GLOBAL STABILITY IN A REGULATED LOGISTIC GROWTH MODEL

E. TROFIMCHUK

Department of Mathematics
National Technical University ‘KPI’
Kiev, Ukraine

S. TROFIMCHUK

Instituto de Matemática y Física
Universidad de Talca
Casilla 747, Talca, Chile

(Communicated by S. Ruan)

Abstract. We investigate global stability of the regulated logistic growth model (RLG) \(n'(t) = r n(t)(1 - n(t - h)/K - c u(t)), \) \(u'(t) = -a u(t) + b n(t - h). \) It was proposed by Gopalsamy and Weng [1, 2] and studied recently in [4, 5, 6, 9]. Compared with the previous results, our stability condition is of different kind and has the asymptotical form. Namely, we prove that for the fixed parameters \(K \) and \(\mu = bcK/a \) (which determine the levels of steady states in the delayed logistic equation \(n'(t) = r n(t)(1 - n(t - h)/K) \) and in RLG) and for every \(h r < \sqrt{2} \) the regulated logistic growth model is globally stable if we take the dissipation parameter \(a \) sufficiently large. On the other hand, studying the local stability of the positive steady state, we observe the improvement of stability for the small values of \(a \): in this case, the inequality \(rh < \pi(1 + \mu)/2 \) guaranties such a stability.

1. Introduction. This paper is inspired by the recent work [9], where an analog of the 3/2-stability criterion was established for the regulated logistic growth model

\[
\begin{align*}
 n'(t) &= r n(t)(1 - n(t - h)/K - c u(t)), \\
u'(t) &= -a u(t) + b n(t - h).
\end{align*}
\]

(1)

Here \((n, u) \in \mathbb{R}^2_+ \) and all the parameters \(r, K, h, c, a, b \) are positive. In [9], proving the global stability of the positive equilibrium of (1) for \(rh \leq 3/2(1 - bcK/a) \), the authors have found the sharpest global stability condition for (1) ever reported before (see Table 1 below). In the limit case when \(bc = 0 \), the above inequality takes the form \(rh \leq 3/2 \) coinciding with the well-known result by Wright for the delayed logistic growth equation

\[
n'(t) = r n(t)(1 - n(t - h)/K).
\]

(2)

Comparing (2) and (1), it is natural to suppose that the values of \(r, h, K \) are fixed and that the positive numbers \(a, b, c \) are regulating parameters. Actually, for the first time system (1) was proposed in [1, 2] to control the equilibrium level of a population modelled by Eq. (2): using the parameter \(\mu = bcK/a \) one can move

1991 Mathematics Subject Classification. 37C45.

Key words and phrases. Schwarz derivative, global stability, delay differential equations, regulated logistic model.