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Abstract 

The successful development of nanomaterials illustrates the considerable interest in the 

development of new molecular probes for medical diagnosis and imaging. Substantial 

progress was made in synthesis protocol and characterization of these materials whereas 

toxicological issues are sometimes incomplete. Nanoparticle-based contrast agents tend to 

become efficient tools for enhancing medical diagnostics and surgery for a wide range of 
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imaging modalities. Multimodal nanoparticles (NPs) are much more efficient than 

conventional molecular-scale contrast agents. They provide new abilities for in vivo detection 

and enhanced targeting efficiencies through longer circulation times, designed clearance 

pathways, and multiple binding capacities. Properly protected, they can safely be used for the 

fabrication of various functional systems with targeting properties, reduced toxicity and 

proper removal from the body. This review mainly describes the advances in the development 

of mono- to multimodal NPs and their in vitro and in vivo relevant biomedical applications 

ranging from imaging and tracking to cancer treatment. Besides specific applications for 

classical imaging, (MRI, PET, CT, US, PAI) are also mentioned less common imaging 

techniques such as terahertz molecular imaging (THMI) or ion beam analysis (IBA). 

Perspectives on multimodal theranostic NPs and their potential for clinical advances are also 

mentioned.  

 

 

Keywords. Nanoparticles, Multimodal Bio-imaging, Characterization, Multifunctionality, 

Theranostic.  
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Introduction 

Nanoparticles as contrast agents tend to become standard practice in the field of imaging, for 

both bio-imaging and medical imaging [1]. They are used to improve the enhancement of 

image contrast as compared to molecular species and improve the visibility of features that 

would otherwise be difficult to detect. They go on receiving considerable attention in this 
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field for their potential as contrast agents, [2-9] offering many advantages compared to more 

conventional chemical agents such as greater biocompatibility and reduced toxicity [8, 10-13]. 

Noninvasive imaging and minimally invasive in vivo bio-imaging techniques are of course the 

most valuable tools for clinical diagnostics. Clinical Imaging modalities generally include 

complementary techniques [14] such as: optical imaging, [15-23] magnetic resonance imaging 

(MRI), [24-27] computed tomography (CT), [28] ultrasound imaging (USI) [29-33] positron 

emission tomography (PET) [34-37] and single photon emission computed tomography 

(SPECT) [38-40]. Other techniques are also scrutinized, for example multi-photon plasmon 

resonance microscopy, [41] optical coherence tomography (OCT), [42] surface enhanced 

Raman spectroscopy (SERS), [15, 43-47] and diffuse optical spectroscopy [48]. Some of 

these techniques enable entire-organism anatomical imaging (e.g. MRI or PET) and others 

provide more specific molecular imaging (e.g., optical fluorescence or USI) at subcellular 

resolution. Combination of these different tools should allow a better early-stage cancer 

diagnosis, guided stem cell therapies, drug delivery, pathogen detection, gene therapy, image-

guided surgery, and cancer staging, [49] in addition to many other clinically relevant 

procedures, diagnostics, and therapies. 

To help improving these techniques resolution, nanoparticles (NPs) emerge as very powerful 

probes for both in vivo imaging in medical and biological diagnostics. Several NP-based 

contrast agents (CAs) have helped generating breakthroughs as compared to common CAs 

improving their properties and detection limits, in a broad array of imaging modalities. The 

specifications of an ideal NP CA are numerous. It should exhibit colloidal stability in 

biological in vivo media, non-dependence on solvent polarity, ionic strength, pH, or 

temperature. Other properties such as limited nonspecific binding, resistance to reticulo-

endothelial system (RES) uptake, and easy clearance mechanisms are also required. High 

sensitivity and selectivity for the target (e.g., antigen, cell, tissue) with good contrast quality 

(high signal-to-noise ratio, (SNR)) and sufficiently long blood circulation times are also 

mandatory. In other words, this NP should have the adapted long-term quantitative imaging at 

low doses and be safely cleared from the body after imaging completion.  

 

In Table 1 besides the characteristics of the most commonly used in vivo imaging modalities 

in the clinical field are also gathered some more recent ones such as TeraHetz molecular 

imaging (THMI), Particle induced x-ray emission (PIXE), Rutherford Backscattering 

Spectrometry (RBS), and Scanning Transmission Ion Microscopy (STIM). Each type of in 
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vivo imaging technique has its own advantages and limitations, which include spatial and/or 

temporal resolution, sensitivity, SNR, penetration depth in tissue, and quantitative accuracy.  

 

Table 1. List of commonly used bio-imaging techniques (partly adapted from Refs [50] and 
[51]). 

Technique Typical NP label Signal 
measured 

Resolution Depth Sensitivity 
(moles of 
 label 
detected) 

Advantages Cost Main limitation 

Optical 
and NIRF 

QDs, dye-doped 
NPs, upconverting 
NPs, SWNTs and 
other carbon-based 
nanomaterials 
(dots, diamonds, 
graphene) 

Light, 
particularly 
in the near-
infrared 

1–3 mm <1 cm 10−12  High 
sensitivity 
Multicolor 
imaging 

Low Poor depth 
penetration 
Poor spatial 
resolution 

MRI Iron oxide NPs, 
Gd(III)-doped NPs, 
NP-based CEST and 
hyperpolarized 
probes (e.g., 129Xe)  

Alterations 
in magnetic 
fields 

25–100 
μm 

No 
limit 

10−9–10−6  High spatial 
resolution 

Hig
h 

Low sensitivity, 
cannot follow 
many labels, time 
consuming 

PET NPs incorporating 
radioisotopes (e.g., 
18F, 11C, 64Cu, 124I)  

Positron 
from 
radionuclide
s 

1–2 mm No 
limit 

10−15  High 
sensitivity 
quantitative 
entire body 
scanning 

Hig
h 

Can detect only 
one radionuclide, 
requires 
radioactivity 

SPECT NPs incorporating 
radioisotopes (e.g., 
99mTc, 111In)  

γ-rays 1–2 mm No 
limit 

10−14  High 
sensitivity 
 

Hig
h 

Uses radioactivity 
Poor spatial 
resolution 

CT Iodinated NPs, gold 
NPs, iron oxide-
doped 
nanomaterials 

X-rays 50 μm No 
limit 

10−6  High spatial 
resolution 

Hig
h 

Poor resolution of 
soft tissues 
Not quantitative 

US Microbubbles, 
nanoemulsions, 
silica NPs, 
polystyrene NPs 

Sound 50 μm Several 
cm 

10−8  Real-time 
measurement 

Low Poor image 
contrast, works 
poorly in air-
containing organs 

PATa Gold nanoshells, 
gold nanocages, 
gold nanorods, gold  
NPs, SWNTs, dye-
doped NPs 

Sound 50 μm <5 cm 10−12  multiscale 
imaging 
anatomical, 
functional, 
molecular 
and fluid-
dynamic 
imaging 

Low Information 
processing and 
machines still 
being optimized 

THMIb Gold nanorods 
Metal oxide NPs 

Heat 
variation 

100 µm No 
limit 

10−6  High 
sensitivity 
molecular 
network 
information 
based on 
hydrogen 
bonding 

  

Ion beam 
Analysis 
[52] 
(PIXE,c 
RBS,d 
STIMe 
[53]) 

 Metal 
Metal oxide NPs 

 
 
H+  beam 
He+ ions 
 

 
 
>1 µm 
50-200nm 
250 nm 

  
 
20 µm 
 

 
 
Traces of 
elements 
0.1 to 10 ppm 

High 
sensitivity 
Elemental 
mapping 
Quantitative  

high Restricted to in 
vitro studies 

a) PAT: photoacoustic tomography 
b) THMI: TeraHetz molecular imaging 
c) PIXE: Particle induced x-ray emission  
d) RBS: Rutherford Backscattering Spectrometry 
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e) STIM: Scanning Transmission Ion Microscopy 
 

A close look at the literature reveals that basically there are some types of NPs which always 

appear as contrast agents: metal NPs (mostly gold) and metal oxide NPs. They appear either 

as active agents such as iron oxide in MRI for example, or as carriers of the active agent like 

silica NPs.  

In this review, our aim is to give a state of the art of the most recent works on the subject 

including the most recent techniques, and to categorize these NPs according to their field of 

activities: MRI, near-infrared fluorescence (NIRF) imaging, positron emission tomography 

(PET), computed tomography (CT), ultrasound (US), photoacoustic imaging (PAI) and 

TeraHetz molecular imaging (THMI). Table 1 highlights the current NP-based contrast labels 

for each of these techniques.  The accent will be stressed on multifunctional/multimodal NPs 

and theranostic NPs; their potential for clinical use, will also be discussed. The reader can also 

get information on numerous imaging techniques in various reviews [14, 16, 28, 54-56].  

1 Magnetic resonance imaging (MRI) 

MRI is typically the noninvasive and nonionizing imaging method that provides both 

physiological and pathological information about living tissue, usually by measuring water 

proton relaxation rates. MRI offers high soft tissue contrast especially with contrast agents 

(CAs) and provides deep tissue imaging with high spatial resolution (~ 50 μm). The major 

drawback of this technique is its low sensitivity requiring the use of these CAs whose role is 

to alter relaxation processes. CAs are divided in two classes: those that increase the T1 signal 

in T1-weighted images (so-called positive contrast agents, giving a bright contrast), and those 

that reduce the T2 signal in T2-weighted images (so-called negative contrast agents, leading to 

a dark contrast). The effectiveness of a particular probe is defined by its longitudinal (r1) and 

transverse (r2) relaxivities. T2 agents are not so convenient for diagnosis because they provide 

dark contrast which is not so easy to interpret for clinicians. In contrast, the signal produced 

by T1 (paramagnetic) contrast agents, can easily be detected with high spatial resolution.  

1.1 T1 NPs-based contrast agents 

Three important requirements for the design of highly sensitive paramagnetic NPs have been 

identified: (i) a large number of labile water molecules coordinated to the metal; (ii) optimum 

residence lifetime at the metal site; and (iii) a slow tumbling motion of the NP containing the 
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contrast agent.[57] To fulfill these requirements, a well-known T1 CA, Gd(III), has been 

incorporated into various nanomaterials, for example silica and perfluorocarbon nanoparticles, 

carbon nanotubes, [58] carbon nanodots, [59] and nanodiamonds, [60] which all exhibit high 

MR contrast because of a high payload of gadolinium ions and a slow tumbling motion of 

particles. For a Gd(III) complex attached to nanodiamonds, a 10-fold relaxivity increase was 

observed compared with the monomeric Gd(III) complex. Gadolinium chelates were grafted 

on to gold for dual imaging [61] and mesoporous silica NPs, [62, 63] leading to a high local 

concentration of CA as compared to molecular complexes. They were associated with other 

lanthanides to provide particles capable of dual imaging, [64, 65] with drug for therapeutic 

function [66] or with gene in microglial cells for therapy [67]. 

However, gadolinium loading on these systems strongly depends on the number of anchoring 

sites available on the surface of the NPs even if Gd (III) could also recently be dispersed in a 

carbon matrix [59]. A way to solve this problem relies in the synthesis of Gd–based 

paramagnetic NPs, [68] such as Ln2O3, GdF3, and GdPO4 [26, 69, 70] which yield high 

magnetic moments because of the abundance of paramagnetic ions on their surfaces.  

Transition metal oxide (MnO) NPs have recently been developed by various groups for T1-

contrast imaging of brain tumors, [71] in addition to the liver and kidney [58, 72]. Hollow 

MnO NPs could also carry drug molecules in their cavities for simultaneous imaging and 

therapy applications [73]. 

Silica has been recognized as a good candidate for a coating material because it is relatively 

biocompatible and resistant to biodegradation [74, 75]. Among others, mesoporous silica-

coated hollow MnO NPs (HMnO@mSiO2) have been synthesized and characterized. These 

nanoparticles show a significantly higher r1 relaxivity than other existing manganese oxide 

nanoparticle based contrast agents. The porous SiO2 coating enables water exchange across the 

shell and the high surface-to-volume ratio of the hollow structure increases the water 

accessibility to the manganese core and consequently enhances T1contrast. HMnO@mSiO2 

nanoparticles also showed potential MRI cell tracking using positive contrast [75]. 

With relaxivities that depend on the biological environment, “smart” T1 MR probes that 

respond to their surroundings have been pursued extensively [57]. This class of probe 

primarily consists of Gd(III)-based complexes; incorporation of these smart probes into NPs 

will further enhance their efficiency in molecular imaging applications. Very recently, the use 

of an improved hydrolysis method of inorganic salts assisted by incubation in a water bath, 

led to water-soluble extremely small-sized metal-iron oxide nanoparticles iron oxide based 

NPs: MFe2O4 (ESIONs) (M = Fe, Zn, Ni) NPs with average sizes of 4 to 5 nm [76, 77]. The r1 
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relaxivities and the r2/r1 ratios of these nanoparticles were more than 5 and less than 3, 

respectively, which indicated that they were good candidates as T1-weighted MRI contrast 

agents. As an example, the γ-Fe2O3 ESIONs were synthesized by controlled thermal 

decomposition of iron-oleate complex in the presence of oleyl alcohol via heat-up process. 

These ESIONs revealed a maghemite crystal structure with a magnetization much smaller 

than that of 12 nm-sized iron oxide NPs due to their small magnetic moment and a spin 

canting effect. ESIONs have a large number of surface Fe3+ ions with 5 unpaired electrons 

exhibited high r1 relaxivities of > 4.7 mM-1 s-1 and low r2/r1 ratios of < 6.2. Their high r1 

relaxivity and long blood circulation time enabled high-resolution blood pool T1-weighted 

MR imaging of various blood vessels with sizes down to 0.2 mm. With their low toxicity, 

high r1 relaxivity, long blood half-life, they could become the new T1 MRI contrast agents for 

various clinical applications including diagnosis of the myocardial infarction, renal failure, 

atherosclerotic plaque, thrombosis, and angiogenesis of tumor cells. 

 

1.2 T2 NPs-based contrast agents 

Beside these lanthanide derivatives, magnetic NP-based probes have been developed for MRI 

to achieve high tissue contrast and to improve imaging sensitivity. The most popular material 

studied for T2 (superparamagnetic) contrast agents is based on iron oxide NPs (maghemite and 

magnetite), which are generally coated with dextran, PEG, or other polymers, and are used for 

clinical MRI [78-82]. Based on their size, these NPs have been classified as magnetic iron 

oxide NPs (MION, μm), superparamagnetic iron oxide (SPIO, hundreds of nm), ultra-small 

paramagnetic iron oxide (USPIO, <50 nm) and down.  

SPIO contrast agents have been essentially used clinically for diagnosis of liver diseases, [83] 

whereas USPIO probes are generally used for lymph-node imaging, angiography, and blood-

pool imaging [84-89]. Besides their clinical use, MRI contrast agents based on iron oxide 

nanoparticles are actually developed for studying biological processes: Significant 

contributions in this research area have illustrated the potential use of these particles for 

molecular and cellular imaging applications [78, 80, 82, 90-94].  

As an example, [95] Transferrin(Tf)-SPIONs were injected intravenously in a rat bearing two 

tumors with different levels of Transferrin receptor (TfR) and MRI performed (Figure 1). The 

decrease in T2 relaxation time was much more pronounced for the tumor expressing high 

levels of the TfR compared to the tumor expressing low levels of the receptor showing that 

both in vitro and in vivo MRI can be significantly improved when iron oxide NPs are targeted 
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towards cell surface receptors that are overexpressed in tumors. A better understanding of 

imaging biology could significantly influence the design, synthesis, and efficacy of MRI 

probes. 

Figure 1 here 

 

The efficiency of iron oxide probes as T2 contrast agent is size-dependent and increases with 

higher particle crystallinity [26, 79, 86, 96, 97]. However, these NPs generally synthesized at 

low temperatures, have poor crystallinity associated with small size, and lack of 

monodispersity, as also found for other nanomaterials [98].  

Another challenge for this class of contrast agents is the development of efficient methods for 

their dispersion in biological media and surface functionalization for biological targeting. 

Their encapsulation in a silica coating [99] may be a good option since it provides colloidal 

stability in biological solutions by avoiding inter-particle interactions and agglomeration. 

Furthermore, it can act as an anchor for the binding of biological vectors at the NPs surface. 

The thickness of the silica shell has also a strong influence on the physical properties of the 

NPs, especially in terms of contrast agent efficacy for magnetic resonance imaging. An ideal 

shell thickness was determined to be around 35 nm [100]. 

The inherent negative contrast associated with iron oxide NPs has limited their use in low-

signal regions of the body or in organs with intrinsically high magnetic susceptibilities, for 

example the lungs. To solve this problem, specific methods based on either pulse sequences 

[101, 102] design [103] or size control [76] of nanoparticles have been developed by 

researchers to generate bright contrast from iron oxide NPs.  

 

Other T2-based NPs contrast agents with improved magnetic and physicochemical properties 

have been developed such as paramagnetic dysprosium nanomaterials (nanoparticles and 

nanorods) [104, 105]. Their negligible r1 relaxivity enhances T2 MR imaging because in that 

case protons are nearly exclusively induced for T2 MR imaging at a negligible r1. Bimetallic 

ferrite NPs such as CoFe2O4, MnFe2O4, and NiFe2O4 NPs have been investigated as potential 

T2 contrast agents, and some of them, especially MnFe2O4 NPs have been found to display a 

very high magnetization and large T2 relaxivity values [106]. However, long term toxicity 

issues of these new nanomaterials have yet to be assessed. The key point for these NPs to 

serve as T1 or T2 agents is their size. Indeed, some of these ferrites (Fe3O4, ZnFe2O4 and 

NiFe2O4 ) when displaying a 4-5 nm size have recently been used as T1-weighted contrast 

agents for magnetic resonance imaging (MRI), see ref. [77]. 
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1.3 Other probes  

1.3.1 PARACEST nanoparticles 

Nanoparticle CAs are also now used as paramagnetic chemical exchange saturation transfer 

(PARACEST) agents when they display bound water signals that can exchange protons with 

the bulk water. PARACEST magnetic resonance imaging (MRI) relies on these exchangeable 

protons that resonate at a chemical shift which is clearly distinguishable from the bulk water 

signal due the paramagnetism of the particle. Radiofrequency pre-pulses when applied at an 

appropriate frequency saturate the exchangeable protons, which transfer into the bulk water 

pool and lead to reduced equilibrium magnetization allowing the image contrast to be 

switched ‘on’ and ‘off’ by a simple change of the pulse sequence parameters. To enhance the 

inherent insensitivity of MRI to PARACEST agents and improve the limit of detection for 

these agents, nanoscale carriers have been developed such as liposomes, dendrimers, 

polymers, adenovirus particles, and perfluorocarbon nanoparticles [79, 107-109]. The unique 

MRI properties of such nanoparticle systems generate a large interest in potential medical 

applications. 

1.3.2 Metal nanoparticles 

Ferromagnetic cobalt particles coated with gold (Au) for biocompatibility with a unique shape 

that enables optical absorption over a broad range of frequencies were used for MRI and 

photoacoustic tomography (PAT) so as to detect picomolar concentrations of nanoparticles. 

This dual-modality probe revealed very useful for detection of trace amounts of nanoparticles 

in biological tissues, in which MRI provides volume detection, whereas PAT performs edge 

detection [110]. Water-soluble cobalt oxide nanocrystals (CoO NCs) were obtained via a 

phase-transfer method with amphiphilic surfactants, such as anionic (sodium dodecyl sulfate, 

SDS), neutral (Pluronic F127, PF127) and cationic (cetyltrimethyl ammonium bromide, 

CTAB) [111]. A field-dependence of the magnetization on the type of surfactants showed the 

crucial role of the later. The longitudinal relaxivities (r1) and transverse relaxivities (r2) of the 

functionalized CoO NCs gave a r2/r1 of about 26 for CoO NCs functionalized with PF127 

showing some potential as T2 contrast agents. Cobalt ferrite NPs were also probed and 

displayed r2values higher than those of commercial ferumoxytol (91 mM-1 s-1) [111]. 
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2 Near-infrared fluorescence (NIRF) imaging 

Fluorescence imaging is a powerful molecular imaging technique, in which specific probes 

(i.e., fluorophores) are excited by incident radiation, usually in the visible or NIR, and emit 

energy at a (usually) lower energy than that of the excitation one. Despite its extremely high-

sensitivity detection and location of individual cells, mRNA, DNA, proteins, peptides, 

receptors, low-expressing cellular markers, it lacks the ability to provide anatomical 

resolution which is limited to 2-3 mm. As long as noninvasive imaging is concerned, 

fluorescence in the visible region is usable only for thin tissue sections. Deeper penetration 

depths required for most clinical applications need fluorescence-based techniques working in 

the NIR region (650-950 nm). In this NIR window, the absorption of water, hemoglobin, and 

lipids are at their minimum while auto-fluorescence and tissue scattering are low, enabling 

maximum light penetration and therefore high SNRs and sensitive detection. The light 

penetration depth depends on the type of tissue imaged; indeed skin and muscles are more 

transparent than organs with lots of vasculature (e.g., liver and spleen) because of absorption 

by hemoglobin. However, new advances in optical microscopy imaging techniques [18] have 

increased light penetration depths. The fluorophores must be bright with large Stokes shifts 

and high fluorescence quantum yields in the NIR, photostable as well as resistant to 

degradation in biological systems. Reviews on NPs used in in vivo fluorescence imaging are 

available [112-114].  

2.1 Quantum dots 

Quantum dots (QDs) exhibit broad absorption spectra, large absorption cross-sections, narrow 

and tunable emission spectra, high fluorescence quantum yields, and high photostability. 

[115] For all these reasons they are extremely popular in fluorescence imaging application. 

Their optical properties enable bi- [116] and even multicolor imaging, with different colored 

QDs used in a single assay with only one excitation source [117]. This is illustrated in Figure 

2, which clearly shows one of the first demonstrations of an in vivo simultaneous imaging of 

five different lymphatic flows and their trafficking to distinct lymph nodes. The versatility 

and use of multiple QDs in a single assay to visualize several lymphatic drainages in a mouse 

give rise to a new powerful tool.  

Figure 2 here 
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NIR emitting QDs comprise II–VI, IV–VI, and III–V compounds, such as CdSe, CdTe, HgTe, 

PbS, PbSe, PbTe, InAs, InP, and GaAs, as well as alloys of these materials, and core@shell 

structures, which can allow the emission tuning further and alter fluorescence lifetimes. 

Interesting probes are based on self-illuminating QDs, using fluorescence resonance energy 

transfer (FRET) from bioluminescent proteins conjugated to the QD [118, 119]. However, 

potential toxicity due to heavy metal ions has to be taken into account and may be detrimental 

for their use in clinical bio-imaging [120] and limit their use to in vitro and diagnostic assays. 

However, they have been used successfully in a sentinel lymph node mapping using 

intraoperative NIRF imaging [121] and more recently in non-human primates. [122] The 

authors showed that rhesus macaques injected with phospholipid micelle encapsulated 

CdSe/CdS/ZnS quantum dots did not exhibit evidence of toxicity. Blood and biochemical 

markers remained within normal ranges following treatment, and histology of major organs 

after 90 days showed no abnormalities. They deduced that acute toxicity of these quantum 

dots in vivo can be minimal even if chemical analysis revealed that most of the initial dose of 

cadmium still remained in the liver, spleen and kidneys after 90 days significant of slow 

breakdown and clearance of quantum dots. 

2.2 Dye-doped nanoparticles 

NIR dye-doped silica NPs are becoming popular choices of contrast agent for several reasons: 

silica NPs are optically transparent, water dispersible, biologically inert, nontoxic in the 

amorphous form, with well-established conjugation strategies to modify the surface to 

proteins, peptides, and other ligands for cellular receptors using silane chemistry. The use of 

such as matrix, in which many NIR fluorophores can be encapsulated, reduces the potential 

toxicity of these fluorescent probes and shields the NIR emitter from the aqueous 

environment, where the dye usually suffers from low fluorescence quantum yield, 

degradation, and unsatisfactory photostability. NIR-emitting dyes such as polymethines 

(Cy5.5, Cy7), indocyanine green (ICG), Alexa Fluor 750, and IRDye78 have already been 

incorporated into silica NPs. Encapsulation of multiple dyes within a single silica NP 

generates much brighter and more stable probes than those loaded with a single one. Dye-

doped silica NPs are usually synthesized by a sol–gel Stöber process or in microemulsion by 

simply adding the dye (or a modified form of the dye) to the silica-forming solution.[123] In 

addition, the use of mesoporous silica NPs enables the loading of an additional functions into 

the resulting pores, for example imaging probes of sentinel lymph nodes (SLNs) known as the 

first defense against primary tumor metastasis, [124] sensing [125] or a therapeutic agent 
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capable of photothermal ablation or a controlled drug release [126]. The covalent chemical 

grafting of lanthanide complexes on metal oxide nanoparticles was also recently performed 

and introduction of two different lanthanides gave bimodal contrast agents [64, 65, 127]. 

2.3 Upconverting nanomaterials 

Fluorescence imaging for small animals has received an increasing attention due to its ability 

to obtain anatomical and physiological details of living systems [128]. Most of the 

conventional fluorescence probes for bio-imaging are based on single-photon excitation, 

emitting low energy fluorescence when excited by high energy light. These single-photon 

probes exhibit some limitations such as (i) DNA damages with cell death due to long-term 

exposure to high energy excitation; (ii) low signal-to-noise ratio (SNR) due to the significant 

auto-fluorescence of the biological tissues; (iii) low penetration depth in the biological tissues. 

As opposed to visible light excitation, near-infrared (NIR) light excitation for in vivo imaging 

provides several advantages, such as deep penetration, weak autofluorescence, minimal 

photobleaching and low phototoxicity. In particular, two-photon-excited fluorescence imaging 

based on the anti-Stokes luminescence process revealed a useful strategy for imaging of the 

living brain to reduce autofluorescence [129].  

Nanocrystals with both excitation and photoluminescence (PL) in the biological optical 

transparency window combined with high quantum efficiency, spectral sharpness, and 

photostability, makes them extremely promising as optical bio-imaging probes. Rare-earth 

upconversion nanophosphors (UCNPs) belong to this new generation of luminescent probes 

for small-animal imaging. When excited by continuous-wave near-infrared light, they exhibit 

a unique narrow photoluminescence with higher energy. This upconversion luminescence 

(UCL) makes UCNPs promising as bio-imaging probes with attractive features, such as 

suppression of the auto-fluorescence from biological samples and a large penetration depth. 

As a result, UCNPs have emerged as novel imaging agents for small animals. Rules suitable 

to develop new optical labels for in vivo near-infrared optical imaging procedures were 

reported [130]. Later on, in their critical review, [131] Li et al. have recently reviewed the 

recent developments in the preparation, surface modification and bioconjugation chemistry of 

these UCNPs, and their applications in bio-imaging  and multimodality imaging of small 

animals. 

Among others, upconverting NPs developed as agents for in vivo fluorescence imaging, are 

doped with rare-earth ions derivatives.[132] They absorb NIR light (usually around 980 nm) 

and emit upconverted light at a higher energy, usually in the green or far-red/NIR, with long 
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fluorescence lifetime (μs to ms) [133, 134]. For example, polyethyleneimine-coated NaYF4: 

Yb,Er and NaYF4:Yb,Tm NPs when exposed to a 980-nm NIR laser could be used as 

upconverting NPs and evidence the first demonstration of use of upconversion fluorophores 

for cellular and tissue imaging via the imaging of visible fluorescence through mouse thigh 

muscle down to 10 mm depth [135]. Er-doped or Yb/Er-doped ceramic phosphors were 

synthesized and partly modified with polyethylene glycol to give dispersion and controlled 

interaction with the biological objects. Near infrared fluorescence of nematodes, mouse tissue 

and M1 cells was observed by detecting 1.5 μm emission from Er-doped in the ceramic 

phosphor [136]. In the same way, a new generation of 18F-labeled co-doped with 

Gd3+/Yb3+/Er3+ lanthanide nanoparticles of NaYF4 proved to be multimodality nanoprobes for 

UCL but also for PET, and MR imaging [137]. The presence of Yb3+ and Er3+ co-doped in the 

NaYF4 nanoparticles gave rise to intense UCL emission in the visible relaxivity for MRI. 

Successful labeling of the lanthanide nanoparticles with 18F gave a particle suitable for PET 

imaging. In vivo PET/MR entire-body imaging of small animals and ex vivo UCL imaging 

experiments on the biodistribution of 18F-labeled lanthanide NPs in small animals indicated 

the effectiveness of such NPs as a multimodality nanoprobe as discussed later on. 

Functionalized Y2O3-based upconverting NPs also form a promising platform for in vivo 

optical-based diagnostic imaging with an excellent photostability in the NIR as well as a low 

toxicity [138]. The Yb and Er-doped version of the yttrium oxide nanoparticles (Y2O3:YbEr-

NPs) exhibit beside a visible UCL, a strong NIR emission under NIR excitation (NIR-NIR 

emission): the particles shows bright green (550 nm) and red (660 nm) upconversion (UC) as 

well as near infrared (NIR) fluorescence (1550 nm) under 980 nm excitation [139, 140]. 

These NPs with NIR fluorescence at energies lower than their excitation wavelength could 

provide more advantages for bio-imaging applications. 

When judiciously coated some YF3:Yb3+/Er3+ NPs lead to upconversion luminescence in the 

NIR (831 nm) rather than in the visible, which enables greater penetration of the light. [141] 

Other examples include core@shell NdF3@SiO2, (α-NaYbF4:Tm3+)@CaF2, NaGdF4: 

Nd3+@NaGdF4 NPs which also have excitation and emission in the NIR range, and efficient 

deep tissue imaging of small animals. [133, 142] All of these materials were modified as to 

become dispersible in aqueous solutions and conjugated to relevant biomolecules for targeting 

purposes.  

2.4 Carbon nanomaterials 
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Carbon-based nanomaterials are also potential NIR contrast agents for in vivo imaging. The 

near-infrared photoluminescence intrinsic to the semiconducting single-walled carbon 

nanotubes (SWNTs) is ideal for biological imaging through the low autofluorescence and 

deep tissue penetration in the near-infrared region beyond 1 µm [143]. Their NIR 

fluorescence also offers a powerful approach for sensor development and in vivo or real-time 

imaging of biological systems [144]. They present an emission in the second IR window 

(1000-1350 nm), which would enable even deeper light penetration. The toxicity of SWNTs is 

still a controversy; their surface chemistry, therapeutics applications and toxicology as well as 

their use in biomedical imaging were reviewed [145]. A recent strategy to functionalize CNTs 

with bioactive glycoproteins, glycolipids and glycodendrimers led to a series of biocompatible 

and water-soluble CNTs which exhibit highly selective interactions with proteins and living 

cells. Their biomedical applications in cell sensing, gene delivery, bio-imaging , biosensors 

and bone tissue engineering were analyzed in a review paper [146]. Bioanalytical applications 

and bio imaging of carbon dots (CDs) have been reviewed [147]. They exhibit the advantages 

of being excited by single-photon (ultraviolet or near-ultraviolet) as well as multi-photon (red 

or near-infrared) excitation, and their luminescence properties are essentially due to surface 

defects. CDs were found to have emission in the visible region when they are passivated by 

polymer chains [148], doped with inorganic salts or photosensitizer [59, 149-152]. These 

materials are being investigated for optical imaging agents using both one and two-photon 

excitation [153]. Despite the fact that small animal or thin tissue imaging has been largely 

illustrated, clinical applications have not been yet proven.  

Colloidal diamond NPs (i.e., nanodiamonds) are yet another nanomaterial being investigated 

as potential in vivo fluorescent probes for biological and medical imaging. They have been 

shown to be biocompatible, not cytotoxic, and to have a highly reactive surface that is easily 

functionalized with biological entities [154]. These nanodiamonds emit single photon 

luminescence when stimulated by laser light owing to a number of different point defects 

based on different types of vacancies. Comprehensive reviews on nanodiamonds [155] their 

use as biolabels [156] and in nanomedecine [157] have been published.  

Similar to these luminescent carbon dots (C-dots), graphene quantum dots or graphene 

quantum discs (GQDs) have generated enormous excitement because of their superiority in 

chemical inertness, biocompatibility and low toxicity. Besides, GQDs, consisting of a single 

atomic layer of nano-sized graphite, have the excellent performances of graphene, such as 

high surface area, large diameter and better surface grafting using π–π conjugation and 

surface groups [158, 159]. 
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2.5 Other probes and NIRF techniques 

Luminescent porous silicon NPs (LPSiNPs) emitting at ~ 800 nm are also attractive 

candidates, excitable by NIR or two-photon excitation (Figure 3) and as opposed to most 

optically active nanomaterials (carbon nanotubes, gold nanoparticles and quantum dots), they 

can self-destruct in a mouse model into kidney cleared components in a relatively short period 

of time with no evidence of toxicity [160].  

Figure 3 here 

3 Positron emission tomography (PET) 

PET is a nuclear medicine imaging technique that produces a three-dimensional (3D) image 

or picture of functional processes in the body. The system detects pairs of gamma rays 

emitted indirectly by which is introduced into the body on a biologically active molecule. It 

relies on the detection of a positron emitted by radioisotopes (tracer); 3D images of the tracer 

concentration within the body are then constructed by computer analysis. Approved and used 

on a daily basis as a clinical molecular imaging technique with a resolution of 1-2 mm, [54] it 

presents however a relatively low spatial resolution which needs be improved. However, PET 

exhibits the highest sensitivity of all imaging modalities which enables quantification of the 

local concentration of radionuclide tracer, with only a few trace isotopes [55, 161]. 

Furthermore, PET penetration depth is unlimited, so the probe can always be imaged, 

irrespective of the target location. Especially important in cancer imaging and research, PET 

is capable of detecting molecular changes that are occurring in the body before the 

macroscopic disease is observed [37, 89, 162] and of monitoring disease progression after 

treatment (i.e., tumor response to therapy) [163].  

Over the past decades, positron emitter labeled nanoparticles have been widely used and 

substantially improved in a wide range of diagnostic biomedical research. One of the main 

challenges in this field is now to develop disease-specific nanoprobes with facile and robust 

radiolabeling strategies. These nanoprobes should also provide (i) imaging stability, (ii) 

enhanced sensitivity for disease early stage detection, (iii) optimized in vivo pharmacokinetics 

for reduced nonspecific organ uptake, and (iv) improved targeting for high efficacy. A variety 

of nanoparticles have been engineered and explored for diagnostic and therapeutic potential in 

various diseases and lately reviewed [164]. They are essentially labeled with PET isotopes for 

http://en.wikipedia.org/wiki/Nuclear_medicine
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Gamma_ray
http://en.wikipedia.org/wiki/Positron


17 
 

cardiovascular, pulmonary, and tumor imaging, as well as for pharmacokinetic evaluation 

[161].  

3.1 Radionuclide Labeled Nanoparticles 

Common isotopes that can be chelated on to or incorporated within NPs (in an analogous way 

to the gadolinium ions used for MRI) include 18F, 11C, 15O, 13N, 64Cu, 124I, 68Ga, 82Rb, and 
86Y. PET imaging using 18F, which is the most widespread radionuclide probe used in this 

field, has become an established clinical tool for whole-body imaging. In light its short half-

life, its quick conjugation into the probe with a high reaction yield is necessary to improve its 

efficiency and to reduce cost. A general synthesis strategy for such 18F-labeled rare-earth 

nanoparticles was developed through a facile inorganic reaction between rare-earth cations 

(Y3+ and Gd3+) and fluoride ions [165]. The 18F-labeled rare-earth NPs were further evaluated 

by PET imaging, for their in vivo distribution and their application in lymph monitoring. 

There are, however, other types of probes and the main nanoparticle-based PET ones and their 

labeling radionuclide are reported in Table 2. 

 

Table 2. Labeling Strategies and Specific Activities of PET Radionuclides Labeled 
Nanoparticles and the Nuclear Characteristics of the corresponding PET Radionuclides. 
Adapted from Ref. [164] and up-dated.  

NPs labeling strategy radionuclide T1/2 β energy (KeV) main photon 
KeV (%) 

Ref. 

decay (%) max. Mean. 

QDs nucleophilic 
substitution 

18F 109.7 
min 

β+ (96.7) 
EC (0.1) 

634 245 511 (193.5) [166] 

  DOTA 64Cu 12.7 h β+ (17) 
EC (44) 

653 278 511 (34.8) [167] 

  DO3A 64Cu      [168] 
Iron oxide Click chemistry 18F      [34, 

169] 
  DOTA 64Cu      [170] 

[171] 
[172] 

 dithiocarbamatebis
phosphonate 

64Cu      [173] 

  Direct labeling 68Ga 67.7 m
in 

β+ (89) 
EC (11) 

1899 829 511 (178.3) [174] 

 Chelation 64Cu      [175] 
  NOTA 68Ga      [176] 
  Tyrosine 124I 4.18 d β+ (23) 

EC (77) 
2138 820 511 (46); 

603 (62.9) 
723 (10.3) 

[177] 

Aluminum 
hydroxide 

Inorganic 
interaction 

18F      [178] 

Upconversion 
nanophosphors 

Inorganic 
interaction 

18F      [137] 
[165] 
[179] 
 

Gold DOTA 64Cu      [161] 
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nanoparticle 
Gold nanoshells 
(SiO2@Au) 

DOTA 64Cu      [180] 
[181] 

Latex Direct labeling 68Ga      [182] 
  DOTA 64Cu      [183] 
  TETA, CB-TE2A 64Cu      [184] 
  BAT 64Cu      [185] 
Liposome Encapsulation 18F      [186] 
 Chelation 64Cu      [185] 
 Encapsulation 64Cu      [187] 
Solid lipid 
nanoparticle 

Encapsulation 18F      [188] 

  DTPA 68Ga      [189] 
  BAT chelate 64Cu      [190] 
Polymer Tyrosine 76Br 16.2 h β+ (55) 

EC (45) 
3941 1180 511 (109); 

559 (74) 
657 (15.9); 1854 

[191] 

  DOTA 64Cu      [192] 
  [18F] FETos 18F      [193] 
  124I      [194] 
Nanotube DOTA 64Cu      [195] 
  desferrioxamine B 89Zr 3.3 d β+ (23) 

EC(77) 
901 397  [196] 

  DOTA 86Y 14.7 h β+ (33) 3141 664 511 (63.9); 
1077 (82.5) 

[197] 

Graphene oxide 1,4,7-
triazacyclononane-
1,4,7-triacetic acid, 

66Ga 9.3 h β+ (56.5) 
EC(43.5) 

4150 - - [198] 

 

The pharmacokinetic and in vivo cancer targeting issues of 64Cu2+ ions functionalized gold 

nanocages (NCs) (64Cu-DOTA-PEGAuNCs) when followed by PET imaging in normal 

rodents revealed Au NCs size dependent [161]. 30 nm Au NCs showed much-improved in 

vivo pharmacokinetics with decreased RES system uptake and enhanced blood circulation as 

compared to 55 nm ones. The PET/CT imaging demonstrated rapid accumulation and 

centralized distribution of the 30 nm Au NCs in tumors and, more importantly, high tumor-to-

muscle ratios. PET/CT images (Figure 4) clearly showed this rapid localization of the 30 nm 
64Cu-DOTAPEG-Au NCs in tumors at 1 h post-injection even only with the administration of 

a trace amount (23.8 fmol). 

 

Figure 4 here 

 

Most of the time PET tracers are incorporated with another modality in NPs, most notably CT 

[199-202]. Figure 5 illustrates the use 18F-doped cross-linked iron oxide modified tri-modal 

NPs (18F-CLIO) to image the liver and blood pool of a mouse. The in vivo dynamic PET 

imaging showed very high signal-to-noise ratios for injected 18F-CLIO. The nanoparticle had 

a vascular half-life of 5.8 h in mice and was internalized into macrophages of liver, spleen, 
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and phagocytic cells of other lymphatic organs. The NP is additionally biodegradable and 

breaks down into elemental components within months. PET/CT allows concentrations at 2-4 

orders of magnitude lower than those required for MR imaging which likely makes PET 

imaging an important platform for clinical molecular. 

 

Figure 5 here 

 

Biocompatible inorganic NPs such as hydroxyapatite NPs also revealed as useful PET/CT 

probes [178]. They showed particularly avid and stable binding of 18F-fluoride in various 

biological media. The in vivo behaviour of the 18F-labelled hydroxyapatite particles 

determined by PET-CT imaging in mice showed that hydroxyapatite was stable in circulation 

but its accumulation in liver via reticuloendothelial clearance was followed by gradual 

degradation and release of 18F-fluoride (over a period of 4 h) which then accumulated in bone.  

 

3.2 Coupling with other contrast agents 

Among the other modalities that have been combined with PET, should be mentioned ultra-

small cancer-selective silica particles grafted with iodine and dye-doped polymers which were 

recently approved by FDA for in-human clinical trials [203], NIRF agents within the silica 

NPs [204] or QDs [168, 205, 206] and MRI [199] agents in conjunction with iron oxide 

nanomaterials [35, 171]. A bifunctional chelator (dithiocarbamate bisphosphonate, (dtcbp)) 

containing a dithiocarbamate group for binding the PET isotope 64Cu, and a bisphosphonate 

group for strong binding to Fe3O4 was elaborated. Dtcbp efficiently binds 64Cu to form the 

[64Cu(dtcbp)2] complex which is then grafted on the iron oxide NPs leading to a PET-MR 

dual modality imaging capabilities of which in vivo  accumulates in draining lymph nodes 

(Figure 6) [173].  

Figure 6 here  

However, the ratio between PET tracer and MRI contrast agent must be carefully controlled, 

because PET is extremely sensitive whereas MRI is not.  

Single-photon emission computed tomography (SPECT), a similar technique which can also 

detect nanomoles of tracer. SPECT is based on the detection of lower energy γ-emitting 

radioisotopes such as 99mTc, 111In, 123I, and 131I [14, 207-209]. As compared to PET, SPECT 

has the advantage to be more sensitive and versatile, it is cheaper and more widely available 
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as it does not rely on a local cyclotron for production of isotopes even if it is an order of 

magnitude less sensitive than PET.  

Covalent functionalization of radionuclide-filled single-walled carbon nanotubes were used as 

radio-probes [210]. The intravenous administration of these 125I loaded SWNTs was tracked 

in vivo using SPECT. Specific tissue accumulation (here lung) coupled with high in vivo 

stability prevented leakage of radionuclide to high-affinity organs (thyroid/stomach) or 

excretion, and resulted in ultrasensitive imaging and delivery of unprecedented radio-dose 

density. The nano-encapsulation of iodide within SWNTs enabled its biodistribution to be 

completely redirected from tissue with innate affinity (thyroid) to lung (Figure 7). 

Figure 7 here 

4 X-ray imaging and computed tomography (CT) 

X-ray computed tomography (CT) is one of the most powerful noninvasive diagnostic 

imaging techniques in modern medicine. It has been a clinical tool for more than half a 

century and the first widespread clinical use of NPs as X-ray contrast agents in humans were 

3 to 10-nm thorium dioxide nanoparticles [12, 211]. However due to the long-term radiation 

effects and significant carcinogenicity of the 232Th, its clinical application was rapidly given 

up. 

Iodinated molecules were then used as CT contrast agents in the clinics. They however have 

relatively short in vivo circulation times, which significantly restrict the applications of this 

technique in target-specific imaging and angiography. The use of large dose of these agents, 

which may induce serious adverse effects as well as a hypersensitivity to iodine of some 

patients, led researchers to address these issues. Over the past decade, advances in 

nanoscience brought some solutions thanks to the unique properties of nanomaterials, such as 

their prolonged circulating half-life, passive accumulation at the tumor sites, facile surface 

modification, and integration of multiple functions into a single particle, make them 

advantageous for in vivo applications [212]. 

4.1 Iodinated nanoparticles 

The widespread clinical use of iodinated compounds has encouraged the development of 

iodinated nanomaterials. Research essentially focuses [213, 214] on the incorporation of 

iodinated organic compounds into NPs, with designs ranging from emulsions, [215-218] 
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liposomes, [214, 219-223] and lipoproteins, [224, 225] to  insoluble nano objects, [214, 226-

228] and polymeric NPs, [215, 229-233]; many of them have been successfully applied in 

vivo [28, 56]. The purpose of these nanomaterials is to locally increase iodine concentrations, 

resulting in higher local contrast compared with conventional water-soluble CT contrast 

agents. A key feature of many of these NPs is their pharmacokinetics, which are often 

markedly different from those of small iodinated molecules in clinical use. They have 

increased circulation time with the subsequent implications for targeting because longer 

circulation times increase the chance of interaction and binding of the contrast agent to a 

target. 

Some multimodal nanoparticles were doped with an iodinated compound and used to enhance 

X-ray contrast [216, 224, 234, 235] as discussed in later on in the review. Iodine has a lower 

atomic number than gold and bismuth, it however exhibits higher elemental mass attenuation 

coefficient and incident X-ray energies so that when compared to gold NPs under conditions 

used for coronary angiography, iodinated contrast agents had equivalent performance [236]. 

When a contrast agent was developed by combining the two radio-dense elements iodine and 

gold within a single PAMAM dendrimer, it was demonstrated that the incorporation of both 

Au NPs and iodine-containing small molecules resulted in a significant cooperative enhancing 

effect in X-ray attenuation [237]. 

4.2 Gold nanoparticles 

In addition to the clinically used iodine, the element gold has received much attention due to 

its higher atomic number than iodine, and thus, a larger contribution of photoelectron effect to 

X-ray attenuation generating a substantial interest in gold NP-based contrast agents for in vivo 

X-ray CT. Gold nano-objects contain a large number of the contrast element (Au) as opposed 

to iodine-based nanoparticles in which iodinated molecules are often only covalently grafted 

onto the NP surface thereby lowering the concentration of the agent. Various gold, [10, 61, 

238-240] gold@dielectric hybrids, [10, 241-246] and multimodal materials, [96, 246-248] 

have been fabricated and their in vivo functionality as X-ray CT contrast agents for cancer, 

tissue-specific, and blood-pool imaging. Gold nanomaterials are currently being explored in 

multiple clinical trials and they constitute a promising next generation candidate for X-ray 

contrast materials, radiotherapy [249-251] and cancer therapy [252].  

4.3 Other contrast materials 
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Other CT molecular imaging agents have also been studied besides iodinated and gold-based 

ones. These NPs consist of bismuth sulfide and composite ceramics containing iron oxide and 

lanthanide materials. Bismuth sulfide NPs have recently been shown to have superior 

performance to iodine on a molar basis [253-255]. Even if bismuth displays similar mass 

attenuation coefficients to that of gold and a higher k-edge transition, its toxicity may prevent 

bismuth-based nanomaterials clinical use as CT agents. Other types of CT contrast agents, are 

those based on iron oxide [256] and have recently been reviewed [94, 257, 258]. A facile 

approach for fabrication of Fe3O4@Au NPs as a dual mode contrast agent for both magnetic 

resonance (MR) and computed tomography (CT) imaging applications has been performed 

via the combination of a LbL (layer by layer) self-assembly process and dendrimer chemistry 

[259]. The use of Fe3O4@Au NPs as a contrast agent for dual mode MR/CT imaging has been 

demonstrated not only for in vitro imaging of cancer cells, but also for in vivo liver imaging 

via MR and subcutaneous tissue imaging via CT.  

The high atomic weight and large number of unpaired electron makes Gadolinium an 

excellent contrasting agent both for MRI and CT imaging [12, 260-262]. Therefore, most of 

the time, NPs are at least dual probe: CT/MRI or CT/NIRF [261, 263, 264]. As an example 

Gd3+ complex-modified NaLuF4-based upconversion nanophosphors were success fully 

applied for UCL, MR and CT multi-modal imaging, by integrating NIR-to-NIR UCL, X-ray 

attenuation and paramagnetic function in one single nanoparticle. The property of NIR-to-

NIR UCL enhances the high signal-to-noise ratio of in vivo imaging of small animal. 

Moreover, Gd3+ grafting on the surface of NPs generates high r1 relaxivity for the core–shell 

nanoparticles which become suitable for T1 MR imaging. In addition, this nanoparticle with 

the core of Yb3+ and Tm3+-doped NaLuF4 shows a high X-ray attenuation and are good for CT 

imaging. The SiO2 shell reduces the toxicity of these lanthanide-based nanoparticles for small 

animals, which was confirmed by MTT assays and histological analyses. The incorporation of 

different lanthanide ions of Lu3+, Yb3+, Tm3+ and Gd3+ into one particle, 

NaLuF4:Yb3+,Tm3+@SiO2-GdDTPA, provides a facile design strategy to fabricate 

multimodality imaging agents [261].   

Yb-based NPs (NaYbF4:Er) which already revealed to be efficient upconversion 

nanophosphors (UCNPs) have also recently been identified as CT contrasts agents [265]. 

When encapsulated in a polymer (PEG) shell they showed low cytotoxicity and long 

circulation time in vivo. And a much higher efficacy as compared to the clinical iodinate 

agents commonly used. This improvement was attributed to the K-edge energy of Yb that 

locates within the higher energy region of the X-ray spectrum. Furthermore, a gadolinium 
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doping in these nanoparticles endowed them with enhanced fluorescence as well as NMR 

imaging capabilities providing clearance issues are solved.  

By virtue of its high atomic number and this well-positioned K-edge, Yb provides excellent 

spectral CT contrast both in vitro and in vivo.[266] To partly solve bioelimination and 

preliminary biodistribution issues Yb nanocolloids were used as spectral CT contrast agents. 

The synthetic approach involved an organically soluble organometallic Yb(III)-2,4-

pentadionate complex to produce polysorbate encapsulated nanocolloids of Yb incorporating 

a high density of Yb (>500K/nanoparticle) into a stable metal particle. Such high payloads of 

the Yb in the form of hydrophobic small molecule metal complexes could be obtained and 

stably concentrated into lipid-encapsulated nanocolloids and provide novel molecular imaging 

for use for spectral“multicolor” computed tomography (CT). 

5 Ultrasound (US) 

US is also a well-established clinical imaging modality. In particular, it is routinely used to 

characterize lesions in liver, urogenital tract, head and neck and soft tissues. Its main 

advantages are (i) the ability to extract molecular information (ii) portability, (iii) cost-

effectiveness, (iv) absence of ionizing irradiation, (v) high spatial and temporal resolution 

(real-time examination) and (vi) global availability. It is based on the pulse–echo principle, 

with emitted and received wave’s frequencies higher than 20 kHz. US clinical application 

involves sound waves in the range of 2–3 MHz for pediatric imaging and 5–12 MHz for adult 

imaging, providing spatial resolution in the range 0.2 to 1 mm [28].  

Contrast in US is provided by the variable ability of sound to propagate through media, 

resulting in reflection and refraction of the sound waves. Reflection and refraction depend on 

the sound itself but also on the nature of the medium and of its density. Therefore several 

microbubble-based contrast agents have been developed and are applied clinically to enhance 

the echogenicity of vasculature and organ-specific regions [267-272]. These microbubbles 

composed of surfactant, protein, and/or polymer shells containing gas cores, for example air, 

perfluorocarbons, or nitrogen should have an optimum size of 2-3 μm for common imaging 

practice [273]. Contrast agents for ultrasound imaging echogenic liposomes, [274-276] 

perfluorocarbon droplets, [277] and other materials such as gold particles, which have a 

density and compressibility substantially different from that of blood and tissue.  
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The use of nanobubbles [29, 278-286] as US contrast agents is in constant progress. Even if 

named nanobubbles they are typically in the range 150 to 1000-nm in diameter. They are 

generally composed of a perfluorocarbon gas encapsulated by a surfactant, protein, and/or 

polymer shell. The clinical significance of ultrasound as well as the labeling advantages of 

nanomaterials prompted a continued interest in developing smaller ultrasound contrast agents. 

[287-289] Despite this increasing interest, one should mention that due to lower scattering 

cross sections and often low mechanical properties of the shell, the performance of these 

nanomaterials is often inferior to that of microbubbles.  

As for other imaging techniques, there is a general trend to combine both imaging and 

therapy. A solution was proposed which consisted in a medical imaging contrast agent 

combining both NPs and microbubbles for imaging and therapy applications in a single agent 

resulting in more accurate diagnosis and local treatment of diseased tissue. Various silica-

coated NPs (e.g., CdSe/ZnS QDs, Au NRs, Fe3O4, and Gd-loaded silica NPs) were 

incorporated into highly monodisperse, microfluidic-generated compressible protein-lipid-

coated, perfluorobutane microbubbles (with size control down to 3 μm) [290]. When diluted 

in saline the NP-incorporated microbubbles are detectable using low-pressure ultrasound. 

They can be produced at high-throughput, sufficient for in vivo usage (106 MB/s).  

 

Polymeric micelles and perfluorocarbon nano/microbubble systems that encapsulated a drug, 

which can be released locally within tumor cells were also obtained; US was then used to 

determine the efficacy of this drug therapy [278, 279]. Designed redox polymer NPs were 

shown to reduce intra-cerebral hemorrhage induced by 1-MHz focused ultrasound sonication 

coupled with microbubble treatment. Sonication coupled with redox polymer NPs loaded 

microbubbles produced intra-cerebral hemorrhage but the incorporated redox polymer 

nanoparticles had a significant neuro-protective on the intra-cerebral hemorrhage-induced 

brain [291]. 

Microbubbles can potentially be used as carriers for nanoscale US contrast agents and the 

incorporation of multimodal probes with potential therapeutic applications: sonodynamic 

therapy, ultrasound-induced apoptosis, sonoporation/sonotransfection, ultrasound-induced 

drug/gas delivery, and focused ultrasound-induced thermal ablation [32, 33, 280, 292-299]. 

Very recently mesoporous silica nanocapsules were also used as ultrasound contrast agents  

and can be can be potentially used as the inorganic theranostic platform for contrast-

intensified ultrasound imaging, ultrasound-induced cytoclasis and drug release, and 

ultrasound-guided efficient HIFU tumor ablation therapy [300]. 
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6 Photoacoustic imaging (PAI) 

Photoacoustic imaging, PAI, [301] also known as laser optoacoustic imaging, is an emerging 

noninvasive, nonionizing, imaging modality that combines the high sensitivity of optical 

methods with the excellent resolution of acoustic methods [302, 303]. When illuminated by a 

short-pulsed laser, the biological sample absorbs the given light and this excitation is followed 

by a transient increase in temperature (~10 mK) and subsequent thermo-elastic expansion of 

the absorbent. This generates an ultrasonic acoustic signal, which is detected by wideband 

transducers surrounding the object and used to determine its geometry. Electromagnetic 

energy in the optical from visible to near-IR and radio-frequency regions is often utilized for 

PA excitation in soft tissues. This is not only because electromagnetic waves in these regions 

are nonionizing and safe for human use but also because they provide both high contrast and 

adequate penetration depths in biological tissues. PAI is generally performed using two main 

techniques, photoacoustic microscopy (PAM) and photoacoustic computed tomography 

(PAT). [301, 303, 304] PAM uses a coupled, focused ultrasonic detector–confocal optical 

illumination system [302] to generate multidimensional tomographic images without any 

reconstruction algorithms, whereas the detectors in PAT scan the laser-illuminated object in a 

circular path and use inverse algorithms to construct three-dimensional images [301, 305-

307]. 

While in vivo imaging with optical techniques, suffers from hemoglobin absorption and tissue 

scatter, which limit overall light penetration depth, PAI can overcome this primary drawback 

thanks to the lower ultrasonic scattering coefficients (by 2-3 orders of magnitude) of 

absorbents compared with their optical equivalents leading to ~ 5 cm depth analysis with a 

resolution of < 1 mm [308, 309]. The depth issue can even be completely eliminated when 

microwaves or radio waves (referred to as thermo-acoustic tomography (TAT)) are used as 

illumination sources [310-313].  

 

6.1 Gold-based nanomaterials 

Gold-based nanomaterials are the most significant class of materials explored for PAT 

applications. Some of those commonly used for PAT include spherical gold NPs, [304, 314-

320] nanorods, [321-327] nanostars, [328] nanocages, [305, 329-334] hollow nanoshells, 

[335] and composite materials with gold nanoshells: SiO2@Au, [306, 336, 337] Fe3O4@Au, 
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[314] cobalt@gold NPs, [110] gold-speckled silica, [316, 320] and gold nanobeacons.[338, 

339] The reasons for such an attention to gold nanosystems are many fold: they have tunable 

size- and shape-dependent plasmonic properties [340, 341] which allow them to absorb and 

scatter light from the visible to NIR region, and make them suitable for image-guided therapy 

[325, 342-344] and photothermal ablation of tumors.[345-347] A comparison of gold 

plasmonic nanostructures (surface plasmon resonance (SPR) tuned to 800 nm), revealed that 

gold nanorods and nanocages have much larger absorption and scattering cross sections than 

gold nanoshells [348].  

Gold nanorods have similarly been used as NIR photoacoustic contrast agents with high 

sensitivity [349]. Manipulation of the aspect ratio enables tuning of the SPR of the resulting 

nanorods, which has led to multiplexing applications [321, 324, 326, 327, 344]. Gold 

nanorods are also effective as tracers for noninvasive in vivo spectroscopic photoacoustic 

SLN mapping in a rat model [350].  

When they are silica-coated, gold nanorods show increased photoacoustic [344] and 

photothermal stability and retain their superior optical properties under much higher fluences 

[323, 325] when compared to PEG-coated gold nanorods which implies better imaging 

capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-

agent for photoacoustic imaging and image-guided photothermal therapy. A recent paper 

reported the use of silica-coated gold nanorods in photoacoustic imaging for quantitation of 

mesenchymal stem cells MSCs in rodent muscle tissue. The silica coating increased the 

uptake of gold into the cell more than 5-fold, without any sign of proliferation changes in cells 

suggesting that the therapeutic benefit of the MSCs will be retained despite the presence of 

contrast agent [351]. 

Gold-based compounds have a low toxicity [13, 345, 352-355] t which makes them good 

candidates for clinical and medicinal applications [252, 354, 356]. Gold nano-objects are also 

used as multimodal systems which will be addressed later on.  

 

6.2 Carbon nanomaterials 

Carbon nanomaterials have been considered as potential biomedical materialsfor 

pharmaceutical, biomedical, [357, 358] and bio-imaging  applications, [359-362] including 

PAI [363-372] and thermo-acoustic imaging [373]. The characteristic optical properties of 

SWNTs, particularly those with optical properties in the NIR region, [374] play an important 

role in photoacoustic imaging [375].  
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As an example, single-walled carbon nanotubes conjugated with cyclic Arg-Gly-Asp (RGD) 

peptides can be used as a contrast agent for photoacoustic imaging of tumours. Intravenous 

administration of these targeted SWNTs (~ 2 nm in diameter and 50–300 nm in length) 

nanotubes to mice bearing tumors showed eight times greater photoacoustic signal in the 

tumor than mice injected with non-targeted nanotubes [376]]. Antibody-conjugated SWNTs 

targeted to integrins αvβ3-positive U87 human glioblastoma tumors in mice generated a high 

photoacoustic contrast in vivo [377] As an alternative and noninvasive approach to detection 

of the SLN, SWNTs have been shown to result in significant signal enhancement for detection 

by PAI [378]. To overcome the limitation of their relatively low absorption coefficients, the 

nanotubes are modified enhancing their NIR absorption and, thus, photoacoustic contrast. In 

one report, nanotubes were plated with a thin layer (4-8 nm) of gold; use of these golden 

carbon nanotubes (GNTs) resulted in a 100-fold increase in photoacoustic signal enhancement 

[379, 380]. The photoacoustic signals of GNTs as compared to other NIR contrast agents 

exhibited higher PA signals and correspondingly lower bubble-formation thresholds than 

those of pristine carbon nanotubes and gold nanoparticles, and comparable properties to those 

of gold nanorods and nanoshells [380-382]. The antibody-conjugated GNTs were used to 

target lymphatic vessels in vivo by PAI. In another modification of SWNTs, ICG dye 

molecules were attached to the surface of the nanotubes by π–π stacking interactions and 

showed 20-fold higher absorbance than bare SWNTs as illustrated in Figure 8 [371]. The 

synergy between the NIR absorption property of the dye and SWNT led to SWNT-ICG 

nanomaterials which provide an ~300× improvement in photoacoustic sensitivity compared 

with unmodified SWNTs in vivo.  

Figure 8 here 

In a recent work, [383] novel probe based on reduced graphene oxide (RGO)-iron oxide 

NPs(IONP) nanocomposite, was non-covalently functionalized with a biocompatible polymer, 

polyethylene glycol (PEG), for applications in multimodal imaging guided photothermal 

therapy of cancer base on PAT. Using this theranostic nanoprobe, in vivo triple modal 

fluorescence, photoacoustic, and magnetic resonance imaging are carried out, uncovering high 

passive tumor targeting, which is further used for effective photothermal ablation of tumors in 

mice. 

6.3 Other types of nanoparticles 

The encapsulation of dyes within protective NPs would certainly provide additional 

advantages in improving image contrast [384] due to signal amplification, reduced chemical 



28 
 

as well as photo-degradation, and additional ability to target specific biologically relevant 

sites [385-387]. In the selection of a dye, the relevant absorption profile is a key point but 

others can also be crucial, such as fluorescence imaging or therapeutic function such as 

photodynamic therapy (PDT) [126, 388-391]. ICG is the most commonly used for 

photoacoustic imaging in molecular and nanoparticulate formulations because it is the only 

FDA-approved dye for human applications. Its absorption peak at ~780 nm lies within the 

biological NIR window and enables deep tissue imaging only if encapsulated in NP matrices: 

organically modified silica (ORMOSIL), poly(lactic-co-glycolic acid) (PLGA), and calcium 

phosphate) due to its short plasma half-life (4 min). As such it has shown an improved 

stability and longer blood circulation time [392].  

Superparamagnetic iron oxide nanoparticles (SPION) which have been widely used as FDA 

approved contrast agents for magnetic resonance imaging (MRI) and are known to have an 

excellent safety profile [80, 81] were also analyzed for photoacoustic applications. With such 

NPs photoacoustic imaging which enhances imaging contrast by visualizing the optical 

absorption of either tissue or injected contrast agents could be coupled with magneto-motive 

ultrasound (MMUS) imaging which enhances the sensitivity and specificity of ultrasound 

based on the detection of magnetic nanoparticles perturbed by an external magnetic field. This 

integrated magneto-photo-acoustic (MPA) imaging helped identifying morphological 

properties, molecular information and complementary functional information of tissues [393]. 

The same MPA imaging used to noninvasively detect the delivery and endocytosis of NPs 

could differentiate endocytosed nanoparticles from extracellular nanoparticles in background 

tissue, and is promising for in vivo studies of cellular functionality [394]. Another study 

demonstrated the potential of core-shell iron oxide nanoparticles with silica coating as PA 

contrast agents under 1064-nm laser excitation; the increased thermo-elastic response of the 

silica-coated SPION compared to the bare ones was assumed to be due to enhanced opto-

thermal properties of the core-shell structure [395]. Besides inorganic nanoparticles there are 

also studies on the use polymeric nanoobjects for PAI.[386, 387, 396, 397]  

7 TeraHertz molecular imaging (THMI)  

Terahertz (THz, 1 THz = 1012Hz) molecular imaging (THMI) is a new analytic technique that 

detects changes in surface plasmons (SPs) emerging from nanoparticles following irradiation 

with an optical laser beam. Due to the high absorption of THz radiation in water, which is the 
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main component of biological tissues, high contrast between skin, muscle, fat, veins, nerves, 

etc can be obtained. In particular, this high sensitivity of THz to the concentration of water 

provides a high contrast between tumor (high water content) and normal tissues. Thus, 

characterizing the refractive index and absorption of various tissues is the key to the use of 

THz in the Life Sciences both for spectroscopy and imaging and in the design of biochips. 

Terahertz (THz) technology has then been advancing rapidly because of these tremendous 

potential applications. Among them, THz cancer diagnosis is drawing much attention as THz 

waves can detect the variation of cells caused by cancer, thereby rendering a new modality of 

medical imaging. Conventional THz imaging for cancer diagnosis assesses the difference in 

water content or structural changes between tumor and normal tissues. However, use of THMI 

nanoprobes improved the sensitivity of conventional THz imaging by providing a target-

specific THz image and by enabling assessment of molecular and cellular activities via 

analysis of THz waveforms [398, 399]. The sensitivity of THz electromagnetic (EM) waves to 

water molecules allows the utilization of the THz technique in diagnosing cancers because in 

cancerous tumors, diseased tissues contain more interstitial water than healthy tissues. This 

higher water content, combined with structural changes such as increased cell and protein 

density, leads to a larger THz absorption and refractive index for tissues with tumors.  

7.1 Gold nanoobjects  

THz spectroscopy is advantageous in analytical chemistry because it can detect and identify 

intermolecular interactions in chemical compounds, such as hydrogen bonds and hydrations, 

and molecular networks. Recent advances in THz components, such as ultrashort pulsed 

lasers and photoconductive antennas, have improved the sensitivity of THz time-domain 

(TDS) spectroscopy and have made the THz chemical imaging much efficient. THz chemical 

imaging can reveal hydrogen bond distributions and will be a very powerful tool in biology, 

pharmacology, and life sciences. The problem with THz cancer diagnosis is the difficulty in 

identifying the tumor in tissues at an early stage. Antibody-conjugated contrast agents for 

THz EM waves, similar to the technique adopted in MRI, may solve the problem. This was 

first performed using the so called nanoparticle-contrast agent-enabled terahertz imaging 

(CATHI) technique by targeting metal NPs such as gold nano-rods (GNRs) to cancer cells in 

tumors The THz reflection amplitude from the cancer cells with gold nano-rods (GNRs) 

increased by 20% upon infrared (IR) laser irradiation compared to cancer cells without GNRs. 

In a differential mode, the difference between the two cases was more evident because the 
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THz signal from the cancer cells with GNRs was 30 times higher than that from cancer cells 

without GNRs [398]. 

Cancer diagnosis by the terahertz molecular imaging (THMI) technique was also 

demonstrated by in vivo imaging A431 cancerous tumors in mice. The change in the THz 

response is due to the activation of the surface plasmon resonance on the surface of 

nanoparticle probes when illuminated with NIR beams. The development of a differential 

measurement technique in which the NIR beam is directly modulated instead of numerical 

subtraction of two images led to high signal-to-noise ratio (SNR) eliminating the background 

noise and generating a high sensitivity capable of identifying the miniscule differences at a 

cellular level [399]. 

7.2 Metal oxide based Nanoparticles  

Very recently, the commercially available suspension of SPIO–dextran composites (Feridex) 

was also used as not only a MRI probe but also as a THMI one. They were transfected into 

SKOV3 cancer cells, at various concentrations, and both the magnetic and optical properties 

of the particles were examined by MR and THz reflection imaging. Mice were inoculated 

with Feridex-labeled SKOV3 cells, and in vivo MR and THz images were taken 1, 3, 7, and 

14 days after inoculation. The THz images and T2* -weighted MR images showed similar 

patterns; the signal intensities of both image sets increased with Feridex concentration and 

decreased over time [93]. 

Another MRI contrast agent based on gadolinium oxide (Gd2O3) nanoparticles (GONPs) is 

receiving attention as potential multi-functional contrast agents also active in THMI [400]. 

The optical constants of GONPs were found concentration-dependent by terahertz time 

domain spectroscopy THz-TDS. Even a few μM of GONPs could be detected due to their 

power absorption capacity, which is almost three orders of magnitude larger than that of 

water. Therefore, GONPs can significantly improve the contrast in THz images. Their 

encapsulation with biocompatible materials would probably prevent aggregation problem of 

GONPs.  

As opposed to MRI technology, which has difficulty to acquire images from a surface that is 

not surrounded by water such as human skin or digestive organs, THz medical imaging 

technology, however, has uniqueness on the surface measurement of biological samples such 

as epithelial cancers. Therefore, THz imaging along with nanoparticle contrast agents will 

probably be one of the strongest imaging technique for certain diagnosis. 
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8 Ion Beam Analysis Techniques 

Besides quantum dots and gold NPs, many other inorganic nanoparticles suffer from a lack of 

fluorescence in the optical regime, and cannot be followed by light microscopy; therefore, 

there was a need for the development of X-ray fluorescence mapping which is the main way 

to detect, track and quantify nanoparticles in vitro in biological specimens. 

Ion beam analysis techniques have been widely used for the determination of chemical 

element composition of diverse types of specimens. Particle induced x-ray emission (PIXE) 

has proven to be a reliable and a highly sensitive technique for the detection and 

quantification of chemical elements in living organism. The direct analysis of biological 

samples is particularly convenient when ion beam analysis is performed with high-resolution 

microbeam, also called nuclear microprobe. The use of high-resolution microbeam offers the 

opportunity to reveal the in vitro chemical imaging of the whole cell compartments (nucleus, 

cytoplasm) and to perform trace elements quantification at the single cell level. PIXE could 

also be performed on multicellular organisms deciphering the whole elemental composition of 

defined anatomic structures of interest to address the particular questions of bioaccumulation 

and biopersistence of endogenous/exogenous chemical elements, such as metal oxide 

nanoparticles. In addition, because in vitro cell culture or microorganisms prepared for PIXE 

do not require sectioning, they can be investigated close to their natural state using cryogenic 

preparation methods.  

PIXE provides multi-elemental capability, which allows the simultaneous comparison of 

distribution of several elements inside the same specimen [401-410]. 

TiO2 is one of these nanomaterials which were largely examined by PIXE, the main reason 

being due to its extensive use in cosmetics and sunscreens. Analyses performed on the 

penetration depth and on pathways of the TiO2 particles into the skin showed a penetration of 

TiO2 particles through the stratum corneum into the underlying stratum granulosum via 

intercellular space. The TiO2 particle concentration in the stratum spinosum was below the 

minimum detection limit of about 1 particle/μm2 [411]. The state of aggregation of TiO2 NPs 

revealed to be crucial with regard to lungs toxicity [412]. The biodistributions of Pt and TiO2 

micro- and nano-sized particles in mice were estimated and visualized by X-ray scanning 

analytical microscopy. The study indicated that the difference in chemical character had a 

greater effect than did particle size. We predict that X-ray scanning analytical microscopy will 

be a useful method for studying biodistribution of micro- and nano-sized particles, because 
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this method requires no labeling or treatment of the target particles [413]. 

PIXE can even been used as a therapeutic tool because metallic nanoparticles (MNPs) are 

able to release localized x-rays when activated with a high-energy proton beam. The 

exploitation of this phenomenon in the therapeutic irradiation of tumors was then investigated. 

PIXE-based x-ray emission was directed at CT26 tumor cells in vitro, which were 

administered with either gold (average diameter 2 and 13 nm) or iron (average diameter 14 

nm) nanoparticles (GNPs or SNPs). It increased with MNPs solution concentration over the 

range of 0.1-2 mg ml-1. An in vivo study in CT26 mouse tumor models with tumor regression 

assay demonstrated significant tumor dose enhancement, thought to be a result of the PIXE 

effect when compared to conventional proton therapy (PT) without MNP (radiation-only 

group). Mice which received GNPs or SNPs injection doses of 300 mg kg-1 body weight 

before proton beam therapy exhibited from 75% to 90% tumor volume reduction (TVR) in 20 

days post-PT while the radiation-only group showed only 18% TVR and re-growth of tumor 

volume after the same timing. This approach may result in new treatment options for 

infiltrative metastatic tumors and other diffuse inflammatory diseases (Figure 9) [414]. 

Figure 9 here  

In some situations under investigation, the use of complementary PIXE and RBS facilities 

allows information to be obtained at high level of detail, yielding new understanding of the 

affected tissues and the progression of disease [406, 415]. 

The methods can produce quantitative distributions of the chemical elements obtained by 

combining PIXE with other ion beam techniques, RBS (Rutherford Backscattering 

Spectrometry) and STIM (Scanning Transmission Ion Microscopy) even if STIM is also used 

by itself [416, 417]. 

RBS is then used for sample mass normalization of PIXE signal as it provides the quantitative 

determination of the different elements in biological samples. The accurate concentration of 

the chemical elements requires the determination of the initial mass of the sample done by 

STIM analysis [411, 418-420]. As an example, visualization of the penetration of sunscreen 

formulations containing TiO2 NPs (about 20 nm primary particle size) into hair follicles of 

both human and porcine skin using these complementary methods of ion microscopy (PIXE, 

RBS, STIM) showed that the NPs were found as deep as approx. 400 µm in the follicle, 

obviously introduced mechanically rather than by a diffusive process (Figure 10) [418]. 

Figure 10 here  

 

Figure 10 shows a sagittal cut through a hair follicle of porcine skin which was exposed to an 



33 
 

isopropylmyristate gel containing TiO2 NPs and subsequently washed with water. The PIXE-

maps for P (red), S (green) and Ti (blue) are superimposed. The Ti is clearly observed on top 

of the stratum corneum as well as in the follicle surrounding the hair. The left and right 

images are identical with the Ti color code over-modulated to better visualize the Ti spots.  

 

More recent studies have used high-resolution nuclear microprobe to investigate the 

interaction of metal oxide nanoparticles with cells and multicellular organisms (Figure 11). 

Up to now, nuclear microprobe still lacks sufficient spatial resolution to resolve individual 

nanoparticles, but permit to determine detect, track and quantify metal oxide nanoparticle 

aggregates, and to assess the effect of nanoparticles on trace element homeostasis, such as 

calcium [421, 422].  

Figure 11 here  

 

Another promising research area is the study of intracellular localization of functionalized 

NPs by combining in vivo optical/epifluorescence imaging and high resolution 

PIXE/RBS/STIM analysis (Figure 12) [423]. 

Figure 12 here  

We can predict that X-ray scanning analytical microscopy will be a useful method for 

studying biodistribution of micro- and nano-sized particles, because this method requires no 

labeling or treatment of the target particles. 

9 Multimodal bio-imaging  

9.1 Multimodal techniques and instrumentation 

Multimodal bio-imaging became possible not only because of multimodal NPs [424] but also 

because the development of adapted techniques capable of combining two even three types of 

analysis in a single machine. MRI/PET probes [35] for example are powerful emerging tools, 

combining the sensitive, metabolically functional PET with the high-resolution, anatomical 

detail provided by MRI. They had a real expansion with the development of MR/PET scanner 

[425-427]. This is not the only example and this domain of multiple modality techniques will 

most likely go on growing in the future [90, 172].  
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The improvement in instrumentation and detection systems is also a crucial point enhancing 

the sensitivity of these emerging imaging techniques. Improved image-analysis software and 

expanded data storage can make existing technologies even more powerful. 

9.2 Multimodal nanoprobes 

Imaging modalities in the clinic generally include optical imaging, magnetic resonance 

imaging (MRI), computed tomography (CT), ultrasound (US) and positron emission 

tomography (PET) or single photon emission computed tomography (SPECT). A current 

popular approach to overcome their specific limitations results in combining two or more CAs 

into a single NP entity which can then be imaged by these multiple techniques either 

consecutively or simultaneously depending on the degree of development of the techniques 

[19, 171, 199-201, 281, 383, 428-438]. Combining the anatomical resolution of MRI with the 

sensitivity of optical imaging is common and constitutes a powerful technique for finding and 

quantifying the size of tumors, especially tumors or metastases that are too small for MRI 

detection alone. These MR/optical imaging agents can be used to monitor enzyme activity, in 

brain tumor imaging, and to detect and monitor apoptosis and atherosclerosis [439]. Other 

types of multimodal contrast agents [5, 25, 74, 200, 201, 281, 430, 432, 433, 436, 437, 440-

442] such as probes with three modes of imaging are considered, for example MRI/NIRF/PET 

[439], and even four [425, 439, 443, 444] which are gathered in Table 3. As an example, 

difficulty in delineating brain tumor margins is a major obstacle for further efficient treatment 

[445]. Current imaging methods are often limited by inadequate sensitivity, specificity and 

spatial resolution. To overcome this issue, Kircher et al. recently showed that a unique triple-

modality magnetic resonance imaging/photoacoustic imaging/Raman imaging nanoparticle 

(MPRNPs) could accurately help delineate the margins of brain tumors in living mice both 

preoperative and intraoperative ways. The probes were detected by all three modalities with a 

picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into 

glioblastoma-bearing mice led to MPRNP accumulation and retention only by the tumors. 

This provided non-invasive tumor delineation by the three modalities and through the intact 

skull. Raman imaging helped for guidance of intraoperative tumor resection because it could 

accurately delineate the tumor margins. 

 

Table 3. List of the different multimodal NPs and the type of techniques they are used for. 

Number of Type Nanoobjects ref 
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modality 

2 MRI/CT Gold NPs/ Gd3+  [245] 

  Fe3O4@Au nanocomposite particles [259] 

  Au–Fe3O4 Janus NPs [446] 

 MRI/Fluorescence QDs / iron oxide and Gd3+ NPs [447] 

  Silica NPs, Gd3+ Eu3+ and Tb3+complexes [64, 65] 

  Hydroxyapatite Gd3+ and Eu3+ complexes [448] 

  Iron-doped silicon nanoparticles [449] 

 MRI/NIRF Fe3O4@Au [450] 

  Iron oxide and Cy5.5 dye [451] 

 MRI/MRI (T1/ T2) SPIO and [452] 

  Carbon dots and Gd3+ [59] 

 MRI/PAT See the reviews [110, 200] 

 MRI/PET  [35, 425, 426, 453, 

454] 

 MRI/PET Gd3+ 64Cu [455] 

 MRI/SPECT/Fluores

cence 

Gd2O3@SiO2 and Cy 5 [171] 

 MRI/ THMI SPIOs [93] 

 MRI/US Perfluorocarbon NPS and Gd3+ [456] 

  Magnetite and PLA microbubbles [293] 

  iron oxide and 64Cu [36, 173, 175] 

 CT/Fluorescence TaOx NPs and rhodamine-B [457] 

 CT/PAT Gold@PEG NPs [239, 343] 

 CT/NIRF NaYbF4 and Tm3+ [263] 

 PET/NIRF QDs and 64Cu DOTA [205] 

 PAT/US Gold nanorods and microbubbles [32] 

  Gold Nnanorods [458] 

 SPECT/fluorescence See reviews [439, 459] 

 TAT/PAT SWNTs [378] 

 US/NIRF Proteins/Gold NPs, Iron oxide NPs, QD, [460] 

3 MRI/NIRF/PET SPIO and 64Cu and Cy5.5 [439] [171] 

 MRI/NIRF/PET Mesoporous SiO2 near-IR dye ZW800 and Gd3+ 

and 64Cu 

[124] 

  SPIO and 18F [34] 

  SPIO and 124I [235] 

  18F Yb,Er,Tm codoped NaYF4 [137] 

 MRI/CT/NIRF NaY/GdF4:Yb,Er,Tm@SiO2-Au@PEG [436] 
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  NaLuF4:Yb3+,Tm3+@SiO2-GdDTPA [261] 

  Fe3O4@NaLuF4:Yb,Er/Tm Core-shell NPs [461] 

 MRI/PAT/Raman SWNTs@PEG and iron metal NPs and 

Protamine 

[34] 

  Gd3+ and Gold NPs and trans-1,2-bis(4-pyridyl)-

ethylene 
[445] 

 MRI/PAT/ 

fluorescence 

Graphene oxide and iron oxide and dye [383] 

 MRI/CT/NIRF Perfluoro-NPs, 19F [462] 

≥ 4 MRI/PET/BRET/ 

fluorescence 

Cobalt–ferrite MNP@SiO2(RITC)-PEG/NH2 

and Luciferase protein and  68Ga 

[176] 

 MRI/MM-OCTa/US/ 

fluorescence 

SPION and RGD peptide and Nile red [463] 

 MRI/ Optic MNPs and QDs [464] 

 PET–CT/MRI/NIRF 64Cu and Iron oxide and NIR dye  [202] 
a MM-OCT: magnetomotive optical coherence tomograph. 

y 

All these combinations are expected to provide very precise and detailed information for clear 

diagnosis and to be more efficient than a single modality. However, it should be stated that 

the rational selection of the different imaging modalities to put on a single probe is highly 

crucial. During the design of these multimodal imaging probes, the enhancement of one 

modality must not be at the expense of another and researchers should rationally avoid 

overlapping of advantages and rather compensate for the weak points of each modality so as 

to maximize the overall synergistic effect. Generally, imaging modalities with high sensitivity 

(PET, optical, etc.) are combined with others which will exhibit high spatial resolution (MR, 

CT, etc.) (Table 1). 

Furthermore, these bio-imaging techniques require different administered doses, based on the 

technique’s sensitivity, host biology, route of delivery, and the targeting strategy used. The 

controlling the ratios of the different types of agents on a single probe, becomes compulsory 

so as to obtain the perfect SNR for each modality. Additionally, the incorporation of more 

than one modality may cause interferences between the two, iron-based MRI agents 

quenching fluorescence agents for example, and complicate the synthetic aspect. Succeeding 

in this approach would lead to the administration of a single dose of multiple agents to the 

patient, resulting in a potential reduction of side effects.  
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10 Functionalization 

Most disease processes occur at the molecular and cellular levels, therefore researchers have 

to face breakthrough in precisely viewing and understanding these processes. The ideal 

imaging resolution they want to reach is a few nanometers, the length scale of most 

biological. With this in mind the functionalization of NPs becomes crucial for their use in 

diagnostic and therapeutic applications. The research on the functionalization of NPs for bio-

imaging applications has been reviewed [25, 98, 360, 465-471]. The preparation of NPs for 

bio-imaging applications can include a variety of steps: synthesis, coating, surface 

functionalization, and bioconjugation. The most common strategies of engineering NP 

surfaces involve physical adsorption or chemisorption of the desired ligands onto the surface. 

Chemisorption or covalent linkages are preferred, and the coated NPs should possess high 

colloidal stability, biocompatibility, water solubility, as well as functional groups for further 

bioconjugation. Functionalization techniques reported in the literature suffer from limitations 

such as complex synthesis steps, poor biocompatibility, low stability, and hydrophobic 

products. Therefore, coating strategies based on chemisorption and ligand exchange often 

provide a better way to finely tune the surface properties of NPs. After conjugation with the 

appropriate targeting ligands, antibodies, or proteins, fluorescent NPs also exhibit highly 

selective binding, making them useful for targeting and imaging. 

 

Table 4. List of the different functionalization processes of NPs from [465]. 

Reaction type Functionalized NP Reactant  Final NP 

Michael addition 

 

  
Epoxide opening 

   
Addition of 

amine to 

cyanates 
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Amide bond 

formation  

 
 

Amide bond 

formation  
 

 
Amide bond 

formation  
 

 
Imine bond 

formation  
 

 
Imine bond 

formation  
 

 
Click chemistry 

 
 

 
Ring closing or 

opening 

metathesis 

   

Diels-Alder 

reaction 

  
 

 

Synthesis of NPs leads to two major categories: hydrophobic and hydrophilic NPs, 

respectively. Many NPs, mainly QDs and metal NPs are hydrophobic in nature, causing 

insolubility in water and preventing further functionalization. Thus, water solubilization and 

functionalization become key points prior to any applications of the NPs. Their coating 

chemistry is critical to provide colloidal stability and water-soluble, robust NPs with flexible 
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surface chemistry. The most common functionalization strategies are (i) direct encapsulation 

of the hydrophobic NPs by hydrophilic polymers or a silica coating and (ii) ligand exchange 

of the original surfactant with hydrophilic ligands, such as thiols.  

Regardless of composition, surface functionalization of the nanomaterial is required to enable 

targeting and stealth for long circulation times with minimal nonspecific binding [239]. There 

is a plethora of entities that can be incorporated onto a NP’s surface, with covalent bonding 

preferred over electrostatic interactions: DNA, RNA, [472] oligonucleotides (aptamers), [29, 

434, 473-476] peptides, [36, 175, 201, 477-482] proteins, [483-487] enzymes, [488-491] 

antibodies [492]. No matter what the surface moiety, its activity must not be altered once 

anchored to the NP surface (Figure 13).  

Figure 13 here 

 
Routes of delivery and bioavailability are also important concerns in which functionalization 

is crucial. The most common delivery route is intravenous injection which requires an 

optimization of NPs circulation time since they must be able to pass through the bloodstream 

and reach their desired target intact. Their surface functionalization generally results in size 

increase due to the added shell (silica, PEG, poloxamines, poloxamers, polysaccharides). This 

size increase may be detrimental for vasculature permeability and may affect bloodstream 

circulation especially through thin capillaries.  

In addition to intravenous (IV) administration, intramuscular injections, oral, transdermal, and 

inhalation routes are also possible and NPs must be able to survive their particular delivery 

route. The probe, to be effective must perform the desired function or bind properly to the 

desired target so that any loss of biological activity of the component conjugated to the NP 

surface must be determined beforehand.  

Functionalization can also help addressing NPs toxicity aspects [12, 354, 358, 465, 468, 493, 

494]. Indeed, properly protected NPs conjugated or coated with biocompatible materials can 

be used for the fabrication of various functional systems with multimodality as well as 

targeting properties, reduced toxicity and proper removal from the body. 

Furthermore, governmental institutions should require a standardization process of NPs 

characterizations (as particle size, shape, dissolution rate, agglomeration state, and surface 

area and chemistry) [495] as well as toxicity assays. It has generally been assumed that in 

vitro toxicity tests designed for soluble chemicals are appropriate for nanomaterials. However 

extrapolation of in vitro toxicology findings to humans is not so obvious when the mode of 

action and/or metabolic conditions in the cell culture model may not be relevant in humans 
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[496-498]. This is not an easy task, since the standardized established tests should work for 

multiple particle types, despite the fact that these NPs have different characteristics and 

behaviors (fluorescence, magnetism, metallic nature…) but it should definitely be undertaken. 

When such NPs are used in bio-imaging , it is also crucial to have accurate characterization to 

fully understand (i) their structure–function relationship such as particle number and dose 

administered so as to make the right balance between safety and good SNRs, (ii) their 

behavior in the biological environment (e.g., dispersibility or aggregation), and (iii) the 

interactions between the functionalized surface of the NP and the target of interest (i.e., 

binding kinetics and thermodynamics).  

 

11 Perspectives: Multimodal Theranostic NPs 

To successfully translate multimodal NPs into clinical treatment, several issues have to be 

taken into consideration such as (i) reasonable blood half-life; (ii) favorable physiological 

behavior with minimal off-target; (iii) any possible metabolism to clearable components; (iv) 

effective clearance of NPs from the human body; and (v) their potential toxicity for living 

subjects and humans. So when adequately modified multimodal nanoprobes can also become 

theranostic NPs. They are then essentially found in cancer research where they provide the 

diagnostic capability using an imaging modality to detect a tumor, while supplying the 

component for therapy against this specific tumor type, commonly utilizing photothermal 

ablation (PTA) or photodynamic therapy (PDT). PTA works by exciting a NP with a large 

absorption cross section (e.g., gold), which causes a localized heating that then kills the tumor 

cells into which the NPs have been injected [337]. Once more gold-based nanoobjects are 

numerous: gold nanoshells and nanocages surrounding a silica core have been used in photo-

ablative therapies [329, 345-347, 356, 499-503] even if PTA has also been used with SWNTs 

[504].  

PDT uses photosensitizers that, when excited by light, react with molecular oxygen in the 

biological environment to produce ROS, which are cytotoxic to cells. Multifunctional NPs 

used for multimodal imaging and theranostic applications have been reviewed [8, 126, 150, 

388-391, 416, 481, 505-508]. One material that may prove useful in combining a dual 

imaging and therapy is mesoporous silica NPs; with their large surface areas and pore 
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volumes, one or two modalities (optical imaging agent and an anticancer drug) can be 

incorporated into the silica matrix while loading the other modality into its pores. [509-511]  

Encapsulating drug payloads in NPs can prevent exposure of healthy cells to the cytotoxic 

drug and may prove more beneficial (e.g., lower toxicity and fewer side effects) at lower 

doses than the free drug. However, this can reveal much more complex than the use of simple 

small-molecule drugs that are easily characterized. In addition, the NP must remain intact 

until reaching the tumor site and then release the drug controllably through its desired 

mechanism—issues that will require further research and development.  

Due to their nanoscale dimensions and high aspect ratio, single-walled carbon nanotubes 

(SWCNTs) have been used as a high drug loading transporter for anti-cancer drugs, as they 

are capable of penetrating mammalian cell membranes. The triple functionalization of 

oxidized SWCNTs with the anti-cancer drug doxorubicin, a monoclonal antibody, and a 

fluorescent marker at non-competing binding sites allowed for targeted delivery of drug to 

cancer cells and visualization of their cellular uptake by confocal microscopy. An intracellular 

release of doxorubicin (DOX).was observed which then translocated to the nucleus while the 

nanotubes remain in the cytoplasm [512]. 

Other important areas in which multimodal NPs can be beneficial include (i) tumor imaging 

for guided surgery, [323, 513-516] imaging of gene expression in vivo to elucidate disease 

development, [287, 288, 296, 370, 517-520] drug delivery [471] and efficacy of anti-cancer 

drugs [234, 337, 429, 498, 521-525].  

 

In the next future, NPs will not only be used as contrast agents not simply to find and 

delineate tumors, but also aim at elucidating the biological processes and cellular mechanisms 

so as to understand and hopefully cure other diseases than cancer, such as Alzheimer’s, 

Parkinson’s, multiple sclerosis, rheumatoid arthritis, and diabetes.  

Major developments of the future should then concern diagnosis as well as treatment with 

therapeutic NPs. These new agents to be developed from a societal point of view will have to 

prove as highly superior to any currently existing system with the same function. Therefore, 

the development of CAs incorporating an additional functionality (i.e., therapeutic agent, 

measure of disease progression, or evaluation of treatment effectiveness) with the classical in-

vivo imaging modality will most likely be expanded, especially if based on some already-

approved material. 

Additional types of NP contrast agents may see development in the future. These smart 

responsive probes that turn “on” or “off” when exposed to the target or given conditions are 
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being developed. Two fluorochromes (Cy5.5) cleavable by proteases, and (Cy7) which serves 

as an internal standard were grafted on superparamagnetic iron oxide NPs  leading to a dual 

fluorochrome optical probe which reacted to the presence of protease enzymes in its 

environment with a change in signal (700% increase in fluorescence) [526].  

Tumor cells have a more acidic internal environment compared with normal cells (most 

cancer tissues have lower extracellular pH values (pH 6.0–7.0) than normal tissues (pH 7.4), 

and the pH drops further in tumor cells, especially inside endosomes (4.5–5.5), which 

provides a high possibility to control the drug release behaviors through the use of pH-

sensitive vehicles. Many systems exploiting this pH modification  are under scrutiny [527]. 

Well-defined core@shell (MCNC@PAA) nanospheres based on a 100 nm sized magnetic 

colloid nanocrystal cluster core and across-linked poly(acrylic acid) (PAA) shell were for 

example loaded with of doxorubicin (DOX). [528] The experimental results showed that (i) 

the MCNC@PAA NPS could achieve a high drug loading content and entrapment efficiency; 

(ii) a synergistic pH-responsive effect derived from the entrapped DOX and PAA network 

was found to effectively manipulate the drug releasing behavior at 37 °C. In fact the 

premature release was highly restricted at a pH of 7.4, while upon more acidic ones pH (from 

7.4 to 5.0 or 4.0), a large amount of the drug was rapidly released. The in vitro cellular 

cytotoxicity test proved they are highly biocompatible and suitable for use as a drug carrier in 

CDDS and that MCNC/PAA–DOX show a higher cytotoxicity compared with that of free 

DOX to HeLa cells. Other pH-sensitive based NPs have been used such as chitosan [529] 

polymers, [530] core@shell NPs [527], nanogels [531]. Among stimuli sensitive NPs are light 

sensitive one. For example, light-stimulated remote release of nucleic acid has been attempted 

by utilizing the tunable optical properties and moderating Au–S bond strength of various gold 

nanomaterials [532, 533]. For example, temporally and spatially controlled delivery of siRNA 

using (NIR)-sensitive gold nanoshell-siRNA conjugates was explored [534]. Pulsed NIR laser 

irradiation, after their easy cellular uptake by TAT-lipid attached on the gold nanoshell, 

triggered siRNA release and resulted in efficient gene silencing in vitro. A remote optical 

switch for localized and selective control of RNA interference was also achieved using gold 

nanorods conjugated with thiol-modified sense strand of double stranded oligonucleotides 

[535]. Some of these NPs are dual probes with both photo- and pH- responsive properties 

[536]. 

A recent review by Kwon et al. on stimuli-responsive polymers and nanomaterials for gene 

delivery and imaging applications came out in which they introduces the recent advances in 

tackling the key challenges in achieving efficient, targeted, and safe non-viral gene delivery 
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using various nucleic acid-containing nanomaterials that are designed to respond to various 

extra- and intracellular biological stimuli (pH, redox potential, and enzyme) as well as 

external artificial triggers (light and ultrasound). Nanomaterials platform for combined 

imaging and gene therapy, nanotheranostics, using stimuli-responsive materials was also 

highlighted in this review. It is clear that developing novel multifunctional l vectors, which 

transform their physico-chemical properties in response to various stimuli in a timely and 

spatially controlled manner, is highly desired to translate the promise of gene therapy for the 

clinical success. Temperature-sensitive NPs have been identified many of them including heat 

activable iron oxide and thermo-sensitive polymers, [537-547] silica NPs, [542, 544, 548] 

liposomes, [548-550] micelles, [551] multifunctional nanoparticles containing both CdTe 

quantum dots (QDs) and Fe3O4 magnetic particles [552]. 

These nanomaterials CAs will certainly find more than numerous applications as tunable, 

remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various 

other biomedical applications. The basis for the interest lies in their unique properties 

achieved at the nanoscale that can be accessed via remote stimuli. These properties could then 

be exploited to simultaneously activate secondary systems that are not remotely actuatable 

[440, 535, 536, 553-561]. Despite all the work already performed, Richard Feynman is still 

more than right: “There is still Plenty of Room at the Bottom”.  
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Caption to figures: 

Figure 1. In vivo testing of the (Tf)-SPION conjugate in rats bearing 9L gliosarcoma tumors. 
Two tumors expressing either a high (9L3.9) or a low (9L4.2) level of the TfR were imaged 
before injection and 72 hours after injection of Tf-SPION particles. Reprinted with permission 
from [95]. Copyright (2003) Neoplasia Press. 

Figure 2. In vivo five-color lymphatic drainage imaging pointing at five distinct lymphatic 
drainages. (a) In vivo and intra-surgical spectral fluorescence imaging of a mouse injected 
with five carboxyl QDs (565, blue; 605, green; 655, yellow; 705, magenta; 800, red) intra-
cutaneously into the middle digits of the bilateral upper extremities, the bilateral ears, and at 
the median chin, as shown in the right hand side schema. Five primary draining lymph nodes 
were simultaneously visualized with different colors through the skin in the in vivo image and 
were more clearly seen in the image taken at the surgery. Reprinted, with permission, from 
Ref. [117], Copyright (2007) American Chemical Society.  

Figure 3. a) In vivo images of LPSiNPs and Dextran-coated-LPSiNPs. The mice were imaged 
at multiple time points after intravenous injection of LPSiNPs and Dextran-coated-LPSiNPs 
(20 mg kg-1). Arrowheads and arrows with solid lines indicate liver and bladder, respectively. 
b) Lateral image of the same mice shown in a), 8 h after LPSiNP or Dextran-coated-LPSiNP 
injection. Arrows with dashed lines indicate spleen. Reprinted by permission from Macmillan 
Publishers Ltd from Ref. [160]. Copyright (2009) Nature Publishing Group.  

Figure 4: PET/CT images of the 30 nm 64Cu-DOTA-PEG-Au NCs in a mouse bearing an 
EMT-6 tumor at 1, 4, and 24 h post- injection (3.7 MBq injection/mouse). T, tumor; B, 
bladder. The increase of tumor-to-muscle ratios was consistent with the biodistribution 
measurements. Reprinted, with permission, from Ref. [161]. Copyright (2012) American 
Chemical Society.  

Figure 5. Dynamic PET/CT imaging of BALB/C mouse injected with 18F-CLIO. Merged 
PET/CT coronal images at 2 h (a), 7 h (b), and 16 h (c) post-injection of 18F-CLIO. PET only 
coronal images at 2 h (d), 7 h (e), and 16 h (f) post-injection of 18F-CLIO. CT only coronal 
image (g). Three-dimensional merged PET-CT images at 2 h (h) and 16 h (i) post-injection. 
The green arrow indicates blood pool region of interest (ROI) and the asterisk indicates liver 
ROI. Reprinted, with permission, from Ref. [34]. Copyright (2009) American Chemical 
Society.  
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Figure 6. In vivo PET–MR imaging studies with [64Cu(dtcbp)2]-Fe3O4 NPs in mouse. A,B) 
Coronal (top) and short axis (bottom) MR images of the lower abdominal area and upper hind 
legs showing the popliteal lymph nodes (solid arrows) before (A) and after (B) footpad 
injection of [64Cu(dtcbp)2]-Fe3O4. C) Coronal (top) and short-axis (bottom) Nano PET–CT 
images of the same mouse as in (B) showing the uptake of the NPs in the popliteal (solid 
arrow) and iliac lymph nodes (hollow arrow). D) Whole-body NanoPET–CT images showing 
sole uptake of [64Cu(dtcbp)2]-Fe3O4in the popliteal and iliac lymph nodes. No translocation of 
radioactivity to other tissues was detected. Reprinted, with permission, from Ref. [173]. 
Copyright (2011) John Wiley and Sons. 

Figure 7. Whole-animal SPECT/CT imaging, immediately after tail intravenous injection 
administration of filled, functionalized SWNTs (left hand side); and radionuclide alone (right 
hand side). Reprinted, with permission, from Ref. [210]. Copyright (2010) Nature Publishing 
Group. 

Figure 8. Photo-acoustic detection of SWNT-ICG in living mice. (a) Mice were injected 
subcutaneously with SWNT-ICG at various concentrations - 0.82–200 nmol L-1). The images 
represent ultrasound (gray) and photoacoustic (green) vertical slices through the subcutaneous 
injections (dotted black line). The skin is visualized in the ultrasound images, and the 
photoacoustic images show the SWNT-ICG distribution. The nanobeacons on the images 
illustrate the approximate edges of each inclusion. (b) The photoacoustic signal from each 
inclusion was calculated using 3D regions of interest and the “background” represents the 
endogenous signal measured from tissues. Linear regression (R2 = 0.97) of the photoacoustic 
signal curve indicates that 170 pmol.L−1 SWNT-ICG will give the equivalent background 
signal of tissues. Reprinted, with permission, from Ref. [371], Copyright (2010) American 
Chemical Society.  

Figure 9. Description of proton beam irradiation on tumor tissue in the presence of metallic 
NPs. Tumor-associated macrophage, distributed in tumor periphery, uptakes metallic 
nanoparticles, which produces a therapeutic effect potentially on TAM and infiltrated tumor 
cell by proton-induced X-ray emission (PIXE) effect. Reprinted, with permission, from Ref. 
[414]. Copyright (2010) IOP Publishing Ltd. 

Figure 10. Sagittal cut through a hair follicle of porcine skin exposed to a formulation 
containing nanosized TiO2. PIXE-data were taken with 2.25 MeV protons at 100 pA and a 
charge of 0.5 µC. The scan size is 400 µm×400 µm, on 256×256 pixels and a lateral 
resolution around 1 µm. The formulation with NPs (blue) is deeply pushed into the follicle. 
Reprinted, with permission, from Ref. [418]. Copyright (2007) Elsevier. 

Figure 11. a) Density map (STIM) and in situ 2D chemical imaging (PIXE) of HaCat cells 
exposed to titanium oxide NPs. Control HaCat cells (left panel) and HaCat cells exposed to 
titanium oxide NPs (right panel) have been investigated using phase contrast imaging and 
STIM/PIXE analysis. The simultaneous combination of STIM and PIXE reveals the specific 
in situ chemical distribution in the whole cellular body. A specific pattern is observed for the 
phosphorus distribution which is mainly located in the cell nucleus. Titanium is only detected 
in exposed cells with disperse but punctuated distribution in the cellular body. Scale bar, 10 
µm. b) High resolution confocal image of paraformaldehyde-fixed PHFK cells treated with 
Fluorecein-TiO2-NPs (green) at a final concentration of 2 mg/cm2 for 24 h and treated for 
immunofluorescence with propidium iodide (PI) (cytoplasm and nucleolus, red) and 
Hoechst33342 (nucleus, blue): top Fluorescence image, bottom 3D reconstruction.  
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Figure 12. Density map (STIM) and in situ chemical imaging (PIXE) of a lyophilized adult C. 
elegans exposed to titanium oxide nanoparticles. (top) STIM rendition of the whole C. 
elegans body. Regions of interest corresponding to buccal cavity, pharynx corpus 
(metacorpus), pharyngeal posterior part with terminal bulb and anterior part of the intestine 
(GUT) are shown. Intestinal cells can be also seen between gut and uterus which is full of 
fertilized eggs. (bottom) 2D maps of phosphorus (green), sulfur (red) and titanium (blue) in 
the whole C. elegans body. Co-localization map reveals a highly specific distribution of 
element in organs suggesting a link between chemical anatomical structure and their 
functions. The titanium oxide nanoparticles ingestion is demonstrated by the presence of 
titanium in the pharyngeal metacarpus and in the rectum. Phosphorus (green), sulfur (red) and 
titanium (blue). Scale bar, 20 µm. 

Figure 13. Different types of surface functionalization and morphologies of inorganic NPs. 
Reprinted with permission from [12] Copyright (2012) John Wiley and Sons. 

 

 
Figure 14. In vivo testing of the (Tf)-SPION conjugate in rats bearing 9L gliosarcoma tumors. 
Two tumors expressing either a high (9L3.9) or a low (9L4.2) level of the TfR were imaged 
before injection and 72 hours after injection of Tf-SPION particles. Reprinted with permission 
from [95]. Copyright (2003) Neoplasia Press. 
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Figure 15. In vivo five-color lymphatic drainage imaging pointing at five distinct lymphatic 

drainages. (a) In vivo and intra-surgical spectral fluorescence imaging of a mouse injected 

with five carboxyl QDs (565, blue; 605, green; 655, yellow; 705, magenta; 800, red) intra-

cutaneously into the middle digits of the bilateral upper extremities, the bilateral ears, and at 

the median chin, as shown in the right hand side schema. Five primary draining lymph nodes 

were simultaneously visualized with different colors through the skin in the in vivo image and 

were more clearly seen in the image taken at the surgery. (Reprinted, with permission, from 

Ref. [117], Copyright (2007) American Chemical Society) 

 

 
Figure 16. a) In vivo images of LPSiNPs and Dextran-coated-LPSiNPs. The mice were 

imaged at multiple time points after intravenous injection of LPSiNPs and Dextran-coated-

LPSiNPs (20 mg kg-1). Arrowheads and arrows with solid lines indicate liver and bladder, 

respectively. b) Lateral image of the same mice shown in a), 8 h after LPSiNP or Dextran-

coated-LPSiNP injection. Arrows with dashed lines indicate spleen. Reprinted by permission 

from Macmillan Publishers Ltd from Ref. [160]. Nature Materials. Copyright 2009. 
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Figure 17: PET/CT images of the 30 nm 64Cu-DOTA-PEG-Au NCs in a mouse bearing an 

EMT-6 tumor at 1, 4, and 24 h post- injection (3.7 MBq injection/mouse). T, tumor; B, 

bladder. The increase of tumor-to-muscle ratios was consistent with the biodistribution 

measurements. Reprinted, with permission, from Ref. [161], Copyright (2012) American 

Chemical Society. 

 
Figure 18. Dynamic PET/CT imaging of BALB/C mouse injected with 18F-CLIO. Merged 

PET/CT coronal images at 2 h (a), 7 h (b), and 16 h (c) post-injection of 18F-CLIO. PET only 

coronal images at 2 h (d), 7 h (e), and 16 h (f) post-injection of 18F-CLIO. CT only coronal 

image (g). Three-dimensional merged PET-CT images at 2 h (h) and 16 h (i) post-injection. 

The green arrow indicates blood pool region of interest (ROI) and the asterisk indicates liver 

ROI. Reprinted, with permission, from Ref. [34], Copyright (2009) American Chemical 

Society. 
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Figure 19. In vivo PET–MR imaging studies with [64Cu(dtcbp)2]-Fe3O4 NPs in mouse. A,B) 

Coronal (top) and short axis (bottom) MR images of the lower abdominal area and upper hind 

legs showing the popliteal lymph nodes (solid arrows) before (A) and after (B) footpad 

injection of [64Cu(dtcbp)2]-Fe3O4. C) Coronal (top) and short-axis (bottom) Nano PET–CT 

images of the same mouse as in (B) showing the uptake of the NPs in the popliteal (solid 

arrow) and iliac lymph nodes (hollow arrow). D) Whole-body NanoPET–CT images showing 

sole uptake of [64Cu(dtcbp)2]-Fe3O4in the popliteal and iliac lymph nodes. No translocation of 

radioactivity to other tissues was detected. Reprinted, with permission, from Ref. [173]. 

Copyright (2011) John Wiley and Sons. 

 

 
Figure 20. Whole-animal SPECT/CT imaging, immediately after tail intravenous injection 

administration of filled, functionalized SWNTs (left hand side); and radionuclide alone (right 

hand side). Reprinted, with permission, from Ref. [210]. Copyright (2010) Nature Publishing 

Group. 
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Figure 21. Photo-acoustic detection of SWNT-ICG in living mice. (a) Mice were injected 

subcutaneously with SWNT-ICG at various concentrations - 0.82–200 nmol L-1). The images 

represent ultrasound (gray) and photoacoustic (green) vertical slices through the subcutaneous 

injections (dotted black line). The skin is visualized in the ultrasound images, and the 

photoacoustic images show the SWNT-ICG distribution. The nanobeacons on the images 

illustrate the approximate edges of each inclusion. (b) The photoacoustic signal from each 

inclusion was calculated using 3D regions of interest and the “background” represents the 

endogenous signal measured from tissues. Linear regression (R2 = 0.97) of the photoacoustic 

signal curve indicates that 170 pmol.L−1 SWNT-ICG will give the equivalent background 

signal of tissues. Reprinted, with permission, from Ref. [371], Copyright (2010) American 

Chemical Society.  
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Figure 22. Description of proton beam irradiation on tumor tissue in the presence of metallic 

NPs. Tumor-associated macrophage, distributed in tumor periphery, uptakes metallic 

nanoparticles, which produces a therapeutic effect potentially on TAM and infiltrated tumor 

cell by proton-induced X-ray emission (PIXE) effect. Reprinted, with permission, from Ref. 

[414]. Copyright 2010 IOP Publishing Ltd. 

 
Figure 23. Sagittal cut through a hair follicle of porcine skin exposed to a formulation 

containing nanosized TiO2. PIXE-data were taken with 2.25 MeV protons at 100 pA and a 

charge of 0.5 µC. The scan size is 400 µm×400 µm, on 256×256 pixels and a lateral 

resolution around 1 µm. The formulation with NPs (blue) is deeply pushed into the follicle. 

Reprinted, with permission, from Ref. [418]. Copyright 2007 Elsevier. 
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Figure 24. a) Density map (STIM) and in situ 2D chemical imaging (PIXE) of HaCat cells 

exposed to titanium oxide NPs. Control HaCat cells (left panel) and HaCat cells exposed to 

titanium oxide NPs (right panel) have been investigated using phase contrast imaging and 

STIM/PIXE analysis. The simultaneous combination of STIM and PIXE reveals the specific 

in situ chemical distribution in the whole cellular body. A specific pattern is observed for the 

phosphorus distribution which is mainly located in the cell nucleus. Titanium is only detected 

in exposed cells with disperse but punctuated distribution in the cellular body. Scale bar, 10 

m. b) High resolution confocal image of paraformaldehyde-fixed PHFK cells treated with 

Fluorecein-TiO2-NPs (green) at a final concentration of 2 mg/cm2 for 24 h and treated for 
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immunofluorescence with propidium iodide (PI) (cytoplasm and nucleolus, red) and 

Hoechst33342 (nucleus, blue): top Fluorescence image, bottom 3D reconstruction.  

 

 
Figure 25. – Density map (STIM) and in situ chemical imaging (PIXE) of a lyophilized adult 

C. elegans exposed to titanium oxide nanoparticles. (top) STIM rendition of the whole C. 

elegans body. Regions of interest corresponding to buccal cavity, pharynx corpus 

(metacorpus), pharyngeal posterior part with terminal bulb and anterior part of the intestine 

(GUT) are shown. Intestinal cells can be also seen between gut and uterus which is full of 

fertilized eggs. (bottom) 2D maps of phosphorus (green), sulfur (red) and titanium (blue) in 

the whole C. elegans body. Co-localization map reveals a highly specific distribution of 

element in organs suggesting a link between chemical anatomical structure and their 

functions. The titanium oxide nanoparticles ingestion is demonstrated by the presence of 

titanium in the pharyngeal metacarpus and in the rectum. Phosphorus (green), sulfur (red) and 

titanium (blue). Scale bar, 20 µm. 
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Figure 26. Different types of surface functionalization and morphologies of inorganic NPs. 

Reprinted with permission from [12] Copyright 2012 John Wiley and Sons. 
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