration of individual microphone positions, which form the

array manifold for the acoustic array outputs. For this type of problem, methods to find the

sensor positions and the Cramér-Rao lower-bound expressions have been given [28, 57]. In

this thesis, sensor array calibration implies the calibration of a network of sensor nodes each

consisting of omnidirectional microphones. The individual positions of each microphone are

known within the sensor node, and the node is capable of detecting, tracking, and classifying

acoustic targets. There has been work on calibrating these types of sensor arrays, which

9That is, the position of the array can be found without determining the array’s orientation. The reverse
is not true.
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are also known as unattended ground sensors (UGS) [20], [53]. Under the assumption that

each node can estimate the time-of-arrival and the DOA of acoustic sources and that some

known acoustic calibration sources are available, individual node positions and orientations

can be found as shown in [53].

A new approach is proposed in this thesis to achieve the same goal of calibrating UGSes

with a set of assumptions different than those used in [53]. Node position estimation is

first performed on the acoustic microphone outputs directly, as opposed to some auxiliary

node output such as DOA estimates. The maximum-likelihood (ML) estimator of the node

position is derived using an acoustic array data model. Then, a Newton type of search algo-

rithm is introduced to avoid calculating the whole ML surface. For the Newton algorithm,

an initial node position and orientation close to the true values should be estimated. This

can be achieved by using DOA calibration algorithms, such as a synthetic-aperture based

node localization algorithm. Other special calibration methods based on the Metropolis-

Hastings algorithm and relative motion concepts are also developed. The common theme

for these methods is their estimation of the node positions by first calculating target DOAs

and then using some geometrical arguments. We also give Cramér-Rao performance bounds

for the calibration problem for the different estimation methods and consider the sufficiency

of these auxiliary DOA estimates.

1.4 Joint State-Space Tracking

Particle filters, whose mechanics are based on the classical narrow-band array observation

model, have poor performance when applied to field data acquired with acoustic nodes

because they do not take into account (i) target harmonics, (ii) acoustic propagation losses,

and (iii) temporary wideband characteristics of the observed target signals. These recursive

trackers also require good initialization for determining the number of targets and their

initial motion parameters depending on the adapted motion model. When the targets of

interest exhibit harmonics, it is difficult to determine the number of targets correctly. This is

because it is nearly impossible to separate two targets with different frequencies at the same

DOA from one target with multiple harmonic frequencies. Moreover, as the targets enter
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the detection range of the acoustic nodes, they have low signal-to-noise ratios (SNR) due to

acoustic propagation losses, which also makes it harder to estimate the motion parameters

robustly for initialization.

Recently, hybrid nodes that contain an acoustic array collocated with a camera have

been proposed. The camera usually has a narrow field-of-view (FOV), but it likely would be

steerable. Also, it could be an IR or optical camera, or even stereoscopic. New algorithms

are needed to intelligently fuse the information coming from both modalities under some

performance-power cost function. However, before tackling the performance vs. power

analysis, the reason for acoustic-video fusion must be addressed.

Video DOA tracking algorithms can provide high resolution estimates at each frame, and

are relatively insensitive to the target range. They can also count the number of targets

much more robustly than other types of sensor modalities. A video tracking algorithm

would produce more reliable and higher resolution multi-target motion state estimates than

an acoustic node, especially at long range. However, the following disadvantages of the

video necessitate an auxiliary sensor modality such as acoustics:

Narrow FOV: The detection region of a camera is limited by its narrow FOV. A second

modality such as acoustics can detect targets over the full 360 angle range and cue the

video.

High Power Consumption: Video tracking algorithms require high frame rates for

robust target tracking. When imaging at moderate resolutions, video requires more power

than an acoustic sensor or a seismic sensor. Hence, if the auxiliary sensor can help reduce

the frame rate for video tracking or eliminate it when possible, the lifetime of the hybrid

node can be maximized under some acceptable performance level.

Target Occlusion: A video tracker is incapacitated when the target is occluded, for

example, by dust clouds. However, acoustics can take over the tracking during an occlusion

scenario and help the video recover after the occlusion is over. Also, if the hybrid node

is blocked by some object such as a tree (because of its narrow fov) during deployment ,
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the second modality may still enable the node tracking capability. Acoustics is one such

example.

Multimodal fusion might be required for a number of reasons. The most important of

these reasons comes from the observability issue of the individual modalities. The ultimate

objective of any tracking system is to determine the target position in a defined coordinate

system. However, the target position might not be readily observable by most of the sensor

modalities due to the observation process or modelling. For example, an acoustic node

cannot distinguish the positions of two targets in the far-field of the array if the targets are

moving with the same DOA track. A camera might be able to estimate the position of a

target in a polar coordinate system by scaling, but only if the target template is available.

However, by merging two acoustic node’s DOA estimates along with the array position

information, the actual target positions may be observed, which achieves an important

fusion objective.

Other important fusion objectives might include, but are not limited to (i) lowering the

power costs of the individual modalities, (ii) achieving robust tracking, and (iii) increasing

the resolution of the estimates. In the case of a joint acoustic-video tracker that increases

the resolution of the DOA estimates, the combined tracker can handle more general motion

models but might be overkill because the video tracker can already make high resolution

estimates with low sensitivity to the target range. However, the interplay of the two modal-

ities can generate a robust tracker with the ability to correctly count the number of targets

and track them through occlusions or through the regions of low acoustic signal-to-noise

ratio. Hence, if a robust tracker is formulated so that the power required by the video

can be adaptively varied through the help of acoustics, the above fusion objectives can be

achieved under some desirable power-performance trade-off.

There are various practical issues related to having a fully joint acoustic-image tracker

using a particle filter. The first issue, not directly related to the particle filter, is the time-

varying bias between the camera observations and the acoustic observations due to the

acoustic propagation delays. The acoustic observations always have a time lag compared

to the video observations, and this lag varies with the target range. The second issue is
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directly related to the particle filter. If the joint tracker is to use a common state vector

that can explain both acoustic and image observations, some parts of this new state vector

will only be observable by one modality, while others will be observed by both modalities.

For example, the target shape variables used in video are not observable by the acoustic

signals, whereas the target DOA is observable in both domains. Hence, a novel sampling

strategy needs to be developed to effectively place the random support of the particles to

represent the target posterior used for the tracking.

In Chapter 6, we propose a particle filtering structure that can handle multiple sensor

modalities. A novel sampling strategy is proposed for generating a common state vector

that has variables observable by only some of the modalities and other variables that can

be observable by all of the modalities. We discuss the advantages and disadvantages of

having a common state vector as a joint-tracker compared to having different trackers and

merging their results in a fusion framework. A synthetic acoustic-image tracker is used as

an example. The difference in the approach taken in this thesis is the development of the

particle filtering framework for a fully joint target tracker as opposed to having different

modalities cue each other [23,36,73] or combining separate tracking algorithms running at

the same time [47].

1.5 Contributions of the Thesis

Traditionally in target tracking, much emphasis is put on the motion model that realistically

represents the target’s movements. In Chapter 2, we introduce a new motion model that

incorporates an acceleration component along the heading direction of the target. We also

show that the target motion parameters can be considered part of a more general feature set

for target tracking. This is exemplified by showing that target frequencies, which may be

unrelated to the target motion, can also be used to improve the tracking performance. To

include the frequency variable, a new array steering vector is presented for the direction-of-

arrival (DOA) estimation problems. The independent partition particle filter (IPPF) is used

to compare the performances of the two motion models by tracking multiple maneuvering

targets using the acoustic sensor outputs directly.
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To decrease the dependence on the observation model, in Chapter 3, we rework the

acoustic tracker using a flexible observation model based on an image tracking approach.

Assuming that some of the DOA observations might have clutter in them and that some

of the DOAs might be spurious in the observation set, we develop a new tracker to track

multiple maneuvering targets. The tracker has a novel sampling strategy that is robust

with respect to the observation noise. A Newton algorithm is also applied for efficiently

determining the proposal function.

In Chapter 4, we treat the calibration problem for an acoustic node containing an

array of microphones at fixed positions with respect to each other. We first present the

maximum-likelihood (ML) estimator for the node-center position as well as its orientation.

The calibration is based on using a calibrating target that carries a global positioning

system (GPS) on board. The effects of the GPS errors on the node position estimates

and the related Cramér-Rao lower bounds are also derived. We then present a Newton

based search algorithm along with different initializations to avoid calculating the whole

likelihood surface. One of these initialization methods is based on calculating the node

position and orientation using a synthetic aperture created by the calibrating target. A

Metropolis-Hastings method is also introduced and is applied to the field data.

As a recursive algorithm, the particle filter requires initial samples to track a state

vector. These initial samples must be generated from the received data and usually obey

a complicated distribution. The Metropolis-Hastings (MH) algorithm is used for sampling

from intractable multivariate target distributions and is well suited for this initialization

problem. Asymptotically, the MH scheme draws samples from the exact distribution. For

the particle filter to track the state, the initial samples need to cover only the region around

its current state. This region is marked by the presence of modes. Since the particle filter

only needs samples around the mode, in Chapter 5, we modify the MH algorithm to generate

samples distributed around the modes of the target posterior. By simulations, we show that

this “mode hungry” algorithm converges an order of magnitude faster than the original M-H

scheme for both unimodal and multimodal distributions.
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Finally, in Chapter 6, we develop a framework for the joint state-space tracking prob-

lem. A proposal strategy for joint state-space tracking using particles filters is given. The

state-spaces are assumed Markovian and inexact; however, each state-space is assumed to

sufficiently describe the underlying phenomenon. Joint tracking is achieved by carefully

placing the random support of the joint filter where the final posterior is likely to lie. Com-

puter simulations demonstrate improved performance and robustness of the joint state-space

through the proposed strategy.

In this thesis, we mainly focus on target tracking problems using the particle filtering

framework. In Fig. 1.5, an outline of the thesis is given where we also highlight our con-

tributions that are discussed in this section. The figure should give the reader an overall

picture as to what to expect in the later chapters of the thesis.
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Figure 9: Thesis outline. New contributions are shown in the rectangular boxes.
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CHAPTER II

GENERAL DIRECTION OF ARRIVAL TRACKING

USING ACOUSTIC NODES

Figure 10: Chapter outline with the new contributions shown in rectangular boxes.

2.1 Introduction

The direction-of-arrival (DOA) estimation problem has been extensively studied in the sig-

nal processing literature [42]. Narrow-band solutions based on beamforming such as mul-

tiple signal classification (MUSIC) [71], minimum variance beamforming, and Pisarenko’s

method suffer degraded performance when the targets are moving relatively fast during the

estimation batch, also known as the snapshot period. The performance loss in these high

resolution algorithms can be attributed to the nonstationarity of the array data caused by

rapid target motion. To remedy this problem, one can exploit target motion dynamics to

jointly estimate the DOAs while tracking targets [77]. These refined DOA estimates provide

better performance in exchange for increased computational complexity.

In the case of wideband acoustic signals, the pioneering work of Wang and Kaveh [76]

on coherent subspace processing coherently integrates the array autocorrelation matrices
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corresponding to the multiple frequencies of interest, so that the SNR is increased and

resolution gains can be achieved. The work by Gershman and Amin [33] approximates the

signals within the DOA snapshot period as chirps and performs time-frequency MUSIC

on the acoustic array outputs. A time-varying frequency model enables these wideband

methods to tackle more realistic estimation problems. However, these algorithms, like the

narrow-band techniques, produce snapshot DOA estimates, and hence, require heuristics

for target association.

Advances in large scale integration of computer systems have made Monté-Carlo tech-

niques a feasible alternative for solving target tracking problems. Conventionally, given

a model of the target dynamics, the underlying motion equations are simplified by lin-

earization and Gaussian noise assumptions so an analytical solution can be obtained. The

extended Kalman filter is such a method; it is also the best minimum mean-squares linear

estimator for the problem at hand. Monté-Carlo techniques, on the other hand, do not

linearize nor do they assume Gaussian noise. They approximate the posterior density of in-

terest, i.e., a density that describes the likelihood of a target’s position in space, by particles

that represent a discrete version of the posterior. The idea is that if a sufficient number of

effective particles can be used, the estimation performance will be close to the theoretically

optimal solution.

A solution to the multiple target tracking problem has been given for the narrow-band

case by Orton and Fitzgerald [60] using an independent partition particle filter (IPPF). The

independent partition assumption of the IPPF solves the DOA association problem common

to multiple target tracking algorithms. Given the target motion dynamics developed in [77],

the implementation of the IPPF is shown in [60] to track constant velocity targets with a

Brownian disturbance acting on the target heading directions. In this thesis, the IPPF is

again used, but along with a new target motion model that includes accelerations along

the heading direction of each target. Simulations show that since the new motion model

enables the IPPF to relax the constant velocity assumption, target tracking is improved

when the targets have high accelerations, as intuitively expected.

In target tracking, it is usually a good idea to retain certain target features even if they
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are not related to the motion parameters. This may, in turn, help the data fusion problem

with different types of sensors since the extra algorithmic computational load is usually

much less taxing on the energy budget of the sensor than transmitting the raw data to

a central processor. Hence, in addition to the motion parameters, we also show how to

incorporate new features such as time-varying frequency signatures of the targets into the

particle filter algorithm. It is assumed that a separate time-frequency tracker is tracking

the dominant instantaneous frequencies of the targets; however, the issues related to the

frequency estimation are not considered in this thesis. It is demonstrated by simulations

that in the case of multiple targets, the introduction of the frequency variable improves the

tracking performance of the IPPF when two targets have similar motion parameters but

different time-frequency signatures.

Observability is one of the main concerns in acoustic tracking problems because it must

be possible to determine the target states from the array data uniquely. Observability of a

time-varying system depends on both the observations and the state equation, i.e., on the

acoustic sensor outputs and the motion model [14]. However, when the observations are

sufficient to determine the target DOAs, the observability test reduces to a simple rank test

on the Jacobian of the local representation of the motion model [77]. In this thesis, it is

assumed that the observations are sufficient to determine the target DOAs and the system

observability is proved using the observability rank condition. We argue that with the same

assumption on the observations, it is possible to automatically generate the IPPF code to

do target tracking for some other target motion dynamics as long as the rank condition is

satisfied. This enables dynamic switching of motion models appropriate for different types

of targets, resulting in a more flexible tracker.

The array model employed in the simulations has a special structure. We use a single

node consisting of a circular omnidirectional microphone array that supplies DOA and

frequency information about the targets. However, the derivations do not depend on the

particular structure of the nodes. Note that tracking implies the temporal estimation of

the target DOAs as opposed to target positions. Spatial diversity of multiple nodes can be

exploited in triangulating the targets of interest, which also presents a data fusion problem.
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However, data fusion from multiple nodes can be facilitated by some of the variables in

the target feature set such as target orientation and frequency. It should be noted that

these two variables are invariant with respect to the node positions when the nodes have

the same reference frame1. Hence, in a simple application such as triangularization, if the

DOA information coming from each node also includes these features, the data association

for multiple targets can be done optimally with minimal information exchange.

The organization of this chapter is as follows. Section 2.2 introduces models that account

for the target motion dynamics as well as the acoustic observations. Section 2.3 describes

how to construct the necessary probability density functions that form the backbone of the

particle filter solution. The IPPF algorithm details are discussed in Sect. 2.4 before the

simulation results, which are presented in Sect. 2.5.

2.2 Data Models

Consider K far-field targets coplanar with a sensor node consisting of P acoustic sensors.

The sensor node (or sensor array) is not assumed to possess any special structure. Two

motion models will be presented, differing in the assumptions of constant velocity versus

constant acceleration.

2.2.1 State Model-I

The targets are assumed to have constant speeds with Brownian disturbances acting on

their heading directions [60,77]. With the introduction of the frequency variable, the model

has the following state vector:

xk(t) ,



















θk(t)

Qk(t)

φk(t)

fk(t)



















(35)

where θk(t), φk(t), and fk(t) are the DOA, the heading direction, and the instantaneous

frequency of the kth target. Qk(t) , log qk(t) is a compound variable where qk(t) , vk/rk(t).

1If the nodes have different reference directions, the orientation angles of targets can be found in another
reference frame by simple additions and subtractions of the reference angles of the nodes.
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Target DOAs are measured clockwise with respect to the y-axis, whereas target heading

directions are measured counterclockwise with respect to the x-axis. Figure 11 illustrates

the geometry of the problem. The state update equation can be derived by relating the

1

2

vkT

φk(t)

rk(t) θk(t)

θk(t+ T )

rk(t+ T )

Figure 11: The kth target is at position 1 at time t and moves to position 2 in T seconds
with a constant speed. The target is assumed to be in the far-field of the sensor array whose
center coincides with the origin.

DOAs of the target at times t and t + T using the geometrical relation of position 1 at

(rk(t) sin θk(t), rk(t) cos θk(t)) to position 2 at (rk(t) sin θk(t)+vkT cosφk(t), rk(t) cos θk(t)+

vkT sinφk(t)). Then, it is straightforward to obtain the following update relations:

tan θk(t+ T ) =
rk(t) sin θk(t) + vkT cosφk(t)

rk(t) cos θk(t) + vkT sinφk(t)
(36)

and

rk(t+ T ) =
√

r2k(t) + 2rk(t)vkT sin (θk(t) + φk(t)) + v2
kT

2 (37)

Equations (36) and (37) form a scalable system for the target motion dynamics. Consider

scaling the range and the speed of the kth target. This scaled target has the same set of

update equations as above since the scale factor can be cancelled out. This, in fact, leads

to the introduction of the compound variable qk(t) defined earlier. In the state update,

however, the logarithm of qk(t) is used since an additive noise component can be employed

(as opposed to the multiplicative noise when qk(t) is used). Note that the particle filter can

cope with a general type noise and that additivity of the noise is not required; however, the

logarithm is used to decouple the noise from the state update, which is given below. Also,

note that target maneuvers, e.g., the perpendicular accelerations, are modelled in the state
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update through the state noise on φk(t):

xk(t+ T ) = f̂I(xk(t),u(t+ T )) = fI(xk(t)) + u(t+ T )

=





















arctan
{

sin θk(t)+eQk(t)T cosφk(t)

cos θk(t)+eQk(t)T sinφk(t)

}

Qk(t) − 1/2log[1 + 2eQk(t)T sin (θk(t) + φk(t)) + (eQk(t)T )2]

φk(t)

fk(t) + 2bk(t)T


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















+



















uθ,k(t+ T )

uQ,k(t+ T )

uφ,k(t+ T )

uf,k(t+ T )


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













(38)

where u ∼ N (0,diag{σ2
θ , σ

2
Q, σ

2
φ, σ

2
f}). When the target speed becomes negative due to

deceleration, the Qk term becomes complex due to the logarithm. This problem can be

solved by updating only the real part of Qk, and adding the imaginary part (which is π

when qk is negative) to the heading parameter φk, which, in effect, reverses the direction of

the target.

Implicit in (38) is a second order polynomial approximation for the phase of the signals

of interest. Hence, for t ∈ [ti, ti + T ), the following relation is assumed on the kth signal:

sk(t) ≈ αk(ti)e
j2π[f0,k(ti)t+bk(ti)t

2] (39)

where αk(ti) is the complex amplitude, fk(t) = f0,k(ti) + 2bk(ti)t is the instantaneous

frequency, and 2bk(ti) is the rate of change of the instantaneous frequency of the kth signal

at time t during the ith batch period. This model assumes that the dominant narrow-band

frequencies of each target are tracked by separate time-frequency filters. Some frequency

tracking examples using Markov chains can be found in [8,9,34]. Note that the state estimate

of the IPPF also results in a distribution on the instantaneous target frequencies, which can

be exploited by the frequency tracker in determining bk(ti+1) for the next recursion.

The variances of the components of the state noise vector u are usually small, which

may lead to sample impoverishment [5] (explained in Sect. V.A.3). In fact, if the process

noise is zero, the state variables can be treated as static variables in an estimation problem

where using a particle filter may not be appropriate. Techniques to prevent this sample

impoverishment or degeneracy are discussed in [60]. Finally, the state noise vector is chosen
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1

2

vk(t)T

φk(t)

rk(t) θk(t)
βk(t)

rk(t+ T )

θk(t+ T )

1
2
aφ,kT

2

dk(t)

Figure 12: The kth target is at position 1 at time t and moves to position 2 in T seconds
with constant acceleration. Notice that βk(t) corresponds to θk(t+ T ) in Fig. 11.

to be Gaussian due to its analytical tractability. Justifications of this model can also be

found in [60].

2.2.2 State Model-II

In this second formulation, the targets are now assumed to have slowly varying accelerations

along their heading directions. The new state vector is the following:

xk(t) ,


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
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θk(t)

Qk(t)

ψk(t)

φk(t)

fk(t)
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


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

, (40)

where θk(t), Qk(t), φk(t), and fk(t) are as defined above. The parameter ψk(t) is defined

using the kth target’s acceleration aφ,k along its heading direction: ψk(t) ,
aφ,k

2rk(t) . Figure

12 illustrates the geometry of the problem used to derive the state update relations.

The state update equation can be derived in a manner similar to State Model-I:

xk(t+ T ) = f̂II(xk(t),uk(t+ T )) = fII(xk(t)) + uk(t+ T ) (41)

with

θk(t+ T ) = βk(t) + tan−1

[

T 2ρk(t) cos(βk(t) + φk(t))

1 + T 2ρk(t) sin(βk(t) + φk(t))

]

+ uθ,k(t+ T ) (42)
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where

βk(t) = tan−1

[

sin θk(t) + TeQk(t) cosφk(t)

cos θk(t) + TeQk(t) sinφk(t)

]

(43)

and

ρk(t) =
aφ,k

2dk(t)
(44)

Qk(t+ T ) = log{2Tρk(t)[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]1/2 + eQk(t)}

− 1

2
log[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]

− 1

2
log[1 + 2T 2ρk(t) sin(βk(t) + φk(t)) + T 4ρ2

k(t)] + uQ,k(t+ T )

(45)

ψk(t+ T ) =
ρk(t)

[1 + 2T 2ρk(t) sin(βk(t) + φk(t)) + T 4ρ2
k(t)]

1/2
+ uψ,k(t+ T )

ρk(t) =
ψk(t)T

[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]1/2

(46)

φk(t+ T ) = φk(t) + uφ,k(t+ T ) (47)

fk(t+ T ) = fk(t) + 2bk(t)T + uf,k(t+ T ) (48)

The state noise is defined similarly as u ∼ N (0,diag{σ2
θ , σ

2
Q, σ

2
ψ, σ

2
φ, σ

2
f}). Intuitively, the

noise variables uψ and uQ need to be correlated due to the dependence of the velocity on

the acceleration along the heading direction. An expression for the correlation between

these two noise variables can be derived to better track the targets when the targets are

not actually changing their directions. However, as the targets undergo slow maneuvers

between each time step, it appears that the correlation between the acceleration along the

heading direction at the beginning of the batch and the actual target speed becomes much

weaker. Hence, the noise variables on Qk(t) and ψk(t) are modelled independently to better

accommodate maneuvering targets, as well as for simplicity.

2.2.3 Observation Model

The sensor array in the simulations consists of P omnidirectional acoustic sensors situ-

ated uniformly on a circle of radius R. A steering vector associated with the array defines

the complex array response for a source at DOA θ. The received signal at the pth sensor

corresponding to the ith target is first derived using the same second order polynomial ap-

proximation on the phases of the signals shown in (39). For an isotropic and non-dispersive
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medium, the signal received at the pth sensor can be written as

si(t− (αi
Tzp)) ≈ si(t)e

j2π[−f0,i(t)(αi
T zp)−2bi(t)t(αi

T zp)+bi(t)(αi
T zp)2]

≈ si(t)e
j2π[bi(t)(αi

T zp)2−fi(t)(αi
T zp)]

(49)

where i = 1, 2, · · · ,K, zp is the pth sensor position, and αi , (1/c)[ cos(θi), sin(θi) ]T is

the ith slowness vector in Cartesian coordinates. Equation (49) leads to the following array

steering vector for the ith source signal:

a(θi) =



















ej2π{bi(t)(αi
T z1)2−fi(t)(αi

T z1)}

ej2π{bi(t)(αi
T z2)2−fi(t)(αi

T z2)}

...

ej2π{bi(t)(αi
T zP )2−fi(t)(αi

T zP )}



















(50)

A similar derivation of the array steering vector for signals with constant narrow-band

frequencies can be found in [42]. Note that, in the second line of (49), the term bi(t)(αi
T zp)

2

can be ignored for small array aperture sizes and slowly varying frequencies and we obtain

the same steering vector used in [33].

As mentioned above, the phase characteristics of the signals of interest are approximated

with chirps within a batch period T . We also require that each steering vector a(θi) uniquely

correspond to a signal whose direction is the objective of the DOA estimation problem.

Signals coming from multiple targets are added to form the observations. For the IPPF,

these acoustic observations are updated every τ = T/M seconds where M denotes the

number of batch samples. Then, the array outputs are written as follows:

y(t) = A(Θ(t))s(t) + n(t) t/τ = 1, 2, · · · ,M (51)

In (51), y(t) is the noisy array output vector, n(t) is additive noise (e.g., n(t) ∼ N (0, σ2
nI)),

and A(Θ(t)) has the steering vectors in its columns. It should be noted that the sensor

positions must be perfectly known to define A(Θ(t)) for this model [21].

For notational convenience and tractability, the data collected at each time increment

τ during the batch period T is stacked to form the data vector Yt : MP × 1. The signal

vector St and the noise vector Wt are formed in the same manner. Thus, the array data

41



(or observation) model for the batch period can be compactly written as:

Yt = ĥ(Θ(t),Wt) = h(Θ(t)) + Wt

Yt = AtSt + Wt

(52)

where the steering matrix At = diag{A(θ(t)),A(θ(t+τ)), · · · ,A(θ(t+(M−1)τ))} implicity

incorporates the DOA information of the targets.

2.2.4 Observability of the Motion Model

Even though the formulation of the problem as a state and observation model seems intuitive

at first, it would be unwise to use this type of formulation if the new state model (41) is not

observable given the measurements (52). For the array model, it is assumed that the array

can resolve the target DOA parameters uniquely. This leaves only the examination of the

motion model to determine the observability of the system [14,77]. It is verified in [77] that

the state model described by (38) satisfies the strongly locally observability rank condition,

which checks whether the determinant of the Jacobian of the state vector with respect to

the target DOA is non-zero [69].

It follows that the new state vector xk(t) ∈ R
5 is observable if {θk(t + mτ);m =

0, 1, · · · ,Γk − 1} and {bk(t);m = 0, 1, · · · ,Γk − 1} are sufficient to determine xk(t) for

a finite integer Γk . The Jacobian of the state vector (41) with respect to the target DOAs

is very tedious to calculate by hand. However, a symbolic algebra manipulator can be

programmed to prove that the Jacobian matrix is full rank, making the new state vector

observable.

2.3 PDF Constructions for the IPPF

The particle filter is a convenient way of recursively updating a target posterior of interest.

In this section, we will show the derivations necessary for the operation of the particle filter,

which are summarized in Fig. 13.

2.3.1 Data Likelihood

While formulating the state update equations in our problem, one encounters two nuisance

parameters: the signal vector St and the noise variance for the additive Gaussian noise
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vector Wt. For simplicity, we will assume that the noise variance is approximately constant

during the batch period [t, t+T ). Following the notation introduced in [60] , we will denote

this noise variance as σ2
w(t) corresponding to the batch period starting at time t. The noise

has a complex Gaussian probability density function (pdf) described by Goodman [35]. The

data likelihood, given the signal and noise vectors, can be written as follows:

Relate the observed data
to the state variables:
p(Yt|At,St, σ

2
w(t))

Construct the pdf for the
state transition:
p(Xt+T |Xt)

Use reference priors
to eliminate nuisance

parameters.

Noise model is crucial.
Need an analytical

relation.

Use Taylor series
expansion for the

proposal function.

Ignore h.o.t. and
approximate with a

Gaussian.

ly(Xt) , log p(Yt|Xt) lx(Xt) , log p(Xt|Xt−T )

Obtain the proposal function

π(Xt|X0:t−T ,Y0:t) ≈ N (µ(X) + X,Σ(X))

Σ(X) = −
[

l′′x(X) + l′′y (X)
]

−1
,

µ(X) = Σ(X)
[

l′x(X) + l′y(X)
]

.

Figure 13: The mechanics of the necessary derivations needed by the particle filter. X is
chosen to be the predicted state vector by the state update relation without any noise.

L , log p(Yt|At,St, σ
2
w(t))

= −MP log π −MP log σ2
w(t) − 1

σ2
w(t)

(Yt − AtSt)
H(Yt − AtSt)

(53)

If the priors are known for the signals and for the noise variance given the state vector

at time t, they can be integrated out (a procedure known as marginalization). If one desires

to assume the least about these parameters and let the observed data speak for itself, then

reference priors comes into play2. Even for moderate sample sizes, the information in the

2Bernardo derives the reference prior using an estimation model based on communication channel with
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data dominates the prior information because of the vague nature of the prior knowledge

[12]. The intuitive choice of the prior is usually the uniform prior on the natural space of

the parameter. A good discussion of these issues can be found in [10,12,46].

The square root of the determinant of the Fisher information matrix is used as our

reference prior (a.k.a. Jeffrey’s prior). The resulting reference prior is not integrable (and

hence, is improper) on the entire unbounded space for the parameter vectors. This, in turn,

stipulates compactness arguments on the parameter space such as those used in [12], [67].

Assuming that the columns of At are linearly independent, the reference prior is given

by [13]

p(St|At) ∝ |AH
t At|1/2, (54)

where |.| denotes the determinant of a matrix. At this point, we can use (54) to integrate

out the signal vector from our problem.

p(Yt|At, σ
2
w(t)) =

∫

p(Yt|At,St, σ
2
w(t))p(St|At)dSt

⇒ p(Yt|At, σ
2
w(t)) ∝ exp

[

−YH
t (I − At(A

H
t At)

−1AH
t )Yt

σ2
w(t)

]

. (55)

Finally, notice that (54) is not integrable if St has infinite multidimensional support.

However, a bounded amplitude condition {St : |[St]i| < γi} can be easily imposed on the

ith signal component for some large γi. This makes the prior (54) integrable on the signal

vector space and, in turn, the marginalization integrals become proper. This condition is

always satisfied in practice because the signals of interest must have finite magnitudes at

all times.

2.3.2 State Likelihood

In the previous section, we omitted the motivation for constructing the pdf for the data

and put the emphasis on the use of reference priors. Now, it is necessary to elaborate on

the reasons for constructing the pdfs for the data and the state. The state and observation

models (38), (41) and (52) form a hidden Markov model (HMM), which can be compactly

a source and data [11]. The reference prior maximizes the mutual information between the source and the
data.
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described by the following pdfs:

p(Xt|Xt−T )

p(Yt|Xt)

(56)

where Xt = [xT1 (t),xT2 (t), · · · ,xTK(t)]T , and p(Yt|Xt) = p(Yt|At) or p(Yt|At, σ
2
w(t)), de-

pending upon whether or not we treat the noise variance as a known parameter. Here, we

introduce a common notation used in the particle filtering literature, z0:t , {z0, zT , . . . , zt}.

The recursive update for the HMM model described by (56) can be written as follows [5]:

p(X0:t|Y0:t) = p(X0:t−T |Y0:t−T )
p(Yt|Xt)p(Xt|Xt−T )

p(Yt|Y0:t−T )
(57)

Hence, the recursive evaluation of p(X0:t|Y0:t) requires the pdfs shown in (56). The previ-

ous section considered the construction of the second pdf in the model. This section will

concentrate on the first pdf in (56).

The objective is to find p(Xt|Xt−T ) given the state model. By inspection of (38) or

(41), one can see that Xt is also normal with mean fI,II(Xt−T ) and covariance equal to that

of the additive noise. Therefore, we can write the pdf for the state update as follows:

p(Xt|Xt−T ) ∼ N (fI,II(Xt−T ),diag{σ2
θ , σ

2
Q, σ

2
Ψ, σ

2
φ, σ

2
f}) (58)

We have two important remarks on the construction of the pdfs for our problem. The first

is that we generally need analytical expressions for the pdfs to use the particle filter, which

does not assume a Gaussian model in general. The second remark is about the model order

of the HMM. The motion equations describe a first order HMM model and hence the update

equations (57) depend only on the previous state. If more complicated motion equations

are formulated in the state model so that the HMM model order increases, then a new

recursive update formulation becomes necessary.

2.3.3 The proposal function

An appropriate choice of the proposal function π(·) may reduce the variance of the sim-

ulation errors3. However, it was shown analytically in [25] that the importance weights

3If we choose the exact posterior as the proposal function, then due to the nature of the data generating
process, the variance of the estimator is inversely proportional to the number of particles N [1].
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have increasing variance with time, which leads to increasing estimation errors (the term

“simulation errors,” will be used interchangeably). Here, we restate an important result:

the unconditional variance of the importance weights, i.e., with the observations Y0:t being

interpreted as random variables, increases over time. This fact is known as the degeneracy

phenomenon: after a few iterations, all but one of the normalized importance weights will

be very close to zero [25].

It is crucial to note that the optimal proposal function π(Xt|X(i)
0:t−T ,Y0:t) is proportional

to p(Yt|Xt)×p(Xt|X(i)
t−T ), with the proportionality independent of Xt. We have previously

derived analytical relations for p(Yt|Xt) and p(Xt|Xt−T ). Moreover, define

ly(Xt) , log p(Yt|Xt)

lx(Xt) , log p(Xt|Xt−T )

(59)

Σ(X) = −[l′′x(X) + l′′y(X)]−1

µ(X) = Σ(X)[l′x(X) + l′y(X)]

(60)

then a suboptimal proposal function that minimizes the variance of the importance weights

is given by the following [25,60]:

π(Xt|X0:t−T ,Y0:t) ≈ N (µ(X) + X,Σ(X)) (61)

where X is judiciously chosen to be the mode of p(Xt|Xt−T ,Yt) so that µ(X) ≈ 0 [25].

2.4 Algorithm Details

In this section, we will give the details of our modifications to the independent partition

particle filtering algorithm by Orton and Fitzgerald [60]. The outline of the IPPF is given

in [60] and repeated for completeness in Table 3.

2.4.1 Partitioning and Data Association

Each particle in the IPPF consists of multiple state vectors, e.g., for three targets, a particle

consists of three different state vectors corresponding to each target’s motion parameters

and frequency. The target association problem is solved by the independence assumption on

these partitions. To elaborate, the independence assumption results in separate partition
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Table 3: Pseudo Code for the IPPF

i. At time t, for each particle i (i = 1, . . . , N) and its partition k (k = 1, . . . ,K), x
(i)
t (k):

• sample from the partition proposal function: x ∼ πk(xt(k)|x(i)
t−T (k),Yt),

• set x
(i)
t (k) = x and calculate the partition weight q

(i)
k (x),

• normalize the partition weights across all particles for each partition:

q
(i)
k =

q
(i)
k

∑

i q
(i)
k

,

• for each partition, resample with replacement across the particles using the distribution gen-

erated by q
(i)
k and generate a new set of particles X

(i)
t with their respective q

(i)
k for each

partition. Also, reindex X
(i)
t−T accordingly.

ii. For each particle i (i = 1, . . . , N), X
(i)
t :

• calculate the importance weights using

w
(i)
t = w

(i)
t−T

p(Yt|X(i)
t )p(X

(i)
t |X(i)

t−T )

π(Xt|X(i)
t−T ,Yt)

∏

k q
(i)
k

,

• normalize the importance weights w
(i)
t across the particles.

iii. Resample the particles X
(i)
t using a Metropolis-Hastings scheme, keeping the reversibility of the

chain.
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proposal functions πk(.). To generate the partition proposal functions, (60) is calculated

for the whole particle; however, only the block diagonal portions of Σ(X) are used for each

partition, which results in πk(x) ≈ N (µ(x) + x,Σk(X)), with Σk(X) corresponding to the

kth (dim{x}×dim{x}) block diagonal matrix entry of Σ(X). In particular, the off-diagonal

matrices in the particle Hessian corresponding to the cross partitions are ignored. Note that

after a particle is formed, the discrepancies generated by this method are alleviated by the

importance weights, which are calculated using the full Hessians generated from the new

particle.

When the target DOAs cross, previous target states help distinguish the next state

through the state update probability. The important thing to remember is that unless

one target is moving in tandem with another target, the partitions for the two targets will

differ from each other in the other elements of the state vector (e.g, frequency, heading

direction, and so on), which will be emphasized by the partition probability qk(x). Then,

the partition cross sampling is used to help the data association by generating particles

having high probability across all partitions. This method of generating particles helps the

IPPF to propagate particles with good predictive states and automatically handles the data

association.

One modification is to use the state transition probability (58) for the weighted re-

sampling functions qk(x). This choice alone seems to constrain the particles by the state

update equation, and hence is expected to have poor performance for maneuvering targets.

However, this choice of the weighted resampling function makes sure that the created par-

ticles form a cloud around the expected mode of the target state. The maneuvering target

cases, on the other hand, are handled by the critical Monté-Carlo Markov chain (MCMC)

resampling step. A classical Metropolis-Hastings scheme, which keeps the reversibility of

the Markov chain, can be used to resample the state space using the data likelihood. In the

test cases run, the algorithm seems to handle maneuvers better as the number of iterations

increases in the MCMC step. Details of an MCMC resampling scheme are given in [59].

When the targets maneuver, the expected mode of the next state predicted by the state

update equation changes. At the resampling stage, the particles that are closer to this
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changed mean survive, while the particles around the predicted mean diminish. Hence, the

resampling step, in effect, not only makes the particles span most of the state space, but also

compensates for the effects of the maneuver. Note that maneuvering has more impact on

the heading direction than the other state variables. Hence, a slight modification exploiting

this fact in the resampling step may also improve the performance of the algorithm for a

fixed number of particles.

2.4.2 Effects of the Frequency Variable

The new state vectors include new motion variables, but the most important extension

comes from the frequency variable, which requires the derivation of new gradients and

Hessians (60) for the linearization of the optimal proposal function. We will concentrate on

l′y and l′′y , since it is necessary to approximate l′′y by a positive definite matrix4, and l′y is used

in setting up the equations. Derivations of l′x and l′′x based on the new motion parameters

are straightforward. The notation in this section closely follows [77]. Define

J(t) , YH
t (I − At(A

H
t At)

−1AH
t )Yt

=
M−1
∑

m=0

|y(t+mτ) − PA(t+mτ)y(t+mτ)|2

=

M−1
∑

m=0

trace{P⊥
A(t+mτ)R̂y(t+mτ)} =

M−1
∑

m=0

Jm(t)

(62)

where PA and P⊥
A , I−PA are the projection matrices onto the column and the null spaces

of A and AH , respectively. R̂y(t+mτ) = y(t+mτ)yH(t+mτ) is the one-sample estimate

of the array covariance matrix at the batch time indexed by m. Note that ly = −MJ/σ2
w;

hence, the gradients and the Hessians of J(t) are linearly related to l′y and l′′y . Defining the

gradient of J(t) as G, we obtain

G ,
∂J(t)

∂Xt
= vec

{

1

M

M−1
∑

m=0

[

Vm(t)diag(∇θJm) + Ξm(t)diag(∇fJm)
]

}

(63)

4The parameter l′′y represents the local covariance of the particles around their modes and is required to
be positive definite; however, this positive definiteness is not always available, and modifications are required
to guarantee that l′′y remains positive definite at each iteration of the filter. See [77] for more discussion.
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where

Vm(t) , V (t+mτ) =

[

v1(t+mτ), v2(t+mτ), · · · , vK(t+mτ)

]

Ξm(t) , Ξ(t+mτ) =

[

ξ1(t+mτ), ξ2(t+mτ), · · · , ξK(t+mτ)

] (64)

with vk(t+mτ) ,
∂θk(t+mτ)
∂xk(t) and ξk(t+mτ) ,

∂fk(t+mτ)
∂xk(t) . Moreover,

∇θJm =
[

∂Jm/∂θ1(t+mτ), ∂Jm/∂θ2(t+mτ), · · · , ∂Jm/∂θK(t+mτ)

]

∇fJm =
[

∂Jm/∂f1(t+mτ), ∂Jm/∂f2(t+mτ), · · · , ∂Jm/∂fK(t+mτ)

]

(65)

Equation (63) follows from the chain rule, where the target frequency and its DOA are as-

sumed independent from each other. Define Λi,m(t) and Υi,m(t) as the Hessian of θi(t+mτ)

and fi(t+mτ) with respect to Xt, respectively; and form Λm(t) = diag[Λ1,m(t), . . . ,ΛK,m(t)]

and Υm(t) = diag[Υ1,m(t), . . . ,ΥK,m(t)]. Then, the Hessian H ,
∂2J(t)
∂Xt∂Xt

is given by

H = Hθθ +Hff +Hθf (66)

where

Hθθ =
1

M

M−1
∑

m=0

{

[∇2
θθJm ⊗ 1] ⊙ [vecVm(t)vecHVm(t)] + [diag(∇θJm ⊗ I)] ⊙ Λm(t)

}

(67)

Hff =
1

M

M−1
∑

m=0

{

[∇2
ffJm ⊗ 1] ⊙ [vecΞm(t)vecHΞm(t)] + [diag(∇fJm ⊗ I)] ⊙ Υm(t)

}

(68)

Hθf =
1

M

M−1
∑

m=0

{

[∇2
θfJm ⊗ 1] ⊙ [vecVm(t)vecHΞm(t) + vecΞm(t)vecHVm(t)]

}

(69)

The operator vec stands for the concatenation of the columns of a matrix; ⊗ and ⊙ denote

the Kronecker and Schur products, respectively. In addition, 1 denotes a matrix of all ones

and I the identity matrix, both being dim{x} × dim{x}.

To guarantee the positive definiteness of l′′y , the terms containing Λm(t) and Υm(t) on

(67) and (68) are ignored while calculating the Hessian in (66) as discussed in [77]. Define

Ai(t + mτ) = ∂A(t + mτ)/∂θi(t), Cm(t + mτ) = ∂A(t + mτ)/∂fm(t), and γi(t + mτ) =

∂P⊥

A(t+mτ)Xt+mτ

∂θi(t)
. The following derivatives need to be approximated while calculating (67)

50



and (68):

∂2Jm
∂θi(t)∂θj(t)

≃ 2ℜ{γHi (t+mτ)γHj (t+mτ)}

∂2Jm
∂fi(t)∂fj(t)

≃ 2ℜ{tr[A†H(t+mτ)CHi (t+mτ)P⊥
A (t+mτ)CHj (t+mτ)A†H(t+mτ)]}

(70)

Hθf is not guaranteed to be negative definite and can be ignored; however, the authors

found that with the approximation below, Hθf almost never affects the definiteness of the

Hessian and can be used in the calculation of the Hessian (66):

∂2Jm
∂θi(t)∂fi(t)

≃ 2ℜ{tr[A†H(t+mτ)AHi (t+mτ)P⊥
A (t+mτ)CHj (t+mτ)A†H(t+mτ)]}. (71)

2.5 Simulation Results

In the simulations, our objectives are (i) compare the effectiveness of the two state for-

mulations for tracking targets; (ii) show the effect of the frequency variable on tracking.

Comparison of State Model-I with the extended Kalman filter also can be found in [60] and,

hence, is not repeated here. Issues related to initialization of the filters can be found in [59].

2.5.1 Single Target Tracking

A circular sensor array of 15 omnidirectional sensors is used to track a single target. The ra-

dius of the array is such that the inter-element spacing is equal to 0.45 times the wavelength

(λ) of the target of interest. Figure 14 shows the track and the temporal speed evolution

of the target. The simulation parameters are given in Table 4.

Table 4: Simulation Parameters (A)

Number of Particles, N 100
θ noise σθ 0.1◦

Q noise σQ 0.1
ψ noise σψ 0.0001
φ noise σφ 4◦

Signal to Noise Ratio, SNR 7dB
Target Narrow-band Frequency, f0 200Hz

Number of Batch Samples, M 8

In Table 4, some explanation of M , the number of batch samples, is necessary. If the

DOA tracking is done by a snapshot algorithm, a much higher number of batch samples
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Figure 14: (a) One target initially heading in the positive x-direction with speed approx-
imately equal to 7 mph, starts to maneuver at t = 30s. The sensor node is situated at the
origin. (b) The target has almost constant acceleration between t = 0 and t = 35. For
t > 35, the speed of the target is almost constant during the maneuver.

would be necessary to get high resolution DOAs. However, inclusion of the motion dynam-

ics reduces the number of batch samples required to estimate the target DOAs. Ideally, a

higher number of batch samples also helps the IPPF estimate the DOAs better since the

gradient and Hessian terms that form the mean and covariance matrix of the approximate

proposal function incorporate more data, and hence are expected to improve. Interestingly,

using synthetic data, the authors determined that even M = 2 makes a good approximation

to these parameters when the target accelerations are small and the algorithm is initial-

ized close to the true values. Additional improvement in DOA estimation performance by

increasing M is empirically found to quickly reach a point of diminishing returns. When

State Models I and II are run for the same target track in Fig. 14 with M = 2, both models

perform the same. However, as M is increased, State Model-II starts to perform better.

Figure 15 illustrates the estimation performance of the IPPF. The DOA estimation of

both filters is almost identical as shown in Fig. 15(a). However, if the true target tracks

were estimated using the IPPF state estimates in conjunction with the correct target initial

range and speeds (which are not available to the IPPF), the resulting tracks would be quite

different, as illustrated in Fig. 15(b). Even if the DOAs are the same, State Model-I explains

the increase in target speed with a change in the heading direction, but leads to an incorrect
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heading direction estimate, which is a crucial parameter in data fusion. Figure 16 shows

the estimated φ and Q parameters of the target. As one can observe, different values of

these parameters can lead to the same DOA track even if they do not correspond to the

true physical target track.
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Figure 15: (a) The diamonds are the true DOA track. The dashed line is the estimate from
State Model-I while the solid line is the estimate from State Model-II. The two estimates are
nearly identical in tracking the target DOAs. (b) Small errors in the DOAs are accentuated
by the range. State Model-II obtains a good estimate of the true target track because it
uses acceleration.

2.5.2 Multiple Target Tracking with Varying Narrow-band Frequencies

It is challenging to track two narrow-band targets whose DOA tracks are closer than the

Rayleigh resolution. The IPPF produces high-resolution DOA estimates; however, it can

fail when the target DOAs as well as the movement parameters are very close. The objective

in this section is to show that by incorporating a frequency variable into the state model, it

is sometimes possible to still track targets even in this difficult case. In this example, three

target tracks are simulated with different frequency scenarios (Fig. 17). Table 5 summarizes

the simulation parameters. Figure 18 shows the tracking performance when the targets

have the same time-frequency signatures. Targets marked with the diamonds (1) and the

circles (2) have very similar DOA tracks after time t = 15s. Initially, the IPPF does a good

job in tracking; however, as targets get closer, it fails.

Figure 19 simulates the same problem, but, in this case, targets 1 and 2 have different

time-frequency signatures. Note that the IPPF had problems resolving the DOAs of these
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Figure 16: (a) State Model-I tries to explain target accelerations through the heading
parameter; hence, it fails to capture the true target parameters. The true target heading
direction has additive Gaussian noise with σφ = 4◦, which is marked with diamonds. The
solid line is the State Model-II estimate. (b) Note that eQ(t) corresponds to v(t)/r(t) for
the target. State Model-II has a better Q(t) estimate since the target headings are close to
the true headings.
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Figure 17: Three targets move with constant speed but with some Brownian disturbance
acting on their heading directions. State Model-I is sufficient for the tracking in this case.
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Table 5: Simulation Parameters (B)

Number of Particles, N 100
θ noise σθ 0.1◦

Q noise σQ 0.01
φ noise σφ 4◦

Frequency noise σf 0.001
Signal to Noise Ratio, SNR 7dB

Number of Batch Samples, M 8

targets since they had close motion parameters and had the same time-frequency signature.

Due to the way the particles are generated (by the partition proposal functions πk(.) as

explained in Sect. 2.4), the DOA tracking of target 3 is also affected as shown in Fig. 18.

Hence, the change in the time-frequency signature of target 2 alleviates the independence

assumption on the partitions and improves the DOA tracking performance of the filter as

illustrated in Fig. 19 (b). Moreover, the partition weights qk(x) for each partition not only

depend on the motion parameters, but also the frequency. Hence, when the time-frequency

signatures of the targets differ, the IPPF can create better predictive states, resulting in

better tracking overall.
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Figure 18: (a) Initial target frequencies are 19.50Hz, 19.60Hz, and 19.60Hz. (b) As
the targets 1 and 2 get close to each other, their motion parameters are not sufficient to
distinguish their DOAs; hence, the IPPF’s DOA tracking performance deteriorates.
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Figure 19: (a) Only the frequency track corresponding to the target marked with circles is
changed from the previous example. (b) The tracking is now improved due to the difference
in the frequency of the targets that move close to each other.

2.6 Conclusions

The state and observation equation set is the heart of any tracking model. In this chapter,

two new state models and a new observation model were demonstrated using the IPPF.

Given an observable state update, it is relatively easy to generate the IPPF equations

automatically for an acoustic observation model that can resolve target DOAs. When all

the targets have either zero acceleration or small accelerations, both state models (I and II)

have nearly identical tracking performance. Since the computational complexity of state

model II is about twice that of state model I, this trade-off favors model I. In one of the

examples shown, two targets with the same DOA track have quite different tracks in x-y

space depending on the acceleration model. The ghost track estimated by model I, due to

the incorrect heading direction estimate, would be undesirable when doing data association

with multiple nodes; hence, model II is preferred since it included acceleration in its state.

A derivation for the array steering matrix in the case where the target signal phases are

locally quadratic was presented. In addition, it was demonstrated that if the state is also

augmented to include the frequency of individual targets, then it is possible to track targets

with similar motion parameters when the targets have different time-frequency signatures.

This is an important result, since it enables acoustic trackers using these new state models

to track multiple targets moving close to each other, such as in a convoy.
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CHAPTER III

AN ACOUSTIC MULTIPLE TARGET TRACKER

Figure 20: Chapter outline with the new contributions shown in rectangular boxes.

3.1 Introduction

Tracking the bearing angles of multiple maneuvering targets using acoustic arrays is a classic

problem with many challenging aspects. In the literature, the problem is usually formulated

in terms of state-space models where target direction-of-arrivals (DOA) are related to the

acoustic microphone outputs through an observation equation, and the updates on the state,

which may include variables other than DOA alone, are explained by locally linear motion

models [18, 60, 77]. The performance of these algorithms relies heavily on how accurately

these models represent the observed natural phenomena.

One important observation model is the far-field narrow-band observation model, where

the array response is related to a source with a constant narrow-band frequency at a DOA,

θ, through some steering vectors under the assumptions of an isotropic and non-dispersive

medium [42]. This model possesses a well-understood mathematical structure and has had

a significant impact on the DOA estimation problem because it has led to many practical

DOA estimation techniques (e.g., MUSIC, MVDR, eigenvalue beamformers, etc.). However,
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the estimation performance of algorithms based this model deteriorates when the target

signals are wide-band, or when rapid target motion spreads the array spatial spectrum. The

complexity of this observation model increases significantly as some of the assumptions in

the model are relaxed to more accurately represent reality, rendering the tracking algorithms

analytically intractable.

The presence of multiple targets increases tracking complexity even more because of data

association issues, where a mechanism is needed, in effect, to sort the received data for each

target. The association problem could be handled in several different ways: (i) probabilistic

data association methods estimate states by summing over all the association hypotheses

weighted by the probabilities obtained from the likelihood [7], (ii) smoothness assumptions

on the target (motion) states allow a natural ordering of the data [45], (iii) computationally

costly ML/EM methods use likelihood functions to search for a global maximum, and (iv)

nearest neighbor methods provide easy heuristics to perform measurement updates. Most

of these methods use the mean and the covariance approximation on the sufficient statistics

for the state, which may be estimated with a Kalman filter. For nonlinear state-spaces

with non-Gaussian noise assumptions, Monté-Carlo methods should be used to adequately

capture dynamic, possibly multimodal, statistics.

A particle filter naturally accommodates solutions for state-space problems where the

observations arrive in sequence. The state probability density function is represented by

discrete state samples (particles) distributed according to the underlying distribution (as

explained by the state-space), either directly or by proper weighting [48]. Hence, the filter

can approximate any statistics of the distribution arbitrarily accurately by increasing the

number of particles. This convergence result has been proven for the general case. In the

particle filtering framework, the data association problem is undertaken implicitly by the

state-space model interaction. However, to increase the efficiency of the algorithm, various

methods have been proposed, such as the partitioning approach covered in the previous

chapter, or other Bayesian approaches [41].

In the previous chapter, we have shown a particle filter tracker that tracked multiple

maneuvering targets using various observation/state-update models and the partitioning
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approach. In the filter mechanics, the data-likelihood functions were derived in terms of the

acoustic microphone outputs based on the discussed observation models. In this chapter, on

the other hand, instead of directly using the signals as explained by an observation model, a

particle filtering algorithm is introduced that uses a sufficient statistics of the state vector,

namely a batch of DOA estimates yt,f = {yt+mτ,f (jm)}M−1
m=0 from a beamformer appropriate

for the local frequency characteristics of the target signals.

If the observed acoustic data deviates from the observation models introduced in the

previous chapter, the performance of the particle filter built on these models also degrades.

The front-end beamformers grant the new particle filter the ability to be independent of

the observation model. This is because when the acoustic signals are better explained

by different observation model, a different beamformer matching the observations can be

used. Therefore, the filter input does not change. In this case, because the filter uses a

sufficient statistic as opposed to the full acoustic data, overall computation is also decreased

as compared to the particle filter in the previous chapter.

The new filter state, similar to the previous chapter, consists of the DOA θk(t), the

heading direction φk(t), and the logarithm of velocity over range Qk(t) = log vk/rk(t) for

each target k, where the total number of targets K is assumed known. The state is reported

at regular time intervals of T = Mτ seconds. The batch DOAs may also depend on

frequency f (e.g., DOAs calculated at different narrow-band frequencies), which is suitable

in specific tracking scenarios. The number of DOA estimates jm at time t + mτ is also

modelled as time-dependent.

The observations are assumed to be normally distributed around the true DOA tracks

with a constant missing data probability and clutter rate. To increase the efficiency of

the algorithm, the filter uses an approximation of the full posterior to generate particles

and a robust Newton search method to approximate the data-likelihood. Data association

is handled automatically by the particle filter by imposing smoothness constraints on the

target motion. Lastly, all DOA observations within the batch are assumed locally stationary

to avoid angle spread due to target motion since the batch sampling period τ is assumed

small.
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The organization of this chapter is as follows. Section 3.2 gives a brief overview of the

motion model and provides the needed data-likelihood expressions. The particle filter details

are covered in Sect. 3.3 where a constrained Newton method is introduced to approximate

the filter proposal function. Finally, a representative set of simulation results is given in

Sect. 3.4.

3.2 State-Space Formulation

The particle filter state vector xk(t) consists of the concatenation of the individual mo-

tion vectors xk(t) , [ θk(t) , Qk(t) , φk(t) ]T , as partitions, into the state vector xt =

[

xT1 (t), xT2 (t), . . . , xTK(t)
]T

. The parameters θk(t) and φk(t) are measured counterclock-

wise with respect to the x-axis. The nonlinear state update equation can be derived from

the geometry imposed by the assumed constant velocity motion [18,77]:

xk(t+ T ) = hT (xk(t)) + uk(t) (72)

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
q,k, σ

2
φ,k} and hT (xk(t)) =













tan−1
{

sin θk(t)+T expQk(t) sinφk(t)
cos θk(t)+T expQk(t) cosφk(t)

}

Qk(t) − 1
2 log

{

1 + 2T expQk(t) cos(θk(t) − φk(t)) + T 2 exp 2Qk(t))
}

φk(t)













(73)

The observations yt,f = {yt+mτ,f (jm)}M−1
m=0 consist of all the DOA estimates produced by

a beamformer at each batch index m. Hence, the acoustic data of duration T is segmented

into M segments of duration τ . These segments are processed by a proper beamformer,

based on the temporal frequency structure of the signals, to calculate possible DOA esti-

mates. This procedure may be repeated F times, once for each narrow-band signal, for

each frequency indexed by f . Note that only the peak locations are kept in the beam-

former power pattern. Moreover, the peak values indexed by jm need not be ordered or

associated with the previous index m − 1 and the number of peaks to retain can even be

time-dependent.

Figure 21 illustrates the observation model. It is assumed that the batch of DOAs,

yt,f , form a normally distributed cloud around the true target DOA tracks with a constant
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missing data probability κ1, and may have spurious peaks Poisson distributed with rate λ.

The variance of the DOAs, σ2, is assumed constant and may be estimated using the DOAs

from the previous estimation period in conjunction with the understanding the estimation

techniques the specific beamformer uses. For example, for an ML estimator using the

narrow-band model, there is a formula that calculates the additive array noise variance

given in [77]. The array noise can then be related to an expected DOA noise through the

formulas in [71].

jm = 3

yt,f (j0)

jm+1 = 1

0

τ

MM − 1

Batch Index

Missing
data

spurious peak

Figure 21: The circles and squares are the DOA estimates at different frequencies calcu-
lated using the acoustic data received during a period of length τ . Given the observations
yt,f , the objective of the tracker is to determine the state xk(t) that completely parameter-
izes the solid curve.

This specific observation model is similar to that used in active contour image tracking

problems [40]. The data likelihood given the state under the assumptions described above

can be written as p(yt|xt) ∝

∏

f

∏

k

∏

m







1 +
1√

2πκλ

∑

jm

exp−(hθmτ (xt) − yt+mτ,f (jm))2

2σ2







, (74)

where yt = {yt,f}Ff=1 denotes the cumulative DOA data calculated in time interval [t, t+T )

1This model assumes that only one DOA at each f belongs to the target or that the target is missed. By
assuming that the probability of the true measurement being in the observed data is equal for each jm, a
constant data miss probability κ may be assumed [40].
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and hθ refers to the DOA components. Equation (74) also assumes that each frequency ob-

servation set is independent of each other. If there is a known internal correlation structure,

a joint density can be formulated to replace (74).

3.3 Particle Filter Details

The efficiency of the particle filter algorithm depends on the proposal functions that deter-

mine the random support of the particles to be properly weighted for estimation. In this

section, a proposal function, denoted as g(xt|yt,xt−1), is derived to approximate the target

posterior density directly:

g(xt|yt,xt−1) ≈ p(xt|yt,xt−1) ∝ p(yt|xt)p(xt|xt−1), (75)

where p(xt|xt−1) ∼ N (fT (xt−1),Σu) and p(yt|xt) is given by (74). Moreover, the propor-

tionality in (75) is independent of the current state xt. This approximation, in effect, moves

the particle stream towards high probability regions of the posterior so that more particles

survive the final resampling step, producing better future states as the system evolves [48].

The posterior density should be approximated such that the resulting proposal function

is as close to the posterior as possible and, at the same time, is easy to sample from.

Hence, different Gaussian approximations to the full posteriors are commonly used in the

literature [25]. In our case, we will approximate the data-likelihood by a Gaussian so that

the proposal function will also be Gaussian. Hence, a mean µy and a covariance Σy should

be first determined from the observed data yt. Then, by using the Gaussian parameters of

the state update, an analytical relation for the proposal function will be given.

The mode of p(yt|xt), denoted as xM , is a good candidate for the parameter µy. Then,

the Hessian H of (74) at the mode can also be used as the covariance estimate Σy = H−1.

To calculate these parameters, a Newton search algorithm can be used on the negative

log-likelihood of the data [77]. However, the resulting analytical relations have numeri-

cal sensitivity issues. As an alternative, we propose using the following cost function to

62



determine the mode xM :

J = −
∑

f

∑

k

∑

m

∑

jm

exp

{

−(hθmτ (xt) − yt+mτ,f (jm))2

2σ2

}

+
1

2
(xt − x0)

TΣ−1(xt − x0)

(76)

This cost function consists of two terms: the first term has the same minima as the negative

log-likelihood function of the data distribution, and the second term is a regularization term

that forces the solution xM to lie close to some vector x0 with respect to a weighted distance

measure defined by Σ.

Nominally, the mode should be within the particle cloud coming from the previous

iteration after being propagated through the state update. Hence, an easy way to determine

the mode would be to choose the particle best explaining the current data set (denoted as

x0 in (76)). Unfortunately, when the targets maneuver, x0 may fall outside actual data

observations. This necessitates the correction accomplished by the Newton algorithm to

determine the actual mode xM .

Note that the cost function, without the regularization term, only depends on the angle

distances. The gradients in that case may lead to physically infeasible (motion) changes in

the states Q(t) and φ(t) to account for fractional angle errors while determining xM . Hence,

the regularization is introduced to constrain the solution space to lie in the Σ neighborhood

of x0, and, at the same time, impose smoothness on the target motion. The parameter Σ

also bounds the covariance of the data-likelihood approximation.

If we define G = ∂J/∂xt and H = ∂2J/∂xt∂x
T
t , the Newton recursion is given by the

familiar expression xl+1
t = xlt − µlH

−1G. The step size µl should be decreased adaptively,

making sure that the cost function is always decreasing. Although time-consuming, it is

straightforward to derive analytical expressions for G and H (similar calculations can be

found in [77] as well as in Chapters 2 and 4.)

Even with the available analytical relations, the calculation of the Hessian still poses

problems. If the Hessian of (76) is directly calculated from the exact formulas, it is possible

to show that the resulting expression for H is not guaranteed to be positive definite, and
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modifications are necessary to make the Newton correction H−1G effective at each itera-

tion2. Hence, while calculating the final expression of the Hessian, terms including second

order derivatives are neglected. In this case, the Hessian is a function of the outer product

of the gradient, and it is possible to prove that it is positive definite.

After the Gaussian approximation to the data-likelihood described above, the final ex-

pression for the proposal function to be used in the particle filter is given by :

g(xt|yt,xt−1) ∼ N (µg,Σg) , where (77)

Σg =
(

Σ−1
y + Σ−1

u

)−1
, µ = Σg

(

Σ−1
y xM + Σ−1

u hT (xt−1)
)

. (78)

Then, the particle filter incremental weights are given by

u(i) =
p(yt|x(i)

t )p(xt|x(i)
t−1)

g(x
(i)
t |yt,x(i)

t−1)
(79)

The filter implementation used in the simulations also has a resampling (with replacement)

stage after estimation.

3.4 Simulations

The objective of the simulations is to demonstrate the performance of the algorithm, using

data generated according to the assumed models. For comparison, in the last example,

we also generated acoustic data based on the narrow-band array model and calculated the

observations using the minimum variance distortionless response (MVDR) beamformer. To

initialize the trackers, we used a particle cloud with the correct mean, and a covariance of

Σ0 = diag{(2◦)2 , (0.1)2 , (4◦)2}. For the Newton algorithm that approximates the data-

likelihood for the particle proposal, an initial step size of 0.1 is used, which is decreased

adaptively until 1000 iterations are reached. In the simulations, we used Σ =
√

2Σu. A

complete list of the simulation parameters is given in Table 6.

Figure 22 demonstrates a single-target tracking scenario. The observed DOAs are Gaus-

sian distributed around the true DOA track with variance (2◦)2. The filter does a good job

of catching the target as it maneuvers at t = 16s because it uses a large heading process

2The same issue applies to the the negative log-likelihood of (74).
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Table 6: Simulation Parameters.
Fig. N T M F σ σu,θ σu,Q σu,φ

22, 24 100 1 10, 20 1 2◦ 1◦ 0.05 10◦

23 100 1 10 2 3◦ 1◦ 0.05 10◦

noise variance. Figure 23 shows a much more difficult scenario for the tracker, where DOA

estimates calculated at two independent frequencies are given, each with the correct mean

and a variance of (3◦)2. There is a little bias in the DOA estimates between t = 4s and

t = 6s where the targets are crossing. This bias is, in part, also due to the target maneuvers,

which start at t = 4s. The filter maintains the track coherence in this difficult case using the

independent observations. We observed that the filter can confuse the targets without the

second set of DOAs coming from a different frequency. Although its estimates deteriorate

in the region where targets are crossing as well as maneuvering, the filter locks back on

the targets after the transient region by using the independent observations as well as the

motion smoothness constraints.

For the last example (Fig. 24), acoustic data sampled at Fs = 1000Hz is generated for two

targets, each with narrow-band frequencies f1 = 40Hz and f2 = 80Hz, using the narrow-

band observation model [42]. The filter state is also augmented to include a frequency

variable: xk(t) , [ θk(t) , Qk(t) , φk(t) , fk(t) ]T [18]. Then, Gaussian noise is added to

the array data such that the noise standard deviation is equal to one-tenth of the sinusoid

amplitudes. The microphone array used for the simulation has 15 microphones situated

uniformly on a circle such that the minimum inter-microphone distance is .45 times the

wavelength of the second signal. The acoustic data is run through the MVDR beamformer,

where the highest three peaks are picked with no particular order, at each batch index. The

1000 data samples in the batch are segmented into M = 20 sections, each containing 50

samples used to calculate each DOA. DOAs are used to output per state vector at a period

of T = 1s.

Note that in this case, ignoring the model dependent angle bias (≈ 0.2◦), the calculated

DOAs are distributed around the true DOA track with much less variance (≈ (0.4◦)2) than

the assumed variance σ2 = (2◦)2. Hence, the actual data-likelihood is narrower than what
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Figure 22: Top: Black dots are the DOA observations generated by adding Gaussian noise
to the true target DOA track. The filter estimate is indistinguishable from the true DOA
track. Left: Ground truth vs. filter estimate. The sensor array is shown with the star. The
filter track estimate is calculated by using the filter outputs along with the correct initial
target position. Right: Filter heading estimates vs. the true target heading.

is assumed by the tracker. This decreases the number of effective particles that contribute

to the estimation accuracy. This is expected, since the filter is not matched to the data;

however, this also demonstrates the robustness of the algorithm for the unmatched prior

case.

3.5 Conclusions

In this chapter, a robust acoustic tracker is formulated in a flexible framework that makes

minimal assumptions on the observations. Even though the filter requires a batch of data to

process, it can be implemented for online applications because the data-likelihood approx-

imation can be done as the data is being accumulated. Since the filter uses the Bayesian

framework, it can avoid the data association problems commonly encountered in target
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Figure 23: DOAs represented by diamonds and dots are generated by independent noise
and are input to the filter unsorted.
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Figure 24: The DOA bias in the MVDR beamformer estimates is negligible, since the
number of samples used for the estimation is small. The filter automatically separates
DOAs with respect to the frequency planes defined by fk in the state. This way the filter
survives the period between times t = 5s and t = 8s where the motion vectors for both
targets are very similar. Without the help of the frequency association, the filter confuses
the targets. Note that due to the spacing of the sensors, there is spatial aliasing for target
2. That is why some of the spurious peaks (circles) form a track similar to the true target
track.

tracking. The multiple target tracking performance can be further improved by altering

the data likelihood so that a confusion probability is assigned to each data point while the

targets are crossing.
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CHAPTER IV

CALIBRATION: THE DUAL OF TARGET TRACKING

Figure 25: Chapter outline with the new contributions shown in rectangular boxes.

4.1 Introduction

If an acoustic node is defined to be an array of omnidirectional microphones whose relative

positions are known with respect to each other, then the node calibration problem consists

of determining the unknown array center and array orientation. This problem differs from

the problem of calibrating the individual microphone positions previously considered in the

literature [56,57]. In [57], accurate localization of individual microphone positions was done

by considering the effects of the calibration on the array manifold matrix, which affects the

DOA estimate. On the other hand, the methods described in this chapter calibrate one

or more nodes in which the individual microphones have fixed relative positions. Multiple

nodes would then be used to estimate target position via triangularization as shown in

Fig. 26.
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Figure 26: Black dots are the centers of acoustic nodes (arrays) and the solid arrows
through the nodes represent their reference orientations for the local DOA estimates. The
DOAs are measured counterclockwise from the reference. If the node centers and orienta-
tions are known, then it is possible to triangulate the target position (xt, yt).
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There has been some previous work in calibrating acoustic nodes using beacons or mov-

ing sources [20,52,53]. The scenario considered in this chapter is similar to one considered

in [20], where a moving calibration source is available. Here, it is assumed that the calibra-

tion source can report its position, e.g., acquired via the global positioning system (GPS).

The acoustic nodes themselves are assumed to not have GPS capability due to battery lim-

itations or jamming susceptibility (justifications can be found in [53].) The imperfect GPS

position estimates of the moving source will be modelled as noisy, and the effects of the GPS

noise on the estimation performance of the node positions will be treated in Section 4.5.1.

Several calibration methods are proposed in this thesis, including a Maximum Likeli-

hood (ML) solution that works directly with the acoustic microphone array output signals,

and two DOA-based algorithms that first process the microphone outputs to estimate the

angle to the moving source, and then use simple geometry to calibrate from that angle

information. The DOA-based algorithms include a Synthetic Aperture Calibration Method

and a Metropolis-Hastings Calibration Method. The maximum-likelihood estimator of the

node-center location is derived using an acoustic array data model. Then, a Newton search

algorithm is employed to avoid calculating the whole ML surface. For the Newton algo-

rithm, an initial node-center location and node orientation close to the true values must be

provided. These initial estimates can be provided by any method, even one of the DOA cal-

ibration algorithms. We also give the Cramér-Rao performance bounds for the calibration

problem for the different estimation methods and consider the sufficiency of these auxiliary

DOA estimates.

The organization of the chapter is as follows. Section 4.2 formulates the problem and

presents the ML solution along with performance bounds and the Newton search algorithm.

Section 4.3 describes the DOA calibration algorithms that use auxiliary DOA estimates and

geometrical arguments. Section 4.4 demonstrates a relative calibration algorithm based on a

constant velocity calibration target. Computer simulations of a typical scenario are provided

in Sect. 4.5.

71



4.2 A Maximum-Likelihood Solution for the Calibration Prob-

lem

In this section, we will present the ML solution for the node position and orientation, given

a moving calibration source and local measurements of its sound at the node array mi-

crophones. It is assumed that the calibration source has a narrow-band time-frequency

signature and its position estimates at each time are supplied by a GPS device. The GPS

errors are modelled as i.i.d. Gaussian; their effects on calibration performance are consid-

ered in a later section. An example calibration source is a helicopter, which also has the

capability to deploy the nodes in the field. The agility of such a calibration source introduces

non-stationarity problems not often treated in the standard array model for beamforming.

The ML estimate can handle this non-stationarity, but the DOA-based methods given in

Section 4.3 require motion compensation to achieve the accuracy needed for calibration.

For the ML solution, it is necessary to have GPS estimates and acoustic measurements

that are time-synchronized. However, since the calibration source is assumed to lie in the

far-field of the sensor, its sounds will not arrive instantaneously at the acoustic node, and

the acoustic data will be delayed relative to the earlier arrival of the GPS, which would be

transmitted electronically. This acoustic propagation delay must be taken into account by

estimating the actual time delays along with the node position and orientation. It is likely

that more iterations of the ML algorithm will be needed to obtain correct automatic time

synchronization from the data1.

4.2.1 ML Solution

We define ξ as the vector consisting of the unknown node-center position (x, y) and the

unknown node orientation ϕ in the 2D plane:

ξ = [x, y, ϕ]T (80)

1Even if the sensor network has built-in global timing, e.g., by time-stamping the GPS data transmit-
ted from the moving calibration source, there is no guarantee that the clocks in the moving source and
the network are perfectly synchronized, so the time synchronization issue must be addressed during the
processing.
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The known (noisy) track of the moving source supplied by the GPS is χt = [xT (t), yT (t)]T .

Using ξ and χt, the node-to-source bearing angle θt (measured counterclockwise with respect

to the x-axis) and range Rt at time t are

θt(ξ,χt) , −ϕ+ tan−1

(

y − yT (t)

x− xT (t)

)

,

Rt , ‖ξx,y − χt‖.
(81)

If the node estimate ξ is known, there is a one-to-one correspondence between χt and

(θt, Rt).

The acoustic signals at the microphones will be modeled according to the standard

model:

y(t) = a(θt)s(t) + na(t), (82)

where na(t) is additive noise. Section 2.2.3 discussed the assumptions that underlie the

derivation of this model. Under the i.i.d. Gaussian assumption on the array noise na(t),

the probability density function (pdf) of the observed data is given by

p(YK |ξ,χ0, . . . ,χt) =
K−1
∏

t=0

1

πPσ2P
exp

[

− 1

σ2
‖y(t) − ats(t)‖2

]

, (83)

where σ2 is the array noise variance, K is the total number of observations at the sampling

frequency Fs, P is the number of microphones in the node, at , a(θt(ξ,χt)) is the steering

vector, and YK is the aggregate data vector formed by stacking all the observed data as

follows:

YK =



















y(t)

y(t+ τ)

...

y(t+ (K − 1)τ)



















, where τ =
1

Fs
. (84)

Equation (83) models the data likelihood that we are seeking to maximize with respect

to ξ to find the ML solution. First, the negative log-likelihood function is obtained

L− .
= KP log(πσ2) +

1

σ2

K−1
∑

t=0

‖y(t) − ats(t)‖2 (85)

where
.
= denotes equality up to a constant. Since the array steering vector at depends on ξ,

the optimal solution for ξ (node-center position and orientation) is the one that best aligns
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the microphone output signals y(t) with shifted versions of the common source signal s(t),

given the source GPS track and the relative microphone positions.

The ML estimate (maximizing the log-likelihood function) is equivalent to minimizing

L−. We can eliminate s(t) and σ2 from the minimization. First of all, we fix ξ and s(t) and

minimize L− with respect to σ2 to find the ML noise variance. Next, the signal estimate is

found by taking the variation of (85) with respect to s(t), and setting it equal to zero. The

results are:

σ2
ML =

1

KP

K−1
∑

t=0

‖y(t) − at(ξ)s(t)‖2

sML(t) = 1
P aHt (ξ)y(t)

(86)

Substituting these ML estimates into L−, we can rewrite the second term in (85) as an ML

cost function that depends on ξ alone:

J(ξ) =

K−1
∑

t=0

tr
{

PtR̂t

}

=

K−1
∑

t=0

tr
{

(I − 1
P at(ξ)aHt (ξ))R̂t

}

=

K−1
∑

t=0

Jt(ξ) (87)

where Pt = I − 1
P at(ξ)aHt (ξ) is the projection onto the null space of aHt (ξ), and R̂t =

y(t)yH(t) is the one-sample autocorrelation estimate. Finally, the ML estimate would be

obtained by minimizing the cost function in (87)

ξML = arg min
ξ
J(ξ). (88)

4.2.2 Newton Search Algorithm

The solution to (88) might require the evaluation of the cost function J(ξ) over the entire

domain of the parameter vector ξ to obtain the global minimum, but this would be compu-

tationally expensive and unnecessary in most cases. The function J(ξ) can have multiple

local minima. However, if an initial estimate can be found that is reasonably close to the

global minimum, then the cost function can be approximated via the expansion:

J(ξ + δξ) ≈ J(ξ) + gT (ξ)δξ + 1
2 δξ

TH(ξ)δξ, (89)

74



where g and H are the gradient and the Hessian of J(ξ), respectively. The necessary

gradient of the cost function (87) can be calculated using the chain rule:

g ,
∂J(t)

∂ξ
=

1

M

M−1
∑

t=0

V (t)diag(∇θJt), (90)

where

V (t) ,
∂θt
∂ξ

(91)

and

∇θJt = −2Re

{

a
†
tR̂tPt

∂at
∂θt

}

. (92)

The Hessian H ,
∂2J(t)

∂ξ∂ξH
is then given by

H =
1

M

M−1
∑

t=0

{

[∇2
θθJt ⊗ 1] ⊙ [V (t)HV (t)] + [diag(∇θJt ⊗ I)] ⊙ Υ(t)

}

, (93)

where Υ(t) is the Hessian of θt with respect to ξ, and 1 and I denote a matrix of all ones

and the identity matrix of appropriate dimensions. Symbols ⊗ and ⊙ denote the Kronecker

and Schur products, respectively. To guarantee the positive definiteness of H, the term

containing Υ(t) in (93) is ignored while calculating the Hessian as discussed in [77]. The

following derivative also needs to be approximated while calculating ∇2
θθJt:

∂2Jt
∂θ(t)∂θ(t)

≃ 2Re{γH(t)γ(t)}, (94)

where we define γ(t) =
∂Pty(t)

∂θt
.

Newton’s method can be employed to find the global minimum via the iteration:

ξk+1 = ξk − µkH
−1
k gk, (95)

where gk and Hk are the kth step estimates of the gradient and the Hessian, and µk is a non-

negative step size. It is well-known that Newton’s method exhibits quadratic convergence

when starting sufficiently close to the optimum point.

At this point, it is important to recall that the ML solution above does not include the

effects of errors in the GPS track (χt) on the estimation performance of finding ξ. This is

addressed in the next subsection, where it is shown that such errors are usually negligible.
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4.2.3 Effects of the GPS Errors on the Estimation Performance

In the 2D problem under consideration, the GPS outputs χt have components in the x

and y directions, and if we model errors in the GPS as zero mean i.i.d. Gaussian noise,

nχ ∼ N (0, σ2
χI), then we can compare the relative effects of GPS noise and microphone

noise on the final calibrated node-position estimate. The size of the GPS errors is generally

on the order of 1–5 meters. Rather than finding the variance of the final calibrated node-

position estimates directly, we develop a formula for the array output y(t) that includes a

perturbation due to GPS noise. Then the size of this perturbation term is compared to the

array noise to derive the condition under which GPS noise is negligible.

The array output y(t) depends on the angle to the source θt, which, in turn, depends

on the source location. With GPS noise there is uncertainty in the source location, which

translates into a perturbation of the angle and finally into additive noise in the array output.

The first step is to find the effect of GPS noise on the auxiliary variable θt defined in (81).

Expanding in a Taylor series, the first-order perturbation can be modeled as follows:

θt(ξ,χt + nχ(t)) ≈ θt(ξ,χt) + nxχ(t)
∂θt

∂nxχ(t)

∣

∣

∣

∣

∣

nx
χ(t)=0

+ nyχ(t)
∂θt

∂nyχ(t)

∣

∣

∣

∣

∣

ny
χ(t)=0

. (96)

By taking the necessary derivatives of (81) and noting that the noise nχ(t) is independent in

the x and y directions, and that the second-order terms are very small, we can approximate

the DOA θt as Gaussian:

θt(ξ,χt + nχ(t)) ∼ N
(

θt(ξ,χt),
1

R2
t

σ2
χ

)

, (97)

with the correct mean θt(ξ,χt) and a variance that is inversely proportional to the square

of the range, R2
t . This leads to an intuitive result: when the GPS errors are very small

compared to the target range, the position errors will translate into an approximate angle

error of tan−1(σχ/Rt) ≈ σχ/Rt, which is tiny when Rt is large.

The next step is to derive the effect of GPS noise on the steering vector. Once again, a

first-order approximation can be used:

a(ξ,χt + nχ(t)) ≈ a(ξ,χt) +
∂a

∂θ
nθ. (98)
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As an example, we explicitly derive the effect for a narrow-band calibration source, whose

center frequency is f0. To simplify the mathematical expressions, assume that the pth

microphone position is given in polar coordinates (ρp, φp), and the array steering vector

(50) derived in the Chapter 2 can be written as

[a(ξ,χt)]p = exp

[

j
2πf0ρp
c

sin(θt(ξ,χt) + φp)

]

, (99)

where c is the speed of sound and [a]p indicates the pth element of the vector a. The

derivative of (99) becomes

∂a

∂θ
=
j2πf0

c
a(ξ,χt)λ(θ),

where λ(θ) = diag{[ρ1 cos(θ + φ1), . . . , ρP cos(θ + φP )]}. If we define Λ(θ) = λ(θ) ⊙ λ(θ),

then the array outputs for a target signal with constant envelope magnitude of one can be

shown to obey the following Gaussian distribution

y(t) ∼ N (a(ξ,χt),Σ(ξ,χt)) , (100)

where the autocorrelation matrix Σ is a function of the array noise as well as the GPS noise:

Σ(ξ,χt) = σ2I +

(

2πf0σχ
cRt

)2

a(θt)Λ(θt)a
H(θt). (101)

The second term in (101) is the perturbation due to GPS errors. If σ ≫ 2πf0σχ
cRt

, then it can

be argued that GPS errors have a small impact on the estimation performance because the

data likelihood (83) is not affected. For most cases of interest in our work, this is reasonable

because the narrow-band frequencies of the source are usually less than 100 Hz, the GPS

error standard deviation σχ is on the order of a few meters, and the range Rt is a kilometer

or more.

4.2.4 Cramér-Rao Lower Bound for the Estimate of ξ

The Cramér-Rao lower bound (CRLB) is an information theoretic inequality, which provides

a lower bound for the variances of the unbiased estimators. If an estimator achieves the

CRLB, then it is also a solution of the likelihood equation. However, it is not always true

that the ML solution will achieve the CRLB (at least, for finite sample sizes) or that it will
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be unbiased [63]. The CRLB is still a useful metric with which to compare the performance

of an algorithm, and is derived for the calibration problem in this section.

First, we derive an expression for the Fisher information matrix (FIM). Assume that

the noise variance σ2 is known. The log-likelihood function (83) for the parameter vector ξ

simplifies to the following relation:

L(ξ)
.
= − 1

σ2

K−1
∑

t=0

‖y(t) − ats(t)‖2 (102)

where at = at(θt(ξ,χ)) is the steering vector from the node position to the calibration

source. The (i, j)th element of the FIM is given by partial derivatives of (102) with respect

to the ith and jth parameters of the vector ξ

Fi,j = Ey

{

∂2Lχ(ξ)

∂ξi∂ξj

}

= − 2

σ2

∑

t

ℜ
{

(

∂at
∂ξi

)H ∂at
∂ξj

}

(103)

where ξi = [ξ]i and Ey{·} denotes the expected value with respect to the data distribution

(see [57] for a similar derivation). The Cramér-Rao lower bound is the inverse of this ex-

pression [63]. Interestingly, the CR bound depends on the source’s narrow-band frequency:

the higher the frequency, the lower the localization bound. In Sect. 4.5 on simulations,

Fig. 32 shows this dependence for a specific scenario.

4.3 DOA-Based Calibration Algorithms

In the previous section, the calibration problem was introduced and the maximum-likelihood

solution presented. The remainder of the chapter treats another set of methods called DOA-

Based calibration algorithms that exploit the geometry of the problem defined by the GPS

(carried by the source) along with estimated DOAs (at the node). These methods rely on

the fact that the DOA is a sufficient statistic from which it is possible to determine the node-

center position and orientation. We first explain the angle matching idea used by the DOA-

based calibration methods. Then, two DOA-based calibration methods are studied: the

first uses the synthetic aperture concept from radar, and the second, a Metropolis-Hastings

type of Monté-Carlo algorithm. For both DOA calibration algorithms, performance bounds

are derived and examples are included.
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4.3.1 Angle Matching

The DOA-based calibration algorithms use a simple angle matching idea coming from the

geometry of the problem, illustrated by Fig. 27. As the target moves, the node estimates a

DOA track θ(t) with respect to its orientation by using the target’s acoustic data, indepen-

dent of the node position. The node can also calculate a node-to-GPS angle track ψ(t) as

a function of the node position (x, y) and the GPS track (xT (t), yT (t)) transmitted by the

target (Fig. 27):

ψ(x, y, t) = tan−1

(

y − yT (t)

x− xT (t)

)

= θ(t) + ϕ. (104)

Then, by assuming that the DOA estimation errors are zero mean Gaussian random vari-

ables, a maximum-likelihood solution can be found for ξ by minimizing the following cost

function:

ξML = arg min
ξ

∑

t

(ψ(x, y, t) − θ(t) − ϕ)2

σ2
θt

, (105)

where σ2
θt

is the DOA estimation variance, which will be discussed later.

ϕ

ψ

θ

β

(x, y)

(xT , yT )

R

Figure 27: The node position is shown with a circle at the position (x, y). As the target
moves (dashed line), the node can calculate two angles θ(t) and ψ(t) that should be matched
to determine the unknown parameter vector ξ. The parameter β is called the synthetic
aperture radar (SAR) angle, as explained in the next section.

In reality, the above solution will calibrate the array only moderately well because it

does not consider the target acoustic data propagation time. When the target reports
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its GPS position electronically at some position χt, the GPS information arrives at the

node with the speed of light. However, the acoustic data corresponding to GPS-reported

position arrives at the node with the speed of sound, which is significantly slower. Hence,

time synchronization is required to match the estimated DOAs to the node-to-GPS angles.

Denote τ(t) as the arrival time at the node for a sound emitted at the “source” at time

t. Then,

τ(t) = t+ ||ξx,y − χt||/c, (106)

where c is the speed of sound. Hence, the angle matching equation (104) as well as the ML

solution to it should be modified accordingly

ψ(x, y, t) = θ(τ(t)) + ϕ (107)

ξML = arg min
ξ

∑

t

(ψ(x, y, t) − θ(τ(t)) − ϕ)2

σ2
θt

. (108)

Another Newton type of algorithm can be formulated for the solution of the above equation.

The solution will not be discussed here because it is trivial and a similar ML solution was

considered in the previous section. Instead, we will explain two novel solutions, one based

on the synthetic aperture radar concept, and the other based on Monté Carlo simulation

methods.

4.3.2 Synthetic Aperture Calibration Method

The synthetic aperture concept is the idea of creating a large aperture size from a small

moving physical aperture to obtain better angular resolution. In the node calibration prob-

lem, if the problem is reformulated by time-reversing the events such that the fixed node is

considered to be the sound source and the moving calibration source the receiver(s), then

it is possible to apply the synthetic aperture concept. That is, we will create a moving

pseudo-receiver defined by the calibration source’s GPS track and assume that the signals

are coming from the acoustic node (Fig. 28). The moving pseudo-receiver can be grouped

into synthetic subarrays, from which we can estimate the DOAs to the fixed node, and then

calibrate the node position by the triangulation geometry.
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Synthetic Array 1

Synthetic Array 2

Target Track

β1

β2

β1

β2

Acoustic Node

Figure 28: The moving calibration source can be interpreted as a moving pseudo-receiver
that creates a synthetic aperture. Pseudo-receiver positions can then be grouped into sub-
arrays and used to estimate DOAs assuming the signals are coming from the fixed sensor
node. This does not require additional transmission of the recorded target sounds from the
node, since this estimation can be done at the node.

A single synthetic receiver position will consist of a fixed number of signal samples M

and will be assigned a fixed position, even though the real receiver is actually moving while

the M samples are acquired. The number of samples M will determine the intersensor

spacing for the synthetic array, so spatial aliasing of the acoustic signals must be taken into

account. The distance traveled by the calibration source moving at a velocity v during M

samples (sampled at Fs) is Mv/Fs. In conventional array processing, it is well-known that

if the sensor spacing is less than half the wavelength of the signal of interest, then spatial

aliasing can be avoided [42]. Hence, an upper bound on M is:

M <
cFs
2f0v

(109)

where λ/2 = c/(2f0), f0 is the narrow-band center frequency, and c is the speed of sound.

As a rule of thumb, we recommend using the largest M that satisfies (109).

The total number of synthetic receiver positions used in forming a subarray is subject

to the following trade-off: longer subarrays would give better DOAs, but would provide

fewer DOAs to do triangulation. Surprisingly, it appears that the node position estimation

accuracy was not affected much by this trade-off when tested on synthetic data.
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We now describe the details of the synthetic aperture calibration method. The acoustic

data recorded at each microphone of the acoustic node is temporally partitioned into M -

sample data sets, and the midpoint time is used to define the position for each synthetic

receiver along the path of the moving calibration source, χt. Two issues arise from this

definition of the synthetic receiver. First, each sample in the block of M data samples

comes from the neighborhood of the defined receiver position through which the source

was moving. We can model this as a non-stationary effect in the received data. Second,

since the GPS positions are usually supplied at a much lower rate than the acoustic data

sampling rate, the synthetic receiver positions must be estimated by using a straight-line

approximation between the given GPS data points. For example, if Fs = 1024 Hz, and

M = 64, then the synthetic receiver positions must be determined 16 times per second,

requiring interpolation since the GPS sampling rate was slower.

A subarray is formed by grouping together Q synthetic receiver positions. The intrasen-

sor spacing is Mv/Fs meters, assuming v is constant. Simple beamforming such as MUSIC

or MVDR will give based DOA estimates if the calibration source is moving fast (e.g., a he-

licopter). This bias is caused by the non-stationarity of the synthetic array data mentioned

above, but previous work in [77] has addressed this same issue and shown how to calculate

the bias values theoretically. Therefore, we propose the following ML cost function, derived

similarly to (87), for obtaining unbiased synthetic DOA estimates β:

J(β) =
M
∑

t=1

tr

{[

I − 1

Q
at(β)aHt (β)

]

R̂z(t)

}

, (110)

where at(β) is the steering vector corresponding to aperture points and β is defined as the

synthetic aperture radar angle (Fig. 27). The time dependence in at(β) is caused by the

data samples at each synthetic sensor being from a neighborhood of the synthetic sensor

position. The angle β is calculated with respect to the center of the synthetic aperture of

size MQ samples, and R̂z(t) is the one-sample (outer product) autocorrelation estimate of

the synthetic array. Equation (110) differs from (87) in the time dependence of the steering

vectors. In (87), the microphone positions are fixed with respect to t; whereas, in (110),

the SAR angle β is fixed, and the position where the data is collected is changing along the
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aperture.

Equation (110) can be used to determine the position of each individual microphone

within the node. Since there are P microphones in the node, it is possible to come up

with P independent estimates of the node position using the individual microphone out-

puts, assuming that the additive noise is spatially white at the acoustic node. Then, the P

estimated microphone positions can be averaged to obtain an estimate of the node-center

position. The node orientation can then be estimated separately. To estimate the node

orientation, the acoustic node DOA estimates can be used along with the node-center po-

sition estimate to determine the orientation. Once again, it is important to recognize the

array non-stationarity issue caused by rapid target movement. The ML cost function to be

minimized at the acoustic node in this case is

J(θ) =
M
∑

t=1

tr

{[

I − 1

P
a(θt)a

H(θt)

]

R̂y(t)

}

, (111)

where

θt = tan−1

{

Fs sin θ + qt cosφ

Fs cos θ + qt sinφ

}

, (112)

where θ is the DOA at the beginning of the batch, q = v/R, and φ is the approximate

target orientation for the estimation batch. Equation (112) can be derived by a straight-

line approximation for the calibration source during a batch period. Given the node-center

position estimate, if the target DOAs are estimated using (111), one can estimate the node

orientation by simply calculating the bearings from the node position and GPS estimates,

and then finding the difference between the mean values of these estimates.

When (110) is used for the SAR angles, the cost function will display two minima corre-

sponding to two different candidate SAR angles. This is attributed to the cone of ambiguity

problem for microphone arrays. Even when there is no spatial aliasing, the estimator (110)

will result in two DOA estimates that are symmetric with respect to the array axis (cali-

bration source orientation angle)2. This issue has been addressed for uniform linear arrays

in [42]. The solution to this problem is to also track the DOA estimates and impose a

2The average of these two DOA candidates can be used to check the consistency of the target orientation
angle.
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constraint that the DOA estimates not change too much from one aperture to another.

This fact also helps reduce the computational load while finding the minimum of the cost

function in (111), since previous estimates will be close to the sought minima. In turn, two

node positions will be triangulated using the two DOA tracks, one corresponding to the

node and the other corresponding to a shadow. The real node can easily be determined

by picking the node position with the least minimum-mean squared error, since it actually

corresponds to a physical position.

Once the SAR angles (βi’s i = 1, . . . , L) are calculated for each synthetic array with

respect to the array centers (x
(i)
T , y

(i)
T ), determination of the node position requires one

more step. Figure 28 suggests an intuitive solution based on determining the intersection of

the lines created by the aperture positions and the SAR angles. This leads to the following

overdetermined system of equations to determine the node position:













tan (π − β1) −1

...
...

tan (π − βL) −1



















x

y






=













tan (π − β1)x
(1)
T − y

(1)
T

...

tan (π − βL)x
(L)
T − y

(L)
T













(113)

This equation is based on the following geometrical relationship between the node DOA θi,

its orientation ϕ, and the SAR angle βi, as illustrated by Fig. 27:

βi = ±π + θi + ϕ = ±π + tan−1

(

y − y
(i)
T

x− x
(i)
T

)

(114)

Equation (114) defines an under-determined system for ξ for one index i, hence making

it analytically intractable to derive a joint probability density function p(x, y), since the

required Jacobians for the coordinate transformation from β to (x, y) are not defined3.

Equation (113) provides the least-squares solution for the node position. However, the

estimated DOAs become approximately Gaussian distributed as the sampling frequency

of the data increases. Based on this observation, similar to the ML solution using the

3This is because the coordinate transformation defined by (114) is not one-to-one.
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node-to-GPS angles ψ shown in the previous section, we propose the following

ξx,y = arg min
ξx,y

J

J =
L
∑

i=1

(

βi − tan−1

(

y−y
(i)
T

x−x
(i)
T

)

± π

)2

σ2
βi

,

(115)

where the sign in front of π must be determined from the geometry and the SAR angle error

variance σ2
βi

should be calculated from the data. A possible expression will be given in the

later sections. This estimator can be refined by weighting the terms in the summation by

the estimated noise variances per index. The following sections give analytical equations

for these variance estimates. Equations (113) and (115) are biased estimators (shown by

simulations); however, the bias is difficult to analyze analytically.

A Newton-based search can again be employed to solve (115). The first and second-

order derivatives of the cost function J are given in (116) and (117) for a Newton-based

search algorithm:

∂J

∂x
= 2

L
∑

i=1

{

βi − tan−1

(

y − y
(i)
T

x− x
(i)
T

)

+ π

}(

y − y
(i)
T

R2
i

)

∂J

∂y
= −2

L
∑

i=1

{

βi − tan−1

(

y − y
(i)
T

x− x
(i)
T

)

+ π

}(

x− x
(i)
T

R2
i

)
(116)

∂2J

∂x2
= 2

L
∑

i=1







(

y − y
(i)
T

R2
i

)2

+

(

βi − tan−1

(

y − y
(i)
T

x− x
(i)
T

)

+ π

)(

−2(x− x
(i)
T )(y − y

(i)
T )

R4
i

)







∂2J

∂y2
= 2

L
∑

i=1







(

x− x
(i)
T

R2
i

)2

+

(

βi − tan−1

(

y − y
(i)
T

x− x
(i)
T

)

+ π

)(

2(x− x
(i)
T )(y − y

(i)
T )

R4
i

)







∂2J

∂x∂y
=

−2
L
∑

i=1

{

(x− x
(i)
T )(y − y

(i)
T )

R4
i

+

(

βi − tan−1

(

y − y
(i)
T

x− x
(i)
T

)

+ π

)(

(y − y
(i)
T )2 − (x− x

(i)
T )2

R4
i

)}

(117)

These derivatives are useful for estimating the angles since the SAR angles βi are very close

to each other. Hence, the previous estimate βi−1 can be refined using these derivatives

to estimate βi. This is conditioned on the fact that the target is not maneuvering too

much, because the Newton search can become trapped at a local minima. We recommend
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calculating J in (115) first on a rough grid nearby βi−1 (e.g., a grid of angles β ∈ [βi−1 −

15◦, βi−1+15◦] with 1◦ spacing), then using the minima over that rough grid and the Newton

algorithm to refine the estimate for βi.

4.3.3 Metropolis-Hastings Calibration Method

The objective of the Metropolis-Hastings (MH) algorithm is to distribute particles (discrete

state samples ξi) according to a target distribution π. Hence, at each iteration k, the

algorithm recursively redistributes its states so that, asymptotically, the resulting Markov

chain is distributed according to the target distribution. The MH scheme [24] is depicted

in Sect. 5.2 of the next chapter.

For the calibration problem, the target function is actually the exponential of the neg-

ative ML cost function defined earlier in (107):

π(ξ) ∝ exp

{

−(ψ(x, y, t) − θ(τ(t)) − ϕ)2

2σ2
θt

}

, (118)

where ψ is the node-to-GPS angle, θt is the DOA estimate from the acoustic data using

(111), and ϕ is the node orientation angle. Time synchronization is easily incorporated into

this solution because it is possible to calculate τ(t) given a proposed node position and the

target GPS.

Moreover, it is easy to see that (118) peaks at the correct node position when there is

no noise. Intuitively, this is the complement of the synthetic aperture solution, where the

angles are calculated on the node side, and performs similarly to the estimator proposed

in (115). As for the proposal function, we employ the symmetric random walk in (131),

as explained in Chapter 5, where the walk variances should be picked subjectively. For

example, a few meters works well for the walk variances on ξx,y, and we use a few degrees

for the orientation ϕ.

The MH scheme, as it is presented, takes a notoriously long time to converge. Hence,

it is necessary to speed it up for a real-time application. Pseudo code is given for the

classical MH algorithm for the calibration problem. In Chapter 5 and [19], we outline a

Mode-Hungry MH algorithm for accelerated convergence, which fits well to this problem
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Table 7: Pseudo Code for the MH Calibration

• At time k, for each particle i (i = 1, . . . , N) , ξ
(k)
i :

i. generate a candidate γi using q(ξi,γi) given in (131)

ii. estimate the time-reference frame for data synchronization using the proposed position, the
source GPS track, and the speed of sound c

iii. calculate the DOAs, θ(t), using the motion compensated beamformer (111)

iv. calculate the acceptance ratio, where the target distribution π(.) is as given in (118)

α(ξi,γi) = min

(

π(γi)

π(ξi)
, 1

)

v. sample u ∼ U(0, 1)

vi. if u ≤ α(ξi,γi), set ξ
(k+1)
i = γi, else, ξ

(k+1)
i = ξ

(k)
i .

• Repeat until convergence is reached.

since only one node position is searched. A grid-based initialization of this algorithm is also

possible, as discussed in [31].

4.3.4 Performance of the DOA Calibration Algorithms

The DOA calibration algorithms use a sequence of estimated DOAs corresponding to a batch

size of M samples, together with geometrical arguments, to estimate ξ. In other words,

the DOA at index i is estimated using M array samples corresponding to the ith synthetic

receiver, sampled at Fs. To evaluate the performance of the DOA calibration algorithms,

the DOA estimation performance should first be related to the node array signal-to-noise

(SNR) ratio. Note that the DOAs need to be estimated using (111) if the calibration

source is moving relatively fast. Classical DOA estimators such as MUSIC and MVDR

result in biased estimates due to the non-stationarity of the data caused by rapid target

motion [18, 77]. Using the likelihood function in (102), we write the Fisher information for
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the DOA at the beginning of the batch as

Fθ1 = E

{

(

∂L(θ1)

∂θ1

)2
}

= − 2

σ2
a

M
∑

t=1

Re

[

(

∂at
∂θt

∂θt
∂θ1

)H (∂at
∂θt

∂θt
∂θ1

)

]

,

(119)

where ∂θt

∂θ1
is calculated from (112). The inverse of Fθ bounds the best achievable perfor-

mance by an unbiased estimator, but in most cases, DOA estimation performance will be

close to this bound for large M . Hence, it is reasonable to approximate the noise variance

on the estimated DOAs as

σ2
θ ≈ −σ

2
a

2

{

M
∑

t=1

Re

[

(

∂at
∂θt

∂θt
∂θ1

)H (∂at
∂θt

∂θt
∂θ1

)

]}−1

. (120)

This estimated noise variance (120) can be also used in the solution (115) to weight the

SAR angles. As a rule of thumb, one can use σ2
θt

∝ Rt for the field examples. Now, if we

assume the DOA noise is independent from batch to batch and is Gaussian with zero mean

and with variance of (120), then the DOA likelihood from (118) becomes

L(θ|ξ)
.
= −1

2

L
∑

i=1

1

σ2
θi

{

θi + ϕ− tan−1

(

y − y
(i)
T

x− x
(i)
T

)}2

(121)

with θ = [ θ1, . . . , θi, . . . , θL ], where i is the estimation batch index and σ2
θi

is estimated

using (120). Then, the estimation bound on the parameter ξ becomes

CRBξ =

(

L
∑

i=1

γiγ
T
i

)−1

(122)

where

γi = − 1

σ2
θi

[

1,
y − y

(i)
T

R2
i

, −x− x
(i)
T

R2
i

]T

(123)

In the simulations section, we show that the above CRLB (122) is quite close to the bound

that is calculated directly from the data likelihood. This, in turn, raises the question of the

sufficiency of the DOA estimates in the calibration problem, which is covered in the next

subsection.
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4.3.5 Sufficiency of the Auxiliary DOA Estimates in the Calibration Problem

The parameter vector ξ affects the distribution of the observations YM defined by (84)

through the distribution p(YM |ξ,χ0, . . . ,χt) given in (83). Therefore, in the calibration

problem, the statistical behavior of the acoustic data constitutes the only information about

the parameter ξ when there is a lack of a prior distribution on ξ. Hence, if knowing βi

removes any dependence on ξ from the data distribution (83), then it can be said that βi

contains all the relevant information in the data that is useful in estimating the parameter

ξ [63]. Hence, the objective is to prove the following equality:

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) = p(YM |β0, . . . , βL,χ0, . . . ,χt) (124)

At this point, some assumptions need to be reiterated. The SAR angles βi are only

given at every other MQ samples of data (a total of L times), whereas the data likelihood

depends on the parameter at every sample. This is not a problem if the assumption of

straight-line motion (112) is true between GPS data points. Thus, the data likelihood can

be written as

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) =

K−1
∏

t=0

1

πPσ2P
exp

[

− 1

σ2

∥

∥

∥y(t) − a(π + β(t) − ϕ)s(t)
∥

∥

∥

2
]

,
(125)

where

β(t) + π − ϕ = tan−1

{

Fs sin θt−1 + q∗(t− 1) cosφ∗

Fs cos θt−1 + q∗(t− 1) sinφ∗

}

,

with θt−1 = β(t−1) + π − ϕ.

(126)

Parameter φ∗ is the approximate heading direction of the calibration source at time t and

is calculated from the GPS data. Parameter q∗ is the only parameter that depends on the

node position (x, y) and can be approximated by

q∗ ≈
∣

∣

∣

∣

Fs sin(βi − βi−1)

(MQ− 1) sin(βt − φ∗)

∣

∣

∣

∣

. (127)

Hence, given the synthetic DOAs βi, it is possible to remove the dependence of the data on

the node position, but not on the node orientation. That is,

p(YM |ξ, β0, . . . , βL,χ0, . . . ,χt) = p(YM |ϕ, β0, . . . , βL,χ0, . . . ,χt) (128)
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Equation (128) implies that the estimated synthetic DOAs form a sufficient statistics for

the acoustic node position. However, to also remove the dependence on the orientation

angle ϕ, at least one local estimate of θt is required from the node.

4.4 Special Case

If the calibration source is moving at a constant speed, then an acoustic node can estimate

its orientation angle given at least three DOA measurements. In addition, if the range to the

calibration source is known at any time t, then it is possible to track the calibration source’s

position in space given only DOA measurements (Fig. 29). As far as array calibration is

concerned, if the calibration source is moving along a straight-line, then given one absolute

distance, it is possible to calibrate multiple nodes relative to one reference node by using

only geometrical arguments. Figure 30 demonstrates this relative calibration concept.

x

y

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

Target #1 path

Target #2 path

θ(t)

Target #1

Target #2

r2(t)

r1(t)

Figure 29: Two different targets may have the same DOA at all times. It is impossible to
distinguish target #1 from target #2 given the DOA measurements alone. Hence, a range
estimate is needed to track the target position correctly.

In Fig. 30, A0B0 and A1B1 are the track estimates of the reference node and node 1,
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β1

R0
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B0

B1
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Reference track

Track generated

by node 1

x0

y0

x1

y1

Reference node

Reference

orientations

Figure 30: The track generated by node 1 is superposed on the reference node coordinate
system. Note that both nodes are tracking scaled versions of the original calibration target
track. The unknown node orientation, relative to the reference node, is simply the difference
between the orientation estimates both nodes estimate. This is equivalent to finding the
rotation angle that aligns tracks R0 and R1. Triangle ∆O0A1B1 is similar to ∆O1A0B0

because of the scaling property of the track estimates. Since the angles ∆θ1 and β1 estimated
by node 1 are known, O1 can be determined geometrically. The whole system is scalable
and a reference distance is required for absolute estimates.
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respectively. Since the track R1 and ∆θ1 are known, the angle β1 can be determined. Then,

on the reference track R0, one can triangulate the sensor position O1 by intersecting two

lines from A0 (A0A1) and B0 (B0B1) using the angles φ1 and π − φ1 − ∆θ1, respectively.

To find the reference angle for node 1, the difference of the orientation angles of the tracks

R0 and R1 is used. Hence, the solution of the problem only requires estimation of the

orientation angles of the tracks as well as one absolute distance. Some analytical relations

are available in the literature to estimate the target orientation angle given three DOA

estimates [77].

4.5 Simulations

Using computer simulations, our objectives are to (i) show the effects of the GPS errors

on the estimation performance of the various algorithms, and (ii) demonstrate the ML and

DOA calibration algorithms and compare their performance. All the simulation examples

below use a calibration target circling the origin at a range of 600m with a constant speed

of 75 mph. The acoustic node is a uniform circular array with P = 6 omnidirectional

microphones with a radius of 1.22m. The total estimation time for the calibration is 120s

and the GPS error standard deviation is σχ = 1m. Depending on the scenario, different

node positions, sampling rates, target narrow-band center frequencies, and node SNRs are

used.

4.5.1 Effects of the GPS Errors on the Estimation Performance

It is interesting to plot the ML surface near the true node position (Fig. 31). The smooth

convex shape of the surface justifies the argument that a Newton or gradient-descent type

of search algorithm can be used to estimate the node parameters instead of calculating the

whole surface. In Fig. 31, we try to determine the position of the acoustic node placed at

[ 100, 50 ]m. The constant center frequency used for the calibration is f0 = 20 Hz, the node

sampling rate is Fs = 128 Hz, and the acoustic node SNR is 7 dB.

The similarity of Figs. 31 (a) and (b) confirms that the GPS errors have no significant

effect on the ML surface used for the estimation. In Fig. 31, the estimated positions, with

and without GPS errors, differ by less than a centimeter. Another interesting observation

92



95 100 105
45

46

47

48

49

50

51

52

53

54

55

x 

y 

(a)

95 100 105
45

46

47

48

49

50

51

52

53

54

55

y 

x 

(b)

Figure 31: (a). The likelihood surface J with GPS errors. The GPS error standard
deviation is σχ = 1m and it is circularly symmetric in the x and y directions. The star
indicates the true node position at [ 100, 50 ]m , whereas the dot is the estimated position
[ 100.5899, 50.0289 ]m using the Newton algorithm. The ellipse is the Cramér-Rao bound
on the position estimates. (b). The likelihood surface J without any GPS errors. The
Newton method estimates the node position as [ 100.5811, 50.0360 ]m . The solutions are
almost identical.

is that the estimated position lies rather close to the estimated CRLB for the problem.

In Fig. 31, the bound is represented by an ellipse whose axes sizes are determined by the

square root of the diagonal elements of the CRLB. The ellipse orientation is determined by

the correlation terms in the CRLB.

For the Newton search algorithm, a constant step size of µ = 0.125 is used, and the

approximations suggested in Sect. 4.2.2 are implemented. As stopping conditions, the al-

gorithm is run up to a specified number of iterations (e.g., 1000 iterations) or until the

following difference condition is met

∣

∣ξk − ξk−1

∣

∣ < 10−5 (129)

In the simulations performed, the algorithm never reached the iteration limit when initial-

ized within 5 meters of the true position.

93



4.5.2 Performance Comparisons

In this section, we first compare the two CRLBs derived directly from the array model and

through the DOA estimation. Figure 32 shows that both bounds are very close. Intuitively,

this may suggest a similar performance for the ML calibration algorithm and the DOA

calibration algorithms. However, Fig. 33 shows that this is not the case. In Fig. 33, the

synthetic aperture method (solid curve) performs better than the ML calibration algorithm

(dashed curve).

An efficient unbiased estimator has a performance bound defined by the CRLB. It is

also known that if an estimator achieves the CRLB, then it is the ML estimator. In our

problem, the ML estimation algorithm achieves the CRLB as the number of data points

are increased. However, the synthetic aperture method beats the bound in many cases (at

lower SNRs). This implies that it is a biased estimator whose total minimum mean squared

error (including the bias term) is smaller than the ML estimator. Such estimators do exist

but are hard to find [63]. The bias is introduced by (114) since the relationship is not

one-to-one. The analysis of this bias is difficult because there is not a proper probability

density function for the node positions given (114).

The CRLBs in Fig. 32 also demonstrate the dependency of the calibration performance

to the target center frequency. As the target center frequency increases, the performance is

expected to get better since the decreased wavelength results in better DOA estimations.

4.6 Field Data Results

We applied the Monté-Carlo calibration scheme on field data from a small acoustic array. A

helicopter flew sorties around the acoustic node for the calibration purposes (Fig. 34). For

the experiment, the array was hand-emplaced so that the true true location and orientation

would be known. The acoustic node has six omnidirectional microphones placed uniformly

on a circle with a radius of 1.219m, which also corresponds to the inter-microphone distance.

The spatial aliasing frequency is around 135Hz corresponding to the half-wavelength (equal

to the radius of the array). For the MVDR beamforming results, we tracked the ten highest

peaks using the short time Fourier transform (Fig. 35) with their respective heights, and
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(d) f0 = 160 Hz

Figure 32: The Cramér Rao lower bounds’ dependency on the calibration target center
frequency. The calculated CRLB from the ML formulation is shown with the dotted line; the
CRLB from the DOA calibration formulations is shown with the diamonds. The bounds are
exceptionally close even though they are derived from different formulations, as indicated
earlier.

averaged the estimated DOAs accordingly. For the time synchronization, third-order b-

splines were used to interpolate the irregular time-grid for the algorithm’s proposed positions

for each particle.

The GPS track of the helicopter used for the calibration is shown in Fig. 34. Figure 33

demonstrates the results of the Metropolis-Hastings scheme with the Mode-Hungry modifi-

cation in Chapter 5. A listing of the pseudo-code for the MH scheme is given. To establish

a baseline, we also determine the CRLB to approximate the lower bounds for the variances

for the parameter vector as [σx, σy, σθ] = [1.3931m, 1.3597m, 0.13296◦].
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Figure 33: The node is situated at [ 250, 100 ]m. The calibration is repeated 100 times
with different noise realizations at SNR = 8.5 dB. The solid line is the performance of the
synthetic aperture method, where (115) is used to solve for the position. The dotted solid
line is also the synthetic aperture method, except the least squares (113) approach is used
for the solution. Full ML estimates using the acoustic data are shown with the dashed line.

Note that the approximate bound assumes the single sinusoid array model for the ob-

servations. This assumption is not satisfied for the helicopter signal. In Fig. 33, the DOAs

estimated with the field data between t = 50s and t = 120s violates the Gaussian assump-

tion since they have the incorrect mean. Without post-processing of the data, it is difficult

to detect this incorrect mean since the orientation estimates can also bias the DOA distri-

bution. The algorithm still managed to do well because the target distribution weights the

calculated DOAs according to their estimated range. When the target is far away from the

node, the estimates are expected to get worse. Hence, the algorithm puts less importance

on the DOA estimates corresponding to large target ranges. Lastly, Fig. 36 also demon-

strates that the calibration results are significantly worse without the time synchronization

step. Interestingly, for this test run, the acoustic node also used low-cost a GPS system to

determine its position. The GPS estimated position had a 7m error, implying that the MH

scheme performed within the ballpark.
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peaks in the time-frequency plane are picked using the magnitude of the Fourier transform
once per second. These frequencies as well as their time-frequency amplitudes are used in
determining the DOA estimates.
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Figure 36: Top figure shows the GPS track coming from the helicopter (dashed line),
the time-warped GPS track using (106), and the MVDR beamformer estimates of the field
data. The bottom left plot is the resulting MHMH algorithm distribution with estimate ξ =
[ 6.43, −6.52 ]m using time synchronization, whereas, at the bottom right, the distribution
with estimate ξ = [ −31.66, 43.77 ]m is the MHMH result without time synchronization.
The estimated orientation for both cases is 1◦. The true node location is shown with the
diamond.

4.7 Conclusions

Various node calibration algorithms were demonstrated given a calibration target with a

GPS system. The maximum-likelihood solution was demonstrated and compared to the

biased synthetic aperture method, which has a lower minimum mean squared error. The

DOA calibration algorithms can also compensate for array non-stationarity problems using

the methods outlined. Among the calibration methods, the MH calibration algorithm is

the most flexible and suitable for field data processing because it can incorporate time

synchronization as well as motion compensation directly into the calibration. The proposed

algorithm performances are compared, with simulation examples.
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CHAPTER V

FAST INITIALIZATION OF PARTICLE FILTERS USING

A MODIFIED METROPOLIS-HASTINGS ALGORITHM:

MODE-HUNGRY APPROACH

Figure 37: Chapter outline with the new contributions shown in rectangular boxes.

5.1 Introduction

Particle filters use Bayes’ rule to update an arbitrary posterior recursively as the obser-

vations arrive. In the filter mechanics, posteriors are represented by particles that are

discrete realizations distributed according to the underlying distribution (either directly or

by weighting). Hence, the particle filter can estimate any statistics of the posterior, and the

estimation accuracy can be improved up to the theoretic bounds by increasing the number

of particles. Particle filters are becoming widely popular in signal processing due to (i)

advances in computer systems, and (ii) their easy implementation [5, 25].

As a recursive algorithm, the particle filter needs initialization (i.e., initial samples) to

track a state vector as the observations arrive in sequence. The algorithm’s estimation
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performance not only depends on how it is constructed around the data models, but also

on its initial samples. Hence, it is necessary to generate good initial samples from the data

itself. If the initial samples do not sufficiently cover the state space, important features of

the distribution (such as multimodality) can be missed. This can significantly degrade the

estimation performance of the filter.

Monté Carlo Markov chain (MCMC) simulation techniques offer attractive solutions to

this type of sampling problem. In MCMC terms, the initialization problem becomes the

estimation of a posterior density π(x) by simulating a Markov chain x(1), x(2), . . . , x(t) whose

stationary distribution is the target posterior π as t → ∞. Among the MCMC sampling

techniques, the Metropolis-Hastings (MH) algorithm is used in this chapter to demonstrate

the concepts and the results.

The MH scheme [37, 51] provides a basis from which other well-known sampling algo-

rithms such as Acceptance-Rejection (AR) and Gibbs sampling can be derived as special

cases [24, 75]. The algorithm assumes that it is possible to assign probabilities from the

distribution to a given realization x. These probabilities need not be exact; they can also

be given up to a proportionality constant. Note that calculating probabilities given the

particles is different (and much easier) than generating particles directly from the (possibly

intractable and multivariate) distribution itself.

At each iteration of the algorithm, a candidate generating density q(x, y) : x→ y is used

to propose moves (or jumps) within the state space. These moves are accepted or rejected

with probability α(x, y) so that the following reversibility condition is satisfied:

π(x)q(x, y)α(x, y) = π(y)q(y, x) (130)

The reversibility condition is also known as detailed balance, microscopic reversibility, or

time reversibility and is a necessary condition the chain must satisfy to have a stationary

distribution π [24].

The convergence analysis of the MH algorithm is an open problem. Many methods

have been proposed to detect the convergence of this scheme [15, 31, 32]. Although these

convergence detection methods are useful, the MH algorithm usually takes a large number of

100



iterations to converge, and hence it is usually not considered for real-time applications in its

original form. To make the algorithm more attractive, there has been some effort on making

the algorithm more efficient. Two fundamentally different approaches have been proposed

to speed up the MH scheme: One approach adaptively alters the jumping rules (i.e., the

jump size) defined by the candidate generating density. The other approach uses a mode-

search algorithm (usually a grid search) to locate the modes and samples from a mixture of

suitable distributions located at these modes to generate a prior for the algorithm. The first

method slightly improves the convergence speed, but not enough for real-time initialization.

The latter method incurs a high computational cost to begin, and is therefore not suitable

for our purposes.

In this chapter, we propose a new approach called Mode-Hungry MH (MHMH) to speed

up the original scheme for the initialization of particle filters. The new method modifies

the jumping rules according to how the state of the Markov chain is distributed and con-

centrates the particles on high probability regions. The algorithm quickly converges on the

multimodal regions of the posterior. The estimated posterior is an approximation to the

true posterior around the mode. However, it can be shown that any discrepancies between

the estimated and true posteriors can be handled by the particle filter’s built-in weighting

structure [5,25]. This property of the particle filters and the convergence speed makes this

algorithm attractive for particle filtering applications.

The organization of this chapter is as follows. Section 5.2 provides the background

for the MH algorithm. Section 5.3 describes the modification of the basic algorithm and

gives pseudo-code for the MHMH algorithm. Then, an MH algorithm is described for

particle filter initialization for DOA tracking in Sect. 5.4. Computer simulations are given

in Sect. 5.5.

5.2 Background

The Metropolis-Hastings scheme [24] depicted in Fig. 38 attempts to distribute particles

(discrete state samples) according to a target distribution π shown at the top. At each

iteration, algorithm recursively redistributes its states so that, asymptotically, the resulting
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Markov chain is distributed according to the target distribution. In Fig. 38, the Markov

chain at iteration t is represented by x(t). The new chain candidates y are generated by

the proposal function q(x, y), which is often taken to be the spherically symmetric random

walk:

q(x, y) = q(|x− y|) ∝ exp

{

−(x− y)2

2σ2

}

. (131)

Once the new candidates are generated, the algorithm accepts the candidates or keeps

the current state according to the acceptance ratio α(x, y) derived from the reversibility

condition:

α(x, y) = min

{

1,
π(y)q(y, x)

π(x)q(x, y)

}

. (132)

In Fig. 38, the acceptance ratios are represented by the height of the boxes for each

candidate. To accept or reject a new candidate, a random number generator is used to

generate uniform random numbers in (0, 1), u ∼ U(0, 1), represented by the black dots

in the figure. If u is less than the acceptance ratio for the specific particle, the move is

accepted, otherwise, it is rejected. The acceptance rate at iteration t is defined to be the

number of accepted moves divided by the chain size. Visually, it is the number of arrows

in the last stage in Fig. 38 divided by the number of particles. Finally, the chain moves to

x(t+1) and the scheme is repeated.

Note that the candidate generating (or proposal) function q(x, y) has a significant impact

on the efficiency of the algorithm. It should be constructed so that the generated candidates

display most of the structural dependence between the different dimensions. σ in (131) is

defined as the jump size and is the other important variable affecting the algorithm speed.

If σ is too small, the algorithm takes longer to converge since the chain moves very slowly

along the target distribution. On the other hand, if σ is too large, the algorithm mostly

rejects the new candidates and stays frozen. The current MCMC literature concentrates on

these two important factors in the algorithm’s efficiency [31].
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Figure 38: The Metropolis-Hastings scheme is demonstrated. Each circle represents a
sample from the chain in the respective state space. The algorithm uses its current state
to generate new candidates for its next state using a candidate generating function q. The
new candidates are accepted or rejected in a way that the Markov chain asymptotically
converges to the target posterior π.

5.3 Mode-Hungry Approach

The MH scheme is naturally rather slow since it tries to explore the whole parameter space.

Hence, any relevant information should be used to increase the convergence speed. The pro-

posal functions should incorporate any dimensional dependence, and the jump sizes should

be modified by monitoring the acceptance rate of the algorithm. In this section, we will

modify the MH algorithm to concentrate around the modes of the target posterior. We call

this modification the Mode-Hungry approach. Interestingly, note that the adaptive modifi-

cation of the simulation gives rise to a non-Markov chain since the transition probabilities

depends on the previous iteration results. However, the resulting performance justifies their

use.

In most cases, the target distribution is multimodal with a significant number of small

modes and a few large modes. The small modes can be due to (i) the nature of the problem,
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(ii) modelling errors, and (iii) an approximation of the actual target density π used in the

simulation. In most particle tracking problems, the large modes are of interest since the

small modes get rejected by resampling (or weighting) after a few iterations of the filter.

Moreover, the small modes tend to trap the chain and increase the convergence time. It

takes the MH scheme a notoriously high number of iterations to break the particles from

these small modes and concentrate them on the higher ones [26]. Hence, when generating

the target density π, there is a trade-off between how closely it can be represented versus

how long the initialization takes to converge.

With this observation, we suggest that if the objective of the initialization is to cover only

the high probability modes, the particles around the small modes should be redistributed

accordingly during the MH iterations. This, in turn, will result in faster coverage of the

high modes and improve the convergence speed. Hence, at time t, the chain x(t) consisting

of N particles is separated into two partitions after being sorted with respect to likelihoods.

Denote P1 as the set corresponding to the N −Mt high-probability particles, and P2 as the

Mt low-probability particles. During the algorithm execution, a rule needs to be determined

to distribute the particles from P2 around P1 so that the algorithm does not get stuck at low

probability modes. We propose using randomly chosen particles from P1 as the candidates

y for the particles from P2, and accept their moves with probability 1.

Figure 39 illustrates this Mode-Hungry approach. The target particles from P1 can

be chosen in a variety of ways, two of which are considered here: proportional to their

probabilities and uniformly. If we insist that the cross-jumps from P2 to P1 should be such

that particles around one mode should not be quickly consumed by another similar size

mode, then it is not prudent to pick particles from P1 proportional to their probabilities. In

this case, the highest mode quickly accumulates all the particles and the algorithm results

in a single mode distribution. Hence, this rule is recommended if the target posterior is

known to be unimodal.

If the particles from P2 are uniformly distributed over P1, the algorithm quickly finds

the multiple modes; however, the distributions around the modes can be skewed if they are

far apart from each other, as illustrated in the next section. This is still acceptable, since
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π(x)

x(t)

P1

P2

Figure 39: Particles corresponding to the partition P2 are shown in black. In the figure,
the particles in P2 are distributed over the states defined by P1 uniformly.

any imbalance of the particle distribution will be automatically corrected by the particle

filter’s weighting mechanism. Note that a good local distribution around the mode is still

required to prevent sample degeneracy [5]. The particle filter attaches a weight wi to each

particle xi coming from the MH scheme. Then, it estimates an expected value E[.] of the

posterior as

E[f(x)] =
∑

i

wif(xi), (133)

assuming that the weights are normalized. Hence, as long as the region around the modes are

covered correctly, the weights can correct the imbalances introduced by the initialization

since they also depend on the target density π. Note that the original MH scheme also

has similar issues in multimodal problems; however, the proposed cross-jumps enable the

algorithm to cover the high modes faster. The frequency of these jumps can be determined

by monitoring the acceptance rates or how tightly the particles distribute themselves around

the modes; however, a fixed period (Tjump) also seem to work. The pseudo-code gives the

details of the proposed algorithm in Table 8.

5.4 Acoustic Target Tracker Initialization

In this section, we give an example MH initialization algorithm that can initialize the

particle tracker discussed in Chapter 3. The problem is to generate discrete samples for the

following state vector used in the acoustic tracking problem:

x(t) = [ θ(t) , Q(t) , φ(t) ]T (134)

where θ(t) is the target direction-of-arrival (DOA) measured clockwise with respect to the y-

axis, and φ(t) is the target heading direction measured counterclockwise with respect to the
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Table 8: Mode-Hungry Metropolis-Hastings

• At time t, decide if cross-jumping is needed for x(t), i.e., every Tjump iterations

• If not, then for each particle xi, use the MH scheme:

– generate a candidate yi using q(xi, yi)

– calculate the acceptance ratio

α(xi, yi) = min

{

1,
π(yi)q(yi, xi)

π(xi)q(xi, yi)

}

– sample u ∼ U(0, 1)

– if u ≤ α(xi, yi), set x
(t+1)
i = yi, else, x

(t+1)
i = x

(t)
i .

• If yes, then use the Mode-Hungry scheme:

– determine a subpartition of size Mt < N

– order the current particles according to their probabilities in descending order: xi → x∗j
where x∗ is the ordered particle set

– generate candidates y∗(1) for x∗(1) = {x∗j |j : j = 1, 2, . . . , N −Mt} using q(·, ·)

– calculate the acceptance ratio α(x∗(1), y∗(1)) and set x
(t+1)
j to x∗j (1) or y∗j (1) accordingly

for j = 1, 2, . . . , N −Mt

– distribute Mt candidates y∗(2) from x∗(1) uniformly

– set x
(t+1)
j to y∗(2) for j = N −Mt + 1, . . . , N
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x-axis. The parameter Q(t) is the logarithm of the target velocity-range ratio. The state-

update was derived using constant velocity motion assumption, and geometrical arguments

in Chapter 2:

x(t+ T ) = h(x(t), T )

=













tan−1
(

sin θ(t)+eQ(t)T cosφ(t)

cos θ(t)+eQ(t)T sinφ(t)

)

Q(t) − 1/2 log [1 + 2eQ(t)T sin (θ(t) + φ(t)) + (eQ(t)T )2]

φ(t)













(135)

Let y(t) be a vector of the measured DOAs:

y(t) =
[

θ̂(t) , θ̂(t+ T ) , . . . , θ̂(t+ (M − 1)T )
]T

(136)

where M ≥ 3 is an integer and T is the period at which the DOAs are measured. Then, by

using Bayes’ rule, the target distribution is given by

π(x(t)) = p(x(t)|y(t)) ∝ p(y(t)|x(t)) (137)

when there is no prior information on the state vector.

Assuming that p(y(t)|x(t)) is available1, the MH algorithm to generate the initial state

distribution is given in Table 9. This formulation is very similar to the one by Orton [59].

5.5 Examples

In this section, our objectives are (i) to demonstrate that the proposed method results in

faster convergence, and (ii) to show that the algorithm can handle multimodal distributions.

In the simulations, the initial chain values are generated from a uniform distribution xi ∼

U(−50, 50) in each dimension.

1Chapters 2 and 3 have derived the analytical relationships for this pdf.
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Table 9: Metropolis-Hastings Initialization Algorithm

i. Sample x
(k)
1 (t) ∼ N

(

x
(k−1)
1 (t), σ2

θ

)

ii. Sample x
(k)
3 (t) ∼ N

(

x
(k−1)
3 (t), σ2

φ

)

iii. Sample uθ ∼ N
(

0, σ2
θ

)

and set

x
(k)
2 (t) = log

∣

∣

∣

∣

∣

∣

sin(h
(

x
(k−1)
1 (t), (M − 1)T

)

+ uθ − x
(k)
1 (t))

(M − 1)T cos(x
(k)
3 (t) + uθ + x

(k−1)
1 (t))

∣

∣

∣

∣

∣

∣

iv. Calculate the acceptance ratio

α(x(k)(t),x
(k−1)
1 (t)) = min







1,
π(x(k)(t))q

(

x
(k−1)
2 (t)|x(k−1)

1 (t), h
(

x(k)(t), (M − 1)T
)

,x
(k−1)
3 (t)

)

π(x(k−1)(t))q
(

x
(k)
2 (t)|x(k)

1 (t), h
(

x
(k−1)
1 (t), (M − 1)T

)

,x
(k)
3 (t)

)







where

q
(

x
(k)
2 (t)|x(k)

1 (t), h
(

x
(k−1)
1 (t), (M − 1)T

)

,x
(k)
3 (t)

)

=

(Ts− 1)T

x
(k)
2 (t)

√
2πσθ

e
−

u
2

θ

2σ2

θ

cos2(x
(k)
3 (t) + uθ + x

(k−1)
1 (t))

∣

∣

∣
cos(x

(k)
3 (t) + x

(k)
1 (t))

∣

∣

∣

• sample u ∼ U(0, 1)

• if u ≤ α(x(k)(t),x(k−1)(t)), accept the move, else, x(k)(t) = x(k−1)(t).
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5.5.1 Single Mode Gaussian Example

N = 1000 particles are simulated to obtain a three-dimensional Gaussian distribution:

π(x) ∼ N (µ,Σ). The mean and covariance of the distribution are the following:

µ =













20

−15

45













Σ =













1 0 0.5

0 2 −.5

0.5 −.5 0.5













(138)

For the Mode-Hungry MH (MHMH) algorithm, Mt is chosen to be 333. An independent

random walk is used for the proposal function:

q(x,y) ∝ exp

{

−1

2

3
∑

i=1

(xi − yi)
2

σ2
i

}

, (139)

with σ2
1 = σ2

2 = σ2
3 = 6. The particles belonging to P2 are distributed over P1 at every

other iteration of MHMH (Tjump = 2) until the variances of the distribution come close

to the search variances of the proposal function. Fig. 40 displays the estimation results

of both algorithms. In the figure, it should be noted that MHMH achieves convergence

around the modes much faster than the original MH scheme. Moreover, both algorithms

take approximately 30 − 50 iterations to achieve the correlation structure in (138) after

convergence around the modes.

5.5.2 multimodal Example

To demonstrate efficacy of the proposed modifications on multimodal distributions, the

following target density is used:

π(x) ∝
(

e−(x1−20)2/2 +
1

2
e−(x2+20)2/2

)

×
(1

2
e−(x1−30)2/10 + e−(x2+45)2/10

)

(140)

The same set of cross-jumping rules are used as in the previous example (N = 1000,

Mt = 333, and Tjump = 2). In this example, the random walk proposal is used with σ2
1 = 5

and σ2
2 = 5 as the respective variances in the x1 and x2 directions. The resulting distribution

after 30 iterations of MHMH is shown in Fig. 41.

It should be noted in Fig. 41 that the local distributions of the particles around the

modes are correct. However, the number of particles attracted to each mode does not obey
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Figure 40: MHMH (solid) and MH (dashed) algorithms are run 100 times and the averaged
estimates are displayed. MHMH is about an order of magnitude faster in this case. The
jumps in the MHMH curves are attributed to the redistribution of the low probability
particles over the high ones.
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Figure 41: Output distribution of MHMH after 30 iterations. A similar distribution can
be obtained by the MH scheme using approximately 100 iterations.

the global distribution (two of the modes are higher than the others; hence, they should

attract more particles.) This is also a common issue in the MH scheme, where it takes a

high number of iterations for the MH algorithm to break particles from different modes to

correctly concentrate them on different modes. This output is still suitable for a particle

filter because of the correct local distributions. The inherent weighting of the particles

would take care of any discrepancies in the global distribution.

5.6 Conclusions

In this chapter, the MH algorithm is modified to achieve faster convergence for the initial-

ization of particle filters. The modification depends on the important fact that the particle

111



filter needs only the distribution around the current state estimates. The MHMH algorithm

is shown to converge faster than the MH scheme and is well suited for particle filtering ini-

tializations. The effect of the state dimension on the convergence speed of the proposed

MHMH algorithm is being studied. In the simulation examples, stopping conditions for

the cross jumps depend on monitoring the distribution and seeing if the particles have con-

verged around the modes. The stopping condition is extremely important for MHMH when

the target distribution is multimodal. If the algorithm is allowed to run further, the highest

mode naturally consumes the particles around the other modes. This issue can be handled

by adaptively changing Mt and Tjump.
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CHAPTER VI

PROPOSAL STRATEGIES FOR JOINT STATE-SPACE

TRACKING WITH PARTICLE FILTERS

Figure 42: Chapter outline with the new contributions shown in rectangular boxes.

6.1 Introduction

State-space models are mathematical relations used for describing a system’s evolution and

have extensive applications in many practical problems in control theory, signal processing,

and telecommunications. Since exact state-space models of real systems are extremely

rare, approximate models are used. Hence, during analytical modelling of some natural

phenomena, the emphasis is usually placed on choosing a minimum set of variables that

completely describe a system’s internal status relevant to the problem at hand. In this way,

satisfactory results can still be achieved despite incomplete modelling of a system due to

ignorance or lack of knowledge [14,44].

Once a system’s state-space is described in a probabilistic fashion, sequential Monté-

Carlo methods, also known as particle filters, can be used to track the state vector as the
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observations arrive in sequence. In the filter mechanics, the posteriors describing the state

vector are represented by randomly distributed discrete state realizations, called particles,

along with some weights. A proposal function determines the internal distribution of the

particles and directly affects the efficiency of the filter. Given the random particle support,

the particle filter can estimate any statistics of the posterior by proper weighting, and the

estimation accuracy can be improved up to theoretic bounds by increasing the number of

particles [25, 48].

Recently, there has been much interest in combining multiple tracking algorithms de-

scribed by different state-spaces with overlapping state parameters. The motivation for joint

estimation is basically two-fold: (i) to improve the performance of the estimates by merging

different information streams and (ii) to maintain adequate robustness of the estimates in

the face of unexpected model variations or noisy data. For joint state-space estimation

problems, the particle filter is a natural choice because it propagates the probability den-

sity function (pdf) of the state vectors. Hence, it allows for heuristic combination methods,

which may be problem specific [23], or a general probabilistic framework for combining

information.

In this chapter, a general framework is described for tracking a single joint state vec-

tor by merging two overlapping state-space models using the particle filter. It should be

stressed that combining two particle filters for different state spaces is different from for-

mulating one filter that will track them jointly [47]. A proposal strategy is described that

carefully combines the proposal strategies optimal for the individual state-spaces such that

the random support of the particle filter is concentrated where the final posterior of the

joint state-space lies. The resulting filter can have better estimation accuracy with the same

number of particles as the individual filters.

The joint proposal strategy assumes that the state-space formulations are not exact.

If there is an exact relation governing the system parameters, then a single consistent

state space can be formulated easily from the individual state-spaces. Loosely speaking,

each state space locally explains the underlying phenomenon and the different independent

observations can be used to assist the estimation in the individual state-spaces. For example,
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an acoustic tracker with a constant velocity motion model can assist a visual tracker using

a random-walk model through an occlusion scenario if the acoustic propagation path from

the target is not blocked.

The chapter is organized as follows. Section 6.2 sets up the state spaces and describes

the assumptions in mathematical terms. Section 6.3 provides the derivation of the joint

proposal strategy for particle filters. Computer simulations are given in Section 6.4.

6.2 State-Space Assumptions

Two state-spaces S1 and S2 described below are used to demonstrate the framework. The

state update and observation functions of S1 and S2 are assumed to be time-invariant; how-

ever, the results can be generalized to time-varying systems including nuisance parameters.

It is also assumed that the state dimensions are constant even if the system is time-varying.

Define

Si : xi,t =







χt

ψi,t






∼ qi(xi,t|xi,t−1)

yi,t ∼ fi(yi,t|xi,t),

(141)

where the observed data in each space is represented by {yi,t, i = 1, 2} and the overlapping,

possibly multi-dimensional, state parameters are represented by χt. The state transition

density functions qi(·|−) are assumed known or, in the general time-varying case, they can

be determined dynamically. The observations are explained through the density functions

fi(·|−). The observation sets yi are modelled as statistically independent given the state

through conditionally independent observation densities, e.g., one of them might be the

acoustic observations and the other one video. This assumption is justified in many cases

but may be hard to verify mathematically for a specific problem at hand [39,47].

To track the joint state vector xt = [χt, ψ1,t, ψ2,t] with a particle filter, the following

target posterior should be determined:

p(xt|xt−1, y1,t, y2,t) ∝ p(y1,t, y2,t|xt)p(xt|xt−1)

= πt(y1,t, y2,t)πt−1(xt),

(142)
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where πs(·) = p(·|xs). In (142), the Markovian property is implicitly assumed on the state-

spaces. That is, given the previous state and the current data observation, the current state

distribution does not depend on the previous state track and the previous observations.

Equation (142) allows the target posterior to be calculated up to a proportionality

constant, where the proportionality is independent of the current state xt. The first pdf on

the right hand side of (142) is called the joint-data likelihood and can be simplified using

the conditional independence assumption on the observations:

πt(y1,t, y2,t) = f1(y1,t|x1,t)f2(y2,t|x2,t). (143)

The last pdf in (142), corresponding to a joint state update, requires a little bit more

finesse. State-spaces S1 and S2 may have different updates for the common parameter

set since they are not exact. This poses a challenge in terms of formulating the common

state update for xt. Instead of assuming a given analytical form for the joint state update

as in [47], we combine the individual state update marginal pdfs for the common state

parameter by, in effect, convolving the models as follows:

πt−1(χt) = cp1(χt)
o1p2(χt)

o2r(χt)
o3 , (144)

where c ≥ 1 is a constant, pi(χt) , p(χt|xi,t−1) is the marginal density, the probabilities

oi for i = 1, 2 (
∑

i oi = 1) define an ownership of the underlying phenomenon by the

state models, and r(χt) is a (uniform/reference) prior in the natural space of parameter

χt [11] to account for unexplained observations by the state models. If we define D as the

Kullback-Leibler distance, then

D(α(χt)||πt−1(χt)) = − log c+
∑

i

oiD(α(χt)||pi(χt)) (145)

where α is the unknown true χt distribution. Hence, D(α||πt−1) ≤ maxi{D(α||pi)}. This

implies that (144) minimizes the worst case divergence from the true distribution [3]. Hence,

this proves that the one of the trackers does assist the other in this framework.

The ownership probabilities, oi, can be determined using an error criteria. For example,

one way is to monitor how well each each partition xi,t in xt explains the information

streams yi,t through their state-observation equation pair defined by Si, (141). Then, the
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respective likelihood functions can be aggregated with an exponential envelope to solve for

the oi’s recursively. In this case, the target posterior will be dynamically shifting towards

the better self-consistent model while still taking into account the information coming from

the other, possibly incomplete, model, which might be unable temporarily to explain the

temporary data stream.

If one believes that both models explain the underlying process equally likely regardless

of their self-consistency, one can set o1 = o2 = 1/2 to have the marginal distribution

of χt resemble the product of the marginal distributions imposed by both state spaces.

The proposal strategy in this chapter is derived with this assumption on the ownership

probabilities, because, interestingly, it is possible to show that assuming equal ownership

probabilities along with (144) leads to the following conditional independence relation on

the state spaces:

πt−1(x1,t)πt−1(x2,t) = q1(x1,t|x1,t−1)q2(x2,t|x2,t−1). (146)

Equation (146) decouples the partition xi,t distributions in the joint update for xt and

finally results in the following update equation:

πt−1(xt) = πt−1(ψ1,t, ψ2,t|χt)πt−1(χt)

= πt−1(ψ1,t|χt)πt−1(ψ2,t|χt)πt−1(χt)

=
πt−1(x1,t)πt−1(x2,t)

πt−1(χt)

⇒ πt−1(xt) =
q1(x1,t|x1,t−1)q2(x2,t|x2,t)

πt−1(χt)
,

(147)

where πt−1(χt) ∝
[∫∫

q1(x1,t|x1,t−1)dψ1,tq2(x2,t|x2,t)dψ2,t

]1/2

•

(148)

6.3 Proposal Strategy

A proposal function, denoted as g(xt|xt−1, yt), determines the random support for the par-

ticle candidates to be weighted by the particle filter. Two very popular choices are (i) the

state update g ∝ qi(xt|xt−1) and (ii) the full posterior g ∝ fi(yt|xt)qi(xt|xt−1). The first

one is attractive because it is analytically tractable. The second one is better in the sense

that it incorporates the latest data while proposing particles, and it results in less variance
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in the importance weights of the particle filter since, in effect, it directly samples the poste-

rior [25,48]. Moreover, it can be analytically approximated for faster particle generation by

using local linearization techniques (see [25]), where the full posterior is approximated by

a Gaussian. An example proposal function obtained by local linearization of the posterior

is given by

g(xt|xt−1, yt) ≈ N (µ(z) + z,Σ(z)), (149)

where Σ(z) = −
[

l′′f (z) + l′′q (z)
]−1

, µ(z) = Σ(z)
[

l′f (z) + l′q(z)
]

,

and where l′ and l′′ are the gradients and the Hessians of the respective log-likelihood

functions. Also, z is judiciously chosen as the mode of the posterior, which can be calculated.

Hence, by either way of proposing particles, one can assume that an analytical relation for

gi, defining the support of the actual posterior for each state space, can be obtained.
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ψ
(j)
1,t
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(j)
t

ψ
(j)
2,t

ψ1,t
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ψ2,t

ψ2,t

g1
g2

ĝ

ĝ

∫

dψ1,t

∫

dψ2,t

ĝ1

ĝ2

g1(χ
(j)
t , ψ1,t)

g2(χ
(j)
t , ψ2,t)

Support
for ψ1,t

Support
for ψ2,t

Figure 43: The supports, gi’s, for the posterior distribution in each state space, Si, are
shown on the axes χt vs. ψi,t. Particles for the joint state are generated by first generating
χt’s from the combined supports of the marginal distributions of χt. ψi,t’s are then sampled
from gi’s as constrained by the given χt realization.

Figure 43 describes the proposal strategy used for the joint state space. It is assumed
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that each state space has a proposal strategy described by the analytical functions {gi, i =

1, 2} defined over the whole state-spaces. Then, the proposal functions of each state gi are

used to propose particles for the joint space by carefully combining the supports of the

individual posteriors. First, marginalize out the parameters ψi,t:

ĝi(χt|xi,t−1, yi,t) =

∫

gi(xi,t|xi,t−1, yi,t)dψi,t. (150)

The functions, ĝi, describe the random support for the common state parameter χt and can

be combined in the same way as the joint state update (144). Hence, the following function

ĝ(χt|xt−1, y1,t, y2,t) ∝ [ĝ1(χt|x1,t−1, y1,t)ĝ2(χt|x2,t−1, y2,t)]
1/2 (151)

can be used to generate the candidates χ
(j)
t for the overlapping state parameters. Then using

χ
(j)
t , one can generate ψ

(j)
i,t from gi(χ

(j)
t , ψi,t|xi,t−1, yi,t) and form x

(j)
t = [χ

(j)
t , ψ

(j)
t , ϕ

(j)
t ].

In general, Monté-Carlo simulation methods can be used to simulate the marginal inte-

grals in this section [66]. Here, we show how to calculate the marginal integrals of the state

models. Simulation of the other integrals are quite similar. Given χ
(j)
t , draw M samples

using ψ
(m)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t)

1. Then,

∫

q1(χ
(j)
t , ψi,t|x1,t−1)dψi,t ≈

1

M

M
∑

m=1

q1(χ
(j)
t , ψ

(m)
i,t |x1,t−1)

g1(χ
(j)
t , ψ

(m)
i,t |x1,t−1, y1,t)

. (152)

Pseudo-code for the joint strategy is given in Table 10. Finally, the importance weights

for the particles generated by the joint strategy described in this section can be calculated

as follows:

w(j) ∝ p(x
(j)
t |xt−1, y1,t, y2,t)ĝ(χ

(j)
t |xt−1, y1,t, y2,t)

g1(χ
(j)
t , ψ

(j)
1,t |x1,t−1, y1,t)g2(χ

(j)
t , ψ

(j)
2,t |x2,t−1, y2,t)•

(153)

6.4 Examples

The objective of this section is to demonstrate the proposal strategy with an analytical

example to emphasize the following: (i) the joint tracker (called J ) has less RMS error

in tracking when compared to the trackers (also called Si) formulated using the individual

1It is actually not necessary to draw the samples directly from gi(χ
(j)
t , ψi,t|−). An easier distribution

function approximating only qi can be used for simulating the marginalization integral (152).
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Table 10: Pseudo Code for Joint Proposal Strategy

i. Given the state update qi and observation relations fi for the individual state spaces {Si, i = 1, 2},
determine analytical relations for the proposal functions gi’s. For the individual proposal functions gi,
it is important to approximate the true posterior as close as possible because these approximations
are used to define the random support for the final joint posterior. For this purpose, Gaussian
approximation of the posterior (149) or linearization of the state equations can be used [25].

ii. Determine the support for the common state parameter χt using (151). The expression for ĝ may

have to be approximated or simulated to generate candidates χ
(j)
t , j = 1, 2, . . . , N where N is the

number of particles.

iii. Given χ
(j)
t ,

• calculate the marginal integrals by using (152),

• generate ψ
(j)
i,t ∼ gi(χ

(j)
t , ψi,t|xi,t−1, yi,t),

• form x
(j)
t = [χ

(j)
t , ψ

(j)
1,t , ψ

(j)
2,t ], and

• calculate the importance weights, w(j)’s, using (153).

state spaces, and (ii) the joint tracker manifest robustness in the common parameter esti-

mates even if one of the models start to diverge. For the analytic example, the ownership

parameters for the state spaces are fixed to oi = 1/2, i = 1, 2 and the prior component r(·)

in (144) is not used.

Consider the following state-space descriptions

S :







χt

ψt






∼ N













χt−1 + cos(ωt)ψt

ψt−1






,







λ2
1 0

0 λ2
2












(154)

S1 :







χt

ψt






∼ N













χt−1 + ψt

ψt−1






,







λ2
1 0

0 λ2
2













yt ∼ N













χt

ψt






,







σ2
1 0

0 σ2
2













(155)

S2 : χt ∼ N
(

χt−1, λ
2
3

)

θt ∼ N
(

tan−1
(χt
W

)

, σ2
3

)

(156)
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where S is the true state model with a deterministic parameter ω. S1 and S2 are differ-

ent formulations trying to explain the phenomenon generated by S and have independent

observations of S. In this case, the joint state space is included in the state space of S1.

Hence, the objective is to do a better job in tracking χt given the aggregate observations.

Since the data-likelihood and the state-likelihood functions of S1 are linear Gaussian,

the full posterior can be analytically determined. In this case, the proposal function g1 will

be the actual posterior for S1:

g1(χt, ψt|χt−1, ψt−1, yt) ∼ N (µ1,Σ1) , (157)

where

Σ1 =







1
σ2
1

+ 1
λ2
1

− 1
λ2
1

− 1
λ2
1

1
σ2
2

+ 1
λ2
1

+ 1
λ2
2







−1

, (158)

µ1 = Σ1

















yt,1/σ
2
1

yt,2/σ
2
2






+







1
λ2
1

− 1
λ2
1

− 1
λ2
1

1
λ2
1

+ 1
λ2
2













χt−1 + ψt−1

ψt−1

















. (159)

The marginal distribution of χt from S1 is calculated using its state update. The result-

ing marginal distribution is

p(χt|χt−1, ψt−1) ∼ N
(

χt−1 + ψt−1, λ
2
1 + λ2

2

)

. (160)

Moreover, (150), and (157) lead to

ĝ1(χt|χt−1, ψt−1, yt) ∼ N (µ1(1),Σ1(1, 1)) . (161)

For S2, the data-likelihood is given by

Lθ
.
= − 1

2σ2
3

[

θt − tan−1
(χt
W

)]2
. (162)

The proposal function for S2, which approximates the full posterior is obtained by local

linearization of the model as follows:

g2(χt|χt−1, θt) = ĝ2(χt|χt−1, θt) ∼ N (µ2,Σ2) (163)

Σ2 =

[

1

σ2
3

+

(

W

W 2 + χ2
t

)2 1

λ2
3

]−1

, (164)
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Table 11: RMS errors for χt and ψt. Large numbers in the table are caused by tracking
divergence. The underlying model S is closer to S1 when ω is small, whereas it is closer to
S2 when ω is large.

ω J (χt) S1(χt) S2(χt) J (ψt) S1(ψt)

1/500 44.38 80.24 6669.5 21.43 24.83
1/50 42.99 101.05 1511.7 26.55 27.68
1/5 235.7 1134.7 48.96 222.59 134.21

µ2 = Σ2

[

χt−1

σ2
3

+
W

W 2 + χ2
t

1

λ2
3

(

yt,2 − tan−1
(χt−1

W

)

+
Wχt−1

W 2 + χ2
t

)]

. (165)

Hence, to generate χt, substitute (161) and (163) into (151) to obtain

ĝ(χt|χt−1, ψt−1, yt, θt) ∼ N (µ,Σ) (166)

Σ = 2

(

1

Σ1(1, 1)
+

1

Σ2

)−1

, (167)

µ =

(

1

Σ1(1, 1)
+

1

Σ2

)−1( µ1(1)

Σ1(1, 1)
+
µ2

Σ2

)

. (168)

Given χ
(j)
t , (157) can be used to generate ψt as follows

g1(χ
(j)
t , ψt|χt−1, θt) ∼ N



µ1(2) +
ρ1

(

χ
(j)
t − µ1(1)

)

Σ1(1, 1)
,Σ1(2, 2)



 , (169)

where ρ1 is the correlation coefficient of Σ2.

Three particle filters (J ,S1,S2) are implemented each with 100 particles. J uses the

joint proposal strategy whereas S1 and S2 use (157) and (166) as proposal functions. Each

filter also has a resampling stage where particles are resampled with replacement according

to their probabilities. Simulation parameters are λ2
1 = 1, λ2

2 = .5, σ2
1 = 2, σ2

2 = 1, λ2
3 = 9,

σ2
3 = (1◦)2, W = 50, and various ω’s. The simulation is done for 50 iterations total. Table

11 demonstrates the RMS error averages of the Monté-Carlo simulation where model S is

simulated 100 times with different ω parameters.

It should be noted that when neither S1 nor S2 diverges, their performances are compa-

rable. In those cases, the joint filter has less than one-fourth of their combined RMS error

because the particles are not wasted in redundant areas. Table 11 also shows that the joint

filter demonstrates improved performance as well as robustness. Even though one of the

models diverges, the joint filter still does a good job, because it is, in effect, assisted by the
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presence of the other built-in model, which can still track the phenomenon. The filter’s per-

formance may be further improved by implementing the adaptive ownership probabilities.

Lastly, the joint tracker’s robustness vs. time is shown in Fig. 44.

5 10 15 20 25 30 35 40 45 50

−100

−50

0

 t

 χ
t  χ

t
 (true)

 Joint Tracker
 S

1
 S

2

Figure 44: Example tracking realization with ω = 1/50: Even though the particle filter
designed using S2 is unable to track after t = 35s, the joint tracker still does a good job
since it uses the information from coming both state-space models.

6.5 Conclusions

In this chapter, a general proposal strategy is demonstrated for joint state-space tracking

with particle filters. The framework is quite general and it allows different state-spaces to

assist each other in tracking a common parameter. The framework is demonstrated using

an analytical example that mimics a joint acoustic image tracker.
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CHAPTER VII

CONCLUSIONS

The performance of any tracking/detection algorithm will be inherently limited by its ability

to accurately model reality. In Chapter 2, we introduced the independent partition particle

filter using the narrow-band observation model, and then we have also developed a new

motion model that incorporates an acceleration component along the heading direction

of the target. We have shown that the target motion parameters can be considered part

of a more general feature set for target tracking, e.g., target frequencies, which may be

unrelated to the target motion, can be used to improve the tracking performance. To

include the frequency variable, a new array steering vector was defined for the direction-of-

arrival (DOA) estimation problems.

Although analytically very convenient, the narrow-band observation model is not suit-

able for tracking targets with harmonic time-frequency signatures. This is because the

harmonics of a single target may confuse the tracker’s ability to correctly count the actual

number targets present in the field. To decrease the dependence on the observation model

we have reworked the acoustic tracker using a flexible observation model based on an image

tracking approach. This new acoustic tracker was presented in Chapter 3. The new obser-

vation model not only enables the particle filter to cope with more realistic scenarios, but

also decreases its computational complexity by pre-processing the acoustic data to produce

sufficient statistics for the tracking. The tracker is also formulated such that it is also robust

against high observation noise that is commonly encountered in field data.

In Chapter 4, we first attacked the acoustic node calibration problem using the powerful

maximum-likelihood (ML) method directly on the received acoustic data. We developed a

Newton search method for its efficient solution and determined the inherent performance

limits of the problem. We then showed that the same calibration performance can be

achieved with less computation by building the calibration algorithms around the sufficient
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statistics, an idea that we already used in Chapter 3. Interestingly, by doing so, we have

also determined a biased estimator that out performs the ML method for calibration in

minimum mean-squared error sense. The Metropolis-Hastings (MH) algorithm that we

developed for the calibration problem was also tested with field data and its performance

was compared to the existing solutions (i.e., GPS receiver on the nodes).

We then focused on how to accelerate the MH algorithm, which is a very general sampling

algorithm. The modification was done so that the resulting sampling distribution has a

certain shape: particles distributed around the modes of the posterior. Through simulations,

we showed that the accelerated algorithm is an order of magnitude faster than the original

algorithm. This accelerated Mode Hungry MH scheme can be used to initialize the acoustic

particle filter trackers discussed in Chapters 2 and 3. It can also increase the speed of the

MH scheme devised for the node calibration problem.

Finally, we have developed a general framework for the joint state-space tracking prob-

lem in Chapter 6. Challenges arise when one considers how to merge two or more trackers in

a common framework to result in a single estimate. We considered merging the state vectors

of the two trackers in one state vector. Then, the tracker merging problem was addressed

in two parts. The first part, the consistent state-update problem, was solved by merging

the marginal pdfs of the overlapping state space parameters. The second part, the proposal

function of the particle filter, was developed by carefully placing the random support of

the joint filter in the region where the final posterior is likely to lie. Computer simulations

demonstrate improved performance and robustness of the joint state-space tracker when

using the new particle proposal strategy.
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