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ABSTRACT 

Maternal hypercholesterolaemia has been associated with  atherosclerosis in the offspring of 

humans and animal models. Partially hydrogenated vegetable oil (P) and ruminant milk fat (R) 

contain trans fatty acids (TFA) that differ in isomer distribution and cause changes to 

cholesterol metabolism. TFAs are passed to the offspring across the placenta during fetal 

development and via the mother’s milk. The study aimed to assess whether maternal 

consumption of two types of TFA diet (P and R) and a diet rich in saturated fatty acids 

(“Western” W diet) would differentially alter maternal lipoprotein metabolism causing 

changes to the offspring’s lipoprotein metabolism and increasing their susceptibility to 

atherosclerosis in adulthood. Experimental fat diets were fed to female C57BLJ6 mice during 

pregnancy (PC, RC, or WC), or throughout pregnancy and lactation (PP, RR, WW). Female 

offspring carrying the human ApoE*3 Leiden gene (AEL) were weaned onto post-natal diets 

for 12 weeks: (i) Chow (CCC, PCC, RCC); (ii) Atherogenic (CCA, PCA, PPA, RCA, RRA, WCA, WW); 

(iii) or remained on their dams’ allocated fat diet (PPP, RRR or WWW). Maternal and offspring 

serum lipoprotein concentrations were measured, and offspring atherosclerosis assessed by 

lipid staining in cross sections of aorta. At day 17 gestation, dams consuming P diet had 

increased serum total cholesterol and triacylglycerol concentrations compared to R dams. 

Dams that had consumed P or R during pregnancy and C during lactation had similar serum 

cholesterol concentrations. However, continuing the fat diet throughout lactation caused R 

dams to have significantly greater serum cholesterol compared to P, W, and C dams.  Dams 

consuming P and R had diet specific trans isomers in their adipose tissue, indicating the 

developing fetus and neonate were exposed to different TFA isomers. Maternal TFA 

consumption during pregnancy appeared to protect offspring from atherosclerosis in later 

life, irrespective of isomeric distribution of the TFA, however this effect was lost if the TFA 

diet was continued to be fed during lactation and early development periods. In conclusion, 

maternal consumption of TFA and SFA diets did not increase susceptibility of offspring to 

atherosclerosis. Both R and P TFA diets during pregnancy had an athero-protective effect. 

There was no effect of maternal W diet on offspring atherosclerosis. 
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CHAPTER 1 INTRODUCTION 

 

 

1. GENERAL INTRODUCTION 

 

The fetal and developmental programming of atherosclerosis forms the basis of this thesis.  

The following paragraphs of the introduction outline the impact of nutrition on the health of 

populations and their link to the high rate of death through cardiovascular diseases such as 

atherosclerosis (paragraph 1.1).   The aetiology and physiology of atherosclerosis (paragraph 

1.3) is described followed by the impact of different sources of dietary fats on human lipid 

metabolism (paragraph 1.4) and the cholesterol-atherosclerosis link (paragraph 1.5).  These 

paragraphs set the scene of how different dietary fats impact on lipid metabolism and 

atherosclerosis.  It goes onto review the origins of fetal and developmental programming in 

both humans and animal models of disease giving examples of maternal under nutrition and 

over nutrition, with note to the impact of different maternal dietary fats on the fetal 

programming of atherosclerosis. 

 

 NATIONAL AND GLOBAL HEALTH INITIATIVESAND RECOMMENDATIONS 

 

An unhealthy diet and lifestyle choice can cause serious health problems such as obesity, type 

2 diabetes and cardiovascular diseases which together increase the possibility of premature 

mortality worldwide (WHO, 2013a, WHO, 2015).  In the following paragraphs, global and 

national (UK) nutrition and health initiatives are described in order to understand the ever-

increasing rise in premature mortality from cardiovascular diseases (CVDs) and their risk 

factors.  Thereafter it outlines the UK government’s strategy to educate and empower its 

population into making healthier choices and changing their lifestyles to try and resolve these 

endemic health problems (DH, 2014b, DH, 2015, PHE, 2010). It is recognised an excess of 

energy provided by a variety of nutrients such as added sugars, saturated fat and salt all 

contribute to health problems throughout an individual’s lifespan. 



2 
 

 

 Global Health Initiatives for Action on Non-Communicable Diseases and 
Premature Mortality 

 

The World Health Organisation (WHO) reports that over 36 million people die from non-

communicable diseases (NCD) annually; including 14 million who die young (aged 30-70). 

NCDs include CVDs, chronic respiratory diseases, diabetes, and cancers. CVDs, including 

conditions such as coronary heart disease (CHD) and cerebrovascular disease, are a major 

cause of death globally.  In 2008, the WHO reported that by 2030, 23 million people 

worldwide will die annually from CVDs (WHO, 2008) with populations from developing, low 

or middle income countries seeing a rise in CVD related deaths.  In 2012 an estimated 17.5m 

(31%) deaths worldwide were caused by CVD related diseases (WHO, 2015).  The WHO are 

seeking to prevent and control CVDs worldwide, working through local governments and their 

public health initiatives, to educate populations in the management of their own CVD risk. 

Inherent CVD risk factors include genetics, age, gender, and ethnicity.  It is recognised that 

prevalence of CVDs are also heavily influenced by socio-economic factors such as geographic 

region, poverty, poor diet, physical inactivity, smoking and harmful alcohol consumption 

(Townsend et al., 2012b, WHO, 2013a).   

 

The WHO Global Action Plan 2013-2020 sets out 9 voluntary targets for its member states 

(including the USA and UK) in order to reduce premature death from NCDs, many of which 

are risk factors associated with CVDs. These targets include: 

 

1. Halting the rise in diabetes and obesity. 

2. Reducing activity insufficiency by 10%. 

3. Reducing salt/sodium intake by 30%. 

4. Increase the number of people receiving drug therapy to reduce heart attacks and 

stroke by 50%. 

5. Reducing and controlling raised blood pressure in populations by 25% 

6. Increase availability of medical equipment and aid to treat NCDs by 80%. 
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7. Reducing tobacco use by population over the age of 15 years, by 10%. 

8. Reducing harmful alcohol consumption by 10% 

9. Reducing premature deaths from CVDs, cancer, diabetes, and respiratory disease by 

25%.    (WHO, 2013a) 

 

The WHO indicated that a healthy diet and lifestyle changes are the key to achieving these 

targets. They set out recommendations that governments should work nationally with food 

manufacturers and producers to assist populations in meeting these targets.  The WHO Action 

Plan recommendations cover all age groups of populations, but also specifically apply these 

recommendations to maternal, infant, and young child nutrition.  Their recommendations are 

that policies are developed to regulate and reduce portion sizes of energy dense products, 

reduce salt and added sugar content of products, and replace the use of trans fats (TFA) and 

saturated fats (SFA) with unsaturated fats (UFA) - ultimately reducing the use of energy dense 

products and increase the availability of affordable fruit and vegetables.  They state that the 

marketing of energy dense food and beverages to populations and particularly to children 

should be carefully regulated.  Additionally, they suggest that governments promote and 

support maternal policies such as breast feeding until 2 years of age.   

 

The WHO goes onto suggest many other voluntary policies for implementation to address the 

9 factors outlined in the paragraph above for example physical activity for health – for 

governments to provide the infrastructure for leisure activities such as walking and cycling 

and addressing physical education needs in schools from infant age upwards.   

 

 UK Governments’ Health Initiatives and Recommendations 
 

The UK Government’s Department of Health (DH) has disseminated national public health 

strategies through its White Paper presented at parliament in 2010 (DH, 2010) and the 

development of Action Plans “Living Well for Longer” (DH, 2014b, DH, 2015).  The 

Government’s white paper and subsequent action plans reflect the targets set out by the 

WHO for reducing preventable deaths from NCDs including CVD risks and implementing 
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maternal, infant and child health initiatives.  In particular, the Public Health Outcomes 

Framework 2013-2016 sets out key areas for improvement that address reducing premature 

mortality from CVDs through public health improvements.  For example (i) reducing the 

number of low birth weight term babies; (ii) implementation and support for breastfeeding 

initiatives and, (iii) reducing excess body weight in adults and children through diet; (DH, 

2012c). 

 

Working alongside the National Health Service and other public health bodies such as Public 

Health England the strategy is to influence the UK’s population’s behaviour through 

promoting healthier living habits and earlier detection of NCDs.  These areas of public health 

are encompassed through the introduction of health initiatives including: (i) providing NHS 

health checks for all; (ii) Reducing salt intake; (iii) Increasing physical activity and providing 

infrastructure for activities; (iv) using the “Eat Well Plate” which recommends the 

consumption of fruit and vegetables “5 portions a day”, increasing oily fish consumption; (v) 

reducing smoking and harmful consumption of drugs and alcohol and, (vi) effectively reducing 

the prevalence of obesity and type 2 diabetes (NHS., 2014, Townsend et al., 2012a, DH, 2015, 

DH, 2010). 

 

 UK Population Nutrient Intake 
 

The Scientific Advisory Committee on Nutrition (SACN) identified that 62% adults and 28% 

children (2-15 years) in the UK were overweight or obese and at increased risk of heart 

disease, stroke, Type-2 diabetes, liver disease and cancers due to consumption of energy 

dense foods such as sugar, TFA and SFA. The DH and Food Standards Agency state that the 

greatest proportion of food energy in a daily diet is obtained from fat. Current guidelines are 

that on average diets should contain <35% fat with < 2% fats obtained from TFAs, and 11% 

SFA (DH, 2014b, DH, 2015).  In 2014, the UK Government released its findings from the 

National Diet and Nutrition Survey (NDNS) 2008-2012 which monitored the population’s 

average nutrient intake across the UK.   The NDNS results showed that average consumption 

exceeded the recommended daily intakes (RDI) for added (non-milk extrinsic sugars) sugars, 
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SFA and salt (see table 1.1). It was noted that although overall fat consumption was normal 

for dietary reference values across all age groups the majority of the saturated fat consumed 

came from dairy and meat products.  They also reported that consumption of TFAs, including 

those TFA found in animal products, were also in keeping with dietary recommendations (DH, 

2014a).  However, it is acknowledged that self-reported energy intake observations such as 

those obtained by the NDNS can be skewed and misreported by participants and are 

therefore limited in their use due to the inaccuracy of measurements (Subar et al., 2015, 

Ashwell et al., 2006).  Subar et al (2015) noted reasons for misreported nutrient intake include 

participants not wanting to appear unhealthy, they have difficulty recalling food and drink 

consumed and have difficulty in estimating quantities of nutrients when weighing food was 

not carried out.  Subar et al (2015) and the European Commission’s report on TFAs (EC, 2015) 

also noted that due to the lower cost of use of PHVOs in manufactured food products and 

therefore lower price at point of sale, that poorer socio-economic groups would consume 

greater quantities of fast food or high fat manufactured foods thereby consuming higher 

quantities of TFAs.  It was acknowledged that this demographic of the population is under-

represented in the population average nutrient surveys (Suber et al, 2015, EC, 2015).  

 

Further issues to consider is the lack of labelling of TFAs on food products sold loose e.g. 

bakery items and those present in ruminant meat and dairy products. Additionally, 

manufactured foods do not need to declare PHVO TFAs on packaging if under 1% is present 

(EC, 2015).  It is therefore recognised that content of total TFA in products sold and therefore 

quantity of TFAs consumed are underestimated (EC, 2015). The variation in quantities of TFAs 

consumed across populations is evident from maternal dietary studies. Desci and Boehm 

(2013) reported that between 0.5% TFA in Germany, and up to 13.8% TFA in Canada were 

present in breast milk samples of nursing mothers (see paragraph 1.6.7).  
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Table 1.1 Abridged Results of the National Diet and Nutrition Survey 2008-2012 
  Current Daily Intakes (Age Group) 

Nutrient 
Consumption 

Recommended 
Daily Intakes 

Infants 
0-18m 

1.5y-3y 4y-10y 11y-
18y 

19y-
64y 

65y+ 

Added sugars (non-
milk extrinsic 
sugars) 
(%food energy) 
 

<11% all age 
groups 

4-8% 11.8% 14.7% 15.6% 12.7% 11.4% 

Total Fat 
(% food energy) 
 

<35% 4y-64y 
 

N/A1 N/A1 <35% <35% <35% 36.2% 

Cis Mono-
unsaturated Fat 
(%food energy) 
 

<13% all age 
groups 

N/A1 N/A1 11-13% 11-13% 12-13% 12-13% 

Saturated fat 
(%food energy) 
 

<11% all age 
groups 

15-18% 15-18% 13.2% 12.5% 12.6% 13.8% 

Trans fat 
(% food energy) 
 

<2% all age 
groups 
 

0.5% 0.5% 0.7% 0.7% 0.8% 0.8% 

Salt  
(g/day) 
 

0-12m<1g/day 
1y-3  <2g/day 
4y+ 6g/day 
 

2.3g 3.7g-
5.1g 

3.7g-5.1g 6.7g 6.9g 7.2g 

Oily fish  
(% Participants) 

Percentage of 
participants 
consuming 1 
portion/week 
(140g) 
 

N/A N/A 8-12% 8-12% 23% 
 

38% 

Fruit & vegetables 
(portions/day) 
 

Participants 
consuming x 
portions/day 

N/A N/A N/A 2.9 
portions

/day 

4.1 
portions

/day 

4.6 
portions

/day 

Results show mean intakes for combined male/female populations across each age group. 1RDI do not apply to 

children under 5y age for Total Fat as children are unable to consume sufficient energy required in small 

volumes of food. Source: (DH, 2011, DH, 2012b, DH, 2012a, DH, 2014c) 
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 CORONARY HEART DISEASE AND ATHEROSCLEROSIS 

 

Coronary heart disease is described as the partial or complete blockage of the myocardial 

coronary arteries which occurs as a result of progressive atherosclerosis (Figure 1.1). 

 

Figure 1.1 Progressive Atherosclerosis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source:  Adapted from Libby (2002) 

 

It has been recognised that atherosclerosis is a vascular endothelium inflammatory disease, 

induced and exacerbated by risk factors such as high fat-high cholesterol diets, diabetes, 

obesity, hypertension and smoking (Hansson, 2005, Townsend et al., 2012b, Badimon and 

Vilahur, 2014). Atherosclerosis has been characterised by the accumulation and uptake and 

infiltration of oxidised LDL cholesterol which create fatty and fibrous lesions within the intima 

Extracellular Matrix, 

collagen, elastin 

proteoglycans 
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of arteries and veins (Libby et al., 2009, Lusis, 2000, Libby et al., 2002). It is noted that 

atherosclerosis can also develop within limb and cerebral arteries with equally deleterious 

effects such as thrombosis, aneurism, vessel rupture and ischemic stroke (Daniels, 2008). 

 

In the first stages of atherosclerosis, arterial endothelial cells (ECs) become inflamed in 

response to modified circulating cholesterol and lipoprotein particles, e.g. oxidised LDL and 

phospholipids and short-chain aldehydes, and a vascular inflammatory response is activated 

(Libby, 2002, Sprague and Khalil, 2009). Sprague and Kahlil (2009) describe the vascular 

inflammatory response as including, vasodilation, increased permeability of the endothelium 

and in severe cases of atherosclerosis such as ischemia and thrombosis - blood stasis. The 

following paragraphs describe the molecular events which occur in the stages of 

atherosclerosis development and deterioration. 

 

 The Role of the Vascular Endothelium in Atherosclerosis 
 

Endothelial cells (ECs) provide a semi-permeable barrier between the blood flow, 

extracellular matrix, and intima of the artery wall.  A healthy endothelium is naturally athero-

protective has anticoagulation properties e.g. negatively charged surface, nitrous oxide and 

prostaglandin production which inhibit platelet activation (Lusis, 2000, Sprague and Khalil, 

2009, Sitia et al., 2010, Badimon et al., 2012, Petersen, 2007). The extracellular matrix (ECM) 

provides a connection between the Smooth Muscle Cells (SMC) and basement of ECs and 

contain amongst other molecules, collagens, elastin, and proteoglycans (Figure. 1.1) (Khalil et 

al., 2004, Badimon et al., 2012).  Fluid shear stress, the frictional force of blood flow on ECs, 

is also a key factor in determining EC morphology and ergo their regulation of inflammation. 

For example, in cylindrical arterial regions of laminar blood flow without any branches or 

junctions, ECs lie parallel with the direction of blood flow, are elliptical in shape and show 

reduced permeability to particles e.g. LDL. These cells contain genes for superoxide 

dismutase, and nitric oxide synthase which produces nitric oxide which has vasorelaxation 

properties (Lusis, 2000, Chiu and Chien, 2011, Libby, 2002). Up-regulation of these genes 

inhibits Nuclear Factor KB (NFKB) that regulates expression of Vascular Cellular Adhesion 
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Molecule 1 (VCAM1) which is a binding site for monocytes - one the first leukocytes involved 

in atherogenesis (Lusis, 2000, Sprague and Khalil, 2009, Badimon et al., 2012, Libby, 2002). 

Subsequently less inflammation and atherosclerosis has been found to occur in these arterial 

regions. In contrast, regions of the arterial system that have branches and a greater disturbed 

blood flow have polygon-shaped ECs that do not align with blood flow (Lusis, 2000, Libby, 

2002).  The endothelial inflammatory response makes changes within the cytoskeleton of the 

ECs that modifies the cellular tight junctions and increases permeability. It is therefore 

recognised that the ECs themselves in their locale, morphology and genetic content either 

potentiate atherogenesis or confer athero-protective properties. 

 

Platelets have been found to arrive at the site of inflammation prior to leukocytes and can 

recruit leukocytes themselves thus becoming mediators between ECs and leukocyte 

migration (Massberg et al., 2002). Platelet glycoproteins adhere to endothelial cells in tandem 

with vascular inflammatory gene activation e.g. up-regulation of NFKB in response to 

increased levels of oxidised lipids and products, which in turn up regulates e- and p-selectins 

and adhesion molecules such as VCAM1 and Intracellular Adhesion Molecule 1 (ICAM1) on 

the EC wall (Massberg et al., 2002, Rainger et al., 2015, Badimon et al., 2012). These EC 

inflammatory molecules tether and roll monocytes and T-lymphocytes along the EC wall 

through the action of transient ligands such as integrin (Lusis, 2000, Rainger et al., 2015).  

 

Endothelial cells express a cascade of inflammatory factors such as C-reactive Protein (CRP), 

and cytokines such as Interleukins (IL1β), Tumour Necrosis Factor-α (TNFα) and Interferon-γ 

(INFγ), (Lusis, 2000, Rainger et al., 2015, Sprague and Khalil, 2009). They activate signal 

transduction cascades that alter the cytoskeleton structure and ECM cellular adhesiveness.  

Tethered leukocytes migrate through the altered EC junctions into the sub-endothelial space.  

Once in the intima monocytes undergo proliferation and differentiation into macrophages 

through the action of Macrophage Colony Stimulating Factor which also regulates expression 

of their surface scavenger receptors, e.g. SRA Types I and II (Badimon et al., 2012).  Scavenger 

receptors are further regulated by the transcription factor Peroxisome Proliferation Activated 
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Receptor-γ (PPARγ) whose ligands include oxidised FAs, TNFα and IFNγ (Libby, 2002, Lusis, 

2000, Sprague and Khalil, 2009). It is the action of these cells and their receptors which bind 

to the modified lipoprotein (LP) ligands and Cholesteryl Esters (CEs) internalising them, 

creating lipid laden “foam” cells. Additionally, it has been found that LDL passively diffuses 

through the EC junctions and becomes retained in the intima via the action of LDL ApoB and 

the proteoglycans within the ECM (Khalil et al., 2004).  Oxidised LDL is able to be taken up by 

macrophages, increasing the ability of macrophages to bind with oxidised LDL and products – 

all of which increase accumulation of lipid within nascent intima lesions or “fatty streak” – 

the first stage of atherosclerosis (Lusis, 2000, Libby, 2002, Sprague and Khalil, 2009, Badimon 

et al., 2012).   

 

 Plaque Development 
 

Platelets and SMCs play vital roles in endothelium regeneration or plaque growth and 

development.  It is reported that, dependent on conditions, - chemokine Stromal Derived 

Factor-1 regulates progenitor cell  differentiation into foam cells or endothelial cells (Badimon 

et al., 2012).  A recent study (Allahverdian et al., 2014) concluded that SMCs in human 

atherosclerosis play a greater role in atherosclerosis lipid retention and lesion development. 

SMCs can become foam cells in the presence of LPs due to the action of their membrane 

receptors ATP Binding Cassette Transporter A1 (ABCA1).  In the intima layer SMC ABCA1 have 

reduced expression and become unable to efflux cholesterol from the cell, retaining the lipid 

and becoming foam cells that contribute to the lipid burden of the lesion (Choi et al., 2009, 

Allahverdian et al., 2014).  

 

Both the body’s immune response and CHD risk factors have also been found to influence 

SMC proliferation. For example, hypertension has been found to regulate expression of 

platelet-derived growth factor which stimulates SMC production. Furthermore, hypertension 

regulates angiotensin II in the renin-angiotensin pathway which stimulates SMC and ECM 

production (Sitia et al., 2010, Lusis, 2000, Libby, 2002).  In addition to these risk factors, the 

body’s immune system continues its cellular chemotactic response - macrophages, B and T 
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lymphocytes initiate downstream cytokines e.g. IL6 and CRP which direct migration and 

proliferation of SMCs and promote fibrous plaque development (Sprague and Khalil, 2009, 

Lusis, 2000). As foam cell, ECM and SMC proliferation continue, the fatty lesion increases into 

a bulky fibrous lesion that contains increasing levels of thrombin generating SMC 

microparticles. Over time, these microparticles add fuel to the thrombotic nature of the 

plaque, the plaque increases in size and can cause arterial stenosis, limiting blood flow and 

reducing oxygen supply to the heart, thereby inducing clinical presentation of CHD conditions 

such as angina or ischemic events (Lusis, 2000, Libby, 2002, Badimon and Vilahur, 2014). 

 

 Atherothrombosis 
 

When a plaque ruptures, it exposes the underlying ECM vasculature and brings the plaque 

contents into contact with the circulating blood, instigating the blood coagulation cascade 

simultaneously with platelet aggregation. Platelet aggregation and the coagulation cascade 

enhance and chemoattract more platelets and leucocytes to the injury site which perpetuates 

the growth of the thrombus leading to occlusion of the artery (Badimon et al., 2012, Badimon 

and Vilahur, 2014, Petersen, 2007).  In the best of circumstances, the endothelium in repairing 

itself through the formation of a thrombus can also instruct dissolution of the clot through 

fibrinolysis and be resolved without incident.  However, thrombus formation during sudden 

rupture or disruption can have fatal outcomes: (i) The thrombus grows in the arterial lumen 

and occludes it bringing about blood stasis, ergo reduced oxygen flow to the heart, ischemia 

and acute myocardial infarction. (ii) the thrombus can break away into the blood stream 

creating an arterial blockage “myocardial thrombosis” which induces ischemia and acute 

myocardial infarction and sudden death (Lusis, 2000, Badimon et al., 2012, Petersen, 2007, 

Badimon and Vilahur, 2014). 

 

 LIPIDS AND LIPOPROTEIN METABOLISM 

 

Dietary fats, such as triglycerides (TAGs), fatty acids (FAs), cholesterol (Chol) and its esters 

(CE), and small amounts of phospholipids (PPLs), play pivotal roles in energy homeostasis and 
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cellular physiology (Gurr, 2016, Frayn, 2010, Anderson, 2003).  Eaten in a balanced diet they 

provide an energy-dense nutrient (37 kJ/g) containing over twice as much energy as other 

macronutrients such as carbohydrates (16 kJ/g) and proteins (17 kJ/g) (BNF, 2018). Lipids also 

provide vital elements for many cellular functions, including, intermediates of lipid 

biosynthesis (e.g. phosphotidate) (Frayn, 2010), precursors of steroid hormones, key 

elements of membrane fluidity and cell signalling (Goldstein and Brown, 2015, Bloch, 1965, 

Anderson, 2003) and regulate gene transcription pathways (Goldstein and Brown, 2015, 

Salter and Tarling, 2007).  However, it has been found that consumption of dietary fats can 

compromise metabolic pathways, increasing supply of circulating lipids and can lead to 

associated diseases such as dyslipidaemia (Kingsbury and Bondy, 2003), metabolic syndrome, 

diabetes and atherosclerosis (Wilson, 2013, Keys et al., 1986). The following paragraphs give 

an overview of lipoproteins and FA metabolism.  

 

Frayn (2010) outlines the three pathways for lipid and lipoprotein metabolism.  The first is the 

exogenous pathway which allows for ingested dietary fats such TAG and cholesterol to enter 

the bloodstream and to be transported to the liver and tissues through the body’s lymphatic 

system. Secondly, the endogenous pathway allows for the packaging of TAG and cholesterol 

with protein particles (lipoproteins) in the liver for transport to the cells and tissues. Finally, 

the third pathway focuses on the reverse cholesterol transport system, which returns 

cholesterol from cells to the liver for excretion in the bile.   

 

 Lipoproteins and Apolipoproteins 
 

Lipoprotein (LP) is the name given to a combination of lipid and protein assembled in the body 

to transport hydrophobic lipids in the aqueous environment of the bloodstream and 

lymphatic system (Frayn, 2010).  To aid this function apolipoproteins (ApoLP) bind with 

specific lipids and act as ligands for uptake into cells and tissues (see table 1.2) (Kingsbury and 

Bondy, 2003). 
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Table 1.2 Lipoproteins and Apolipoproteins 
Lipid/Lipoprotein Apolipoprotein Impact on 

atherosclerosis 
risk 

Function 

Chylomicrons Apo AI, AII, AIV 
ApoB48 (Intestinal) 
ApoCI, CII, CIII,  
ApoE  

 Dietary TAGs.  In intestine ApoCII activates LPL to 
hydrolyse TAG-rich chylomicrons into FFA + 
remnants. FAs transported to liver, muscle and 
adipose. 
  

Very Low Density 
(VLDL) 

ApoCI, CII, CIII,  
ApoB100 (Liver) 
ApoE 

ApoB100 
ligand LDLr 

Cholesterol and CE.  Liver synthesis of VLDL from 
FFA (Chylomicrons). CII activates LPL giving rise to 
LDL particles and FAs for adipose and muscle 
 

Intermediate (IDL) ApoB100,  
ApoC 
ApoE 

ApoB100 
ligand LDLr 

VLDL remnant is “IDL”.  Hepatic lipase converts IDL 
to LDL or taken up by liver LDLr 
 
 

Low Density (LDL) ApoB100 (Liver)     ApoB100 

ligand LDLr 

Cholesterol and CE. Created from hydrolysed VLDL 
see above, delivered to liver and tissues via uptake 
by LDLr. Oxidized LDL particles taken up by 
scavenger receptors in atherosclerosis.  
 

High Density (HDL) Apo AI, AII, AIV 
ApoCI, CII, CIII,  
ApoE 

ApoAI 
Liver receptor BI 

 

CE and PPL. Attracts cholesterol from cells to HDL 
particle through SRBI by CETP or action of 
cholesterol esterification through activation of 
lecithin:acetyltransferase for transport to liver. 
Liver, Intestine 

Source:  (Kingsbury and Bondy, 2003, Rader et al., 2009, Rye et al., 2009, Schaefer, 2002) 

 

 Lipid Metabolism: Exogenous Pathway 
 

The exogenous pathway allows for dietary fats including TAG and cholesterol absorption into 

the blood stream to the liver and tissues via the lymphatic system (Kingsbury and Bondy, 

2003). TAGs are emulsified via the action of bile acids and salts and pancreatic lipases to form 

mixed micelles, which are then absorbed by enterocytes of the small intestine by passive or 

facilitated diffusion (see Table 1.3 for transport proteins) (Frayn, 2010). Some are reesterified 

to form new TAGs which are incorporated with other molecules such as cholesterol, 

cholesterol esters, proteins (e.g. ApoB48) and phospholipids to form large lipoprotein 

particles known as chylomicrons. Chylomicrons then enter the blood stream via the lymphatic 

system and transport TAGs from the intestines to the liver and adipose tissue (Frayn, 2010).  
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Final transport of TAGs and cholesterol to tissue receptors are dependent upon the 

apolipoproteins acquired e.g. ApoCII a key activator for Lipoprotein Lipase (LPL) (see Figure 

1.2) (Khetarpal and Rader, 2015).  The chylomicron becomes a substrate for capillaries 

expressing enzymes such as LPL which hydrolyses TAG to release free fatty acids (FFA) 

(Kingsbury and Bondy, 2003). Remaining particles are transferred to other LPs such as HDL or 

form chylomicron remnants with associated ApoLPs (see Table 1.2) (Kingsbury and Bondy, 

2003, Rye et al., 2009). These LPs become ligands for receptors e.g. hepatic LDL receptor 

(LDLr) or VLDL receptor (Frayn, 2010, Khetarpal and Rader, 2015).  FA regulated Transcription 

Factor Hepatocyte Nuclear Factor 4 (HNF) regulate chylomicrons and cholesterol metabolism 

e.g. via ApoLPs AII, AIV, CII and CIII (Salter and Tarling, 2007, Sladek et al 1990) see Table 1.2 

and Figure 1.2a. 

 

Table 1.3 Fatty Acid and Cholesterol Transport Proteins 
Transport Protein Tissue 

Fatty Acid Translocase (CD36) Adipose tissue, small intestine, myocardium, skeletal muscle. 

Fatty Acid transport Protein  
(FATP, isomers 1-6) 

FATP1: Adipose, small intestine, skeletal muscle, brain  
FATP1, FATP5 Liver 

Fatty Acid Binding Protein (plasma 
membrane) FABPM 

Specific to plasma membranes. 

Acetyl-CoA synthase Transport of FAs into cells and esterification of FAs with CoA 

ATP Binding Cassette (ABC) 
ABC-A1 
ABC-G1 
ABC-G5 
ABC-G8 

Cholesterol transport Enterocytes,  
ABC-A1 & ABC-G1 involved in reverse cholesterol transport -
cholesterol from cells to HDL particles 

Niemann-Pick C1 Like Protein 
(NPC1LP) 

Cholesterol transport 

Cholesterol Ester Transport 
Protein (CETP) 

Involved in the reverse cholesterol transport system 

Source: Frayn (2010), Khetarpal and Radar (2015), Rye et al.,(2009), Vitali et al (2017) 

  



15 
 

 Lipid Metabolism: Endogenous Pathway 
 

The endogenous pathway involves liver synthesis and secretion of lipoproteins (Kingsbury and 

Bondy, 2003). Liver TAG and cholesterol esters are packaged in the liver with apolipoproteins 

(ApoB100, ApoE and ApoC groups, see table 1.2) and are secreted into the bloodstream as 

VLDL particles.  The VLDL act as a substrate to LPL within capillaries and deliver TAG from liver 

to tissues e.g. energy for muscle cells or storage by adipocytes (Khetarpal and Radar 2015). 

Redundant VLDL particles such as phospholipids, cholesterol esters or TAGs can be 

transferred to other lipoproteins such as HDL through the action of transport proteins e.g. 

Cholesterol Ester Transport Protein (CETP) or Phospholipid Transfer Protein (PPLTP) (Rader et 

al., 2009). The VLDL remnants and other redundant particles from circulating lipoproteins 

aggregate and increase the amounts of apolipoprotein (e.g. ApoB, ApoE and ApoC) in the 

particle which then become ligands for receptors in tissues e.g. hepatic LDL receptor, LDLr or 

B/E Receptor (see Table 1.2 and Figure 1.2) (Frayn, 2010, Kingsbury and Bondy, 2003).  

Remaining circulating particles shrink through action of lipoprotein lipase until surface 

components are removed and the remnant forms an Intermediate Density Lipoprotein (IDL) 

consisting of a core of cholesteryl ester, ApoB100, free cholesterol and phospholipids 

(Kingsbury and Bondy, 2003, Frayn, 2010).  Cholesterol is delivered to cells through the self-

limiting LDLr uptake of LDL particles and through moderation by FA regulated SCAP-SREBP2 

system  (Brown and Goldstein, 2009a) – see paragraphs 1.4-1.4.3 for further details.  
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Figure 1.2 Lipoprotein Metabolism and Atherosclerosis 
 

 

Source:  Khetarpal and Radar (2015) 

Diagram shows lipoprotein metabolism and link to atherosclerosis Key: HL: Hepatic Lipase, LPL: 

Lipoprotein Lipase, ANGPTL4, ANGPTL3 – secreted protein inhibitors of Lipoprotein Lipase 

 

 Lipid Metabolism: Reverse Cholesterol Pathway (HDL) 
 

HDL is often referred to as “good cholesterol” due to its inherent function in humans to 

“collect” cholesterol from tissues and transport it to the liver for excretion via the bile – see 

Figure 1.3 (Frayn, 2010, Rader et al., 2009). HDL plays a key role in the transfer of cholesteryl 

esters, TAGs, and phospholipids between lipoproteins (Kingsbury and Bondy 2003, Rye et al., 

2009).  Pre β-HDL particles consist of liver and intestinal secreted Apolipoprotein AI (ApoAI) 

and phospholipids (PPL) to form a discoidal HDL (Frayn 2010). It accepts cholesterol and PPL 

from cells via action of PPL Transfer Protein (PPLTP) or ATP Binding Cassette (ABCA1) to form 

mature, spherical HDL2 (larger particles) or HDL3 (smaller particles) (Kingsbury and Bondy, 
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2003, Rye et al., 2009). ApoAI and Lecithin-cholesterol acyltransferase (LCAT) are essential 

HDL cofactors as LCAT esterifies cholesterol in cell membranes and transfers the CEs to HDL2 

via cell membrane ATP Binding Cassette proteins (ABC – see table 1.3 and Figure 1.2) to create 

mature, spherical particles (Kingsbury and Bondy 2003, Rye et al., 2009).  These larger 

particles deposit cholesterol through direct interaction with scavenger receptors at 

hepatocytes for onward excretion in bile – recreating lipid-poor ApoAI particles for 

regenerative cholesterol transport (Frayn, 2010).  Control of HDL cholesterol synthesis and 

feedback pathways are to some extent controlled by FA gene regulated transcription factors, 

e.g. hepatic LXR-RXR control ABCA1 involved in reverse cholesterol transport system and 

ApoE, LPL and CETP function (Salter and Tarling, 2007) (see paragraphs 1.4-1.4.3). 

 

Figure 1.3 HDL Metabolism 

 

Key: EL Endothelial Lipase   HL Hepatic Lipase   PLTP Phospholipid Transport Protein  
LCAT: Lecithin-Cholesterol Acyltransferase   CETP: Cholesterol Ester Transport Protein.  
ABC ATP Binding Cassette Protein   SR Scavenger Receptor 
TTC39B gene promotes ubiquitination and degradation of LX Receptor reducing ABCA1 expression 
GALNT2 gene encodes enzyme GaINAC-T2 and glycosylation of target proteins such as PLPT that increases PPL 

transfer and therefore increases HDL.  
 Source: Vitali et al  (2017) 
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 CHOLESTEROL-ATHEROSCLEROSIS HYPOTHESIS 

 

There has been over 100 years’ research into the impact of dietary fats on serum cholesterol 

(and their associated lipoproteins) and the development of atherosclerosis in both animal 

models and human dietary intervention studies (see section 1.5).  The following paragraphs 

give an overview of cholesterol synthesis pathways, metabolism and its FA controlled 

mechanisms and association with atherosclerosis development. 

 

Anitschow and Chalatow published their paper in German in 1913 which was translated into 

English in 1983 (Pelias, 1983).  The translated publication describes the results of their 

experiments feeding cholesterol rich diets to rabbits, guinea pigs and rats and that rabbits 

were the most successful animal model for this type of research.  They identified that egg yolk 

and brain fed to their experimental rabbits were high in what they described at the time as a 

protein “cholesterin” and that it was “absorbed through the gut lumen into the blood and can 

be detected there”.  They concluded that cholesterin had a harmful effect on many organs, 

including permeating the liver, adrenal glands, renal cortex, and thickening of aorta intima 

which was penetrated with fat like substances or “lipoids” (Anitschow and Chalatow, 1913, in 

Pelias, 1983). Schoenheimer and Breusch (1933) demonstrated mice could synthesise 

cholesterol when fed a cholesterol-free diet and conversely when mice were fed a cholesterol 

rich diet the cholesterol contribution from the mice was negated.  This study has been noted 

as the first to evidence an “end-product feedback system of a biosynthetic pathway” 

(Goldstein and Brown, 2015).  Additionally, it wasn’t until 1940s that a methodology was 

developed to identify the classes of lipoproteins within human plasma samples through the 

use of ultracentrifugation and electrophoresis techniques (Gofman et al., 1949).  These 

techniques first elucidated to the role of cholesterol Low Density Lipoprotein (LDL) and its 

Apolipoprotein B in the development of atherosclerosis and correlation with CHD mortality 

risk (Gofman et al., 1949, Gofman et al., 2007, Goldstein and Brown, 2015).  
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 Cholesterol Synthesis and LDL Receptor 
 

Dyslipidaemia is identified as an abnormal plasma lipid profile, characterised by elevated 

circulating levels of cholesterol or TAGs (Kingsbury and Bondy, 2003).  One form of 

dyslipidaemia is what is now known to be a genetic disorder of lipoprotein metabolism known 

as Familial Hypercholesterolemia (FH). FH is characterised by elevated plasma LDL in the 

absence of dietary cholesterol or FA consumption and an increased risk of early CHD mortality 

(De Castro-Orós et al., 2010).  Michael Brown and Joseph Goldstein (1974, 1977) identified 

the LDL receptor and its major role in cholesterol metabolism and FH.  The LDLr is a 

transmembrane receptor, having 839 amino acids, with an external seven repeat cysteine-

rich NH2 terminal and cytoplasmic 50 amino acid COOH terminal (Goldstein and Brown, 2015).  

The LDLr binds LDL cholesterol with high affinity to its Apolipoprotein B and LDL enters the 

cell via endocytosis (Goldstein and Brown, 2015, Kingsbury and Bondy, 2003). Goldstein and 

Brown (1977) found that cells could regulate uptake of plasma LDL cholesterol through 

activation of HMG CoA reductase and associated production and localisation of LDL receptors 

(LDLr) at the cell surface.  Excess cholesterol entering the cell reduces HMG CoA activity and 

suppresses de novo cholesterol synthesis, but in turn activates Acyl-CoA cholesterol 

transferase (ACAT) which attaches a LCFA to cholesterol to synthesise storable CEs (Goldstein 

and Brown, 2015, Goldstein and Brown, 1977).  When cell levels of cholesterol are low, de 

novo cholesterol synthesis is possible from Acetyl CoA through a 20+ step enzymatic pathway 

(Sato, 2010).  Goldstein and Brown’s (1974) study into FH reported that HMG Co-A reductase 

activity was equated with lipoprotein binding: (i) the amount of bound LDL, (ii) VLDL as a 

competitor for LDL binding and acted as a HMG-CoA reductase repressor, (iii) HDL does not 

suppress HMG Co-A activity.  They concluded that FH was caused by a genetic mutation of 

the LDLr causing defective binding of LDL.  However, since that initial discovery over 1200 

allelic mutations of the LDLr that either partially or fully destroy its function have been 

identified (Goldstein and Brown, 2015). Additionally it has been found that the LDLr is not 

alone in being causative of FH disorder, for example genetic mutation of its ligands ApoB or 

ApoE e.g. Apo E3 Leiden amongst others are also responsible (De Castro-Orós et al., 2010).   
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 Health Initiatives for Cholesterol 
 

The discovery of HMG CoA reductase in cholesterol metabolism led the way for the 

identification of a competitive inhibitor of HMG CoA reductase “compactin” (Endo et al., 

1976).  The subsequent discovery of a similar fungal metabolite “mevinolin” (Alberts et al., 

1980) led to the development of commercial cholesterol lowering drugs commonly known as 

“Statins”.   These drugs are proven to reduce cholesterol levels and associated CHD mortality 

(Goldstein and Brown, 2015, Endo, 2010, Tarantino et al., 2017).  Tarantino et al, (2017) noted 

that statins have also been reported to inhibit hepatic VLDL production due to TAG and 

cholesterol lowering effect of the drug potentially through other FA targeted genes e.g. 

PPARs.  Identification of other FA activated TFs (see paragraph 1.4.5) have also been exploited 

for therapeutic means. For example, PPAR agonists such as fibrate are used to treat 

dyslipidaemia increasing LPL synthesis thus lowering TAG, LDL, hepatic VLDL and raising HDL 

and reducing atherosclerosis and CHD mortality (Tarantino et al., 2017, Ahmed et al., 2007).   

 

 Fatty Acid Activation of Gene Expression in Cholesterol and Atherosclerosis 
Pathways 

 

It also became apparent through cholesterol synthesis studies in animal tissues (Dietschy et 

al., 1993, Schoenheimer and Breusch, 1933) that the liver was a key site for total cholesterol 

synthesis and regulation (Brown and Goldstein, 2009b).  However, it wasn’t until the 1990’s 

onwards that key roles in activating specific transcription factors involved in the gene 

expression of cholesterol synthesis and atherosclerosis pathways were identified e.g. LDLr 

(Wang et al., 1993, Wang et al., 1994) scavenger receptors (Libby, 2002) and cholesterol 

synthesis enzymes (Goldstein et al., 2006).  Additionally, it is recognised there are 4 families 

of transcription factors that are activated by FAs (Salter and Tarling, 2007) which are involved 

in cholesterol metabolism (Sato 2010, Brown and Goldstein 2009) and in  inflammation and 

atherosclerosis pathways (Libby 2002, Ahmed et al 2007): (i) Sterol regulatory binding 

proteins (SREBPs), (ii) Peroxisome proliferator-activated receptors (PPARs), (iii) Liver X 



21 
 

Receptors (LXR) and, (iv) Hepatocyte nuclear factors (HNF)– see table 1.4 for isoform/sub-

type information and roles (Salter and Tarling, 2007).   

 

 Sterol Regulatory Element Binding Protein (SREBP)   

 

During the 1990’s a group of membrane bound transcription factors – SREBP1a, SREBP1c and 

SREBP2 were characterised and light shed on the tightly regulated by a negative feedback 

mechanism for cell cholesterol synthesis (Wang et al., 1993, Wang et al., 1994, Sato, 2010).  

SREBP are nuclear receptors (Salter and Tarling 2007).  They contain a basic helix-loop-helix 

leucine Zipper motif and are synthesised within the cell’s endoplasmic reticulum (ER) (Sato 

2010). Each SREBP subtype has been found to have its own role in lipid metabolism (see Table 

1.4). However, the regulation and activation of SREBPs involve a complex proteolytic 

pathway, and endoplasmic reticulum (ER) proteins: SREBP cleavage activating protein (SCAP) 

and HMG Co-A reductase (Sato, 2010). In the presence of cell sterols SCAP or HMG CoA 

reductase undergo conformational changes and bind cholesterol.  This in turn binds to two 

insulin-induced genes (Insig1 and Insig2) which are fundamental in the SCAP/SREBP complex 

being anchored in the ER (Brown and Goldstein, 2009b).  This step inhibits cleavage of the 

membrane bound SREBP1 thereby downregulating gene expression of LDLr and HMG CoA 

synthase (Sato, 2010).  Conversely if cell sterol levels are depleted, SREBP-SCAP moves to the 

Golgi via binding of SCAP-CO PII coated vesicles where site-1 (S1P) and site 2 (S2P) proteases 

cut the SREBP releasing it from the ER membrane and translocates to the nucleus to regulate 

transcription (Sato, 2010, Salter and Tarling, 2007).   
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Table 1.4 Fatty Acid Regulation of Transcription Factors 
TF  
Family 

TF isoforms/sub-type Tissue Gene regulation Examples of Ligand 
Activators 

Source 

SREBP/SCAP SREBPIa,  
SREBP1c,  
 
 
SREBP2 

Expressed in most 
tissues but mainly in 
liver and adrenal gland 
 
Ubiquitous expression 

FA and TAG 
metabolism 

 
 

Cholesterol 
Metabolism 
LDL receptor 

 

Sterols 
 
 
 

Sterols 

Sato (2010),  
Wang (1993),  
Wang (1994) 
Goldstein et al 2006 
Brown and Goldstein 
(2009) 

PPAR/RXR PPARα 
 
PPARβ 
 
 
 
PPARγ  
(subform γ1, γ2, γ3)  
 

Expressed in Liver, 
kidney, intestine 
Expressed in small 
intestine, colon, heart, 
adipose and brain. 
 
Ubiquitous expression 
Expressed in Adipose 
Macrophage  
 

FA metabolism 
 
 
 
 
 

Adipocyte 
differentiation 

scavenger receptors 
 

SFA, MUFA and PUFAs 
 
 
 
 
 

INFγ, TNFα 
LDL Cholesterol 

CLA isomers 
 

Salter and Tarling (2007) 
 
Salter and Tarling (2007) 
Tarantino et al (2015) 
 
 
Salter and Tarling (2007) 
Libby (2002) 
Viladomiu et al (2016) 
 

LXR/RXR LXRα  
 
 
LXRβ 

Liver, intestine, kidney, 
adipose, macrophage 
 
Ubiquitous expression 
 

Cholesterol 
metabolism 

ApoE, Lipogenesis, 
carbohydrate 
metabolism 

LCFA, 
Oxysterols: 

22Rhydroxycholesterol 
24,25epoxycholesterol 

Lee and Tontonoz (2015) 
Salter and Tarling (2007) 

HNF-4α HNF1, HNF2, HNF3 
HNF4a, HNF4y 

Liver, Intestine, Kidney 
and Pancreas 

Lipoprotein 
metabolism 

LCFA saturated  
Co-Acyl 

Sladek et al (1990) 
Salter and Tarling (2007) 
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 Peroxisome Proliferator-Activated Receptors (PPARs) 

 

PPARs are steroid hormone nuclear TFs with ligand binding domain and a response element 

in the promotor region (Ahmed et al., 2007). Ligands include SFA, MUFAs, PUFAs and their 

derivatives eicosanoids (Salter and Tarling 2007).  It has been identified that RTFAs – in 

particular Conjugated Linoleic Acid (CLA) isomers are potent activators of PPARγ (Viladomiu 

et al., 2016).  On ligand binding PPARs change conformation and form a heterodimer complex 

with nuclear ligand activated receptor Retinoid X Receptor (Ahmed et al 2007, Salter and 

Tarling 2007).  Accessory molecules are recruited (e.g. CREB-binding proteins, PPARγ co-

activator = PGC-1) to create a PPAR/RXR/Accessory molecule complex which can then be 

phosphorylated (Ahmed et al, 2007).  Ahmed et al., (2007) also noted that PPARs can also 

repress gene transcription through interaction with other TFs including NF-kB and signal 

transducer and activator of transcription proteins (STATs). 

 

As outlined in paragraph 1.4.2 PPARs are targeted for therapeutic treatment with fibrate to 

treat dyslipidaemias or thiazolidinediones that treat diabetes (Ahmed et al, 2007, Tarantino 

et al 2017).  Of particular note is the role of PPARγ and its ligands e.g. oxidised FAs, TNFα and 

IFNγ in regulating expression of macrophage scavenger receptors. As outlined in paragraph 

1.2.1 these receptors bind modified LP ligands and CEs internalising them, creating a lipid 

laden “foam” cells that are the characteristic of atherosclerosis and cause of thrombosis, 

strokes, ischemia, and myocardial infarction (Libby 2002).   

 

 Liver X Receptors (LXRs) 

 

LXRs are ligand activated nuclear TFs that also respond to cell cholesterol levels (Salter and 

Tarling, 2007). As PPARs above they form heterodimers with RXR to regulate transcription of 

genes through direct binding of DNA.  Co-repressor proteins bind the LXR/RXR complex to 

silence transcription.  Oxidised cholesterol derivatives e.g. oxysterols (see Table 1.3) act as 
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ligands, causing a conformational change and activation of gene transcription (Lee and 

Tontonoz, 2015).  LXRs are found to have anti-inflammatory function through action of 

LXR/Co repressor proteins silencing inflammatory genes (Lee and Tontonoz, 2015).  They are 

also found to control adenosine triphosphate binding cassette protein (ABCA1) involved in 

reverse cholesterol transport system and ApoE, Lipoprotein Lipase and CETP function (see 

paragraph 1.3.4) (Salter and Tarling, 2007) supporting the reported increase in HDL 

production and anti-inflammatory effects of LXRs described by Lee and Tontonoz (2015). 

 

 Hepatocyte Nuclear Factor-4α 

 

Although there are several isoforms and sub-types of HNF (HNF1, HNF3 and HNF4α HNF4γ). 

HNF4α has been identified through its amino acid sequence that it is a ligand-dependent TF 

of the steroid/thyroid hormone receptors, that also play a role in differentiation and 

development (Sladek et al., 1990). Originally, HNFs were thought to be liver specific, however 

they have now been found in several tissues including kidneys, intestine and pancreas 

(Drewes et al., 1996).  Its activation is through binding with high affinity to LCFA saturated 

Acyl CoA whilst unsaturated Acyl suppresses its activity (Salter and Tarling, 2007).  In 

particular this TF regulates constituents of chylomicrons and cholesterol metabolism 

including lipoproteins AII, AIV, CII and CIII (Salter and Tarling, 2007, Sladek et al 1990) see 

Table 1.2 and Figure 1.2. 

 

Considering the information outlined in sections 1.2, 1.3. and 1.4, it can begin to be 

understood that the FA pathways in the aetiology of CHD is complex and intrinsically linked.  

Not only does the human body rely upon nutrients supplied for survival, energy, and function, 

but responds to nutrient supply, or lack thereof, in FA and cholesterol metabolism, the 

inflammation response and associated FA controlled gene transcription expression.  In the 

following paragraphs the impact of different FAs: SFA, PUFAs and TFAs will be discussed to 

try and identify the body’s response to these FAs in terms of lipid profiles and atherosclerosis. 
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 THE IMPACT OF DIFFERENT FATTY ACIDS ON SERUM CHOLESTEROL AND 

ATHEROSCLEROSIS 

 

As outlined briefly in Section 1.4, animal models of cholesterol metabolism (Rader et al., 2009, 

Schoenheimer and Breusch, 1933, Spady and Dietschy, 1983, Goldstein and Brown, 2015) and 

atherosclerosis (Pelias, 1983, Zadelaar et al., 2007, Getz and Reardon, 2012) (discussed 

further in Section 1.7) and human epidemiological studies - see below, (Keys et al., 1965b, 

Keys et al., 1965a, Manttari et al., 1987, Mahmood et al., 2014) - have informed knowledge 

of how dietary FAs impact differentially on serum cholesterol levels and therefore 

atherosclerosis and CHD risk.  

 

 Saturated Fatty Acids 
 

Many SFA are found in animal products such as meat and dairy but also extracted from plants 

e.g. palm oil.  A fatty acid that contains no double bonds within the hydrocarbon chain confers 

a straight configuration.  This fatty acid is denoted as a “saturated” fatty acid and confers a 

solid texture at room temperature.(Hernandez, 2013) . Animal products are also recognised 

as being high in cholesterol (Mensink et al 2003).  Of the SFAs consumed by participants in 

human dietary intervention studies, many studies identified that the majority of SFA came 

from dairy products such as cheese, butter and milk (Kinsell., et al, 1952, Keys et al., 1965b; 

Keys et al., 1986, Mattinen, et al 1992, Mensink and 2003).  Mensink and Katan (1992) 

excluded stearic acid (C18:0) from their analyses as they considered it to have 

hypocholesterolaemic impact on serum LDL compared to Myristic c acid (C14:0) and Palmitic 

acid (C16:0).  Skeafe et al (2004) corroborated this by reporting that saturated fats such as 

Myristic acid (C14:0), Palmitic Acid (C16:0) and Lauric Acid (C12:0) are the main 

hypercholesterolemia inducing SFA within milk fat, with Stearic Acid (C18:0) having a lesser 

effect, along with Caprylic Acid (C8:0) and Capric Acid (C10:0).  
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 Unsaturated Fatty Acids (UFA) 
 

Unsaturated FAs have one (monounsaturated fatty acid “MUFA) or more than one 

(polyunsaturated fatty acid “PUFA”) double bond within the hydrocarbon chain.  The double 

bond binds two of the carbons together C=C.  Where the bonds are positioned within the 

chain and on the chain lead to the formation of positional and geometric isomers.  Cis 

unsaturated fatty acids have their bonds positioned on the same side of the chain causing a 

twist in the molecule which confers a bent configuration.  Trans unsaturated fatty acids 

double bonds are positioned on opposite sides of the hydrocarbon chain and confer a straight 

configuration with an appearance similar to that of a SFA (Gurr, 2016). Cis and trans PUFAs 

can have two or more double bonds based along the chain and noted as n-3 for position the 

third carbon from the methyl end and so on (Gurr, 2016).  The more double bonds, the greater 

instability of the molecule which lowers the melting point compared to saturated fats and the 

fatty acids become liquid (e.g. oils) at room temperature (Gurr, 2016, Hernandez, 2013).  

Unless otherwise stated, all MUFAs and PUFAs in this thesis are in the cis configuration. 

 

The majority of MUFAs and PUFAs are extracted from plants (Hernandez, 2013). For example, 

olive oil is rich in MUFA Oleic acid (C18:1) and Rapeseed Oil is rich in PUFA Linoleic (18:2 n-6) 

and MUFA Oleic Acid.  Olive oil in particular is linked to a “Mediterranean style” diet with 

beneficial impact on CHD (see paragraphs below) (Keys et al., 1986).  These oils have been 

observed as having a beneficial impact on LDL and HDL cholesterol levels and improving the 

LDL/HDL ratio (Bos et al., 2010, Mensink et al., 2003) and atherosclerosis (Tonge, 2011).   

Additionally, essential fatty acids, Linoleic Acid (LA) (C18:2 n-6), and α-Linoleic Acid (ALA) 

(C18:3 n-3) are unable to be synthesised endogenously and must be provided in the diet 

(Mazzocchi et al 2018).  LA n-6 PUFAs are prevalent in corn, soybean, safflower, and sunflower 

oils used worldwide (Innis 2007).  However, ALA n-3 PUFAs are limited in soybean and canola 

oil (Innis, 2007) but can be found in “oily” fish products such as salmon and mackerel (Tonge, 

2011).  LA is elongated and desaturated to form Arachidonic Acid (AA, C20:4), whilst ALA is 

elongated and desaturated to eicosapentaenoic acid (EPA C20:5) and docosahexaenoic acid 
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(DHA C22:6) (Mazzocchi et al., 2018) – see Figure 1.4  Metabolism of LA to AA is important as 

AAs are an essential component of cellular membranes.  Whilst EPA and DHA are vital to 

neurological, visual and brain function.  Eicosanoids (see Figure 1.4) play vital roles in 

maternal physiology and fetal development – modulating reproductive, pulmonary, 

cardiovascular, and inflammatory pathways including prostaglandins, thromboxanes and 

leukotrienes (Innis, 2007, Mazzocchi et al 2018). 

 

Figure 1.4 Conversation of Essential Fatty Acids to Eicosanoids and Docosanoids 

 

Source Mazzocchi et al 2018. 
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 Trans Fatty Acids (TFA) 
 

There are two main sources of dietary TFA – these are industrially manufactured TFA and 

those produced by ruminant animals e.g. cows, goats.  Although both TFAs have the same 

C18:1 trans isomers present, their distribution is different - see Figure 1.5. The following 

paragraphs gives a brief overview of both types of TFA.   

 

Figure 1.5 PHVO and Ruminant trans isomers 
 

 

Source Lock et al 2005     ◼ PHVO (Industrially produced)  Ruminant TFA 

 

 Partially Hydrogenated Vegetable Oil TFA (PHVO or P) 

 

Typically, PHVO are manufactured from vegetable, fish, or animal oils to stabilise them for 

use in products such as margarines.  Cis unsaturated fatty acids are saturated via a 

hydrogenation process where the fats and oils are mixed together with hydrogen under high 

pressure and in presence of a metal catalyst e.g. nickel or palladium (Hernandez, 2013, Clark, 
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2009). As hydrogenation increases, content of PUFAs decrease and MUFAs and TFAs increase 

(Figure 1.5) (Valenzuela and Morgado, 1999)  

 

Figure 1.6 Hydrogenation of PHVO 

Hydrogenation 

CH2=CH2 + H2 → CH3-CH3 

Source:  Hernandez, (2013) 

 

Three changes can occur during the hydrogenation process: (i) A double bond is changed to a 

single bond and two PUFAs are converted to MUFA, or MUFA converted to SFA. (ii) The double 

bond position moves within the chain.(iii) The double bond changes to/from cis and trans 

(Valenzuela and Morgado, 1999). 

 

The USA FDA designate that an industrial hydrogenated fat is one which is solid at room 

temperature with between 15-25% trans fatty acids (TFA). Trans Fatty Acids due to their 

unsaturated and straight conformation are representative of naturally occurring saturated 

fats with comparative detrimental health benefits including cardiovascular diseases 

(Mozaffarian et al., 2006).  Many countries, including the USA and UK have now taken steps 

towards reducing the content of trans fats in food products, however they are still present (2-

4% daily total energy intake) in many processed and fried foods e.g. fries, snacks e.g. crisps, 

margarines and bakery items (Teegala et al., 2009, Mozaffarian, 2006).  The majority of PHVO 

used in these products are trans fats with C18:1 configuration with a Gaussian distribution 

across C18:1 isomers of Elaidic Acid trans-9, -10, -11, -12 -see Figure 1.5. (Chardigny et al., 

2008, Tyburcz et al., 2009). 
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 Ruminant TFA (RTFA or R) 

 

MUFAs and PUFAs found in plant materials are processed by biohydrogenation of rumen 

bacteria which synthesise ‘natural’ trans fatty acids which are found in body fat, meat, milk, 

and other dairy products. Anaerobic Butyrivibrio fibrisolvens bacteria within the first stomach 

catalyses linoleic acid to intermediates such as cis, trans C18:2 n-9, n-11 (Enjalbert, 2009).  

These are hydrogenated further to create the main trans fatty acid isomer, Vaccenic Acid (VA) 

(trans C18:1 n-11) - Vaccenic Acid is a precursor for synthesis of CLA, cis-9, trans-11 C18:2 

(Rumenic Acid – RA) and Stearic Acid (C18:0) see Figure 1.6 and Figure 1.7  Although quantity 

of TFA is dependent upon diet, these two TFA isomers generally represent between 1-9% of 

total TFAs (Chardigny et al., 2008). RTFAs are eaten in lower quantities than PHVO (2-3% daily 

total energy intake) at approximately 0.5% daily total energy intake (Lock et al., 2005, 

Mozaffarian et al., 2006, Valenzuela and Morgado, 1999).   

 

 Conjugated Linoleic Acids (CLA) 

 

CLAs, although TFA isomers are considered to have anticarcinogenic and antiatherogenic 

effects in animal models (Tyburcz et al., 2009).  However, many CLAs are derived from 

ruminant products including milk fat and meat (see Figure 1.7). They can also be synthesised 

from trans isomers of oleic acid by humans (Mazzocchi et al., 2018).  CLAs are a family of 

positional and geometric conjugated dienoic isomers of linoleic acids e.g. cis-9, trans-11 CLA 

and trans-10, cis-12 CLA.  They have a conformation of alternating single and double bonds 

which confer both trans and cis fatty acid configuration (Ophardt, 2003).   Although CLAs are 

considered trans fats their polyunsaturated nature confers lower melting point properties 

and are found to have possible health benefits (see paragraph 1.5.6.2).   
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Figure 1.7 Ruminant Conversion of Linoleic Acid to CLA, VA and Stearic Acid 

 

Source Mazzocchi et al 2018. 
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 Impact of MUFA/PUFAs and SFAs on Cholesterol-Atherosclerosis 
 

Since the early 1950s there has been great interest in the impact of dietary fats on cholesterol 

levels and mortality from atherosclerosis and CHD events.  Kinsell et al., (1952), reported a 

difference in total cholesterol serum for hospitalised human subjects fed “dairy-derived fats” 

and egg yolk, when compared to vegetable diets.  Epidemiological studies of ethnic sub-

groups evidenced that populations such as Eskimos and Japanese farmers who consumed 

high levels of fish and n-3 PUFAs had lower CHD risk and mortality compared to people of the 

same ethnicity consuming high SFA western diets (Keys et al., 1958). Dietary intervention 

studies by Keys et al (1965a) confirmed this view and concluded that a high cholesterol diet 

(250-350mg cholesterol/1000 calories) increased serum cholesterol levels and swopping to a 

cholesterol-free diet reversed this outcome.  Key’s et al., (1986) 15 year follow up of the Seven 

Countries Study (SCS), initially carried out between 1958-1964, confirmed more geographic 

dietary anomalies and CHD mortality risk. Keys et al, (1986) reported that Northern European 

cohorts e.g. Finland and Northern American cohorts had a significantly higher CHD mortality 

rate that was strongly correlated with consuming more SFAs in diets.  Equally, Southern 

European cohorts had lower CHD mortality that were strongly correlated consuming more 

MUFAs or PUFAs e.g. olive oil as Keys termed a “Mediterranean diet” as the main dietary fats 

– and finally the Japanese with the lowest CHD mortality rate and a mainly low-fat fish diet 

(n-3 PUFAs).   

 

Research studies were also carried out to ascertain the cholesterol synthesis pathway (Bloch, 

1965) and into a condition where hypercholesterolemia and early mortality from CHDs was 

present in families (Familial Hypercholesterolemia) – see paragraph 1.4.1. The FH studies 

added fuel to the cholesterol-atherosclerosis fire and linked dietary FA therapy of lowering 

plasma total cholesterol by swopping SFA with vegetable oils (Powell and Vacca, 1961).  These 

dietary intervention and epidemiological studies influenced the development of the concept 

that dietary fats differentially elevated plasma total cholesterol and that elevated cholesterol 

(hypercholesterolemia) levels positively correlated with increased risk of CHD mortality.  
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In the USA large CHD cohort “Framingham Study” was also in progress to identify causes of 

CHD mortality. The Framingham Study is a multi-generation, familial study that commenced 

in 1948 and continues to this day (Mahmood et al., 2014).  These studies identified that not 

only elevated plasma total cholesterol was a strong correlation but other risk factors were 

involved in CHD aetiology e.g. sex, age, hypertension, diabetes, smoking, and left ventricular 

hypertrophy (Dawber et al., 1959, Kannel et al., 1961).  In particular, Kannel et al (1961) 

confirmed the relationship of hypertension and hypercholesteremia correlated with 

increased CHD risk- 2.6-fold in men and 6-fold in women. The study noted that whilst blood 

cholesterol in men >245mg per 100ml (13.5mmol/L) were 3-fold more likely to develop CHD 

women were only slightly affected by this factor - an indication that differences between 

sexes and CHD risk factors were present.   

 

It wasn’t until the 1960s and 1970s that analytical techniques were developed to identify 

classes of lipids e.g. triglycerides, lipoproteins, and apolipoproteins (see Table 1.2).  These 

analytical techniques were developed and standardised alongside another large USA dietary 

intervention study into CHD prevention strategies – US Lipid Research Clinics Program (LRC) 

(Fredrickson et al., 1967, Myers et al., 1989, NHLBI, 2013). These analytical techniques were 

also applied to the Framingham samples (Gordon et al., 1977, Wilson, 2013) and other LRC 

samples (Jacobs et al., 1990) that ascertained that plasma HDL cholesterol were strongly 

inversely correlated to CHD risk and mortality.  

 

A human dietary intervention study whose objective was to reduce CHD risk through 

increasing plasma HDL and lowering LDL cholesterol in dyslipidaemic men commenced in the 

1980s in Helsinki, Finland. (Manttari et al., 1987). The Helsinki study evidenced that their 

highest CHD risk group had plasma TAG >2.3 mmol/L and a ratio LDL/HDL cholesterol 

>5mmol/L.  Their study confirmed that the most prognostic value for CHD risk was LDL/HDL 

ratio in conjunction with TAG (Manninen et al., 1992).  Further meta-analyses of dietary 

manipulation of serum cholesterol studies were undertaken by Mensink and Katan (1992) and 
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Mensink et al., (2003). Their analyses confirmed the differential impact of FAs on serum LDL 

and HDL (see Figure 1.8).  They estimated that MUFA and PUFAs had a positive impact by 

reducing LDL and increasing HDL – in a beneficial cholesterol profile for CHD risk. However, 

they found that SFA increased HDL more than the MUFA/PUFAs – even though LDL and its 

associated CHD risk were also increased. Finally, they identified that PHVO would decrease 

HDL but also increase LDL – shown in the ratios of total cholesterol/HDL cholesterol below – 

the higher the ratio the greater the CHD risk.   A meta-analysis (Mozaffarian et al., 2010) 

corroborated the view that replacing SFA with PUFAs may reduce CHD events.  Finally, a 

recent review of previous studies was conducted by Clifton and Keogh (2017) concluded that 

reducing SFA reduced CHD risk and that replacing SFA with MUFA/PUFAs in the diet further 

reduced CHD risk. 

 

Figure 1.8 The effect of SFA, PUFA, MUFA and TFA on Serum Total Cholesterol-HDL Ratio 
and Total Cholesterol-LDL Ratio 
 

 

 

 

 

 

 

 

 

 

Source: Mensink et al., (2003) Δ Predicted change in the ratio of total cholesterol/HDL ratio and total 

cholesterol/LDL ratio when 1% energy carbohydrates replaced by FA. P < 0.05; +P < 0.01 ¥P < 0.001. 

 

Studies in animal models have also reported similar outcomes with low fat diets compared to 

high-fat high cholesterol diets in being causative of atherosclerosis.  The ApoE*3 Leiden (AEL) 

female mouse model is proven to develop atherosclerosis in response to a high fat high 
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cholesterol diet (Vanvlijmen et al., 1994, Tonge, 2011, Hofker et al., 1994). Using the AEL 

mouse model of atherosclerosis studies have consistently shown that raising or decreasing 

dietary SFA and cholesterol impacts on atherosclerosis lesion area: Groot et al (1996) 

reported that a high cholesterol diet increased lesion area whilst a study by Yates et al.,(2009) 

confirmed that a low fat, low cholesterol diet reduced atherosclerotic lesions.  Further studies 

by Tonge (2011) confirmed that atherosclerosis was greater in animals fed SFA beef compared 

to groups fed a SFA beef diet that had been enriched with MUFA-rich Rapeseed Oil.  These 

studies corroborate the epidemiological findings and show that atherosclerosis is correlated 

to dietary fatty acids.   

 

 Impact of FAs on Serum TAG and CHD Risk 
 

It has been identified in several studies that hypertriglyceridemia was indicative of an 

elevated CHD risk – but only when taken into consideration with LDL cholesterol and other 

CHD risk factors e.g. diabetes, smoking (Gotto, 1992, Cambien et al., 1986, Gordon et al., 

1977).  These studies concluded that due to TAG interaction with both VLDL and HDL 

metabolism (see Table 1.2, Figure 1.2 and Figure 1.3) and HDL’s strong inverse relationship 

with CHD risk - TAG as an individual biological marker of CHD risk was unreliable (Cambien et 

al., 1986, Austin, 1989, Manninen et al., 1992).  These studies and meta-analyses have 

confirmed that MUFA/PUFAs can moderately reduce serum TAG compared to SFA (Mensink 

and Katan 1992, Mensink et al., 2003).  Manninen (1992) concluded that the Helsinki study 

outcomes reflected that of animal studies, and that TAGs and HDL differentially impacted on 

CHD development, with TAGs being involved in thrombosis of compromised arteries (see 

Figure 1.2).   
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 The Impact of PHVO and RTFA on Cholesterol-Atherosclerosis 
 

Several dietary intervention studies in the 1990s reported on the impact of plasma lipids and 

associated cholesterol ratios in the identification of CHD risk (Mensink and Katan, 1990, 

Lichtenstein, 1998, Almendingen et al., 1995).  Whilst Mensink and Katan 1990 confirmed 

previous views that consuming Oleic acid was better for cholesterol levels compared to SFA, 

and that PHVO diets had the worst atherogenic profile as they raised LDL and reduced HDL 

(see Figure 1.8).  In the other two studies (Lichtenstein, 1998, Almendingen et al., 1995) it was 

confirmed that MUFA/PUFA soybean oils had the lowest HDL/LDL ratio, with PHVO being the 

highest. Further studies by Han et al., (2002) and Baer et al., (2004) confirmed the 

hypercholesterolemic impact of PHVO on plasma lipids in estimating CHD risk.  However, they 

also identified that inflammatory cytokines involved in atherogenesis were raised in the PHVO 

groups e.g. IL-6 and TNFα (Han et al 2002), elevated CRP and E-selectins (Baer et al 2004) - 

see paragraph 1.2 for role in inflammatory atherogenesis pathway.  The “Nurse Health Study” 

epidemiological review also confirmed these outcomes: that PHVO had a greater atherogenic 

potential compared to other FAs not only due to their adverse impact on cholesterol profiles, 

but also that they instigated inflammatory pathways (Chiuve et al., 2009, Lopez-Garcia et al., 

2005).  These views have been reconfirmed in a meta-analysis by Mozzafarian et al., (2010) 

who calculated that if TFA were replaced by other FAs such as animal fats or vegetable oils a 

50% or 65-85% reduction respectively would occur in CHD risk.  Similar results have also been 

reported in animal models fed TFAs (Bassett et al., 2009, Koppe et al., 2009).   

 

Studies into the impact of dairy products including enrichment with VA and CLAs on 

cholesterol and atherosclerosis have been the focus of investigation for over two decades.  

Pfeuffer and Schrezenmeir (2006) cautioned that extracting the correct information from TFA 

dietary intervention and epidemiological studies was problematic due to participants often 

consuming high SFA dairy products e.g. butter, cheese, milk (as in the aforementioned PHVO 

and SFA clinical studies).  It was also recognised that ruminant products also contained C18:1 

TFA isomers that although similar to PHVO had different distributions, with the predominant 

TFA in dairy being Vaccenic Acid (VA) and including potentially beneficial CLAs (Huth, 2007) 
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see Figure 1.5.  Huth (2007) reviewed the first five RTFA dietary intervention studies that took 

place between 1993-2006 that compared the impact of PHVO and RTFAs.  Huth (2007) 

concluded that all 5 clinical studies (including data from the Nurses’ Health Study and 

Framingham studies) showed greater risk from PHVO and especially from PHVO margarines. 

In comparison RTFA consumed in butter and milk fats showed little impact on serum 

cholesterol levels and associated CHD risk. Further dietary intervention studies followed to 

compare PHVO with RTFAs.   

 

Chardigny et al (2008) noted a lack of effect in lipid profiles for subjects eating PHVO diets 

compared to RTFA-rich diets.  In particular, women showed a significant increase in total 

serum cholesterol, TAG concentration and an increased concentration of large particle LDL.  

However, they confirmed that PHVO participants had reduced serum HDL indicating a higher 

CHD risk profile.  This study concluded that PHVO and RTFA have differential effects on serum 

lipid profiles in both genders, and thus both diets confer differential CHD risk to males and 

females.  Motard-Belanger et al (2008) remarked upon the fact that two further studies had 

shown RTFA had a similar negative effect on CHD risk as PHVO.  Their study showed that daily 

high intake of RTFA (consisting of. 4 x 50g cheese 33% fat; 2 x 250ml milk 3.25% fat, 175g 

yogurt 3.25% fat, 8 x 5ml tsp butter) increased serum total cholesterol and LDL, and reduced 

HDL, consequently increasing CHD risk.  However, this was not the case with a moderate RTFA 

diet. Their study confirmed PHVO had a greater deleterious effect on serum cholesterol 

profiles suggesting that PHVOs and RTFA diets do have differential effects, and that the effects 

of RTFAs are dependent upon quantity in the diet.  Although differences in impact of PHVO 

RTFA were observed in the above studies, German et al’s (2009) review concluded that there 

was no clear evidence to suggest that trans fats from ruminant meat and dairy products 

increase the risk of CHD.  The view that PHVO and RTFA have different impacts on CHD risk 

and may be dependent upon quantities consumed was upheld by Bensden et al., (2011).  

However, a recent quantitative review of 30+ previous studies by Brouwer et al (2013) into 

the CHD risk of RTFA in comparison to PHVO calculated that RTFA, CLAs and PHVO were “gram 

for gram” similar.  They concluded that the studies reviewed in the impact of RTFA and CLAs 



38 
 

risk factors would be the same as PHVO - increasing LDL, decreasing HDL, and increasing the 

LDL/HDL ratio and thus high CHD risk.   

 

However, although human dietary intervention and epidemiological studies have observed 

an impact of RTFA - perhaps dependent upon quantities consumed (Chardigny, et al 2008, 

Motard and Belanger, 2008, Brouwer et al 2013) it has also been noted that it is often difficult 

to discern the impact of FAs due to the complexity of the FA nutrients eaten in the trials and 

confounding factors such as obesity (Pfeuffer and Schrenzenmeir 2006).  Therefore, a 

succession of studies has begun to identify the different effects of separate TFA isomers on 

lipid profiles, inflammation and atherogenesis pathways (see paragraph 1.5.6.1).  

Additionally, from the 1980s onwards trans isomers CLAs present in RTFA have been reported 

to have beneficial health effects, perhaps due to the fact that RTFA VA is a precursor for 

endogenous CLA synthesis e.g. c9, t11-(RA) and CLA t10,c12 (Pfeuffer and Schrezenmeir, 

2006).   

 

 Impact of C18:1 trans isomers on Cholesterol -Atherosclerosis 

 

Further to the dietary intervention and some epidemiological studies, different impact of TFA 

isomers on cholesterol and atherosclerosis have been evidenced in animal models.  It has 

been shown that VA or PHVO enriched butter diets differentially impacted on serum 

cholesterol compared to control standard butter diets in Hamsters (Lock et al 2005, Tyburcz 

et al., 2009, Kraft et al., 2011).  Lock et al (2005) reported that VA fed animals had a lower 

VLDL and IDL/HDL ratio compared to both standard and PHVO diets, however HDL was also 

reduced.  They confirmed that the PHVO diet animals had a lower VLDL and IDL/HDL ratio 

compared to standard butter. Tyburcz (2009) reported an improved serum lipid profile in 

hamsters that had consumed diets enriched with either EA or VA showing that EA and VA may 

have differential impacts on cholesterol metabolism.  A study in guinea pigs, although failing 

to show a relationship between PHVO or RTFAs and atherosclerosis, confirmed that diets rich 

in ruminant milk fat which contained Vaccenic Acid had increased small HDL (Rice et al., 2010). 
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Kraft et al., (2011) further reported that PHVO diets split between the trans isomers t4-t10 

see Figure 1.5 (Sunflower PHVO) had a higher risk lipid profile compared to t11-t16 see Figure 

1.5 (Safflower PHVO) with increased total cholesterol, IDL and VLDL and reduced HDL and also 

differential effects on cholesterol regulating SREBPs.   These studies have identified that not 

all TFAs are equal in their impact on lipid metabolism and consequent impact on CHD risk.  

However, a recent clinical dietary intervention trial that supplemented diets with VA, had a 

less positive outcome. Gebauer et al., (2015) replaced dietary stearic acid with CLA c9,t11, VA 

or PHVO.  Their study reported that CLA c9,t11 did not affect cholesterol lipoprotein profiles 

but had lowered serum TAG. However, they found that both VA and PHVO groups had 

increased total cholesterol, LDL cholesterol and ratio of total cholesterol/HDL compared to 

the control group.  However, they also found that VA had increased HDL and atherogenic 

markers for LDL including ApoLPs ApoA1, ApoB and LP(a). Their study concluded that VA, but 

not CLA should be listed under TFAs for nutritional information.  In this respect the study and 

the views of Brouwer et al., (2013) have labelled VA as a high-risk CHD TFA.  However, the 

undeniable link with endogenous VA-RA CLA synthesis cannot be ignored.  Indeed, since the 

1980’s CLAs have been identified to have beneficial health effects in animal models including 

reduction of hypertension and diabetes, anticarcinogenic, antitumorigenic effects and 

reduction of age-related bone loss (Pariza et al., 2001, Rahman et al., 2007).   

 

 Impact of CLAs on Cholesterol-Atherosclerosis 

 

VA and CLAs have been reported to have hypolipidemic, anti-atherogenic and anti-

inflammatory properties.  Several animal studies in rats have identified that VA and CLA c9,t11 

have had a hypolipidemic impact on serum and hepatic lipids and indicated they may be 

useful in the treatment of non-alcoholic fatty acid liver disease (NAFLD) and metabolic 

syndrome (Jacome-Sosa et al., 2014, Jacome-Sosa et al., 2010, Wang et al., 2009).  However, 

this research is also applicable to reducing CHD risk by improving cholesterol profiles.  Further 

animal studies in New Zealand white rabbits have reported that CLA supplementation 

inhibited and reduced atherosclerosis lesions (Kritchevsky et al., 2004, Kritchevsky et al., 
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2000).  Basset et al., (2010) has also reported that LDLr-/- mice fed VA and cholesterol rich 

butter showed an athero-protective impact on lesions compared to EA and other cholesterol 

fed animals.  In cellular studies, it was identified that CLA t10,c12 controlled expression of the 

CD36 receptor in macrophages, regulated TAG and had a lipid reduction mechanism 

(Stachowska et al., 2010). A further study by Li et al (2018) identified the impact of 

endogenous VA conversion to CLA c9,t11 and that of CLA t10c9 on inflammatory markers in 

human umbilical endothelial cells (HUVEC).  They found that VA was responsible for down 

regulating Toll-like receptor 4 (TLR4) which is responsible for the regulation of inflammatory 

mediators e.g. IL6, and adhesion molecules ICAM and VCAM.  In contrast, Leptin inhibited VA 

conversion and upregulated TLR4 in a pro-inflammatory response.  Of particular note is the 

fact that VA and CLAs appear to regulate lipoprotein and inflammatory pathways through 

SREBPS, PPARs, and other gene expression pathways (Viladomiu et al., 2016, Kraft et al., 2011) 

and may be recognised formally as being ligands for FA gene regulation.  However, although 

cellular, animal and human studies are beginning to understand the pathways potentially FA 

regulated by VA and CLAs, the negative outcome in human dietary studies when combined 

with other nutrients is ‘food for thought’ and requires further investigation (Fuke and 

Nornberg, 2017).  

 

 Other Macronutrients and their Impact on Serum Cholesterol 
 

There has been considerable interest in exchanging SFAs for other macronutrients e.g. 

carbohydrates instead of MUFA/PUFAs.  Keys et al (1965a) reported that the impact on total 

cholesterol appeared similar when exchanging SFA with carbohydrates.  Meta analyses by 

Mensink and Katan of 27 trials (1992) and 60 trials (2003) respectively found that exchanging 

SFA for carbohydrates had little impact on LDL cholesterol.  This view was upheld in a review 

of meta-analyses and outcomes by Clifton and Keogh (2017).  Difficulties in measuring SFA in 

dairy products and their use in dietary intervention trials has come in part from the 

identification of RTFA in ruminant meat and dairy products (Huth, 2007, Campbell, 2017). 

Campbell (2017) also commented that animal meat or dairy proteins could be causal in 

elevated cholesterol metabolism.  Until the roles of individual nutrients and their complex 
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interactions can be fully mapped, then the role of FAs in metabolism and atherogenic 

pathways cannot be fully comprehended. 

 

 FETAL PROGRAMMING AND DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE 

(DOHAD) 

 

“Fetal programming hypothesis” or “Barker Hypothesis” was named after the first researcher 

to observe the associations between low birth weight and anthropometry and increased risk 

of mortality from CVDs in later life – see paragraph 1.6.1 (Langley-Evans, 2001). The term 

“programming” and DOHaD theory now encompass the understanding that a maternal insult 

or environmental stimulus, such as undernutrition, overnutrition, smoking or stress (see 

Figure 1.9), causes perturbations in the fetal environment and can permanently affect the 

ontogenesis of the organism, resulting in changes to the organism’s metabolism and 

physiology and giving rise to increased susceptibility to non-communicable diseases in 

adulthood (Langley-Evans, 2013, 2001).  The following paragraphs give an overview of the 

fetal and developmental programming hypothesis in humans and animal models, with focus 

on the impact of maternal consumption of different isomers of trans fats (Figure 1.5) on the 

susceptibility of offspring to developing atherosclerosis.   
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Figure 1.9 Fetal and Developmental Programming of Disease 
 

 

 

Source: Adapted from Langley-Evans (2013) 

 

 Origins of Fetal Programming Hypothesis – Undernutrition in Human 
Retrospective Studies 

 

A study of over 15,000 men and women born in Hertfordshire between 1911-1930 identified 

that those men who had the lowest body weights at birth and 1 year of age, were found to 

have the highest death rates form ischaemic CHD in later life (Barker et al., 1989).  This study 

gave an indication that early childhood nutrition as well as the in-utero environment played 

a crucial role in non-communicable disease outcomes. Two further follow up studies by 

Barker et al., (Barker et al., 1990, Barker et al., 1993) gave more detailed birth and 

anthropometric data including head circumference and length, from which ponderal indices 
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were derived as a measure of thinness (birthweight/length3). They found that babies born 

with a high placental weight/birthweight ratio or low ponderal index of thinness at birth were 

inversely correlated with health problems in later life including elevated blood pressure, 

impaired glucose tolerance, and elevated plasma fibrinogen which was considered a marker 

for CHD risk.  Other studies in USA and Finland concurred with these outcomes. In the US 

Nurses’ Health Study, Curhan et al (1996a) reported on two cohorts totalling over 170,000 

women that lower birthweights <5-5.5lb had a higher risk of hypertension. Their analysis of 

over 22,000 men in this study (Curhan et al., 1996b) also had similar results to the women 

with hypertension and BMI in adulthood being dependent upon birthweight. However, they 

also reported an increased risk for Type II Diabetes in men for low birthweights <5-5.5lb.  

Eriksson et al (1999) confirmed that their study of 3600 men from Helsinki reflected that of 

Barker et al’s studies (Barker et al 1989, 1993b) that CHD mortality was inversely correlated 

with low birth weight and thinness at birth.  However, they highlighted although those men 

who had died of CHDs had a low birthweight, they also had increased their bodyweight to 

have a higher than average BMI by 7-15 years of age termed “catch up growth”. They 

hypothesised that a poor prenatal diet was causative of fetal growth retardation during vital 

development periods, followed by a post-natal nutrient-rich diet that may increase childhood 

obesity and CHD risk through programming/tissue remodelling pathways.  

 

One of DOHaD’s premises is that “fetal adaptations to scarcity become maladaptive only 

when individuals are later exposed to an environment of plenty” (Schulz, 2010).  This DOHaD 

premise was met by Eriksson et al’s (1999, 2001b) analyses of the Helsinki data.  However, it 

was also reflected in another pivotal retrospective study of maternal undernutrition and fetal 

programming that occurred between 1944-45 “The Dutch Famine” (Schulz, 2010) and is also 

recognised as the “Hunger Winter”  (Lumey et al., 2007).  This key study identified that the 

timing of the nutrient insult during the early, mid, or late gestational development period 

compared to post-natal nutrient availability may instigate differential effects on fetal 

programming of adulthood diseases (Schulz, 2010). Maternal food intake was reduced from 

an average of 1600 calories/day in December 1943 to under 1000 calories/day by November 
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1944, with the most dramatic decrease to 500 calories/day recorded in April 1945 (Lumey et 

al, 2007). Food availability remained low until May/June 1945 with an increase to over 2000 

calories/day.  This meant that nutrient availability at the time of conception, first, second and 

third trimesters differed throughout the pregnancy. It was found that babies born during mid-

late gestational famine mothers were lighter, thinner, and shorter with smaller heads and 

were found to have increased hypertension in later life, compared to those offspring not 

exposed to the famine.  Exposure to famine in early gestation had the greatest impact, and 

predisposed offspring in adulthood (50-59y age) to the prevalence of several poor health 

outcomes including: (i) higher risk of CHD, indicated by prevalence of angina pectoris 

(Roseboom et al., 2000b); (ii)  reduced glucose intolerance (de Rooij et al., 2006b, Ravelli et 

al., 1998) potentially via impaired insulin-secretion pathways (de Rooij et al., 2006a) and 

consequent Type II Diabetes (Roseboom et al., 2011); (iii) atherogenic lipid profiles 

(Roseboom et al., 2000a), (iv) elevated fibrinogen, and (v) higher BMI (Roseboom et al., 2001).  

Finally, early and mid-gestational famine offspring had increased prevalence of obstructive 

airway disease (Lopuhaa et al., 2000) and impaired renal function (Painter et al., 2005).   

 

 Fetal Programming by Undernutrition in Animal Models  
 

Maternal undernutrition has also been shown in several animal models, with outcomes 

reflecting those of epidemiological and retrospective studies. Food restriction during 

pregnancy was found to programme hypertension in offspring of rats (Woodall et al., 1996),  

guinea pigs (Kind et al., 2002) and sheep (Hawkins et al., 2000).  Other effects of food 

restriction in the guinea pig have include (i) an elevated cholesterol metabolism in both male 

and female offspring (Kind et al., 1999), and hyperinsulinemia in adult male offspring (Kind et 

al., 2003). Fetal programming due to specific nutrient restriction e.g. maternal low protein 

(MLP) has also been identified in rat studies ((1994) Langley-Evans (2000)). It was found that 

offspring of mothers fed low protein diet during gestation, exhibited elevated hypertension 

compared to the chow control group in later life.  Langley Evans (2000) concluded that it was 

the balance of nutrients that defined the outcomes observed and were crucial to maternal 

undernutrition in pregnancy. Fetal programming of atherosclerosis through MLP has also 
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been evidenced in AEL mice (Yates et al., 2009). At 15 weeks age, the AEL offspring of were 

found to have greater lesions, elevated plasma cholesterol and plasma TAG compared to the 

AEL control group.  It is evident from the above animal studies in several rodent species and 

sheep that diet restriction and MLP diets can not only program CHD risk factors in offspring 

e.g. hypertension, altered cholesterol metabolism, but can also manifest itself in 

atherosclerosis progression. 

 

 Fetal Programming of CHDs by Overnutrition  
 

In comparison to the glut of retrospective data and animal studies of maternal undernutrition 

that have laid the foundations for developmental programming of NCDs, there is less 

historical data to draw on for overnutrition. However, maternal obesity and associated 

energy-dense nutrient intake are cause for concern in fetal programming outcomes for CHDs 

in future populations (SACN, 2011, SACN, 2018). It is acknowledged that many energy dense 

foods e.g. ruminant meats, bakery products, biscuits, butter, milk, margarines and 

shortenings whilst containing SFAs also contain between 3-5% TFAs (PHVO and RTFAs) (Innis, 

2006).  Energy imbalance through overnutrition manifests itself in maternal obesity. However, 

although many human studies report on “obese” maternal profiles in pregnancy and lactation 

and that of associated metabolic problems e.g. hyperlipidaemia, they do not address specific 

macronutrient intakes and their impact in causing NCDs.  In large cohort studies it has been 

observed that being overweight or obese pre-pregnancy has less influence on fetal outcomes 

compared to maternal gestational weight gain (Gaillard et al., 2013, Flick et al., 2010).  

Therefore, the impact of energy dense foods such as fats, and their impact on maternal 

physiology is of key importance in considering fetal programming outcomes. Maternal obesity 

is often a risk factor for preeclampsia (Stewart et al 2007). Preeclampsia is a condition which 

usually occurs mid-late gestation and can have severe consequences for mother and fetus 

including proteinuria, de novo maternal hypertension, maternal organ dysfunction (liver and 

renal) and placental dysfunction causing placental hypertrophy and fetal growth restriction 

(Bokslag et al., 2016).  Obesity in pregnancy monitoring studies have also identified maternal 
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factors that may influence programming and fetal outcomes, including maternal, reduced 

vascular function (Meyer et al. 2013), elevated inflammatory markers (Ramsay et al., 2002, 

Stewart et al., 2007), dyslipidaemia including elevated fasting TAG (Ramsay et al 2002, Meyer 

et al 2013) and elevated small LDL (Meyer et al., 2013).  Gademan et al (2014) also reported 

that maternal FFA levels were corelated to the child’s fat percentage at birth and increased 

BMI. Stewart et al., (2007) emphasised that obese pregnant women already have elevated 

plasma lipid profile and biological markers in early pregnancy compared to average weight 

pregnant women.  These levels increase throughout the mid-late gestation period, then 

reduce post-partum to the elevated starting value but do not fall below that of their average 

weight counterparts. Taking these risk factors in mind, it is not surprising that the observed 

outcomes of obese maternal studies include a significant increase in number of pre-term 

babies, caesarean deliveries, and either lower birth weight babies or macrosomia babies 

(Gailard et al, 2013, Flick et al, 2010).   

 

 Fetal Programming by Overnutrition in Animal Models 
 

Many animal studies look at high SFA diets and their impact on developmental programming.  

It has been demonstrated in several animal models of obesity that high SFA, ‘junk food’ diets 

during pregnancy not only alter the maternal metabolism but programme NCDs and obesity 

in offspring.  Fetal programming of Non-Alcoholic Fatty Liver Disease (NAFLD), CVD risks 

including insulin-resistance, hyperlipidaemia, hypertension, vascular and endothelial 

dysfunction and obesity have been observed when subjected to high SFA or ‘Junk Food’ diets 

in utero, in rats (Alfaradhi et al., 2014, Bayol et al., 2008), C57 mice (Gregorio et al., 2010, 

Oben et al., 2010) and non-human primates - Japanese Macaques (McCurdy et al., 2009, Fan 

et al., 2013, Sullivan et al., 2014, Li et al., 2019).  Studies in smaller animal models often omit 

maternal profiles except for the factors of ‘obesity’ and maternal ‘dietary SFAs’.  Programming 

outcomes by maternal overnutrition include offspring with elevated lipid metabolism and 

associated vascular dysfunction in rats (Khan et al., 2005, Koukkou et al., 1998, Ghosh et al., 

2001); impaired endothelial function in LDLr-/- mice (Langenveld et al., 2008); and 

hypertension and obesity in C57 mice (Liang et al., 2009) . 
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 Fetal Programming of Atherosclerosis 
 

As outlined above maternal overnutrition and obesity cause maternal metabolic dysfunction 

e.g. elevated maternal lipid and lipoprotein metabolism and inflammatory markers during 

pregnancy.  Although these metabolic parameters in themselves are high CHD risk factors for 

the mother, they also appear to programme atherosclerosis in future generations.  Whilst it 

is thought that human fetal cholesterol metabolism is mainly endogenous and that little is 

transferred to the offspring via the placenta (Herrera and Ortega-Senovilla, 2014, Mennitti et 

al., 2015), it was identified that temporary maternal hypercholesterolemia or mothers with 

Familial Hypercholesterolemia (see paragraph 1.4.1) were linked to early development of 

atherosclerotic lesions in their fetuses and children in the  “Fate of Early Lesions in Children” 

(FELIC) study (Napoli et al., 1997, Napoli et al 1999). Napoli’s et al studies (1997, 1999) 

reported that although hypercholesterolemic mothers increased prevalence of 

atherosclerotic lesions in their fetuses there were no changes observed in their offspring’s 

lipid metabolism. These researchers went onto reproduce programming of atherosclerosis in 

two animal models: (i) New Zealand white rabbit (Post-natal diet (Napoli et al., 2000), and (ii) 

LDLr-/- knockout mice (Napoli et al., 2002). Their results mirrored those of the human studies, 

increasing atherosclerosis in the offspring, but not impacting on offspring lipid metabolism 

profiles, bodyweights or other parameters measured which were the same as control animals.  

These outcomes were again shown in offspring born to wild type or ApoE-/- knockout murine 

mothers (Palinski and Napoli, 2002).  

 

 In two further studies in the ApoE-/- knockout mouse model of atherosclerosis, it was 

observed that atherosclerosis was programmed in the absence of maternal 

hypercholesterolemia (Madsen et al., 2003), and presence of maternal hypercholesterolemia 

(Goharkhay et al., 2007).  In support of Palinksi and Napoli’s findings, Goharkhay et al (2007) 

found that maternal hypercholesterolemia in utero environment had programmed 

atherosclerosis in offspring.  Finally, a recent publication has also confirmed that maternal 
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high SFA diet during pregnancy, caused maternal hypercholesterolemia (C57 maternal 

mouse) and programmed increased atherosclerosis in AEL offspring (Tarling et al., 2016).  

 

 Impact of TFAs on Fetal Programming 
 

There is evidence to support that TFAs are passed to the developing fetus via the placenta or 

to the neonate via milk during lactation (paragraph 1.6.9)., and that the exposure timing may 

have an effect upon the programming of CHDs and atherosclerosis (Larque et al., 2001, 

Albuquerque et al., 2006, Hornstra et al., 2006).  In the following paragraphs, impact of TFAs 

in utero will be discussed and thereafter a review of the impact of FAs in lactation and early 

post-natal life. 

 

Many of the human TFA studies outlined below focus on the impact that of all C18:1 trans 

isomers or that of PHVO C18:1 trans 9 EA, and very rarely identify other trans isomers in RTFAs 

such as VA and CLAs (see figure 1.5 for distribution of C18:1 trans isomers).  Human pregnancy 

and neonate studies particularly focus on the impact of TFAs on the developing fetus due to 

the interaction of TFAs in reducing availability of EFAs (Innis., 2006, Desci and Boehm., 2013).  

Innis (2006) noted that whilst n-6 PUFAs and AA are more prevalent and readily consumed in 

products such as olive oils, maternal intake of n-3 PUFAs are generally low. It is noted that 

maternal EFA requirements increase up to 4.5% total calories during pregnancy and 7% during 

lactation (Arbex et al., 2015).  EFAs Linoleic Acid (LA) (C18:2 n-6) is desaturated and elongated 

to Arachidonic Acid (C20:4 n6).  Whilst α-Linoleic Acid (ALA) (C18:3 n-3) is desaturated and 

elongated to eicosapentaenoic acid (EPA C20:5) and onwards to docosahexaenoic acid (DHA 

C22:6 n3) (see Paragraph 1.5 and Figure 1.4) (Innis., 2006, Desci and Boehm., 2013, Mazzocchi 

et al., 2018). Studies in human fibroblasts have observed that desaturase enzymes in the EFA 

conversion pathways are potently inhibited by PHVO Elaidic Acid(EA) and to a lesser extent 

by Vaccenic Acid (VA) (Rosenthal and Whitehurst, 1983).  During pregnancy there is an 

increase in demand for maternal EFAs for the developing fetus (Holman et al., 1991) with the 

brain and nervous system being rich in n-3 PUFAs (Arbex et al 2015).  N-6 AAs are an essential 

component of cellular membranes e.g. PPL and influence membrane fluidity throughout the 
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body (Holman et al 1991) and act as eicosanoid precursor for cellular division and signalling 

pathways (Innis, 2006).  Whilst n-3 EPA and DHA are vital for healthy neurological, visual and 

brain function.  EFAs therefore play key roles in maternal physiology and fetal development 

(Innis., 2007, Arbex et al, 2015, Mazzocchi et al., 2018).   

 

Several studies throughout the 1990s and 2000s analysed C18:1 cis and trans isomers in cord 

plasma or plasma samples from mother or newborn infant (Koletzko and Muller, 1990, Elias 

and Innis, 2001, Hornstra et al., 2006, Houwelingen and Hornstra, 1994, van Houwelingen et 

al., 1996).  It was noted that as TFAs are unable to be synthesised by humans, any TFAs 

present were the result of maternal transfer to the developing fetus/new-born infant 

(Hornstra et al 2006). Hornstra, et al (2006) in reviewing two cohorts in the Netherlands 

reported weak correlations between TFAs and birth anthropometry. The majority of the 

studies above reviewed monoenoic “trans” isomers, e.g. EA, and recorded an inverse 

relationship of maternal and fetal TFAs with reduced birth anthropometry.  However, Desci 

and Boehm (2013) caution against the results of reduced birth anthropometry due to 

considerable confounding factors and weak associations when taking these factors into 

consideration.  There are a limited number of studies which identified RTFAs, it was observed 

that maternal/fetal plasma lipids were positively associated for CLAs and inversely correlated 

with birth anthropometry (Elias and Innis., 2001) and EFA LC PUFAs (Enke et al., 2011).  Enke 

et al., (2011) also reported that this was not the case for VA trans 11.  This outcome would 

appear supportive of the cellular studies that found no effect of VA on EFAs, potentially due 

to its desaturase that is not involved in the EFA synthesis pathway (Rosenthal and Whitehurst, 

1983, Rosenthal and Doloresco, 1984).  Additionally, a meta-analysis of European women 

concluded that EA were the predominant TFAs present when measured during pregnancy and 

these TFA were inversely correlated with LC PUFAs.  There is evidence to suggest that TFAs 

inhibit EFA LA and ALA synthesis to LC PUFAs, reducing availability of EFAs to the developing 

fetus and mother thus compromising fetal and neonate development – and potentially with 

birth anthropometry (Hornstra et al., 2006, Innis 2007, Desci and Boehm, 2013).  
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Studies have observed that children with low n-3 PUFAs present with visual impairments and 

psychological disorders e.g. attention deficit/hyperactivity disorder (Arbex et al., 2015). Fetal 

programming studies of maternal TFA during pregnancy and lactation in rats, found that those 

offspring exposed to TFA in utero had reduced brain n-3 EPA and remodelled hypothalamic 

mechanisms that increased appetite in later life compared to control animals (Albuquerque 

et al., 2006). Desci and Boehm (2013) aptly concluded that the studies’ they had reviewed 

brought into question the nutritional viability of consuming TFAs during pregnancy.  However, 

although there is weak evidence to support CLA are similar to PHVO EA in their EFA 

interaction, VA was reported not to inhibit desaturase activity to the same extent as EA in 

cellular studies nor impact on fetal and neonate EFAs, which questions whether all TFAs 

should be treated equally.  

 

 Impact of TFAs on Fetal Programming in Animal Models 
 

Although there are many PHVO programming studies in animal models, the impact of PHVO 

is not ascertained whether the programming outcomes are in utero or early life nutrition in 

lactation that is causal.  Several studies have noted that maternal dietary TFAs were 

incorporated into tissues of their offspring, in piglets (Pettersen and Opstvedt, 1992) and rats.  

(Komatsuzaki et al. (2013). An impact of programming on rat offspring exposed to PHVO in 

utero were found to have reduced brain n-3 EPA and remodelled hypothalamic mechanisms 

that increased appetite in later life compared to control animals (Albuquerque et al., 2006). 

This outcome was reproduced to some extent by Pimentel et al., (2012) in rat offspring 

exposed to PHVO during pregnancy and lactation. At d90 PHVO offspring had elevated 

hypothalamic inflammatory cytokines e.g. TNFα, IL-6, IL1-β compared to chow offspring and 

showed impaired satiety behaviour.  Offspring of animal models of maternal obesity that 

were fed high fat/SFA diets (paragraph 1.6.4) similarly provided evidence that offspring 

displayed hyperphagia (Bayol et al., 2007, Sullivan et al., 2014, Thompson et al., 2017).  In one 

study it was identified that maternal hyperlipemia could be causative of hypothalamic 

orexigenic neurogenesis in the developing fetus (Chang et al., 2008). Bouret (2010) explained 

that orexigenic hypothalamic development is early in gestation and sensitive to maternal 
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hormone e.g. leptin, insulin and associated nutrient supply. However, the PHVO animal 

studies reported above have either not recorded maternal lipid profiles nor confirmed if 

hyperlipidaemia was not present.  

 

 Mechanisms of Fetal Programming 
 

There is extensive evidence in both human cohort and retrospective studies and animal 

experiments (see above) that maternal nutrition can detrimentally impact upon an 

individual’s health in later life – see Figure 1.9 (Langley-Evans, 2015).  The following 

paragraphs give a brief overview of the programming mechanisms that are under 

investigation. 

 

 The Placenta 

 

The development of the placenta and nutrient supply to the fetus during its development is 

complex.  In humans, the placenta progressively increases in size throughout pregnancy, with 

fetal/placental weight ratio increasing 40-fold from week 6 to term (Myatt, 2006). In normal 

pregnancy maternal plasma nutrients and hormones tightly regulate placental transporters 

and signalling pathways thereby influencing placental and fetal growth rates. Disruption of 

placental development pathways (for example gestational diabetes, maternal protein 

restriction or preeclampsia) can cause intrauterine growth restriction, small for gestational 

age or large for gestational age babies.(Jansson and Powell, 2006, Delhaes et al., 2018).  Myatt 

(2006) notes that the timing of the nutritional or environmental insult is central to placental 

function. Perturbations during angiogenesis will have different effects compared to 

perturbations during trophoblast growth and differentiation. For example, maternal anaemia 

increases placental angiogenesis in the first trimester (Kadyrov et al., 1998). Retrospective 

studies of maternal nutrient and iron deficiency during early gestation were shown to cause 

placental hypertrophy and retarded fetal growth, with consequent hypertension in later life 

(Barker et al., 1990, Lumey, 1998). In contrast, pre-eclampsia at +20 weeks gestation, is 

representative of failure of placentation, reduced angiogenesis and consequent placental 
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hypoperfusion also resulting in retarded fetal growth with consequent CHD risk in later life 

(Poston, 2006, Bokslag et al., 2016). It is noted that mothers who are obese or consume high 

SFA diets during pregnancy have additional factors that may contribute to placental 

dysfunction, including elevated inflammatory markers, adipokines and insulin resistance.   

 

However, programming pathways in humans are not yet fully understood with the majority 

of placenta samples only available post-partum and not during gestation (Delhaes et al., 

2018). Jansson and Powell (2006) concluded the placental programming pathway is multi-

faceted. It not only depends upon maternal nutritional status but also maternal hormones 

(e.g. cortisol), angiogenesis, oxidative/nitrative stress, transporter expression regulation and 

epigenetic modification of placental genes.   

 

 Tissue Remodelling 

 

Intrauterine growth restriction caused by maternal stress, undernutrition or overnutrition 

results in retarded growth of organs including the liver, spleen, thymus and kidneys (Boito et 

al., 2002, Greenwood and Bell, 2003). In mammalian cells the development pathway is 

controlled through proliferation, differentiation, replication, repair, renewal, and apoptosis, 

mediated with extrinsic signalling molecules, such as cytokines and growth factors.  The latter 

mechanisms combine to create a diverse myriad of tissues and thus develop into a complex 

adult, multi-cellular organism (Alberts et al., 2016).  The timing of the proliferative phase is 

key to specific organogenesis, for example skeletal muscle, heart and liver is early in 

development, with the kidney occurring later (Langley-Evans, 2009, Brameld et al., 2003, Si-

Tayeb et al., 2010).  Dependent on timing of the maternal nutritional or environmental insult 

it is proposed that cellular proliferation, but not differentiation, would be affected generating 

organs that were smaller with less cells, but with normal cellular function. However, 

impediments during the differentiation of tissue cells would produce organs of normal size 

but with altered cell type and potentially fewer functional units (Figure 1.10) (Langley-Evans, 

2009).  
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Figure 1.10 Tissue Remodelling 

 

Source:  Langley Evans (2015) 

 

As an example, it has been shown that an MLP diet during gestation in rats (Langley-Evans et 

al., 1999) and sheep (Lloyd et al., 2012) produce offspring with kidneys of similar size to 

controls, but with reduced nephron count. Human studies have also evidenced that low birth 

weight and hypertension are linked with a reduced renal volume (that is synonymous with 

nephron complement) (Zandi-Nejad et al., 2006, Keller et al., 2003). MLP and nephrogenesis 

studies in rats have specifically indicated that perturbations in nuclear cytoskeleton 

remodelling and cell cycle regulation that increase cellular apoptosis play a key role during 

embryonic development (Swali et al., 2011, Lloyd et al., 2012, Welham et al., 2002).   

 

 Genetics and Epigenetics 

 

Epigenetics is described as “a link between genotype and phenotype” (Goldberg et al., 2007). 

Epigenetic factors control expression, or silencing, of genes through modifications to 

chromatin and its associated histone proteins during the cell cycle but does not alter the 

underlying base-pairing chromosome DNA sequence.  It is considered that epigenetics play a 

key role in orchestrating an organism’s hierarchical development system, from totipotent 

germ line cells to finite germ layer somatic cells.  These heritable modifications in turn confer 
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control over cell fate through signalling for gene expression or gene silencing mechanisms 

(Alberts et al., 2016). During the cell cycle, nuclear complexes alter DNA-histone bonds and 

cause transient changes in chromatin conformation. Changes include translocation of histone 

dimers, known as sliding, unwrapping of DNA from histone octamers and DNA loop formation 

(Cheung et al., 2000). DNA methylation or demethylation further exerts control of the 

chromatin state, in association with post-translational modifications.  Histones are 

susceptible to a myriad of N-terminal tail post-translational covalent modifications (e.g. 

acetylation, deacetylation, methylation, phosphorylation), which occur transiently during 

replication and transcription processes.  All these modifications confer initiation or repressive 

regulation of gene expression and can act as recognition sites in the recruitment of enzymes, 

protein regulatory complexes, cytokines or transcription factors (Kouzarides, 2007). The DNA 

and core histone modifications ascribe an inheritable genetic and underlying epigenetic 

histone code that has become central to understanding developmental processes, and the 

direction of cell fate for both normal and pathological development (Jenuwein and Allis, 

2001).  For example, in rats, maternal low protein has been found to decrease methylation of 

hepatic PPARα and glucocorticoid genes of weaned offspring (Lillycrop et al., 2005). The study 

noted methylation of gene promoters provide stable mechanisms for altered gene expression 

and can be linked with tissue remodelling and risk of disease in humans.  Additionally, it has 

been shown that maternal hypercholesterolemia during pregnancy moderately altered fetal 

arterial expression of 135 genes which could play a role in atherogenesis over the course of 

their offspring’s lifespan (Palinski and Napoli, 2002, Napoli et al., 2002). These studies 

proposed that maternal hypercholesterolemia caused increased lipid peroxidation and 

reactive oxygen species during early fetal development potentially affecting signalling 

pathways for genes e.g. TNF, PPARγ involved in cell recruitment, growth and differentiation, 

thus imprinting susceptibility to atherosclerosis during fetal development.  

 

 Developmental Programming of NCDs by Early Life Nutrition 
 

Developmental programming is suggestive that the greater the disparity in in utero nutrition 

and birth outcomes compared with their post-natal environment the greater the influence on 
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disease outcomes in later life (Koletzko et al., 2012). For example, the impact of 

undernutrition in utero, low birth weight and catch up growth in childhood as described by 

Eriksson et al, leading to obesity or hypertension in later life  (Eriksson et al., 2001a, Eriksson 

et al., 2001b, Eriksson et al., 1999).  Or, through maternal obesity with offspring having a 

propensity for obesity in later life (Laitinen et al., 2001, Steur et al., 2011, Gademan et al., 

2014, Salsberry and Reagan, 2005, Schellong et al., 2012).  Therefore, not only maternal 

nutrition during pregnancy but also early life nutrition are essential to future health outcomes 

(Salsberry and Reagan, 2005). During the first year of life infants’ transition from a liquid diet 

of either breastmilk or formula milk to solid foods (Mennella and Tribulsi, 2012).  

Breastfeeding is considered the best choice of nutrition for infants in the first 6-12 months 

and is also considered beneficial to mothers due to decreasing breast cancer risk, reducing 

endometritis, post-partum weight loss and BMI reduction (WHO, 2013b, SACN, 2018).  

Breastfeeding studies have identified health benefits for infants including improved cognitive 

abilities (Evenhouse and Reilly, 2005), reduced inflammatory bowel disease (Joseph et al., 

2004) reduced asthma (Gdalevich et al., 2001), and reduced obesity (Arenz et al., 2004).  

 

 Impact of Different Sources of FAs on the Developmental Programming of NCDs 
by Early Life Nutrition 

 

It is noted that humans have an extended period of breast feeding that exposes the neonate 

to milk fat ingestion in early life with subsequent potential health implications (Armitage et 

al., 2005).  Lipid content of human breastmilk is considered to have a vital role providing 45-

55% of total energy provided to the infant in first 6 months (Innis, 2007, Bzikowska et al., 

2018, Mazzocchi et al., 2018), with ≥95% constituted from TAG, and smaller amounts of MAG, 

DAG, NEFAs phospholipids and cholesteryl esters (Delplanque et al., 2015).  Delplanque et al., 

(2015) note that in addition to the energy content dietary lipids provide EFAs, lipid soluble 

vitamins and substrates vital to cellular structure and function, signalling pathways and 

lipoprotein metabolism for infant health and development.  The quantity of fat within the 

maternal milk does not vary with maternal daily intake (Innis., 2007, Bzikowska et al., 2018).  

A study reviewing European and African milk samples identified that the maternal diet 
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influences the content of SFA MUFAs and PUFAs in breastmilk (Koletzko et al., 1992).  

Bzikowska et al., 2018 confirmed that during the first month post-partum, maternal BMI is 

also positively correlated to breastmilk energy, fat content and dry matter content and that 

it is the maternal body mass that is responsible for the content of breastmilk rather than daily 

nutrient intake per se.  Maternal physiology adjusts during late pregnancy and early post-

partum, mobilising maternal adipose stores through increased lipolysis and is a source of 

maternal FAs (Herrera and Ortega-Senovilla, 2014).  Therefore, maternal milk is reflective of 

maternal dietary FAs e.g. SFAs, EFAs and TFA – see table 1.6 (Larque et al., 2001, Innis 2007, 

Delplanque et al., 2015).  Innis et al (2007) confirmed that TFAs from ruminant and PHVO 

origin have been found in human breastmilk up to 9% total energy TFA. Mueller et al (2010) 

identified in over 300 women in the Netherlands KOALA birth study that PHVO and RTFA were 

positively correlated with maternal milk 18:1 trans in dose respondent manner.  The highest 

levels of PHVO (EA) were found in the “conventional food” intake group, in contrast to highest 

levels of RTFAs (VA and CLA) within the “organic origin” dairy group.  Their results highlighted 

that PHVO were considerably higher compared to RTFAs and that PHVO consumption 

declined with increased dairy intake.  Furthermore, measurement of TFAs in human breast 

milk have found wide variations within countries and between different countries, for 

example, the highest TFA content was in USA 2.5%-13.8%; Canada 4.6%-5.3% with the lowest 

TFA content 0.87%-1.55% in Germany (Desci and Boehm, 2013).    
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Table 1.5 Fatty Acid Composition of Human Breast Milk  

FA Composition Breakdown of FAs 
TAG 95-98% • TFAs are esterified to predominantly sn1 of TAG displacing SFA  

• 70% Palmitic Acid (C16:0) esterified to TAG sn-2 and absorbed as 
glycerol-palmitate 

SFA 10-12%, • 8-10% of SFA C6:0-10:0   

• Lauric Acid (C14:0) 

• Palmitic Acid (C16:0) see above for TAGs 

• Stearic Acid (C18:0) 

MUFAs • 40% of MUFAs is Oleic Acid (OA C18:1 n-9) 
*NB ≥40% OA where large quantities of olive oil are consumed e.g. 
Mediterranean diets 

PUFAs & EFAs • PUFAs are dependent upon maternal diet 

• EFAs, LA and ALA must be provided in the maternal diet (7% 

TFA 0.5-2.5% • Elaidic Acid (EA C18: trans 9) 

 • Vaccenic Acid (VA C18:1 trans 11)   

• CLAs (RA C18:2 cis 9 trans 11) 

Source:  Mazzocchi et al., (2018), Larque et al (2001)  

 

Innis (2007) noted that a ratio of 14:1 LA/ALA is consumed by mothers providing 7% daily 

energy to the infant via breastmilk, with the quantity of LA ingested highly variable between 

3-10%.  As identified in maternal and fetal plasma and cord samples above, studies of human 

breast milk evidenced an inverse relationship between TFA and EFAs (Szabo et al., 2007, Innis, 

2007, Decsi and Boehm, 2013), indicating that EFA nutrient supply to the infant may be 

compromised by PHVOs in early life.  Therefore, it can also be understood that infant 

consumption of PHVOs via maternal milk would in turn restrict infant metabolism of any EFAs 

to their LC PUFAs thereby impacting two-fold on infant EFA and associated development and 

signalling pathways. However, it was noted that all TFAs are not equal with Desci and Boehm, 

(2013) reporting that 18:1 trans and not 16:1 trans were inversely correlated with EFA in milk 

samples.  Reported programming outcomes for TFAs in connection with infant early nutrition 

are limited.  A study noted that mothers consuming 4.5g TFA/day were over five-times more 

likely to have body fat ≥30% and their infants twice as likely to have bodyfat ≥24%.  They 

concluded that their study reflected that maternal consumption of TFA and subsequent 

breastfeeding of their infants may influence the prevalence of adiposity observed (Anderson 

et al., 2010). 
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 Developmental Programming by Early Life Nutrition in Animal Models 
 

Studies of animal milk (pigs and rats) have confirmed the human breast milk results that FAs 

are reflective of maternal diet and are incorporated into maternal milk in a dose respondent 

manner (Larque et al., 2000, Pettersen and Opstvedt, 1991). Larque et al., (2000) noted that 

in rats PHVO was incorporated into the milk and had significantly increased n-6 LA PUFAs and 

reduced n-3 ALA PUFAs with a ratio of 7:1 compared to milk of chow fed dams.  Osso et al., 

(2008) reported that in rat offspring exposed to PHVO in lactation only had impaired insulin 

sensitivity and cardiac insulin resistance.  Whilst in C57 mice Oben et al (2010) cross-fostered 

obese dam SFA offspring to lean chow fed dams and vice-versa during lactation.  Those 

offspring exposed to high SFAs in utero only had greater insulin resistance and metabolic 

NAFLD characteristics.  Whereas those offspring exposed to chow in utero and high SFA during 

lactation via obese dams had elevated inflammatory markers e.g. TNFa and IL6 and elevated 

liver TAG.  Oben et al (2010) concluded that maternal obesity programmed metabolic 

dysfunction in offspring and a NAFLD phenotype, however that this is also dependent on the 

‘critical early postnatal period’ lactation diet.  Rat fetal programming studies, feeding 20% SFA 

during lactation have further demonstrated vascular endothelial dysfunction at d15 and d60 

post weaning (Ghosh et al., 2001, Koukkou et al., 1998).   

 

In conclusion, the above studies are indicative that maternal nutrition at opposite ends of the 

nutrient spectrum - under or over nutrition - and that of early life nutrition can impact on the 

development of NCDs in later life.    the degree of difference between these factors may 

determine disease outcome in adulthood.  Gillman (2005), and Langley-Evans and McMullen 

(2010), address criticisms of the DOHAD hypothesis, cautioning against taking the significance 

of such epidemiological and animal model studies at face value. They stipulated that many 

studies are not consistent in that they don’t account for all confounding factors, for example, 

social class, maternal smoking, habitually poor nutrition, poverty and geographic location, all 

of which have been identified as influential in fetal growth and neonate anthropometry. The 

SACN (2011) report on maternal, pregnancy and early nutrition also commented that 
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identification of maternal nutritional status is lacking in many studies and thus their impact 

on disease later life is more difficult to ascertain.   

 

 ANIMAL MODELS OF FETAL AND DEVELOPMENTAL PROGRAMMING 

 

Human epidemiological studies have supported and provided evidence of fetal and 

developmental programming hypotheses that are prevalent in current research arenas.  

However, caution is noted due to conflicting results, with differing reporting variables 

between studies thereby reducing consistency and strength of conclusions drawn (McMullen 

and Mostyn, 2009).  Additionally, dietary intake studies such as breastfeeding, rely on 

observational reports, individual self-reporting, variation in timepoints or factors measured, 

and confounding factors e.g. smoking and lifestyle choice (Schack-Nielsen and Michaelsen, 

2007).  It is also acknowledged that human studies often confer greater financial implications 

and time constraints with epidemiological studies not evidenced until years after completion 

(Breckenridge, 2013).  McMullen and Mostyn (2009) confirm developmental programming 

animal models provide essential evidence in support of human findings providing a ‘causal 

relationship’ between maternal diet and programming NCDs.  Therefore animal models of 

developmental programming are able to control many confounding factors and variables 

measured whilst being able to confirm a vast array of physiological effects of maternal 

nutritional insults to the developing fetus (Koletzko et al., 2012) and in early post-natal life 

(Plagemann et al., 2012) and their influence on NCDs in later life.  Taking into account species 

differences where caution is warned comparisons can be drawn as to the impact of specific 

nutrients e.g. protein carbohydrate or fatty acids, and quantities of nutrients (over nutrition 

or under nutrition) fed to animals at different timepoints during neonate development 

(Breckenridge, 2013, Williams et al., 2014).   
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 Animal models of Fetal Programming of Atherosclerosis 
 

Russell and Proctor (2006) commented that there is a need for animal models that mimic 

human CVDs.  However, as CVDs are multifactorial in nature no single animal model is 

comparative to human pathophysiology. Therefore, there are several animal models that 

have been used to understand cholesterol-atherosclerosis aetiology and fetal programming.  

One of the first animal models in the 1900s by Nikolij Anikschow that demonstrated 

cholesterol-atherosclerosis principle was the rabbit (Pelias, 1983, Finking and Hanke, 1997).  

The New Zealand White Rabbit has been used to investigate cholesterol metabolism (Getz 

and Reardon, 2012) and the impact of different dietary fats e.g. CLAs on the development of 

atherosclerosis (Kritchevsky et al., 2004, Kritchevsky et al., 2000).  However, as herbivores 

rabbits require high levels of cholesterol to achieve CVDs (Russell and Proctor, 2006).  Getz 

and Reardon (2012) note that the Watanabe Hereditary Hypercholesterolemic rabbit has an 

LDLr defect gene and exhibit Familial Hypercholesterolemia. This animal model has also been 

used to demonstrate the role of maternal hypercholesterolemia in the fetal programming of 

atherosclerosis (Napoli et al., 2000) and has been key in understanding cholesterol 

metabolism and development of statins (Tonge, 2011). However, concerns have been raised 

regarding, site and location of lesions, and microbial health of animals due to Chlamydia 

pneumoniae present in atherosclerosis lesions and respiratory pathogens e.g. “snuffles” in 

those rabbits fed high-cholesterol diets. (Russell and Proctor, 2006).  

 

Larger animal models such as pigs, sheep and non-human primates have also been used to 

identify impact of maternal dietary intake and fetal programming of NCDs (see paragraph 

1.6).  However, larger animals are more expensive to house, can take longer timescales for 

programming outcomes to be achieved and often have heightened ethical concerns (Badimon 

et al., 2013).  Rodents such as mice and rats have been extensively used due being litter 

bearing abilities and cost efficacy in comparison to larger animal models (Tannock and King, 

2010). Small animal models also allow for shorter generation timings enable cross 

generational programming studies to be elucidated. (McMullen and Mostyn, 2009).  
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 Rodent Models of Fetal Programming of Atherosclerosis 
 

Maternal overnutrition and fetal programming studies have encompassed cafeteria feeding 

or high fat diets (Williams et al., 2014).  These diets are representative of modern “western 

diets” rich in SFA, MUFAs and PUFAs and consumed by animals during peri-conception, 

throughout fetal development and postnatally (Armitage et al., 2005).  However, it is noted 

rodents have an inherent energy balance and even when faced with a high-fat diet they do 

not normally consume more nutrients than they require (Keesey and Hirvonen, 1997). 

Although rats have been extensively used to demonstrate fetal programming of metabolic 

syndrome, rodents are naturally resistant to atherosclerosis (Russell and Proctor 2006).  It is 

also acknowledged that rodents possess a different lipoprotein metabolism compared to 

humans with low pro-atherosclerosis LDL and VLDL and high anti-atherosclerosis HDL, and 

therefore are unsuitable to be used for atherosclerosis programming studies (van den Hoek 

et al., 2014, Wang and Paigen, 2005) and this can impact on programming outcomes of 

atherosclerosis as demonstrated by Yates et al., (2009). Finally, sexual dimorphism has been 

demonstrated in many animal models highlighting variable programming impacts on either 

male or females (Getz and Reardon, 2012).  For example, studies have identified no impact of 

programming of male C57s or AEL transgenic mice whilst female offspring did and is indicative 

that gender-specific hormones influence outcomes in animal models (Yates et al., 2009, 

Chechi et al., 2009).  

 

Russell and Proctor (2006) note that the C57BL/6J wild type mouse develops some 

atherosclerosis in response to a high SFA, cholesterol-rich diet. However, a study by Yates et 

al (2009) found considerably reduced lesions and cholesterol metabolism in this model with 

differences between both males and female offspring.  To reproduce a similar atherosclerosis 

model to humans, gene deletion ‘knockout’ or transgenic mouse models of atherosclerosis 

have been developed.  The gene knockout mice impairs cholesterol clearance from the 

metabolism inducing a hypercholesterolemic profile with consequent atherosclerosis 

progression in the aorta (Zadelaar et al., 2007).  The most common models include the 
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apolipoprotein E-deficient mouse (ApoE-/-) and LDL receptor deficient mouse (LDLr-/-) (Getz 

and Reardon, 2012).  The ApoE-/- model alters lipoprotein metabolism to mostly lipoprotein 

remnants (apoB48) however the main lipoprotein in human lipoprotein metabolism is LDL. 

Additionally, even in chow animals lesion development commences earlier and by 15-20 

weeks age advanced lesions with fibrous plaques and thrombus rupture can occur.  It is also 

noted that ApoE can also be expressed by adrenal cells and is involved in macrophage biology, 

thereby potentially confounding atherosclerosis lesion outcomes (Getz and Reardon, 2012).  

In comparison the LDLr-/- mouse are less hyperlipidaemic compared to ApoE-/- mice with the 

main lipoprotein metabolism consisting of VLDL and LDL. Hypercholesterolaemia is 

dependent upon dietary fat and cholesterol.  However, the main drawback of this model is 

that in chow fed animals lesions are not formed in early life and do not develop until 

approximately 12 months age (Getz and Reardon, 2012, Zadelaar et. 2007).  Therefore, this 

model is less beneficial when ascertaining fetal or early life lesions in offspring.   

 

 ApoE*3 Leiden Mouse Model of Fetal and Developmental Programming of 
Atherosclerosis 

 

The ApoE*3 Leiden (AEL) mouse develops atherosclerosis dependent upon high 

SFA/Cholesterol-rich diets (Zadelaar et al, 2007, Kleeman et al 2007).  AEL mice are a 

transgenic strain that carry a rare dominant-negative mutation of the human ApoE3 gene 

(Wardell et al 1989). This human mutation has been added in a construct that contains the 

hepatic APOC1 gene and promoter element, which regulates expression of ApoE and APOC1 

genes. The normal ApoE3 gene codes for 299 amino acids, whilst the AEL has an additional 

7amino acid repeat (306 amino acids). AEL confers dominant expression of Type III 

hyperlipoproteinemia phenotype with defective binding of the LDL receptor (Wardell et al., 

1989).  These defects impair clearance of chylomicron and VLDL remnants which accumulate 

in serum inducing hypercholesterolemia (Havekes et al., 1997).  The AEL mutation construct 

with APOC1 may also reduce lipolysis, VLDL uptake and hypertriglyceridemia (van den 

Maagdenberg et al., 1993).  In the AEL mouse model this gene mutation causes a more 

human-type lipid metabolism and mimics the susceptibly to the development of 
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atherosclerotic plaques in the aortic arch when fed a high SFA/cholesterol-rich diet (Zadelaar 

et al., 2007 Havekes et al., 1997, van Vanvlijmen et al 1996).  Compared to the ApoE-/- and 

LDLr-/-, AEL mice represent a moderate model for hyperlipidaemia and dietary fat induced 

atherosclerosis (Zadelaar et al., 2007, Getz and Reardon, 2012).  Van vlijmen et al (1996) 

noted that maximal lipoprotein metabolism was during rapid growth period at 45d age.  In 

young mice VLDL and TAG increased 50%, and VLDL-apo B secretion rates increased by 75% 

compared to older mice, however clearance of VLDL and ApoB were similar.  Furthermore, 

their study found that gender influenced both hepatic VLDL production and clearance rates, 

with hepatic VLDL/TAG and clearance of VLDL ApoB being higher in females compared to 

males. Their study concluded that gender and age modulated hyperlipidaemia in the AEL 

mouse.  Investigations into the impact of diet composition (low fat vs. high SFA/Cholesterol-

rich diets) on serum lipoprotein metabolism and atherosclerosis in AEL female mice found 

that atherosclerosis lesions were 5-10 times larger than control mice with lesions developing 

near the aortic arch.  Significant correlations between serum cholesterol levels and lesion area 

indicated that the AEL mouse model was a suitable model for dietary intervention studies of 

atherosclerosis (Groot et al., 1996). Since then the AEL mouse has been proven to give an 

insight into cholesterol metabolism and atherosclerosis with varied fatty acid results (De Roos 

et al., 2003, Tonge, 2011), atherosclerosis inflammatory and immune response pathways 

(Boesten et al., 2005, van Vlijmen et al., 2001), and atherosclerosis therapeutic treatments 

(Kooistra et al., 2006).  Additionally, it had been evidenced, using a maternal C57BL/6J mouse 

that are cross bred with AEL males, that maternal low protein programmed atherosclerosis in 

AEL offspring (Yates et al 2009).  At the commencement of the fetal and developmental 

programming of atherosclerosis studies carried out and thus reported on herein, it was 

pertinent to use the maternal C57 background, cross bred with AEL males with outcomes 

reported in the AEL female offspring.  Since the conclusion of these studies it has also been 

confirmed that maternal high fat diets have also programmed atherosclerosis in AEL offspring 

(Tarling et al., 2016). 
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 AIM AND HYPOTHESIS 

 

As outlined above in the General Introduction, there are different effects of P, R and W fatty 

acids on maternal lipoprotein metabolism and CHD risk with consequent metabolic disease 

and atherosclerotic CVD outcomes for offspring. Our studies aimed to investigate the impact 

of two types of TFA (that associated with ruminant milk and that associated with partially 

hydrogenated vegetable oil) during pregnancy, pregnancy + lactation, or throughout lifespan 

on the risk of atherosclerosis in offspring using the AEL mouse model.   

 

Study 1 Hypothesis: That maternal consumption of ruminant derived TFA during pregnancy 

and fetal development, will protect the offspring from atherosclerosis, while that associated 

with PHVO will have the opposite effect.  

 

Hypothesis Study 2:  It was hypothesized that maternal consumption of P diet throughout 

pregnancy, or pregnancy + lactation would adversely alter maternal lipoprotein metabolism 

and transfer TFAs to the offspring increasing susceptibility to atherosclerosis to a greater 

extent compared to Western diets consumed during the same development periods.  It was 

further considered that maternal consumption of R during the same development periods 

would improve maternal lipoprotein metabolism compared to P and W diets and decrease 

susceptibility to atherosclerosis in their offspring. 

 

Hypothesis Study 3: It was hypothesised that exposure PHVO throughout lifespan (starting at 

conception) would increase atherosclerosis risk in offspring to a greater extent compared to 

Western and RTFA diets.  It was further considered that the Western diet would have a 

greater influence on increasing atherosclerosis risk in offspring compared to the RTFA diet. 
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CHAPTER 2 MATERIALS AND METHODS 

 

 

2. REAGENTS 

 

All reagents were of analytical grade and purchased from Fisher Scientific or Sigma Aldrich unless 

otherwise stated. 

 

 DIETS FOR ANIMAL EXPERIMENTS 

 

A standard chow, Rat and Mouse Diet Number 1 Maintenance (RM1) Diet (Special Diet Services, 

Essex, UK) was used for the basic maintenance of mice whilst not on feeding trials.  According to 

the manufacturer, the diet contained 2.7% crude oil of which the majority of the fatty acids were: 

oleic acid (0.77%), linoleic acid (0.69%) and palmitic acid (0.31%). The FAME composition of this 

diet is shown in Figure 2.2.  RM1 was used as the basis for the control “Chow” (C) diet used in the 

feeding trials. This was fed to C57BL/6J mice (dams) throughout pregnancy and lactation and also 

to female ApoE*3 Leiden (AEL) offspring in post-natal diets. RM1 was used also as an element of 

the experimental fatty acid diets – see PHVO and RTFA and Western diets in Table 2.1 below.  

FAME composition of experimental diets are shown in Figure 2.1. 

 

RM1 was weighed out and appropriate quantities of fats (Table 2.2) were heated to 65°C until 

liquid and homogenous.  Fats were thoroughly mixed into the RM1 diet using an electric mixer for 

15 minutes and finished by hand to ensure even fat distribution throughout.  Where possible, up 

to 10kg of feed were made-up at one time, allocated into 1kg batches and stored at -20°C until 

required.   
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Table 2.1 Experimental Diets Fatty Acid Profile  
Systematic Name Trivial 

name 
Shorthand PHVO (PHVO) 

g/100g 
Dairy 
TFA 

g/100g fat 

Saturated fatty acids  
    

   butanoic  butyric  4:0 0 3.41  

   hexanoic  caproic  6:0 0 1.75  

   octanoic  caprylic  8:0 0 0.90  

   decanoic  capric  10:0 0.06 1.82  

   dodecanoic  lauric  12:0 1.18 2.09  

   tetradecanoic  myristic  14:0 1.23 8.02  

   hexadecanoic  palmitic  16:0 31.52 22.94  

   octadecanoic  stearic  18:0 14.81 5.82  

SUM 12+14+16  
  

33.93 33.05 

Monoenoic fatty acids  
    

   cis-9-octadecenoic  oleic  
 

22.76 13.37  

# Other cis-9 18-1  
  

1.69 1.99*  

Monoenoic Trans fatty acids*  
    

   trans 4, octadecadienoic  
  

0 0.09  

   trans 5, octadecadienoic  
  

0 0.09  

   trans 6/8, octadecadienoic  
  

3.37 0.78  

   trans 9, octadecadienoic  elaidic  18:1 ω-9 trans 9.83 0.64 

   trans 10, octadecadienoic  
  

4.42 2.42 

   trans 11, octadecadienoic  vaccenic  18:1 ω-11 trans 2.32 13.87 

   trans 12, octadecadienoic  
  

0.80 0.78  

   trans 13/14, octadecadienoic  
  

1.26 0.98  

   trans 15, octadecadienoic  
  

0.50 0.29  

   trans 16, octadecadienoic  
  

0.07 0.16  

SUM t9+10+11  
  

16.57 16.93  

Polyunsaturated fatty acids*  
    

   9,12-octadecadienoic  linoleic  18:2(n-6) 2.01 2.35  

   6,9,12-octadecatrienoic  γ-linolenic  18:3(n-6) 
  

   9,12,15-octadecatrienoic  α-linolenic  18:3(n-3) 0.04 0.32  

Polyunsaturated trans fatty acids  
    

Trans 
 

18:2 0.87 1.99  

Cis-9, trans-11  CLA  18:2 0 4.44  

(Chardigny et al., 2008) 
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Figure 2.1 %FAME Experimental Diets  
  

<0.1% FA methyl esters not detected.  
Data shows mean ± SEM n, C=3, P=5, R=8, W=6, A=5. 
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Table 2.2 Animal Feed Experimental Diets 

DIET STUDY 1 STUDY 2 AND STUDY 3 

Chow (C) 1000g RM1 1000g RM1 
RTFA (R) 870g RM1. 

130g Ruminant Milk Fat 
850g RM1 
150g Ruminant Milk fat 

PHVO (P) 870g RM1  
130g PHVO 

850g RM1 
150g PHVO  

Western (W)  N/A 850g RM1.   
125g Beef Tallow  
15g tripalmitin 
10g Corn oil   

Atherogenic (A) 870g RM1   
30g Cocoa Butter   
2.5g Cholesterol 

850g RM1.   
50g Cocoa Butter 
2.5g Cholesterol 

 

 Partially Hydrogenated Vegetable Oil TFA (PHVO or P) 
 

To prepare the PHVO diet required for the studies, two different types of PHVO (35% Fuji and 65% 

Lipid Nutrition) which were blended with RM1.   

 

 Ruminant TFA (RTFA or R) 
 

Milk fat high in ruminant trans fatty acids was kindly gifted by Professor Dale Bauman from a 

previous study at Cornell University, (Ithaca, New York, USA) where cows were fed a diet enriched 

with safflower oil, synthesising a milk fat predominantly rich in 18:1-t9/11 vaccenic acid and CLA. 

This oil was blended with RM1 as shown in Table 2.2. 

 

 Western Diet (Western or W) 
 

To produce a diet with a fatty acid profile similar to that seen in the typical human western diet, 

RM1 was mixed with corn oil (rich in polyunsaturated fats) and saturated fats including beef tallow 

and tripalmitin. 
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 Atherogenic Diet (Athero or A) 
 

In order to induce atherosclerosis in mice during the postnatal period, a high fat, high cholesterol 

diet was utilized. This was produced by mixing RM1 with cocoa butter (Nestlé, Vers-chez-les-

Blanc, Switzerland) and cholesterol (2.5 g/kg diet).  

 

 ANIMALS 

 

All animal experiments were approved by an independent Animal Care and Use Committee and 

were performed under UK Home Office licence in accordance with European Union specifications.  

Before the study the number of animals required was calculated using data from a previously 

reported study (Yates et al., 2009), with an aim to have 90% power to detect an effect of maternal 

diet (α=0.05, β=0.1).  The nature of the study dictated that the feeding study was not performed 

blind, though all analyses (including atherosclerosis) was performed by animal number and 

without reference to the treatment group.  Animals were housed in plastic cages in the University 

of Nottingham animal facilities under controlled conditions (20-22°C, 55% humidity, 12-hour light: 

dark cycle) with free access to food and water at all times. Wild type, seven-week-old, C57BL/6J 

(C57s) female mice were obtained from Harlan UK and initially maintained on Rat and Mouse Diet 

Number 1 Maintenance Diet (Special Diet Services). C57 females (dams) were matched for 

bodyweight and mated with male heterozygous AEL mice on C57BL/6J background (sires) at six to 

eight weeks age. The AEL male mice were also matched for bodyweight across groups. This cross 

breeding produces 50% AEL heterozygous offspring and 50% C57 wild type offspring, of which 

50% will be female and 50% male.  The transgenic mice were bred in our facility from founder 

males kindly provided by Dr Louis Havekes (TNO Pharma). Heterozygous animals were used as the 

AEL transgene is lethal in homozygotes.  For both studies, AEL female offspring were selected due 

to their greater diet-induced, hyperlipidaemic profile and atherosclerosis susceptibility, when 

compared to AEL males (Groot et al., 1996, van Vlijmen et al, 1996). 
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 ANIMAL HUSBANDRY 
 

 Mating and Pregnancy 

 

AEL sires were paired and mated with female C57 dams for two oestrous cycles (eight days).  The 

paired animals were housed within Individual Ventilated Cages (IVC)and after eight days males 

were removed and euthanised in accordance with Schedule 1, Animals (Scientific Procedures) Act  

1986 (ASPA) (Home_Office, 1986). Pregnant dams remained within the IVC environment until 

pups were weaned.  The dams were checked daily for confirmation of pregnancy and their 

bodyweight recorded.  Throughout mating and pregnancy (18 days) dams were fed the control 

Chow diet (C) or one of the experimental diets (P, R or W) ad libitum.   

 

 Parturition/Suckling 
 

At parturition, dams continued either on a control diet or an experimental fat diet, exposing them 

and their suckling offspring to differing nutritional insults. Offspring were weaned onto postnatal 

diets at approximately 21 days of age. 

 

 Offspring 
 

At 21 Days, pups were sexed and all female offspring genotyped (method 2.5).  All AEL positive 

female offspring were weaned onto control Chow diet or experimental fat diet for a period of 84 

days (12 weeks). Mice were housed singly within a controlled environment at 21°C, 55% humidity, 

and a 12-hour light and dark cycle.  Feed was offered ad libitum and animals had unrestricted 

access to fresh water.  Animals were monitored daily over the first seven days post weaning to 

ensure diet tolerance and health.  Thereafter, all animals were weighed at weekly intervals to 

compare body weights between groups.  See Experimental Designs for Study 1 Figure 2. and Study 

2 Figure 2.3 and Study 3 Figure 2.4 for further details. 
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Figure 2.2 Study 1 Experimental Design: The Impact of PHVO or RTFA on the Fetal Programming 
of Atherosclerosis 
 
Sector 1 Sector 2 Sector 3 

PREGNANCY LACTATION POST-NATAL DIET 

Pregnancy Study Dams  S1 Dams Offspring 
                       (day 17)  (day 21) 
 

 

1 2 3   +1  +2  +3 1 2 3 

Weeks Months 

Conception Parturition Weaning Study End 

 

 

 

 

 Study 1 Diet Groups: The Impact of PHVO or RTFA on the Fetal Programming of 
Atherosclerosis 
 

• PCC:  Dams were fed PHVO diet during pregnancy (P) and Chow during lactation (C). Offspring 

were weaned onto a Chow (C) post-natal diet. 

• RCC:  Dams were fed RTFA diet during pregnancy (R) and Chow during lactation (C).  Offspring 

were weaned onto Chow (C) post-natal diet. 

• PCA: Dams were fed PHVO diet during pregnancy (P) and Chow during lactation (C). Offspring 

were weaned onto an Atherogenic (A) post-natal diet. 

• RCA: Dams were fed RTFA diet during pregnancy (R) and Chow during lactation (C).  Offspring 

were weaned onto an Atherogenic (A) post-natal diet. 

  

RTFA 

PHVO  Chow  

Atherogenic  

Impact of consuming TFA during 

pregnancy on fetal programming of 

atherosclerosis  

Consumption of high fat, high 

cholesterol diet in post-natal life and 

its impact on atherosclerosis 

 Diet groups: 
 
PCC, RCC, PCA, RCA 
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Figure 2.3 Study 2 Experimental Design: The Impact of Maternal consumption of PHVO, RTFA 
or Western Diet throughout Pregnancy and Lactation on the Fetal and Developmental 
Programming of Atherosclerosis  
 

            Sector 1               Sector 2               Sector 3 

             PREGNANCY            LACTATION         POST-NATAL DIET 

 

 

 

 

 

 

 

 

 

 

1 2 3   +1  +2      +3 1 2 3 

Weeks Months 

       Conception Parturition Weaning Study End 

 

 

 

 

  

Chow  PHVO  RTFA Western  

Atherogenic  

Chow consumed during 

lactation 

DIET GROUPS: CCA, PCA, RCA, WCA, PPA, RRA and, WWA 

 

Fat (P, R W) consumed during 

lactation 
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 Diet Groups Study 2: The Impact of Maternal consumption of PHVO, RTFA or 
Western Diet throughout Pregnancy and Lactation on the Fetal Programming of 
Atherosclerosis 

 

• CCA:  Dams were fed Chow diet during pregnancy (C) and Chow during lactation (C). Offspring 

were weaned onto an Atherogenic (A) post-natal diet. 

• PCA: Dams were fed PHVO diet during pregnancy (P) and Chow during lactation (C). Offspring 

were weaned onto an Atherogenic (A) post-natal diet. 

• RCA: Dams were fed RTFA diet during pregnancy (R) and Chow during lactation (C).  Offspring 

were weaned onto an Atherogenic (A) post-natal diet. 

• WCA:  Dams were fed Western diet during pregnancy (W) and lactation (W).  Offspring were 

weaned onto an Atherogenic (A) post-natal diet. 

• PPA: Dams were fed PHVO diet during pregnancy (P) and lactation (P). Offspring were weaned 

onto an Atherogenic (A) post-natal diet. 

• RRA: Dams were fed RTFA diet during pregnancy (R) and lactation (R). Offspring were weaned 

onto an Atherogenic (A) post-natal diet. 

• WWA:  Dams were fed Western diet during pregnancy (W) and lactation (W).  Offspring were 

weaned onto an Atherogenic (A) post-natal diet. 
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Figure 2.4 Study 3 Experimental Design: The Impact of PHVO, RTFA or Western Diet throughout 
Lifespan on the Fetal Programming of Atherosclerosis 
 

                 Sector 1                  Sector 2               Sector 3 

             PREGNANCY               LACTATION         POST-NATAL DIET 

 

 

 

 

 

 

1 2 3          +1  +2 +3 1 2 3 

Weeks Months 

       Conception Parturition Weaning Study End 

 

 

 

 

 

 Diet Groups Study 3:  The Impact of PHVO, RTFA or Western Diet throughout 
Lifespan on the Fetal Programming of Atherosclerosis 

 

• CCC:  Dams were fed Chow diet during pregnancy (C) and lactation (C). Offspring were weaned 

onto a Chow (C) post-natal diet. 

• PPP: Dams were fed PHVO diet during pregnancy (P) and lactation (P). Offspring were weaned 

onto a PHVO (P) post-natal diet. 

• RRR:  Dams were fed RTFA diet during pregnancy (R) and lactation (R).  Offspring were weaned 

onto a RTFA (R) post-natal diet. 

• WWW:  Dams were fed Western diet during pregnancy (W) and lactation (W).  Offspring were 

weaned onto a Western post-natal diet (W). 

  

Chow  PHVO  RTFA Western  

Diet Groups CCC, PPP, RRR, WWW 
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 TISSUE SAMPLES 

 

Dependent upon the study, animals were euthanised in accordance with Schedule 1, ASPA 

(Home_Office, 1986).  Several different tissues were excised, weighed, snap frozen in liquid 

nitrogen, then stored at -80°C until analysis (Table 2.3).   

 

Table 2.3 Tissue Samples 
Breed 
 

Study/Chapter Tissue Sample Collection Time point 

C57 Females 
(dams) 
 
 
 
C57 Females 
(dams) 

Pregnancy Study 
ASLG01/09/Mat 
CHAPTER 4 
 
 
Study 2 and Study 3  
ASLG01/11 
CHAPTER 5 

Blood, Liver, Perirenal adipose 
tissue and gonadal adipose tissue, 
placentas, 50% whole fetus, 50% 
fetal liver.  
 
Blood, Brain, mammary, glands, 
Liver, Heart, Perirenal adipose 
tissue and gonadal adipose tissue. 

Day 17 pregnancy. 

 
 
 
 
After 21 days lactation 
period at weaning of 
pups  
 

AEL Females 
 
 
 
 
AEL Females 

Study 1   ASLG01/09 
 
 
 
 
Study 2 and Study 3   
ASLG01/11 
 

Blood, Heart (mounted), Aortic 
Arch, Thoracic Aorta, Liver, 
Perirenal adipose tissue and 
gonadal adipose tissue. 
 
Blood, Brain, Heart (mounted), 
Aortic Arch, Thoracic Aorta, Liver, 
Perirenal adipose tissue and 
gonadal adipose tissue. 
 

After 84 days on a post-
natal diet (15 weeks of 
age) 

 

 

After 84 days on a post-
natal diet (15 weeks of 
age) 
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 SERUM COLLECTION 

 

Immediately after confirmation of death by cervical dislocation, up to 1ml blood was extracted by 

cardiac puncture, collected into clotting serum gel tubes (Sarstedt), and placed on ice.   Blood 

serum tubes were centrifuged at 4°C for 12 minutes at 16,000g.  Serum was kept on ice, and 

dependent upon quantity, split into several 50μl aliquots per animal and stored at -80°C until 

required for analysis. 

 

 GENOTYPING 

 

All female pups were sampled between 18-21 days age to detect the AEL genotype.  For initial 

genotyping ear tissue was collected from pups by BRU staff in line with ASPA regulations 

(Home_Office, 1986).  Reaffirmation of genotype at the end of the study was undertaken utilising 

10mg frozen crushed liver tissue.  Extract-N-AmpTM Tissue PCR Kit (Sigma Aldrich, Catalogue 

Number XNAT2) was used to extract and amplify genomic DNA from tissue samples. 

 

 DNA Extractions 
 

Each tissue sample was placed into individual, labelled 1.5ml eppendorf tube and 10μl of Extract-

N-AmpTM Extraction Buffer added.  Each tissue sample was mechanically disrupted using a 

sterilised pestle and incubated at room temperature for ten minutes.  Samples were incubated at 

95°C for three minutes, and then 100μl Extract-N-AmpTM Neutralisation Buffer added, vortexing 

each sample to mix well.  Neutralised extracted samples were stored at 4°C until PCR was carried 

out. 

 

 PCR Amplification 
 

Reagents were added (Table 2.4) to create a “master mix” and 16μl placed into thin walled PCR 

plates, to which 4μl tissue extract sample was added giving a total reaction volume of 20μl per 

sample.  Each sample was gently mixed by pipette to ensure reaction homogeneity.  AEL 20bp 
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primers were previously designed (Yates et al., 2009) and ordered from Eurofins MWG Operon, 

the sequences are set out below. 

 

AEL Primers 

AEL Forward Mus: Sequence (5’ -> 3’): GCC CCG GCC TGG TAC ACT GC  

AEL Reverse Mus: Sequence (5’ -> 3’): GGC ACG GCT GTC CAA GGA GC 

 
Table 2 4 PCR Extract-N-Amp Solution 

Reagent Volume (μl) 

Extract-N-AmpTM PCR reaction mix 10 

Forward AEL Primer 0.8 

Reverse AEL Primer 0.8 

PCR grade water 4.4 

Sample  4 

Total Volume 20 

  

Three controls were used: (i) positive control - 4μl of confirmed AEL tissue extract; negative 

controls (ii) 4μl of confirmed C57BLJ6 tissue extract and (iii) 4μl PCR grade water.   A PCR thermal 

cycler (PTC200, MJ Research) was used with cycling parameters optimised for the AEL genotype 

(Table 2.5).   

 

Table 2.5 PCR Thermocycler Parameters for the AEL Genotype 

Step Temperature Time Cycles 

Initial Denaturation 95°C 10 minutes.   1 

Denaturation  

Annealing  

Extension 

95°C 30 seconds 

32 68°C 30 seconds 

72°C 30 seconds 

Final Extension 72°C 7 minutes 1 

Hold 4°C Indefinitely  1 
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 Gel Electrophoresis 
 

A 1.5% (w/v) agarose gel (analytical grade agarose, Melford Laboratories Ltd) was prepared with 

1x TAE buffer.   The agarose solution was placed in a conical beaker and heated until fully dissolved 

and transparent, then cooled under cold running water.  The agarose gel was poured into a gel 

former (Bio Rad) with combs and left to set for one hour at room temperature and either utilised 

immediately or stored overnight at 4°C.  Combs were removed from the set gel, and the gel and 

gel former submerged in an electrophoresis tank containing 1x TAE buffer.  5μl of Type II loading 

buffer (0.25% bromophenol blue, 0.25% xylene cyanol and 15% ficoll (type 400) was added to 

each PCR reaction and pipetted up and down to mix.  12μl of every sample was loaded into 

consecutive wells of the submerged agarose gel.  10μl of five parts 100bp DNA ladder (Promega) 

and one-part loading buffer was used to identify genomic bands and loaded into one well per gel.  

The gel was run at 80 volts for 40-50 minutes until the ladder and samples had run an appropriate 

distance.  The gel was removed from the running tank and stained in an Ethidium Bromide 

solution (0.5μg/ml) for 30 minutes and imaged using a UV platform and camera.  Images were 

captured using GelDoc 2000 software (Bio Rad) and the image printed out for genotype results 

analysis. 

 

 SERUM ANALYSES 

 

Serum total cholesterol, Triglyceride or glucose content were determined using either 

colorimetric assays (methods 2.6.1 and 2.6.2) or using a RX Imola Randox Chemistry Analyser 

(method 2.6.3). 

 

 Colorimetric Assays –Serum Total Cholesterol and Triglyceride 
 

Quantitative analysis of serum total cholesterol and Triglyceride were carried out using InfinityTM 

reagents.   Dependent upon the assay, respective cholesterol or TAG standards were made up 

using distilled water.  10μl of each standard were pipetted in duplicate on a 96 well microassay 

plate with 10μl of distilled water used as the blank.  For each sample, a total volume of 10μlwas 

diluted as per protocol (Table 2.6) and placed in duplicate onto the microassay plate. 200μl of 
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appropriate reagent (cholesterol or Triglyceride) was added to each well and samples incubated 

at 37°C for 15 minutes.  Results were read on a plate reader (BioRad 680XR) using Microplate 

Manager software and a dual wavelength reading: measurement filter 550nm and reference filter 

650nm. 

 

Table 2.6 InfinityTMAssay Dilutions  

 Cholesterol Triglyceride 

Sample dilution with 

distilled water 

Neat or 1:2 1:4 

 

 Colorimetric Assay – Serum Glucose 
 

A set of seven standards were made up from a 20mM glucose/distilled water solution.1.5ml 

eppendorf tubes were labelled with sample and standard identification numbers and with total 

sample volume of 10μl (1:2 dilution distilled water)for samples and standards were pipetted into 

their corresponding tubes.500μl of Glucose Oxidase reagent (Sigma Aldrich) was added to each 

tube and briefly vortexed to mix.  The sample assay was incubated at room temperature for 20 

minutes then 200μl of each sample and standard set out a 96 well microassay plate in duplicate, 

using distilled water as the blank.  Results were read on a plate reader (Bio Rad 680XR) using 

Microplate Manager software and a dual wavelength reading: measurement filter 550nm and 

reference filter 650nm. 

 

 Serum Lipid Analysis (Randox) 
 

A Randox Imola RX -series Chemistry Analyser (Randox Laboratories Ltd, Crumlin, UK) was utilised 

and training provided by Dr N. Kendall, University of Nottingham School of Veterinary Medicine 

and Science. Plasma HDL/LDL analyses were carried out using direct clearance methodology 

(Randox, 2011a, Randox, 2011b). Assays were carried out on plasma Total Cholesterol by CHOD-

PAP method (Randox, 2011c) and plasma Triglycerides by GO-PAP method (Randox, 2011d).  

Reagents were purchased from Randox Lt, Crumlin, UK. Randox calibrants, lipid and sera control 

reagents were prepared to manufacturer’s instructions and 1ml of each set up in vials on the inner 

carousel of the Randox Imola analyser with distilled water as a blank.   
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The minimum amount of serum required for these analyses was 100μl.  Where less that 100μl 

serum was available samples were diluted with distilled water and dilutions recorded for final 

calculation. Standards and samples were placed in 500μl Eppendorf tubes and floated in LP4 tubes 

which were placed in consecutive order onto the outer carousel of the analyser.  The Randox 

Imola program for each reagent progressed through the sample set twice providing duplicate 

sampling.  

 

 FATTY ACID ANALYSIS 

 

 Direct Fatty Acid Methyl Ester (FAME) Synthesis 
 

Direct FAME synthesis (O’Fallon et al., 2007)of diets and their constituents was performed before 

analysis by gas chromatography (GC).  1g of feed or 0.1g dietary fat were placed into a glass 

methylation tube.0.7ml 10M potassium hydroxide in water was added followed by 5.3ml 

methanol.  Samples were incubated in a water bath at 55°C for one hour 30 minutes and vortexed 

for five seconds every 20 minutes.  Samples were then cooled below room temperature in cold 

tap water bath.  Once cooled 0.58ml of 12M sulphur acid in water was added and carefully mixed 

by inversion.  Samples were returned to the water bath and incubated at 55°C for a further 1.5 

hours and vortexed for five seconds every 20 minutes.  As before samples were cooled in a cold 

tap water bath before 3ml of hexane was added and vortexed for 30 seconds.  Samples were 

placed in a centrifuge at 500g for five minutes.  The top hexane layer was transferred to a glass 

LP4 tube and 1ml of this was placed into a GC vial (VWR International Ltd) and capped. Samples 

were stored at -20°C until analysis. 

 

 Gas Chromatography of Fatty Acid Methyl Esters (FAME) 
 

Analysis of FAME samples were carried out using a Perkin Elmer Clarus 500 Gas Chromatograph 

with flame ionisation detector (FID) running TotalChrom software.  The GC was fitted with a 100m 

CP-Sil 88 column (Varian, Walton on Thames, Surrey).  The FAME samples in GC vials (method 

2.7.1) were loaded onto the automatic sampler carousel with a C4-C24 standard (Supelco 189-19 

AMP) for identification of known fatty acid components. The gas chromatograph specification and 
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programme are shown in Table 2.7. Chromatographs of each sample were obtained and the 

exported into Excel format for analysis.  The results reported each sample FAME as a percentage 

allowing for comparison of samples. 

 

Table 2.7 FAME Analysis Gas Chromatography Specifications and Programme  

• Injector temperature:  

255°C 

• Injection speed and volume: Fast 

speed, 1.0μl 

• Detector temperature: 

255°C 

• Pre-injection sample washes: 2 

• Detector range: 1 • Post-injection solvent washes: 2 

• Carrier gas:  Hydrogen Programme: 

• Inlet pressure: 41.5 psi 1. Initial temperature:  45°C, hold 

for 4 minutes 

• Split ratio: 1:20 2. Ramp 1:  13°C/minute to 175°C, 

hold for 27 minutes 

• Airflow rate: 450ml/min 3. Ramp 2:  4°C/min to 215°C, hold 

for 35 minutes 

• Hydrogen: 45ml/min Total run time: 86 minutes per sample 

 

 Fatty Acid Analysis of Perirenal Adipose Tissue 
 

Perirenal tissue samples were exported to Dr A. L. Lock, Department of Animal Science, Michigan 

State University, for analysis of trans fatty acids by gas chromatography.  The results are shown 

in their respective chapters. 
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 Lipid Extraction from Liver Tissue 
 

300mg of crushed liver tissue was placed into LP4 tubes and homogenised in 1.6ml sodium 

sulphate (1g/15ml distilled water).  The homogenate was decanted into a 15ml falcon tube 

containing 5.4ml of three-parts hexane to two-parts isopropanol.  Another 2ml of sodium sulphate 

was added and samples vortexed for 30 seconds to mix well.  Samples were centrifuged at 1200g 

for 15 minutes at room temperature. The top layer of solvent containing the lipid extraction was 

transferred to a new LP4 tube and dried down under nitrogen. Lipid extracts were re-suspended 

in 1ml hexane, capped, and stored at -20°C until use. 

 

 Liver Cholesterol and Triglyceride Assays 
 

For each sample 100μl of hexane lipid extract (method 2.7.4) was transferred into a corresponding 

500μl eppendorf tube.  The lipid extract was dried down under nitrogen and re-suspended in 

100μl isopropanol.  For the assays, a total sample volume of 10μl was used (Triglyceride extracts 

were diluted 1 in 8 in isopropanol).  10μl standards, samples and blank were pipetted in duplicate 

onto a 96 well microassay plate.  200μl of appropriate reagent (InfinityTMCholesterol or 

Triglyceride) was added to each well and samples incubated at 37°C for 15 minutes.  Results were 

read on a plate reader (Bio Rad 680XR) using Microplate Manager software and a dual wavelength 

reading: measurement filter 550nm and reference filter 650nm. 

 

 HISTOLOGICAL ANALYSIS OF THE AORTA AND ATHEROSCLEROSIS QUANTIFICATION 

 

The heart and aorta dissection techniques and methods used for histological analysis of the aorta 

and atherosclerosis quantification are included in Chapter 3, Paragraph 3.1.  

  



83 
 

 

 STATISTICAL ANALYSIS 

 

Results are shown as mean data ± Standard Error of the Mean (SEM).  Statistical analyses were 

carried out using SPSS 25 and GenStat software. Data was assessed for normality using Shapiro-

Wilk test or Levene’s test of homogeneity.  Non-normally distributed data were transformed by 

square root “a” or log10 “c” before parametric statistical analyses were performed by the 

appropriate statistical test e.g. Student T-Test, repeated measures ANOVA, and ANOVA with 

Bonferroni post-hoc tests.  Non-parametric data were analysed by Independent sample Mann-

Whitney U “b” or Kruskal-Wallis H “d” statistical tests. Significance P<0.05. 
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CHAPTER 3 METHOD DEVELOPMENT FOR ATHEROSCLEROSIS LESION 
QUANTIFICATION IN APOE 3*LEIDEN MICE 

 

 

3. INTRODUCTION 

 

Over the last 20 years many authors (Qiao et al (1994), Groot et al (1996), Gijbels et al (1999), Van 

Vlijmen et  al (2001), Kooistra et al (2006), Yates et al (2009)) have quoted Paigen et al (1987) for 

their heart and aortic valve dissection techniques or quantification methodology. As these 

techniques and methods are referred to frequently, they begin to be adopted and interpreted for 

standard murine atherosclerosis analyses and to some extent were utilised for atherosclerosis 

quantification of the studies herein. However, analysis of quantification methodologies used has 

not been reviewed. 

 

Paigen et al’s (1987) studies considered 3 different quantification methods: (a) all sections, with 

lesion size visually estimated using a microscope grid eyepiece, (b) all sections, ORO stained cross-

sections with photomicrographs taken and computer graphics software quantification, and (c) 

selecting sections with the largest lesions across all samples.  They found that the latter method 

had greater statistical power compared to the other two due to utilising five independent, 

equidistant sections at 80µm intervals.  They also found utilising method (a) and (c) together to 

be the most efficient for quantification as no photomicrographs were required. 

 

Although the studies outlined above and shown in Table 3.1 have sectioned the same region of 

aorta and aortic valves, they identified their own preference in terms of the section thickness 

(5μm-10μm), distance (e.g. alternate 10μm, 40μm, and three 120μm), and number of sections 

quantified (n=3, 4, 5, 10, 15).   Due to the variation in these methods and a different choice for 

this study (7μm sections at a distance of 14μm), it was determined to fully evaluate the 

atherosclerosis results for Study 1 to ensure they were (i) representative of the whole and (ii) no 

important data was omitted.  It was also an opportunity to identify patterns of atherosclerosis 

expression throughout the aortic valve region.   
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Table 3.1 Comparison of Atherosclerosis Quantification Techniques1

 

 Publication/Author Sections Quantification 

1. Paigen et al(1987) 
 
 

10μm alternate cross 
sections. 

All sections: 
grid microscope measurement. 
photomicrograph and computer software. 
5 alternate 10µsections at 80µm intervals 
 

2. Qiao et al (1994) 10μm alternate cross 
sections 
 

Analysis 20-30 sections, alternate sections at 
10μm intervals 

3. Groot et al (1996) 10μm alternate cross 
sections 

Up to 40 sections imaged, all analysed. 
10 alternate sections at 10μm intervals. 
 

4. Gijbels et al (1999) 7 μm cross sections  3 sections at 120μm intervals 
 

5. Van Vlijmen et al 
(2001) 
 

5 μm cross sections  4 sections of aortic valve area at 40μm intervals 

6. Kooistra et al(2006) 5 μm cross sections  4 sections aortic valve area at 30 μm intervals. 
 

7. Yates et al(2009) 10μm alternate cross 
sections 

15 sections aortic valve area, alternate sections 
at 10μm intervals. 
 

1 The data shown in the table above refers to cross sectional analyses in the aortic valve region only and does not 

detract from additional morphometric and categorical analyses carried out by the authors. 
 

 MATERIALS AND METHODS 

 

 Mice and Diets 
 

Diets and mice are previously described in Chapter 2 Methods, Paragraphs 2.1 and 2.2, 

respectively.  C57BLJ6 female mice were cross bred with AEL males. During gestation (21 days) 

the pregnant dams were fed either a PHVO (P) or RTFA (R) diet thereby exposing the fetus to two 

types of TFA during development in utero.  On the birth of the pups, dams were transferred onto 

chow diet (C) which was consumed by the dams throughout suckling.   At 21 days of age, the AEL 

female pups were weaned onto a post-natal diet of either Chow (C) or cholesterol-rich 

Atherogenic (A) diet, resulting in four diet groups: (i) PCC, (ii) PCA, (iii) RCC, and (iv) RCA.  AEL 

offspring remained on their post-natal diets for 12 weeks before being culled and tissues excised 

at 15 weeks of age. 
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 Heart Dissection and Microtomy 
 

The heart, aortic arch and descending aorta were excised at culling.  The heart was dissected out, 

weighed, and flushed with histological OCT mounting media (Raymond A Lamb). As described by 

Paigen et al (1987) see Figure 3.1, the heart was sectioned perpendicular to the axis of the aorta.  

The sectioned hearts were mounted on a histology cork (Raymond A Lamb) with OCT, snap-frozen 

in liquid nitrogen and stored at -80°C until analysis (Figure 3.2). 

 

Figure 3.1 Orientation of Heart and Aortic Valves for Dissection and Microtomy 
 

 

 

- - - - - - - -  Dashed lines 

represent area for dissection and 
sectioning through aortic valve 
region. 
 
Arrow shows direction of sections 
taken. 

 

 

 

 

Source:  Image adapted from Donnelly (2008) 

 

 Histological Analysis of Atherosclerosis within the Aorta 
 

Each heart was remounted onto a cryostat chuck using OCT and brought to temperature (-20°C) 

one hour prior to sectioning (Figure 3.2). Serial cross-sections of the aorta (7μm thick) were taken 

using a cryostat (Bright Instruments, Huntingdon, Cambs, UK).  The sections were placed onto 

charged slides (VWR International) from the appearance of the aortic valve leaflets, throughout 

the valves up to the heart atrium.   

  

AORTIC VALVE  
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Figure 3.2 Diagram of Mounted Heart for Microtomy 
 

 

 

 

 

 

Source: Adapted from Tonge (2011) 

 

A series of three slides were used for each aorta.  The first three sections were placed one on each 

of the three slides and this process repeated (Figure 3.3).  This meant that the sections on each 

slide were 14μm apart.   

 

Figure 3.3 Serial sections mounted onto slides in 3 sets 

 

  

Animal Number. 

Set 1. Slide 1.1 

Trial:1 

Animal Number. 

Set 2. Slide 2.1 

Trial1 

Animal Number. 

Set 3. Slide 3.1 

Trial:1 

 
Aorta 

Sections 

14μm distance between sections on same slide 

6 

5 

4 

3 

2 

1 

Thin lines represent 7μm serial 

sections through aortic valve region 

in the direction of the arrow  

OCT Mounting Medium 

Aorta 

Histology cork or cryostat chuck 

Heart 
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 Oil Red O Staining 
 

An Oil Red O (ORO) stock solution (0.5%w/v Oil Red O in isopropanol) was heated at 60°C for two 

hours, allowed to cool, then stored in the dark at room temperature until use. A working solution 

was made up of two parts ORO stock solution and three parts of 1% dextrin.  This was mixed for 

an hour at room temperature and filtered before use. The slides were placed in staining racks and 

immersed in isopropanol for 15 seconds and ORO for 20 minutes, followed by rinsing in 

isopropanol for 15 seconds. Sections were counterstained in Mayers Haematoxylin (Raymond A 

Lamb) for five minutes, rinsed in tap water and blued in Scots tap water (distilled water containing 

2% w/v sodium bicarbonate and 0.35% w/v magnesium sulphate).  Finally, the slides were rinsed 

in tap water to remove any residue.  An aqueous glycerol mounting medium was used (50% v/v 

glycerol and 50% dH2O v/v) and the edges of the cover slips were sealed with clear lacquer. 

 

 Imaging and Quantification 
 

All ORO stained sections were imaged with a light microscope (Leica DM5000B) using Leica 

Application software version 2.1 at 10x magnification. All sections were imaged, and ORO stained 

plaques quantified using Image-Pro® Plus 5.1.2 software.  Analyses were performed blind without 

knowledge of diet group.  Lesions were quantified by number of red pixels (Oil Red O lipid staining) 

present and converted to lesion area (μm2).   
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Figure 3.4:  Photomicrographs of Aorta Sections stained with Oil Red O  
 

 

Images show aortic valve leaflets.  Arrows indicate atherosclerotic lesions.  Image (A) Shows small lesions 

in post-natal chow fed animals.  Image (B) shows large lipid filled atherosclerotic lesion in animals fed a 

post-natal high fat/high cholesterol “atherogenic” diet. 

 

 RESULTS - ANALYSIS AND QUANTIFICATION OF ATHEROSCLEROSIS  

 

As previously described (paragraph 3.1.1) 7μm sections were analysed at a distance of 14μm 

between sections from the appearance of the aortic valves from aortic arch towards the heart.  

For Study 1, 21 specimens across four diet groups were quantified.   

 

 Pattern of Atherosclerosis Expression throughout Aortic Valves of ApoE*3 Leiden 
Mice 

 

Sections were aligned to where three aortic valves were clearly observed (Figure 3.4). The average 

lesion area (μm2) was calculated for every section and plotted to identify the pattern of 

atherosclerosis expression for each diet group (Figure 3.5).  The pattern of lesion expression 

showed distinct differences between offspring diet groups.  The offspring Atherogenic diet groups 

(A: PCA and RCA) were defined by a higher and protracted peak compared to chow groups (C: PCC 

and RCC) giving an immediate visual impact of the atherogenic diet on severity and prevalence of 

atherosclerosis.  A second difference observed was the lack of lesions in the chow groups at the 

A B 
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beginning and end of the valves compared to atherogenic diet groups. It was also observed that 

PCC groups had lower levels of atherosclerosis compared to RCC throughout the sections 12-48.    

 

Figure 3.5 Pattern of Atherosclerosis Lesions in the Aortic Valves of ApoE*3 Leiden Mice 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean data ±SEM shown for Maternal Pregnancy and lactation diet and Offspring post-natal diet respectively (PCC=8, 

RCC=9; PCA=11, RCA=8). 

 

 Comparison of Qualitative and Quantitative Analysis of All Sections  
 

Atherosclerosis was quantified by two methods: (i) qualitative: visually scoring photomicrographs 

specimens dependent on atherosclerotic lesion severity: 0=none; 1=mild; 2=moderate; 3=severe.  

All sections assessed by eye and each animal allocated a final score between 0-3; (ii) quantitative 

image analysis of ORO lesion stained areas (method 3.1.5). Both methods analysed 

atherosclerosis present in all sections and produced similar overall statistical outcomes (see 

Results Table 3.2).  However, from Figure 3.6 it was apparent qualitative analysis overestimated 

the severity of lesions in the chow groups.  This lack of sensitivity was picked up by quantitative 
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analyses and Bonferroni post-hoc analysis clearly indicating that quantitative analyses had greater 

statistical power.   

 

Figure 3.6 Results of Qualitative and Quantitative Analyses of Atherosclerosis  
 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation, and post-natal diets 

respectively (PCC=8, RCC=9; PCA=11, RCA=8). Data analysed by two-way ANOVA with Pregnancy diet and post-natal 

diet as factors and Bonferroni post-hoc test.  Pairs of unlike letters (x,y) significantly different P<0.001. 

 

 Quantitative Analysis of Subsets of Atherosclerosis Lesions 
 

In order to check the viability of analysing a smaller subsets of sections as described by Paigen et 

al (1987) and other authors (see Table 3.1), n=3, n=4, n=5, n=10 and n=15 sections were analysed 

from Section 1 where the aortic valves were clearly present towards the heart and compared to 

all sections analysed (Table 3.2).  

 

The results for all sections (N=21, S1-60, Figure 3.5) were comparative with smaller subsets of 

sections quantitative analyses and the qualitative analysis (Table 3.2).  All the results were 

consistent in showing that there was no effect of maternal diet (P or R) on atherosclerosis and 

confirmed that there was a significant difference in atherosclerosis between offspring post-natal 

(A or C) diet groups (P<0.05).  However, the Bonferroni post-hoc test gave slightly different 

outcomes. Quantification of all sections and N=5 sections at 84µm intervals both identified a 

significant difference between PCC vs PCA and that of RCC vs RCA.  However these effects were 
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not observed in any other quantification of subsets of sections, with three out of five analyses not 

detecting a difference in PCC vs. PCA (N=5 at 84µm distance, N=10 at 14µm distance, and N=4at 

42µm distance, Table 3.2).   

 

Repeated measures ANOVA with maternal diet, offspring diet and section number as factors, gave 

another perspective on the atherosclerosis quantified (Table 3.2) There was a strong effect of 

section number observed for all sections across the aortic valve towards the heart (P<0.001).  

There was trend for section number shown for N=4 sections at 28µm distance, showing that as 

sections progressed towards the heart atherosclerosis increased (P=0.051, Figure 3.5).  

 

Quantification of sections N=10 sections at 14µm distance also reflected the pattern of 

atherosclerosis expression with a strong effect of section number observed (P<0.05).  However, 

this analysis also identified that those offspring exposed to P diet during pregnancy decreased, 

compared to R offspring whose atherosclerosis increased over the same distance (Section x 

Maternal Diet: P<0.01, see Figure 4.9).  There was no interaction of section x offspring diet, 

showing consistency in the amount of atherosclerosis across these sections in C and A groups, 

respectively.  

 

The remainder of the analyses of smaller subsets of sections of atherosclerosis did not show any 

effect of section number or section x diet interaction. 
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Table 3.2 Results of the Analysis of Different Quantities of Aortic valve cross-sections  
   Offspring Post-natal Diet  REPEATED MEASURES ANOVA (P) 

Table 3.1 
Author 

Number of Sections 
analysed 

Maternal diet C A Total Section (S) Maternal Diet (M) Offspring Diet (O) 
Interaction 

M x O 

Paigen 1987 Qualitative scoring 0-3 P  x1.00 ±0.19 y2.45 ±0.21 1.84 ±0.22 N/A 0.381 <0.001 0.1 
 per aorta (all sections) R 1.44 ±0.18 2.25 ±0.31 1.82 ±0.20  SxM: N/A SxO: N/A SxMxO: N/A 
  Total x1.24 ±0.14 y2.37 ±0.14      
Paigen 1987 All Sections a  

N=21 at 14μm interval  
P x15.75 ± 3.7 y87.73 ±17.9 22.84 ±2.5  0.509 <0.001 0.600 

Qiao, 1994 R x38.51 ±11.5 y96.94 ±20.2 30.86 ±6.8 <0.001 SxM:0.039 SxO:0.992 SxMxO:0.988 
Groot 1996  Total x27.80 ±6.8 y91.61±12.8      
Paigen 1987 Sections 1,15,30,45,60 a 

N=5 at 84μm interval 
P  x 15.24 ±3.16 y90.51 ±19.8 58.82 ±14.3  0.977 <0.001 0.764 

 R  x35.86 ±10.9  y91.64 ±18.8 62.12 ±12.4 0.095 SxM:0.864 SxO:0.916 SxMxO:0.651 
  Total x26.11 ±6.4 y90.98 ±16.2      
Groot 1996 Sections 1,3,6,9,12 

15,18,21,24,27 a 

P  22.19 ± 7.1 88.13 ±17.9 60.41 ±13.1  0.383 0.002 0.759 
Yates 2009 R  46.75 ±12.8  111.53 ±30.5 77.20 ±17.3 0.049 SxM:<0.01 SxO:0.877 SxMxO:0.963 
 N=10 at 14μm interval Total x35.15 ±7.9 y98.10±16.2      
Gijbels 1999 Sections 1, 24, 51 a 

N=3 at 126μm interval 
P x16.71 ± 4.8 y77.60 ±15.6 51.96 ±11.3  0.913 <0.001 0.764 

 R 35.71 ±11.0 91.10 ±22.2 61.81 ±13.5 0.200 SxM:0.241 SxO:0.952 SxMxO:0.923 
  Total x26.8 ±6.6 y83.38 ±12.5      
Van Vlijmen  Sections 1, 9, 18, 27 a 

N=4 at 42μm interval 
P 21.25 ± 6.9 80.77 ±15.9 55.71 ±11.7  0.352 0.002 0.834 

2001 R 45.28 ±13.3 108.91 ±29.3 75.23 ±16.9 0.173 SxM:0.011 SxO:0.641 SxMxO:0.955 
  Total x34.10 ±8.1 y92.62 ±15.3      
Kooistra  Sections 1, 6, 12, 18 a 

N=4 at 28μm interval 
P x19.39 ±6.7 y92.07 ±21.5 61.47 ±15.1  0.606 <0.001 0.591 

2006 R 40.80 ±11.3 18.42 ±29.9 72.62 ±17.0 0.051 SxM:0.101 SxO:0.932 SxMxO:0.777 
  Total x30.72 ±7.1 y99.10 ±17.3      

Mean data ±SEM shown for Maternal Pregnancy and lactation diet and post-natal offspring diet respectively (PCC=8, RCC=9; PCA=11, RCA=8). Data 
transformed to square root “a” and analysed by three-way repeated measures (for section number) ANOVA, with maternal diet and offspring post-natal 
diet as factors, blocking for animal and litter from which the samples were derived. Pairs of unlike letters (x,y) are significantly different P<0.05. 
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 DISCUSSION 

 

For this study, we assessed the impact of maternal consumption of two different trans fat diets 

(P and R) during pregnancy on the susceptibility of AEL offspring to atherosclerosis in adult life.  

Quantification of atherosclerosis in the aortic valve lesions was after 12 weeks on post-natal diets, 

over a distance of 294µm in the aortic valve region. Due to the variation in the reported number 

of sections quantified over different distances (Table 3.1) and different approaches to 

quantification used (e.g. qualitative vs. quantitative) it was necessary to assess whether these 

methods and quantification of smaller subsets of sections were comparative to whole aortic valve 

analyses. 

 

It was found that the qualitative scoring of lesions was much quicker and simpler compared to 

the computer aided quantitative analysis. However, using this approach it was not possible to 

accurately plot the expression of atherosclerosis throughout the aortic valve region.  Paigen et al 

(1987) used a microscope grid eyepiece that they concurred improved lesion assessment 

accuracy; however, it would also increase the time and effort spent analysing atherosclerosis 

sections.  Additionally, if these sections were needed for reanalysis, there is the drawback that 

tissue integrity may deteriorate over time and introduce variability. In our study, 

photomicrograph and computer software quantification produced greater statistical power and 

facilitated comprehensive data analyses.  It also provided an image of the lesions which can be 

accessed long after the stained sections may have lost their integrity or been archived.  This 

method was worthwhile as it provided accurate, rigorous data which was able to be plotted and 

assessed visually and statistically. However, this method was labour intensive and time 

consuming.  Our results showed that utilising qualitative scoring (with or without grid eyepiece) 

would be sufficient for a general overview of atherosclerosis.  However, caution is advised in 

using this solely to quantify atherosclerosis as statistical sensitivity was lower compared to 

quantitative methods and outcomes could be overlooked. 

 

Overall, our results showed that all sections quantified gave the same results (e.g. maternal diet: 

P vs R; offspring diet: C vs A) as the smaller subsets of sections analysed. This robust approach 
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supports the results by other authors who analysed all sections and the reduced number of 

sections (Paigen et al., 1987, Qiao et al., 1994, Groot et al., 1996).  The consistent outcome across 

these analyses conferred confidence in the results presented and that quantification of a lower 

number of sections would be appropriate.  Although N=5 sections (as per Paigen et al 1987 

methodology) gave the same outcome as N=21 sections in our study, caution is warranted as it 

does not give the investigator a full picture of expression of atherosclerosis as it progresses 

throughout the valves.  Furthermore, closer analysis of the smaller number of sections using 

Bonferroni post -hoc tests, indicated a lack of sensitivity with two out of five analyses (N=10 at 

14µm distance, and N=4at 42µm distance, Table 3.2) not indicating a difference between PCC and 

PCA diet groups. This suggests that a smaller number of sections may not give a full 

representation of the results, particularly if later sections leading towards the heart are omitted. 

 

Analysis of subsets of atherosclerosis by repeated measures ANOVA with section number as a 

factor, gave a good indication of the magnitude of atherosclerosis as it progressed through the 

aortic valve towards the  heart, with a strong effect of section number observed in N=4 sections 

at 28µm distance (P=0.051, Figure 3.5).  Equally quantification N=10 sections at 14µm distance 

displayed a strong effect of section number (P<0.05), with section x maternal diet interaction 

(P<0.01).  Plotting the maternal diet (see figure 4.9), identified that as the sections progressed 

towards the heart offspring exposed to P maternal diet started to decrease in atherosclerosis and 

R maternal increase in atherosclerosis. None of the other subsets of sections showed any effect 

of section number indicating homogeneity of atherosclerosis between diet groups across the 

sections quantified. 

 

For our study, we considered that the most robust approach was to quantify all sections (N=21), 

in conjunction with N=10 sections due to the interaction of the section number with diet over 

this region.  The latter analysis of 10 sections did not detract from the overall results, but added 

another facet by which to interpret the data and describe the pattern of atherosclerosis as it 

advanced through the valve sections towards the heart, which is often excluded from the results. 
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 CONCLUSION 

 

For our study, the most robust analysis was N=21 sections and N=10 sections from the aortic 

valve (Sections 1-27, Figure. 3.5). From the smaller number of sections we analysed (N=3, N=4, 

N=5, N=10, N=15) we concluded it was inappropriate to use these as a single measurement of 

atherosclerosis as it could generate incomplete or skewed results. Caution is warranted due to 

differential atherosclerosis expression throughout the aortic valve region. Therefore, we 

concluded that the most rigorous and prudent analysis would be for atherosclerosis to be 

quantified throughout the whole of the aortic valve region using accurate quantification 

methodology, such as computer aided analysis.  Thereafter, a smaller number of sections could 

be utilised to describe the pattern of expression through the aortic valve region. Combining both 

analyses, adds weight and credence to the reported results and ensures that key statistical 

outcomes are not omitted. 
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CHAPTER 4:  THE IMPACT OF A PHVO OR RTFA DIET DURING PREGNANCY ON 
THE DEVELOPMENT OF ATHEROSCLEROSIS IN OFFSPRING (APOE*3 LEIDEN 
MOUSE) 

 

4. INTRODUCTION 

 

As outlined in the General Introduction epidemiological studies and animal experiments have 

shown that poor maternal diet during pregnancy can cause increased susceptibility to a range of 

chronic diseases in the offspring, including hypertension, type 2 diabetes and atherosclerotic CVD 

(Langley-Evans, 2015, Symonds et al., 2013, Hanson and Gluckman, 2014, Mone et al., 2004). 

 

More recently, it has become apparent that maternal overnutrition, and consumption of energy 

dense foods rich in SFA and TFA, can manifest in maternal adiposity.  In human pregnancy 

monitoring studies obese mothers are found to have elevated inflammatory markers (Ramsay et 

al., 2002, Stewart et al., 2007), reduced vascular function (Meyer et al., 2013) and dyslipidaemia 

(Meyer et al., 2013, Ramsay et al., 2002). Observed outcomes of obese mothers include, pre-term 

babies, lower birth weight babies and macrosomia babies that have greater susceptibility to 

obesity and CVDs in childhood and later life (Gademan et al., 2014, Flick et al., 2010, Gaillard et 

al., 2013). In post-mortem studies of pre-term fetuses. It was found that those offspring of 

hypercholesterolemic mothers had atherosclerotic lesions within their aortas (Napoli et al., 

1999). In animal experiments, it has also been shown that maternal hypercholesterolemia 

induces atherosclerosis in offspring of rabbits (Napoli et al., 2000), LDLr-knockout mice (Napoli et 

al., 2002) and ApoE-knockout mice (Goharkhay et al., 2007). 

 

Dietary TFA, particularly those in PHVO rich in trans C18:1 isomers, adversely affects lipoprotein 

concentrations (Mensink et al., 2003) and increase risk of developing atherosclerotic CVD 

(Mozaffarian and Clarke, 2009). Ruminant-derived meat and dairy products represent another 

source of dietary TFA.  However, while PHVO contains a wide range of isomers, the specific 
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composition of which depends on the parent oil, ruminant-derived products contain 

predominantly VA (C18:1 t11), which is produced by the bacterial population of the rumen (Figure 

1.5).  This is particularly significant as a proportion of dietary VA is converted to CLA isomer 

C18:2c9t11, through the action of stearoyl CoA desaturase in the tissues of animals, including 

humans (Turpeinen et al., 2002, Kuhnt et al., 2006).  It has also been demonstrated that there are 

potential beneficial effects of butter enriched in VA and CLA C18:2c9t11 on lipoprotein profiles 

(Lock et al., 2005). 

 

In humans and animals, TFA in the maternal diet can be transferred across the placenta into the 

circulation and tissues of the developing offspring with possible metabolic consequences (Innis, 

2006).  A human cohort study suggested that maternal TFA consumption, during the second 

trimester of pregnancy, was positively associated with fetal growth rates (Cohen et al., 2011), 

although studies in mice exposed to TFA-enriched milk fat show retarded growth rates (Kavanagh 

et al., 2010). 

 

 AIM AND HYPOTHESIS 

 

In this study, the aim was to investigate the impact of two types of TFA (that associated with 

ruminant milk and that associated with partially hydrogenated vegetable oil) during pregnancy 

on the development of atherosclerosis in the offspring using the AEL mouse model (see Methods, 

Figure 2.3 for experimental design).   

 

Hypothesis: That maternal consumption of ruminant derived TFA during pregnancy and fetal 

development, will protect the offspring from atherosclerosis, while that associated with PHVO 

will have the opposite effect.  

 

 DIETS 

 

In order to examine the study’s hypothesis, chow diets were supplemented with 13% TFA, 

equivalent to 4% daily energy in mice.  Dietary fats were similar to those initially used by 
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Chardigny et al (2008) in the human TRANSFACT study (see Methods Chapter 2,Table 2.1).  

Although there are some specific differences including CLAs within the RTFA diet, where possible 

the distribution and sum of other fatty acids SFA, MUFAs and PUFAs were equivalent in the 

dietary groups.  Fatty acid composition of experimental diets (% FAME) are shown in Chapter 2, 

Methods, Figure 2.2.  See Methods paragraph 2.2.4 for full descriptive of diet groups. 

 

 MICE 

 

Seven-week-old wild type female (n=10 per diet group) C57BL/6J mice (dams) were mated with 

randomly selected AEL males (sires) (approx. eight weeks age) over a two oestrous cycle period 

of eight days. Groups were matched for variations in bodyweight. During mating the experimental 

Ruminant TFA (R), or PHVO TFA (P), diets were fed to both sires and dams.  On the eighth day the 

sires were removed, and dams remained on the allocated experimental TFA diets throughout 

pregnancy (see Figure 2.2 Sector 1“Pregnancy”). 

 

 Pregnancy Study (Dams/Fetus): Wild type C57BL/6J mice 
 

On day 17 of pregnancy dams were sacrificed with maternal and fetal tissues harvested (see 

Methods paragraph 2.3 and results paragraph 4.4).   

 

 Study 1 Dams: Wild type C57BL/6J mice 
 

On birth of pups (see Figure 2.2, Sector 2 “Lactation”) dams were transferred onto a chow diet 

(C), thereby exposing their offspring to a chow diet during suckling for a period of 21 days giving 

two dam diet groups: (i) RTFA/Chow (RC); and  (ii) PHVO/Chow (PC). At 21 days age, pups were 

sexed, genotyped (see Methods paragraph 2.5) and weaned onto a postnatal diet.  Dams were 

culled in accordance with Schedule 1 procedures, ASPA (Home_Office, 1986), no maternal tissues 

were harvested.  
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 Study 1 Offspring:  ApoE*3 Leiden Mice 
 

Female AEL pups were weaned onto a post-natal diet (see Figure 2.2, Sector 3 “Post-natal”) of 

either standard chow “C” or a high fat, high cholesterol Atherogenic diet “A” (see Methods Table 

2.3) giving rise to four offspring diet groups: 

 

• PHVO groups:  PCC and PCA. 

• RTFA groups: RCC and RCA.   

 

Offspring remained on post-natal diets for 12 weeks (84 days). After 12 weeks on experimental 

diets, at the age of 15 weeks, mice were culled in accordance with Schedule 1 procedures, ASPA 

and tissues harvested (Home_Office, 1986) (see Methods paragraph 2.3 and offspring results 

paragraph 4.5). 

 

 RESULTS - THE IMPACT OF CONSUMING A PHVO OR RTFA DIET DURING PREGNANCY ON 

MATERNAL PHYSIOLOGY (C57 MOUSE) 

 

 The Impact of consuming a P or R Diet during Pregnancy on Maternal Body Weight  
 

From conception to study end point, it was observed that pregnancy weight gain trajectory and 

overall weight gain was similar between both diet groups.  These effects were corroborated 

through similar average feed intake and energy efficiency see Table 4.1 
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Table 4.1 The Impact of consuming a P or R Diet consumed during Pregnancy on Maternal Body 
Weight  

 P R T-TEST P Value 

Start weight (g) 16.58 ±0.23 17.02 ±0.25 0.664 

Bodyweight at day 17 pregnancy (g) 28.73 ±0.53 29.96 ±0.77 0.210 

Pregnancy weight gain Day 17 (g) 12.15 ±0.61 12.94 ±0.58 0.377 

Average daily feed intake (g) 2.20 ±0.10 1.98 ±0.11 0.182 

Feed Efficiency (g weight / g feed intake) 7.62 ±0.34 7.74 ±0.37 0.771 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5).  
Significance P<0.05. 
 

 The Impact of consuming a P or R Diet during Pregnancy on Maternal Body 
Composition and Organ Weight 

 

Organ and tissue weights are expressed as a percentage of body weight (%BW).  At day 17 

gestation animals that had consumed P had heavier livers compared to those animals that had 

consumed R during pregnancy (P<0.05, Figure 4.1).   

 

Figure 4.1 The Impact consuming a P or R Diet during Pregnancy on Maternal Liver Weight  
 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5).  Nonparametric 

data transformed square root “a” and analysed by T-Test. Significance, *P<0.05. 
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Animals that had consumed P during pregnancy had larger total visceral adipose depots 

compared to animals that had consumed R (P<0.05, Figure 4.2).  Break down of visceral adipose 

results showed that P animals had larger perirenal adipose depots (P<0.05) but not gonadal 

adipose tissue (p=0.082). 

 

Figure 4.2 The Impact of consuming a P or R Diet during Pregnancy on Maternal Visceral 
Adipose Tissue  
 

 

 

 

 

 

 

 

 

 

 
Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5) and analysed by T-

Test.  For PAT (Perirenal Adipose Tissue) Significance, *P<0.05. 
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 The Impact of consuming a P or R Diet during Pregnancy on Fetal and Placenta 

Development 
 

There were no differences observed between the two diet groups at day 17 gestation for 

maternal bodyweight, placental weight or fetus body weight (see Table 4.2 below).  Dams 

consuming R diet during pregnancy had more fetuses present compared to dams consuming P 

(P=0.001).  This difference was observed in the number of fetuses within the left uterine horn 

(P<0.05). 

 

Table 4.2 The Impact of consuming a P or R Diet during Pregnancy on Fetal and Placenta 
Development 

 P R T-TEST P 

Body weight d17 pregnancy 28.73 ±0.53 29.96 ±0.77 0.210 

Average number of fetuses  
per pregnancy 

6.17 ±0.40 8.60 ±0.24 0.001 

# fetus left uterine horn 1.67 ±0.42 4.00 ±0.82 0.023 
# fetus right uterine horn 4.50 ± 0.43 4.75 ±0.85 0.779 
Total fetus absorptions 0.83 ± 0.31 0.25 ±.025 0.214 
Placenta % BW 0.39 ± 0.13 0.38 ±0.12 0.922 
Fetus weight (g) 0.55 ±0.02 0.51 ±0.02 0.313 
Fetal/placenta ratio 4.70 ±0.20 4.9 ±0.18 0.778 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5).  Fetuses and 
placentas (P=37, R=43).  Significance P<0.05.  
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 The Impact of consuming a P or R Diet during Pregnancy on Maternal Serum Lipids 
and Serum Glucose 

 
 

Serum Cholesterol and Serum TAG measurements were performed by Colorimetric Assays using 

Infinity reagents (Method 2.6.1 and Table 2.7).  Serum total cholesterol and TAG were found to 

be greater in animals consuming P compared to R (P<0.05).   

 

Serum glucose was measured by Colorimetric Assay using glucose oxidase reagent (Method 2.6.2) 

and were found to be similar between both diet groups (Table 4.3). 

 

Table 4.3 The Impact of consuming a P or R Diet During Pregnancy on Maternal Serum Lipids 
and Serum Glucose 

 P R T-TEST P 

Total Cholesterol (mmol/L) 3.08 ±0.16 2.29 ±0.22 0.044 
TAG (mmol/L) 2.62 ±0.24 1.63 ±0.28 0.029 
Glucose (mmol/L) 12.42 ±1.17 11.72 ±1.46 0.718 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5). Significance 

P<0.05. 
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 The Impact of consuming a P or R Diet during Pregnancy on Maternal Liver Lipids 
 

Lipids were extracted from livers (Method 2.7.4) and TAG and cholesterol assays performed 

(Method 2.7.5).  Liver lipids are expressed as mg/total liver.  At day 17 pregnancy there were no 

differences in liver cholesterol (Figure 4.3a).  Liver TAG (Figure 4.3b) were higher in animals fed R 

compared to P (P<0.05).  

 

Figure 4.3 The Impact of consuming a P or R Diet during Pregnancy on Maternal Liver Lipids  
 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5) and analysed by T-

Test.  Significance *P<0.05. 
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 The Impact of consuming a P or R Diet during Pregnancy on the Fatty Acid 
Composition of Maternal Perirenal Adipose Tissue (%FAME) 

 

FAME FAs were extracted from perirenal adipose tissue and measured (Method 2.7.1., A. Lock, 

University of Michigan).  The distribution of trans fatty acids in the perirenal adipose tissue is 

shown in Figure 4.4.  As expected, the TFA isomers in the maternal perirenal adipose tissue 

reflected that of the diets consumed (Table 2.1 and Figure 2.1).  The results showed that animals 

that had consumed R during pregnancy had greater quantities of Vaccenic Acid (C18:1 t11) and 

CLA (9c11t) in their perirenal adipose tissue compared to P animals. Those animals that had 

consumed P during pregnancy had a wider distribution of trans isomers across C18:1 6-12t 

isomers, and total C18:1 trans compared to R animals. 

 
Figure 4.4 C18:1 trans Fatty Acid Composition of Maternal Perirenal Adipose Tissue 
 

 

 

 

 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (P=6, R=5).  Nonparametric 

data transformed to Log10 “c” and analysed by T-Test.  For each trans FA isomer, bars with unlike letters (x,y) are 

significantly different P<0.05. 
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 RESULTS - THE IMPACT OF MATERNAL CONSUMPTION OF A PHVO OR RTFA DIET DURING 

PREGNANCY ON ATHEROSCLEROSIS DEVELOPMENT IN OFFSPRING (AEL MOUSE) 

 

For a full description of offspring diet groups, see paragraph 2.2.4.  

 

 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Body 
Weight of Offspring 

 

AEL female offspring were weaned at approximately three weeks of age and weighed daily over 

the first seven days. Thereafter animals were weighed weekly for a period of 11 weeks. There 

were no effects of the maternal diet (P or R) or offspring post-natal diet (C or A) observed on 

offspring body weight on Day 0 weaning nor after 84 days on post-natal diets, and consequently 

overall weight gain was similar (Table 4.4). Analysis of weight gain trajectory from Day0 to Day84 

by repeated measures ANOVA confirmed that there was no difference in growth patterns 

between the diet groups. 

 

Table 4.4 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Body 
Weight of Offspring 

  Offspring Post-natal Diet  TWO-WAY ANOVA P 

 Maternal 
diet 

C A Total 
Maternal 

Diet 
Offspring 

Diet 
Maternal x 
offspring 

Weaning body 
weight Day 0 (g) 

P 7.74 ±0.22 7.77 ±0.32 7.76 ±0.20 0.340 0.775 0.861 
R 7.88 ±0.35 8.32 ±0.32 7.95 ±0.23    

 Total 
 

7.81 ±0.21 7.88 ±0.24 
    

Body weight Day 
84 (g) 

P 21.61 ±0.51 20.91 ±0.41 21.21 ±0.35 0.325 0.366 0.517 
R 21.68 ±0.33 21.65 ±0.35 21.71 ±0.24    

 Total 
 

21.69 ±0.32 21.22 ±0.30 
    

Mean weight 
gain days 0-84 (g) 

P 13.88 ±0.57 13.14 ±0.46 13.45 ±0.22 0.589 0.284 0.609 
R 13.89 ±0.41 13.63 ±0.34 13.77 ±0.26    

 Total 13.88 ±0.17 13.34 ±0.30     

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation, and post-natal diets 
respectively (PCC=8 RCC=9; PCA=8, RCA=11). Data was analysed by two-way ANOVA with Bonferroni post hoc test. 
Significance P<0.05. 
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 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Body 
Composition and Organ Weights of Offspring 

 

Organ and tissue weights are expressed as a percentage of body weight (%BW).  There were no 

effects of the maternal diets) or offspring post-natal diets (C or A) observed on liver size (see 

Table 4.6).   

 

Table 4.5 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Body 
Composition and Organ Weights of Offspring 

  Offspring Post-natal Diet  TWO-WAY ANOVA P 

 Maternal 
diet 

C A Total 
Maternal 

Diet 
Offspring 

Diet 
Maternal x 
offspring 

Liver (%BW) P 5.08 ±0.18 5.34 ±0.17 5.23 ±0.12    
R 5.06 ±0.16 5.23 ±0.15 5.14 ±0.11 0.720 0.200 0.777 

 Total 
 

5.07 ±0.05 5.30 ±0.11 
    

Perirenal Adipose 
(%BW) 

P 0.35 ±0.04 0.44 ±0.04 0.40 ±0.03 0.112 0.092 0.880 
R 0.43 ±0.04 0.50 ±0.05 0.46 ±0.03    

 Total 0.40 ±00.03 

 
0.46 ±0.0.03     

Gonadal Adipose 
(%BW) 

P 0.68 ±0.08 0.86 ±0.08 0.80 ±0.06 0.153 0.056 0.758 

R 0.81 ±0.06 0.93 ±0.08 0.86 ±0.05    

 Total 
 

0.74 ±0.05 0.89 ±0.06     

Data are shown as mean ±SEM for n observations per group showing pregnancy, lactation, and post-natal diets 
respectively (PCC=8 RCC=9; PCA=8, RCA=11). Data was analysed by two-way ANOVA with Bonferroni post hoc test. 
Significance P<0.05. 
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There were no effects of the maternal P or R diet observed on visceral adipose depots.  However, 

it was found that there was a trend for offspring that had consumed a post-natal A diet to have 

greater gonadal adipose depots compared to C (P=0.056, Table 4.5 and Figure 4.5).  

 

Figure 4.5 The Impact of a Post-natal Atherogenic Diet on Visceral Adipose Tissue in offspring 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation, and post-natal diets 

respectively (Chow: PCC=8 RCC=9; Atherogenic: PCA=8, RCA=11).  Data was analysed by two-way ANOVA with 

Bonferroni post hoc test. GAT: Gonadal Adipose Tissue. Significance P<0.05. 
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 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Serum 
Glucose and Serum Lipids of Offspring 

 

Serum glucose was measured by Colorimetric Assay using glucose oxidase reagent (Method 

2.6.2).  There were no effects of the maternal pregnancy diet (P or R) or offspring post-natal diet 

(C or A) observed on serum glucose levels (Table 4.6). 

 

Serum Cholesterol and serum TAG measurements were performed in duplicate with a Randox 

Imola RX chemistry analyser via a direct clearance method (HDL, LDL) or colorimetric assay (Total 

Chol, TAG) (Method 2.6.3).  There were no effects of maternal P or R diet observed on serum 

total cholesterol, HDL-cholesterol, non-HDL-cholesterol, or serum TAG. Total cholesterol and 

non-HDL cholesterol were higher in offspring post-natal A diet groups compared to C (P<0.05, 

Figure 4.6). The A diet caused an increase in HDL-cholesterol, and as a result the non-HDL:HDL 

ratio was reduced in these diet groups when compared to chow (P<0.05). Serum TAG was lower 

in the A diet groups compared to C (P<0.05, Table 4.6). 

 

Table 4.6 The Impact of Maternal Consumption of P or R Diet during Pregnancy on Serum 
Glucose and Serum TAG of Offspring 

  Offspring Post-natal Diet  TWO-WAY ANOVA P 

 Maternal 
diet 

C A Total 
Maternal 

Diet 
Offspring 

Diet 
Maternal x 
offspring 

Glucose (mmol/L) P 14.32 ±1.02 14.57 ±0.81 14.47±0.62    

R 14.04 ±0.91 14.83 ±1.40 14.43±0.81 0.989 0.620 0.797 

 Total 14.18 ±0.66 14.68 ±.029     

TAG (mmol/L) P 2.63 ±0.25 1.43 ±0.09 1.94 ±0.18    

R 2.94 ±0.28 1.59 ±0.12 2.30 ±0.23 0.244 0.0001 0.709 

 Total x2.80 ±0.25 y1.50 ±0.07     

Data are shown as mean ±SEM for n observations per group (PCC=8, RCC=9; PCA=11, RCA=8) and analysed by two-

way ANOVA.  Unlike letters (x,y) are significantly different P<0.05. 
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Figure 4.6 The Impact of a Post-natal Atherogenic Diet on Serum Cholesterol in Offspring 
 

 

 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation, and post-natal diets 

respectively (Chow: PCC=8 RCC=9; Atherogenic: PCA=8, RCA=11). Data transformed to log 10 “a” and analysed by 

two-way ANOVA with Bonferroni post hoc test.  Nonparametric data were analysed by Independent sample Mann 

Whitney “b”. For each corresponding cholesterol column (C vs A), unlike letters (x,y) are significantly different 

P<0.05. 
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 The Impact of Maternal Consumption of P or R Diet during Pregnancy on Liver 
Lipids of offspring 

 

Lipids were extracted from livers (Method 2.7.4) and TAG and cholesterol assays performed 

(Method 2.7.5).  Liver lipids are expressed as mg/total liver.  There was no effect of maternal P or 

R diet on offspring liver cholesterol or TAG.  The post-natal A diet group showed a three-fold 

difference in hepatic cholesterol (Figure 4.7a) compared to C and two-fold higher hepatic TAG 

P<0.001 (Figure 4.7b). 

 

Figure 4.7 The Impact of a Post-natal Atherogenic Diet on Liver Lipids in Offspring 
 

 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group showing pregnancy, lactation, and post-natal diets 

respectively (Chow diet groups: PCC=8 RCC=9; Atherogenic diet groups: PCA=8, RCA=11). Nonparametric data was 

transformed to log 10 “a” and analysed by two-way ANOVA with Bonferroni post hoc test. For each liver lipid unlike 

letters (x,y) are significantly different P<0.001. 
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 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Fatty 
Acid Composition of Perirenal Adipose Tissue (%FAME) 

 

FAME were extracted from perirenal adipose tissue and measured (Method 2.7.1., A. Lock, 

University of Michigan).  There was no effect of maternal diet (P or R) with no TFAs being found 

in the adipose tissue. The pattern of FA distribution in the perirenal adipose of offspring (Figure 

4.8a) is similar to that contained within the post-natal diets (Figure 4.8b).  However, LA C18:2 c9, 

c12 that is greater in post-natal C offspring (P<0.05) compared to A offspring, whilst C16:0 

Palmitic acid and Stearic Acid was predominant in the adipose of post-natal A offspring (P<0.05) 

compared to C offspring. 

 
Figure 4.8 The Distribution of Fatty Acids in Post-natal Chow and Atherogenic Perirenal Adipose 
Tissue of Offspring (%FAME) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  

<0.1% FAME Not Detected (ND).  Data are shown as mean 
±SEM for n observations per diet sample (C=3, A= 5). Data 

analysed by T-Test. For each FA paired column unlike 
letters (x,y) are significantly different P<0.05. 
 

<0.1% FAME Not Detected (ND).  Data are shown as mean 
±SEM for n observations diet group (C=10, A= 10). Data 

analysed by T-Test. For each FA paired column unlike 
letters (x,y) are significantly different P<0.05. 
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 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the 
Development of Atherosclerosis in Offspring 

 

As previously described 7μm sections were captured onto slides and the lipid stained with Oil Red 

O (Method 3.1).  These were analysed at a distance of 14μm between sections from the 

appearance of the aortic valves from aortic arch towards the heart, and then imaged and 

quantified (Method 3.2). All analyses were performed blind without knowledge of diet group.  

Mean atherosclerotic area (μm2) was calculated for each section and plotted to show pattern of 

atherosclerosis expression (Figure 3.5).  N=10 equidistant sections from each diet group from the 

three valves joining (Section 1) were analysed for the results.   

 

The effect of maternal diet during pregnancy and the effect of offspring’s post-natal diets on the 

development of atherosclerosis was statistically analysed in two different ways.  Initially the data 

was analysed by two-way ANOVA. The mean results of the 10 sections showed there was no  

overall effect of maternal pregnancy diet (P=0.383) nor maternal x post-natal offspring diet 

interaction (P=0.759, Figure 4.9) on offspring’s atherosclerosis.  However, the results confirmed 

that there was a strong effect of post-natal atherogenic diet, with three-fold greater 

atherosclerosis compared to offspring consuming chow in post-natal life (P<0.01). 

 

Secondly, the data was analysed by repeated measures (for section number) ANOVA blocking for 

animal and litter from which offspring were derived.  As can be seen in Figure 4.10 there was an 

effect of section number (P<0.05) with atherosclerosis of R offspring increasing progressively in 

sections closest to the heart, and atherosclerosis of P offspring decreasing over the same area.  

This fluctuation in atherosclerosis across sections was reflected by the maternal diet x section 

interaction (P<0.01). There was no interaction of offspring diet x section number (P=0.877) 

indicating a consistent difference in atherosclerosis across all sections between post-natal 

Atherogenic and Chow diet groups. 
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Figure 4.9 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Mean 
Atherosclerosis Lesion Area in Offspring 
 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation, and post-natal diets 

respectively (PCC=8, RCC=9; PCA=11, RCA=8). Data analysed by two-way ANOVA with Pregnancy diet and post-natal 

diet as factors and Bonferroni post-hoc test. Significance *P<0.01. 

  

* * 
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Figure 4.10 The Impact of Maternal Consumption of P or R Diet during Pregnancy on the Pattern 
of Atherosclerosis Expression in Offspring 

 

Data are shown as mean ±SEM for n observations per diet group, showing pregnancy diet groups (P: PCC=8, PCA=11, 

R: RCC=9, RCA=8). Data transformed to square root “a” and analysed by repeated measures (for section number) 

ANOVA, maternal pregnancy diet and offspring post-natal diet were factors, with blocking for each individual animal 

and litter from which the animals were derived. P values for the effect of diet, section, and interaction between the 

two are presented. Significance P<0.05. 
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 DISCUSSION 

 

The hypothesis for this study was that fetal exposure to PHVO or RTFA in the maternal diet would 

have a different impact on maternal physiology and cause a change in the susceptibility to 

development of atherosclerosis in offspring due to the differing TFA isomer profiles.  Study 1 

found that there were differences in the pattern of atherosclerosis across the section of aorta  

analysed between R and P maternal diet groups.  It also found that atherogenic post-natal diets 

increased atherosclerosis three-fold compared to chow post-natal diets.  Paragraph 4.6.1 

discusses Study 1 and the effects of maternal and post-natal diets on atherosclerosis expression 

in offspring.  Thereafter, Paragraph 4.6.2 discusses the Pregnancy Study that showed that dietary 

P and R TFAs differentially altered maternal physiology during fetal development. 

 

 Study 1: The Impact of a P or R Diet during Pregnancy on the Development of 
Atherosclerosis in AEL Offspring  

 

There was no effect of the maternal diet on offspring’s organ weight, tissue weight, serum glucose 

or serum lipids.  The results indicated differences in atherosclerosis offspring of P and R- fed 

mothers along the length of aorta studied resulting in a significant maternal diet x section 

interaction observed P<0.01.  Atherosclerosis in P offspring reduced whilst atherosclerosis of R 

offspring increased as sections 21-27 progressed towards the heart. As outlined in Chapter 3, 

caution is warranted in ascribing biological significance to these results due to differential 

atherosclerosis expression throughout the aortic valve region.  Further, robust atherosclerosis 

analyses utilised in this study (see Chapter 3) indicated that this was a variation in atherosclerosis 

expression over a short number of sections, and not a significant effect of maternal diet on 

offspring atherosclerosis expression.  

 

However, there were significant effects observed of the post-natal atherogenic diet compared to 

post-natal chow diet on offspring’s lipid metabolism and atherosclerosis.   
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Meta-analyses of FAs and their impact on cholesterol metabolism have shown that high SFA-

cholesterol rich diets increase lipid metabolism and CHD risk in humans (Figure 1.8, Mensink et 

al., 2003). It is recognised that replacing SFAs and cholesterol-rich diets with MUFA/PUFA (low 

fat) diets, have a positive impact on cholesterol metabolism, reducing LDL and increasing HDL, 

thus lowering CHD risk (Clifton and Keogh, 2017, Mozaffarian et al., 2010).  It has consistently 

been shown in several AEL atherosclerosis studies that a post-natal SFA/cholesterol-rich diet has 

increased atherosclerotic lesions compared to low fat chow animals (Groot et al., 1996, van 

Vlijmen et al., 1996, Tonge, 2011, Tarling et al., 2016) with Groot et al., (1996) reporting a 5-fold 

increase in atherosclerotic lesion area in 6 month old AEL mice. The results of this study were 

obtained in female AEL mice at 15 weeks of age, after 12 weeks on their respective atherogenic 

and chow post-natal diets. Considering the cholesterol-atherosclerosis theory explored in 

paragraph 1.4, it was found that offspring consuming the atherogenic-diet had a two-fold 

increase in total cholesterol compared to chow-fed offspring (Figure 4.7, P<0.05). This diet 

induced serum cholesterol metabolism influenced the progression of atherosclerosis with the 

results showing that the lesion area was three times greater compared to offspring consuming a 

chow post-natal diet (Figure 4.9 P<0.001).  The results of this study supported the AEL studies 

that female AEL offspring had greater atherogenic-diet induced atherosclerotic lesions compared 

to chow-fed animals. 

 

 Pregnancy Study:  The Impact of a P or R Diet during Pregnancy on Maternal and 
Fetal Physiology  

 

As already discussed, TFAs in the maternal diet are able to passed to the developing offspring 

across the placenta (Innis, 2006). This study showed that the TFA derived from PHVO and RTFA 

accumulated in the adipose tissue of dams. R-fed dams accumulated a disproportionately greater 

amount of CLA C18:2c9t11 in their adipose tissues predominantly through the action of Stearoyl-

CoA desaturase on the C18:1t11 in the dietary fat.  It is therefore appropriate to assume that the 

developing fetuses were exposed to different TFA isomers in utero dependent on the 

experimental diet fed. 
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It has been reported that PHVO increases serum cholesterol and other risk factors for 

atherosclerosis, e.g. serum TAG (Mensink et al., 2003, Mozaffarian and Clarke, 2009).  It has also 

been evidenced in human (Ramsay et al., 2002, Stewart et al., 2007) and animal studies (McCurdy 

et al., 2009, Oben et al., 2010) that maternal dyslipidaemia can lead to an increase in 

inflammatory markers such as TNFa and IL6 (Innis, 2007) and reduced vascularity function in 

mothers (Meyer et al., 2013, Ramsay et al., 2002, Stewart et al., 2013).  Furthermore, it has been 

shown that maternal hypercholesterolemia can cause onset of atherosclerosis in offspring in 

humans (Napoli et al., 1999) and animal studies (Napoli et al., 2000, Napoli et al., 2002, Goharkhay 

et al., 2007). In the AEL mouse it has been shown that a maternal high SFA/cholesterol-rich diet 

doubled maternal serum cholesterol levels through the course of the pregnancy and caused 

changes in the offspring’s lipid metabolism and atherosclerosis burden (Tarling et al., 2016). In 

this study the P-diet increased maternal serum total cholesterol concentrations by 25% (P<0.05) 

and serum TAG by 37% (P<0.05) compared to R-fed animals.  There was no control chow group 

to which to compare the R-fed animals, therefore it cannot be ascertained if the R diet had a 

hyperlipidaemic effect.  However, the serum lipid results of the P-fed animals supports the 

outcomes of previous studies that PHVO increased serum cholesterol and TAG.  It is recognised 

that these factors are not only important to maternal health but can also provide a nutritional 

insult during fetal development that could contribute to the aetiology of diseases such as 

atherosclerosis. 

 

At day 17 gestation, there were no differences observed in maternal body weight of dams 

consuming P or R diets.  This outcome was supported by finding no difference in average daily 

feed intake or feed efficiency measurements. The weights of fetuses and placentas and the 

fetal:placental ratio were similar between the two diet groups, indicating that the placenta was 

matching that of fetal growth and no indication of placental hypertrophy that could contribute 

to impaired fetal development (Bokslag et al., 2016, Langley-Evans, 2001).  However, there were 

significant differences found in the number of fetuses present, with those animals consuming the 

P diet during pregnancy having significantly less fetuses compared to R-fed dams (P<0.01), with 

the difference observed in the left uterine horn compared to right uterine horn (P<0.05). It was 

previously reported that mice have a reduction in local reproductive hormones and reduced vein 
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vascularity that influenced uterine transmigration of up to 40% of fetuses (Forbes and Taku, 

1975). The results of this study that P-fed dams displayed dyslipidaemia that could increase 

inflammatory markers and reduce vascular function may be pertinent.  However, other studies 

have reported that mice have a bias for fetus survival in the right uterine horn (Wiebold and 

Becker, 1987), and that the right ovary produce a greater number of ova compared to the left 

(Brown, 2007). Similar to the result observed in P dams in this study, Wiebold and Becker (1987) 

noted that the right uterine horn has twice the survival rate compared to the left uterine horn.  

However, as there were no differences observed in the number of fetuses or placentas in the 

right uterine horn between R or P-fed dams, the outcome of this result is not conclusive. To 

confirm these findings further experimental work would be required to compare hormone levels, 

inflammatory markers, vascular properties and TFA isomers present within fetal and placental 

tissues from both left and right uterine horns, respectively.  

 

Although final bodyweight was similar between the two diet groups, P-fed dams had a lower 

number of fetuses which would point a lower final bodyweight being observed in P-fed dams.  To 

account for this disparity, it was found that dams fed the P-diet had greater perirenal adipose 

depots (P<0.05), and heavier livers (P<0.05) compared to R dams.  However, the adiposity in P 

dams was very modest (combined increased weight of both depots equals about 1.5% of total 

body weight) and more detailed experiments of body composition would be required to confirm 

the tissue differences observed in P-fed animals.  

 

The pregnancy study above highlighted that different C18:1 trans isomers were present in the 

maternal adipose and that the P and R diets had a differential impact on maternal lipid profiles.  

Therefore, it was appropriate to assume that a similar maternal physiology would be present for 

the Study 1 dams which gave rise to the AEL offspring.   
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 Study Limitations 
 

Although the pregnancy study gave an indication of maternal physiology during pregnancy, the 

maternal profile for Study 1 offspring cannot be categorically ascertained.  Rodents are known to 

adjust their food intake when fed hyperenergetic diets (Sampey et al., 2011) and as C57 mice are 

prone to stress-related loss of pregnancy, feed intake data during pregnancy and lactation was 

not collected and other macronutrient e.g. protein intake during pregnancy could not be 

ascertained.  Additionally, the Study 1 dams nursed their offspring whilst consuming a chow 

lactation diet for 3 weeks prior to the weaning of pups onto their post-natal diets, and therefore 

no maternal tissues were harvested during their pregnancies. 

 

It is acknowledged that AEL mice produce very little atherosclerosis on chow post-natal diets 

(Groot et al., 1996., Yates et al., 2009., Tonge, 2011).  It has been reported in other mouse models 

such as the LDLr knockout mouse, that on a chow diet they require up to 12 months to develop 

atherosclerotic lesions (Getz and Reardon, 2012).  Therefore, it can be suggested that as the AEL 

offspring in this study were euthanised after 12 weeks on post-natal diets, only a quarter through 

the reported 12 month timescale, that atherosclerosis development in the chow group could 

have progressed later in a time respondent manner.  Finally, as there was no control group to 

give a base line for the impact of maternal diet, it is difficult to conclude whether exposure to 

TFAs in utero had a better or worse profile compared to offspring that had not.  However, it was 

interesting to note that AEL offspring of both P and R mothers consuming post-natal chow or 

atherogenic diets were similar in thereby conferring consistency in reported outcomes. 
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 CONCLUSION 

 

In conclusion, the main outcomes for this study is that in the maternal C57 mouse, consumption 

of PHVO during pregnancy caused significant changes to maternal perirenal adipose tissue 

weight, liver weight, increased serum lipid metabolism and decreased fecundity compared to 

dams consuming RTFA.  These results suggest that the maternal PHVO diet conferred a nutritional 

insult to the mother and an environmental stimulus for the developing fetus and has the potential 

to contribute to fetal programming pathways.  Feeding P and R diets to mothers during pregnancy 

caused some variability in offspring atherosclerosis across  several sections of aortic valve leading 

towards the heart. However, robust analyses (see Chapter 3) confirmed that neither TFA 

maternal diet changed overall atherosclerosis expression in offspring.  Feeding an atherogenic 

diet in post-natal life clearly increased the extent of aortic atherosclerosis compared to chow fed 

offspring.  
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CHAPTER 5:  STUDY 2 - THE IMPACT OF MATERNAL CONSUMTION OF PHVO, 
RTFA OR WESTERN DIET DURING PREGNANCY AND LACTATION ON THE 
DEVELOPMENT OF ATHEROSCLEROSIS IN THE APOE*3 LEIDEN MOUSE 

 

 

5. INTRODUCTION 

 

As discussed in the General Introduction and Chapter 4 introduction, maternal overnutrition, 

particularly energy dense high-fat diets, rich in SFA often result in maternal adiposity and can also 

programme metabolic diseases in the offspring (Flick et al., 2010, Dong et al., 2013).  Risk of CVD 

and premature death in the offspring of obese women has been demonstrated (Reynolds et al., 

2013).  In animal studies, maternal obesity is associated with increased adiposity, impaired 

glucose homeostasis, impaired endothelial function and hypertension in the offspring 

(Samuelsson et al., 2008, Li et al., 2019, McCurdy et al., 2009, Sullivan et al., 2014).  

 

The impact of SFAs and PHVO on increasing lipoprotein metabolism and CHD risk are established 

(Mensink et al., 2003, Mozaffarian et al., 2009) with the impact of ruminant derived TFA on serum 

lipoproteins being equivocal in human dietary studies (Chardigny et al., 2008, German et al., 2009, 

Bendsen et al., 2011). However, RTFA are purported to have potential health benefits with VA 

being converted to CLA C18:2c9t11 by the action of Stearoyl Co-A desaturase in tissues of animals 

and humans (Kuhnt et al., 2006, Turpeinen et al., 2002).  It has been shown in animals that butter 

enriched with CLA C18:2c9t11 had beneficial effects on lipoprotein profiles (Lock et al., 2005).  . 

 

Maternal hypercholesterolemia is associated with increased susceptibility to atherosclerosis in 

both animal models (Napoli et al., 2002, Napoli et al., 2000) and humans (Napoli et al., 1999).  In 

the AEL mouse feeding a diet enriched in animal fat (beef tallow) and cholesterol (similar to the 

diet fed in this study) raised maternal plasma cholesterol and increased the development of 

atherosclerosis in offspring, independently of changes in plasma cholesterol or TAG (Tarling et 

al., 2016). 



124 
 

 

In humans and animals, maternal intake of TFA is transferred across the placenta and into the 

circulation and tissues of the developing offspring. (Innis, 2007).  SFA and TFAs are incorporated 

into maternal adipose stores during pregnancy. These fat stores are mobilised during late 

pregnancy during maximal fetal growth phase and early post-partum periods (Herrera and 

Ortega-Senovilla, 2014). Studies of human breast milk confirmed that maternal body mass is 

positively correlated with breast milk TFAs in a dose respondent manner and are representative 

of the mother’s diet (Mueller et al., 2010, Innis, 2007). Studies in humans show that maternal 

TFAs impair EFA availability in fetal and neonate tissues causing cognitive difficulties and 

physiological disorders in offspring (Arbex et al., 2015), and propensity for obesity in childhood 

(Anderson et al., 2010). In animal studies, offspring of obese mothers that continued to suckle 

through early postnatal development were found to have metabolic disorders such as insulin 

resistance and vascular endothelial dysfunction (Ghosh et al., 2001, Koukkou et al., 1998, Fan et 

al., 2013). Oben et al., (2010) concluded that in C57 mice the “critical early postnatal period” 

lactation diet was pivotal in development of metabolic disease in offspring.   

 

 AIM AND HYPOTHESIS 

 

In this Study we included both sources of TFA (P and R) and also included a “Western” (W) diet 

group, rich in beef tallow SFAs for comparison.  This study aimed to consider the impact of the 

different maternal fat diets (P, R, W) during different developmental periods: pregnancy or 

pregnancy and lactation on the susceptibility of offspring to development of atherosclerosis. 

 

Considering the different effects of P, R and SFA/Cholesterol ‘Western’ diets on lipoprotein 

metabolism and CHD risk, it was hypothesized that maternal consumption of P diets throughout 

pregnancy and lactation would alter maternal metabolism and cause development 

atherosclerosis in their offspring to a greater extent compared to Western diets consumed during 

the same development periods.  It was further considered that maternal consumption of RTFA 

during the same development periods would decrease susceptibility to atherosclerosis in their 

offspring compared to PHVO and Western diets. 
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 METHOD 

 

In order to examine the study’s hypothesis, chow diets were supplemented with 15% TFA, 

equivalent to 5% daily energy in mice.  Dietary fats were similar to those initially used by 

Chardigny et al (2008) in the human TRANSFACT study (see Methods Chapter 2, Table 2.1).  Fatty 

acid composition of experimental diets (% FAME) are shown in Chapter 2, Methods, Figure 2.2.  

See Methods paragraph 2.2.5 for full descriptive of diet groups. 

 

Seven-week-old wild type female (n=10 per diet group) C57BL/6J mice (dams) were mated with 

AEL males (sires, approx eight weeks age) over a two oestrous cycle period (eight days).  Diet 

groups were matched for variations in bodyweight.  During mating 25% of the mice were fed 

Chow “C”, with the remaining 75% mice being fed one of three experimental fat diets: P, R, W 

(Chapter 2 Methods, Figure 2.3 Sector 1- Pregnancy).  On the eighth day the sires were removed, 

and dams remained on their allocated diets throughout pregnancy. 

 

On the birth of the pups (Chapter 2, Methods, Figure 2.3, Sector 2, Lactation) Chow (C) dams 

remained on a chow diet (C) throughout lactation giving rise to a control Chow group for 

pregnancy and lactation (CC).  The animals consuming fat (P, R, W) in pregnancy either remained 

on their allocated fat diet giving rise to three fat groups throughout lactation (PP, RR, WW) or 

were transferred onto a chow diet (C) which gave rise to fat during pregnancy and chow during 

lactation diet groups (PC, RC, WC). On weaning of pups, dams were sacrificed, and tissues 

harvested (Chapter 2 Methods, paragraph 2.3).   

 

Maternal Diet Groups (C57 mice) 

• Chow group:  CC 

• RTFA groups: “RR” “RC”’;  

• PHVO groups: “PP” “PC”; 

• Western groups: “WW” “WC”.   
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At 21 days of age, pups were sexed and genotyped.  Female AEL pups were weaned onto a post-

natal atherogenic diet “A” (Figure 2.3 Sector 3, Post-natal).  This gave rise to a Chow control group 

(CCA); three fat in pregnancy and chow lactation groups (PCA, RCA, WCA) and three fat in 

pregnancy and lactation diet groups (PPA, RRA, WWA).  Offspring remained on post-natal diets 

for 12 weeks (84 days), after which, at the age of 15 weeks, mice were culled by Schedule 1 

procedure in accordance with ASPA and tissues harvested (Chapter 2, Methods, paragraph 2.3). 

 

Offspring Diet groups (AEL Mice) 

• Chow: “CCA” (control); 

• PHVO: “PCA” and “PPA”; 

• RTFA: “RCA” and RRA”; 

• Western: “WCA” and “WWA”. 
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 MATERNAL RESULTS –THE IMPACT OF CONSUMPTION OF PHVO, RTFA OR WESTERN DIET 

DURING PREGNANCY AND LACTATION ON MATERNAL BODY COMPOSITION AND TISSUES 

 

 The Impact of Maternal consumption of PHVO, RTFA OR Western diet on Pregnancy 
Weight Gain 

 

The following results reflect data for all dam weight measurements during pregnancy. Each 

dietary group was matched for bodyweight at day 0 mating (g).  There were no differences 

observed in body weight between dams fed Chow (C) throughout pregnancy compared to any of 

the fat diets (P, R or W) (Table 5.1).  

 
Table 5.1 The Impact of consumption of PHVO, RTFA OR Western diet during Pregnancy on 
Maternal Body Weight 

 Pregnancy 
Diet 

 
Body Weight  

(g) 
 

Kruskal- 
Wallis (P) 

Start Body weight (g)d C  16.98 ±0.43   

 P  16.00 ±0.31  0.294d 
 R  16.03 ±0.22   
 W  16.69 ±0.39   
Day 18 Pregnancy Body 
weight (g)d 

C 
 

33.06 ±0.84   

 P  31.85 ±0.56  0.088d 
 R  30.65 ±0.56   
 W  32.23 ±0.90   
Pregnancy weight gain 
(g)d 

C 
 

16.08 ±0.65   

 P  15.35 ±0.45  0.262d 
 R  14.62 ±0.44   
 W  15.54 ±0.83   

Data are shown as mean ±SEM for n observations per group, showing pregnancy diet (C=13, P=18, R=20, 
W=18).  Non-parametric data were analysed by Independent sample Kruskal-Wallis “d”. Significance 
P<0.05.   
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 The Impact of Maternal consumption of PHVO, RTFA OR Western diet during 
Lactation on Post-weaning Maternal Bodyweight  

 

After 3 weeks suckling pups, it was found that those dams that had continued on the fat diet 

during lactation (PP, RR, WW) had reduced maternal body weight by 11% (P<0.001) 

independently of the nature of the test fat (Figure 5.1).  Due to C57 maternal sensitivity to 

disruption with potential resultant pregnancy absorption, feed intake was not measured and 

therefore feed efficiency calculations are not presented. 

 

Figure 5.1 The Impact of Consumption of a P, R or W Diet during Lactation on Post-Weaning 
Maternal Body Weight 

 

Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively 
(CC=13, PC=7, PP=11, RC=6, RR=14, WC=6, WW=12). Data were analysed by two-way ANOVA and Bonferroni post-
hoc tests. For each parameter bars with unlike letters (x, y) are significantly different from each other and from Chow 
(*). Significance P<0.05. 
  



129 
 

 

 The Impact of Maternal consumption of P, R or W diet during Pregnancy and 
Lactation on Maternal Body Weight, Organs and Tissues 

 

Liver weights were also lower in dam fed fat during pregnancy and lactation (PP, RR, WW) 

compared to those dams consuming fat in pregnancy alone (PC, RC, WC) independently of test 

fat (P<0.001) (Table 5.2). 

 

There was no difference in visceral adipose tissue between any of diets consumed during 

pregnancy and lactation (Table 5.2). 
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Table 5.2 The Impact of consumption of P, R or W diet during Pregnancy and Lactation on Maternal Tissue 
 Pregnancy  Lactation Diet      

 Diet C  P, R, W  TOTAL  TWO-WAY ANOVA (P) 

  Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation Preg*Lact 

Liver (%BW) C 7.57 0.33           
 P 7.71 0.32  7.07 0.14  7.31 0.16     
 R 8.43 0.29  7.35 0.34  7.67 0.27  0.232 <0.001 0.506 
 W 7.62 0.26  6.32 0.16  6.75 0.20     
 Total 7.91 0.18  6.93 0.16        

Perirenal Adipose  C 0.28 0.03           
(%BW) P 0.43 0.11  0.38 0.09  0.40 0.07     
 R 0.49 0.11  0.49 0.07  0.49 0.17  0.355 0.750 0.965 

 W 0.38 0.09  0.59 0.16  0.52 0.11     
 Total 0.43 0.06  0.49 0.06        

Gonadal Adipose  C 1.03 0.09           
(%BW) P 1.14 0.23  1.57 0.27  1.17 0.14     
 R 1.42 0.29  1.64 0.22  1.58 0.17  0.122 0.381 0.839 

 W 1.19 0.19  1.54 0.20  1.42 0.15     
 Total 1.24 0.13  1.47 0.12        

Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively (CC=13, PC=7, RC=6, WC=6, PP=11, RR=14, WW=12).  
Data were analysed by two-way ANOVA and Bonferroni post-hoc tests. Significance P<0.05. 
ƗPost hoc test not significant (P v W P=0.066/R v W P=0.061). 
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 The Impact of consumption of P, R or W Diet during Pregnancy and Lactation 
on Maternal Serum Lipids and Serum Glucose 

 

Serum Cholesterol and serum TAG measurements were performed in duplicate with a 

Randox Imola RX chemistry analyser via a direct clearance method (HDL, LDL) or colorimetric 

assay (Total Chol, TAG) (Method 2.6.3).  Maternal serum total-, non-HDL-, LDL- and HDL-

cholesterol were all increased in animals fed either the P or R (but not W) diets compared to 

those fed C during pregnancy (Figure 5.2a). Continuing the fat diet (P, R or W) during 

lactation further increased total-, non-HDL- and HDL-cholesterol independently of the type 

of test fat.  Overall, the highest maternal cholesterol levels were seen in dams fed the R diet 

throughout pregnancy and lactation (RR), which was 88% higher than that seen in animals 

fed chow throughout these periods (CC) (Figure 5.2b).  However, as LDL, non-HDL- and HDL-

cholesterol increased proportionately, there was no difference in the ratios (Table 5.3a).  

There was a trend (P=0.06) for those animals consuming fat in pregnancy to have a higher 

LDL:HDL ratio compared to C, although this was not significantly different. 

 

There were no differences observed between maternal pregnancy and lactation diets on 

serum TAG (Table 5.3a). 

 

Serum glucose was measured by Colorimetric Assay using glucose oxidase reagent (Method 

2.6.2).  There were no differences observed between maternal pregnancy and lactation diets 

on serum glucose (Table 5.3b). 
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Figure 5.2a The Impact of a P, R or W Diet during Pregnancy on Maternal Serum Cholesterol 
(Post-weaning) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively 
(CC=13, PC=7, RC=6, WC=6). Data were analysed by two-way ANOVA and Bonferroni post-hoc tests. For each 
parameter bars with unlike letters (x, y) are significantly different from each other. Significance P<0.05. and 
“*”Post-hoc test not significantly different from Chow. 

 

Figure 5.2b The Impact of a P, R or W Diet throughout Pregnancy and Lactation on 
Maternal Serum Cholesterol (Post-weaning) 
 
 

 

 

 

 

 

 

 

 

 
Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively 
(CC=13, PP=11, RR=14,WW=12). Data were analysed by two-way ANOVA and Bonferroni post-hoc tests. For 
each parameter bars with unlike letters (x, y, z) are significantly different from each other. Significance P<0.05. 
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Table 5.3a The Impact of consumption of P, R or W Diet during Pregnancy and Lactation on Maternal Serum Lipids 
  Lactation Diet     

  C  P, R, W  TOTAL TWO-WAY ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM Pregnancy Lactation Preg* Lact 

Total TAG (mmol/L) C 1.01 0.10          
 P 1.45 0.21  1.12 0.12  1.24 0.11    
 R 1.44 0.20  1.37 0.18  1.39 0.13 0.220 0.392 0.572 
 W 1.09 0.14  1.13 0.09  1.12 0.07    
 Total 1.33 0.11  1.22 0.08       

Non-HDL:HDL ratio C 1.08 0.07          
 P 1.17 0.12  0.93 0.11  1.12 0.08    
 R 1.17 0.15  1.03 0.06  1.07 0.06 0.364 0.151 0.573 
 W 1.19 0.12  1.19 0.09  1.19 0.07    
 Total 1.17 0.07  1.06 0.05       

LDL:HDL ratio C 0.11 0.07          
 P 0.13 0.01  0.13 0.01  0.13 0.01    
 R 0.14 0.01  0.15 0.01  0.14 0.01 0.06 0.368 0.459 
 W 0.12 0.01  0.16 0.01  0.14 0.01    
 Total 0.13 0.01  0.14 0.01       

Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively (CC=13, PC=7, RC=6, WC=6, PP=11, RR=14, WW=12). Data 
were analysed by two-way ANOVA with Bonferroni post-hoc tests. Significance P<0.05 

 
Table 5.3b The Impact of consumption of a P, R or W Diet during Pregnancy and Lactation on Maternal Serum Glucose  

  Lactation Diet      

  C  P, R, W  TOTAL  TWO-WAY ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation Preg* Lact 

Serum Glucose (mmol/L) C 9.86 0.93           

 P 9.55 1.41  8.59 0.49  8.94 0.59     
 R 10.19 1.39  8.14 0.50  8.75 0.57  0.673 0.252 0.304 
 W 8.51 1.40  9.11 0.45  8.91 0.53     
 Total 9.42 0.78  8.59 0.28        

Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively (CC=13, PC=7, RC=6, WC=6, PP=11, RR=14, WW=12). Data 
were analysed by two-way ANOVA with Bonferroni post-hoc tests. Significance P<0.05 
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 The Impact of consumption of P, R or W Diet during Pregnancy and Lactation 
on Maternal Liver Lipids 

 

Lipids were extracted from livers (Method 2.7.4) and TAG and cholesterol assays performed 

(Method 2.7.5). Liver lipids are expressed as mg/total liver. There were no differences 

observed in liver cholesterol. Consumption of P diet during pregnancy and lactation 

increased liver TAG by 35% compared to P in pregnancy alone. Consuming P or R throughout 

pregnancy and lactation increased liver TAG by 50% compared to Chow (Table 5.4, P<0.05). 

There was no effect of W diet during pregnancy and lactation on liver TAG.  
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Table 5.4 The Impact of consumption of P, R or W Diet during Pregnancy and Lactation on Maternal Liver Lipids 

  Lactation Diet      

  C  P, R, W  TOTAL  TWO-WAY ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation Preg* Lact 

Liver Cholesterol  C 6.22 1.24           

(mg/total liver) P 4.35 0.32  5.40 0.39  5.02 0.29  0.415d 0.629b N/A 

 R 4.97 0.50  5.25 0.34  5.17 0.34     

 W 5.83 0.90  3.90 0.41  4.54 0.41     

 Total 5.01 0.36  4.87 0.25        

Liver TAG (mg/total liver) C *22.56 4.22           

 P X28.73 7.08  y*56.74 6.10  44.66 5.38  0.696a 0.003a 0.122a 

 R 27.91 3.32  *51.58 6.72  43.69 5.38     

 W 33.18 4.44  33.98 3.35  33.95 2.61     

 Total 29.87 3.02  46.62 3.47        

Data are shown as mean ±SEM for n observations per group showing pregnancy and lactation diet respectively (CC=13, PC=7, RC=6, WC=6, PP=11, RR=14, WW=12).  

Non-parametric data transformed to Square root “a” or analysed by Kruskal Wallis “d” and Mann Whitney “b”. Different letters (x,y) are significantly different from each 

other or from Chow “*” P<0.05. 

 

 



 

136 
 

 

 The Impact of consumption of a P, R or W Diet during Pregnancy and Lactation 
of the Fatty Acid composition of Maternal Perirenal Adipose Tissue 

 

FAME were extracted from perirenal adipose tissue and measured (Method 2.7.1., A. Lock, 

University of Michigan).  The fatty acid composition of perirenal adipose tissue in dams culled 

at weaning are shown in Figure 5.3a and Figure 5.3b.  As expected, those mothers fed the P 

and R diets throughout pregnancy and lactation accumulated TFA in their adipose tissue and 

the trans isomer distribution mirrored that of the diets (Table 2.1 and Figure 2.1).  As such, 

animals fed the P diet accumulated predominately C18:1t9 and those fed the R diet 

C18:1t11.  However, it was notable that the R-fed animals accumulated C18:2c9,t11, in 

amounts that were disproportionate to the amount in the diet.  As would be expected, when 

dams were transferred to chow during lactation, marked reductions in all TFA were observed 

in the adipose tissue (Figure 5.3b). 

 

 
Figure 5.3a Distribution of C18:1 Trans FAs in Maternal Perirenal Adipose Tissue of 
mothers consuming P, R or W Diet during Pregnancy and Lactation (PP, RR, WW) 

 

<0.1% FAME Not Detected (ND).  Data are shown as mean ±SEM for n observations per group showing 
pregnancy and lactation diet respectively (CC: ND, data not shown, PP=5, RR=5, WW=5)Nonparametric data 
transformed to square root “a” or log10 “c” and analysed by one-way ANOVA. For each isomer bars with 
unlike letters (x,y,z)  are significantly different P<0.05.  
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Figure 5.3b Distribution of C18:1 Trans FA in Maternal Perirenal Adipose Tissue of mothers 
P, R or W diet during Pregnancy and Chow diet in Lactation (PC, RC, WC) 

 

<0.1% FAME Not Detected (ND).  Data are shown as mean ±SEM for n observations showing pregnancy and 

lactation diet respectively (CC: ND, data not shown, PC=5, RC=5, WC=5,). Nonparametric data transformed to 

square root “a” or log10 “c” and analysed by one-way ANOVA. For each isomer bars with unlike letters (x,y,z)  

are significantly different P<0.05.  
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 OFFSPRING RESULTS – THE IMPACT OF MATERNAL CONSUMPTION OF PHVO, RTFA OR 

WESTERN DIET DURING PREGNANCY AND LACTATION ON THE DEVELOPMENT OF 

ATHEROSCLEROSIS IN OFFSPRING (APOE*3 LEIDEN MOUSE) 

 

These results assess the outcome of maternal consumption a high fat P, R, W diet throughout 

pregnancy and lactation (PP, RR, WW) compared to a chow lactation diet (PC, RC, WC) diet 

on the development of atherosclerosis in offspring.  Offspring were weaned onto an 

atherogenic post-natal diet (PPA, RRA, WWA vs. PCA, RCA, WCA, and Control CCA).  

 

 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy 
and Lactation on Bodyweight of Offspring 

 

There was no impact of maternal diet on final body weight of offspring (Table 5.5).  All groups 

consumed an atherogenic post-natal diet and bodyweight and weight gain trajectory were 

similar between all diet groups. 
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Table 5.5 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on Bodyweight of Offspring 
fed an atherogenic (A) diet 

 Pregnancy Lactation Diet      

 Diet C  P, R, W  TOTAL  Two Way ANOVA (P) 

  Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation Preg*Lact 

Day 0:  weaning body  C 7.26 0.38           
weight (g)  P 7.02 0.16  5.76 0.28  6.32 0.23     
 R 6.91 0.47  6.60 0.28  6.74 0.26  0.213 0.147 0.148 
 W 6.54 0.46  6.66 0.28  6.61 0.25     
 Total 6.80 0.20  6.36 0.17        

Day 84 body weight (g) C 20.96 0.37           
 P 19.61 0.54  19.76 0.28  19.72 0.28     
 R 20.06 0.51  19.05 0.32  19.53 0.31  0.923 0.230 0.861 
 W 19.83 0.35  19.29 0.46  19.54 0.30     
 Total 19.80 0.35  19.36 0.22        

Mean weight gain (g) C 13.70 0.37           
days 0-84  P 12.59 0.56  14.04 0.25  13.93 0.33     
 R 13.15 0.58  12.46 0.32  12.79 0.33  0.185 0.915 0.761 
 W 13.29 0.30  12.63 0.26  12.93 0.21     
 Total 13.04 0.02  13.00 0.20        

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, respectively. (CCA=11, PCA=8, RCA =10, 

WCA=10, PPA=10, RRA=12, WWA=12). Data were analysed by two-way ANOVA with Bonferroni post-hoc test. Significance P<0.05. 
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 The Impact of Maternal Consumption of P, R or W Diet throughout Pregnancy and 
Lactation on the Body Composition and Organ Weights of Offspring 
 

 

Feeding the R diet during pregnancy increased both perirenal and gonadal tissue weights 

compared with both P and W diets (P<0.05, Figure 5.4) and increased perirenal adipose (P<0.05) 

compared to Chow diets. 

 

Figure 5.4 The Impact of Maternal Consumption of a RTFA Diet throughout Pregnancy and 
Lactation on the Adipose Tissue of Offspring fed an atherogenic (A) diet 

 

Data are shown as mean ±SEM for n observations per group showing pregnancy, lactation and post-natal diet, 

respectively. (CCA=11, P:PCA=8,PPA=10, R:RCA=10, RRA=12, W:WCA=10,WWA=12) Data transformed to log10 “c” 

and analysed by two-way ANOVA with Bonferroni post-hoc test.  Unlike letters (x,y) significantly different for both 

Gonadal and Perirenal Adipose Tissue. *PAT - Perirenal Adipose Tissue significantly different from Chow P<0.05. 

 

 

  



 

141 
 

Maternal consumption of fat diet during pregnancy and lactation reduced the weight of livers of 

offspring, independently of type of test fat compared offspring exposed to chow in lactation 

(P<0.05, Figure 5.5). 

 

Figure 5.5 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and 
Lactation on Liver Weight of Offspring fed an atherogenic (A) diet 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets, 

respectively. (CCA=11, Chow Lactation:  PCA=8, RCA =10, WCA=10, Fat Lactation:  PPA=10 RRA=12, WWA=12). Data 

analysed by two-way ANOVA with Bonferroni post-hoc test.  Unlike letters (x,y) significantly different P<0.05. 
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 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and 
Lactation on Serum Lipids and Serum Glucose of Offspring 

 

There was no impact of maternal diet on serum total cholesterol, non-HDL cholesterol or HDL 

cholesterol or TAG lipids (Table 5.6a) and this outcome was reflected in both the HDL/non-HDL 

ratio and LDL/HDL ratio (Table 5.6b).  

 

There was no impact of maternal diet or post-natal diet on offspring serum glucose (Table 5.6c). 
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Table 5.6a The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on Serum Lipids of 
Offspring fed an atherogenic (A) diet 

  Lactation Diet     

  C  P, R, W  TOTAL Two Way ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM Pregnancy Lactation Preg*Lact 

Total TAG (mmol/L) C 2.25 0.15          
 P 2.09 0.14  2.11 0.14  2.10 0.09 0.089 0.725 0.929 
 R 2.52 0.16  2.50 0.19  2.51 0.12    
 W 2.40 0.17  2.54 0.22  2.47 0.14    
 Total 2.4 0.17  2.40 0.11       

Total Cholesterol (mmol/L) C 9.57 0.44          
 P ƚ9.04 0.58  8.68 0.32  8.84 0.30 ƚ0.062 0.857 0.971 
 R 9.86 0.50  9.35 0.56  9.62 0.37    
 W ƚ10.40 0.48  9.43 0.56  9.64 0.31    
 Total 9.60 0.30  9.15 0.25       

Non-HDL (mmol/L) C 7.99 0.43          
 P 7.22 0.46  7.02 0.41  7.11 0.30 0.192 0.964 0.963 
 R 7.75 0.44  7.91 0.95  7.84 0.53    
 W 8.34 0.68  8.41 0.68  8.38 0.47    
 Total 7.81 0.42  7.82 0.31       

Total LDL (mmol/L) C 3.50 0.22          
 P 3.01 0.23  2.96 0.17  2.98 0.13 0.096 0.696 0.794 
 R 3.19 0.23  3.02 0.18  3.11 0.15    
 W 3.47 0.20  3.33 0.16  3.40 0.13    
 Total 3.20 0.13  3.10 0.10       

Total HDL (mmol/L) C 1.64 0.09          
 P 1.83 0.15  2.02 0.08  1.93 0.07 0.816 0.733 0.929 
 R 2.10 0.11  2.00 0.11  2.05 0.08    
 W 2.07 0.10  1.87 0.10  1.96 0.07    
 Total 2.01 0.07  1.96 0.06       

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, respectively. (CCA=11, PCA=8, RCA =10, 

WCA=10, PPA=10 RRA=12, WWA=12). Data were analysed two-way ANOVA with Bonferroni post-hoc test. Significance P<0.05. ƚpost-hoc test P vs W not 

significant. 
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Table 5.6b The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on HDL-LDL and Non-
HDL/HDL Ratios of Offspring fed an atherogenic (A) diet 

Table 5.6 continued  Lactation Diet     

  C  P, R, W  TOTAL Two Way ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM Pregnancy Lactation Preg*Lact 

Non-HDL:HDL ratio C 4.17 0.37          
 P 3.52 0.20  3.34 0.20  3.42 0.14 0.758 0.533 0.625 
 R 3.74 0.23  3.02 0.22  3.40 0.18    
 W 3.45 0.16  3.40 0.28  3.43 0.16    
 Total 3.58 0.12  3.25 0.13       

LDL:HDL ratio C 1.90 0.17          
 P 1.51 0.08  1.48 0.10  1.49 0.06 0.458 0.589 0.694 
 R 1.53 0.09  1.31 0.09  1.42 0.07    
 W 1.57 0.07  1.56 0.12  1.56 0.07    
 Total 1.54 0.05  1.45 0.06       

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, respectively. (CCA=11, PCA=8, RCA =10, 

WCA=10, PPA=10, RRA=12, WWA=12). Data were analysed two-way ANOVA with Bonferroni post-hoc test. Significance P<0.05. 

 

Table 5.6c The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on Serum Glucose of 
Offspring fed an atherogenic (A) diet 

  Lactation Diet     

  C  P, R, W  TOTAL Two Way ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM Pregnancy Lactation Preg*Lact 

Serum Glucose (mmol/L) C 8.22 0.59          
 P 7.97 0.99  9.51 0.68  8.83 0.59 0.667 0.606 0.809 
 R 8.34 0.51  8.78 0.64  8.57 0.41    
 W 8.76 0.52  7.55 0.37  8.10 0.33    
 Total 8.40 0.40  8.56 0.35       

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, respectively. (CCA=11, PCA=8, RCA =10, 

WCA=10, PPA=10, RR=12, WWA=12). Data were analysed two-way ANOVA with Bonferroni post-hoc test. Significance P<0.05. 
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 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and 
Lactation on Liver Lipids of Offspring 

 

FAME FAs were extracted from perirenal adipose tissue and measured (Method 2.7.1., A. Lock, 

University of Michigan). There was no impact of maternal diet (P, R or W) throughout pregnancy 

and lactation on hepatic cholesterol or hepatic TAG (Table 5.7) of offspring.
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Table 5.7 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on Liver Lipids of Offspring 
fed an atherogenic (A) diet 

  Lactation Diet      

  C  P, R, W  TOTAL  Two Way ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation 
Preg* 
Lact 

Liver Cholesterol  C 9.93 0.79           
(mg/total liver) P 8.01 1.00  6.60 0.77  7.18 0.62  0.089 0.481 0.240 
 R 10.88 1.16  9.02 1.12  9.91 0.81     
 W 7.32 0.79  8.74 1.17  8.13 0.75     
 Total 8.88 0.65  8.18 0.62        

Liver TAG  C 47.61 6.12           
(mg/total liver) P 40.19 6.19  28.52 2.59  31.20 2.29  0.085 0.091 0.396 
 R 51.70 6.16  35.34 4.24  43.13 4.02     
 W 38.36 4.57  34.31 3.92  36.15 2.94     
 Total 43.65 3.35  32.90 2.15        

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, respectively. (CCA=11, PCA=8, RCA =10, 

WCA=10, PPA=10, RRA=12, WWA=12). Data was analysed by two-way ANOVA with Bonferonni post-hoc test.  Significance P<0.05.  
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 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and 
Lactation on the Fatty Acid Composition of Perirenal Adipose Tissue of Offspring 

 

There was no impact of maternal diet on the fatty acid composition of offspring perirenal adipose 

after 12 weeks on post-natal atherogenic diet, with no TFAs observed in those offspring of R and 

P mothers (Table 5.8).   
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Table 5.8 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and Lactation on the Fatty Acid 
Composition of Perirenal Adipose Tissue of Offspring fed an atherogenic (A) diet 

  Lactation Diet      

  C  P, R, W  TOTAL  Two Way ANOVA (P) 

 Pregnancy 
Diet 

Mean SEM  Mean SEM  Mean SEM  Pregnancy Lactation 
Pregnancy x 

Lactation 
1Σ SFA (g/100g fat) C 33.21 1.47           
 P 32.68 0.29  33.42 0.35  33.05 0.29  0.216 0.141 0.841 
 R 32.18 0.56  32.95 0.48  32.52 0.98     
 W 33.74 0.58  34.02 0.41  33.88 0.34     
 Total 32.87 0.33  33.50 0.25        
2Σ MUFA Cis (g/100g fat) C 59.44 1.44           
 P 60.01 0.29  58.61 0.26  59.31 0.30  0.078b 0.121d N/A 
 R 60.32 0.47  59.09 0.51  59.78 0.39     
 W 58.52 0.44  58.31 0.30  58.41 0.25     
 Total 59.62 0.30  58.64 0.21        
3Σ PUFA Cis (g/100g fat) C 7.13 0.15           
 P 6.94 0.18  7.51 0.21  7.23 0.16  0.688 0.051 0.132 
 R 7.12 0.14  7.60 0.09  7.36 0.12     
 W 7.45 0.20  7.32 0.21  7.40 0.14     
 Total 7.17 0.11  7.48 0.11        
4Σ Trans FA(g/100g fat) C ND            
 P ND   ND ND     N/A N/A N/A 
 R ND   ND ND        
 W ND   ND ND        
 Total ND   ND ND        
5Σ CLA (g/100g fat) C ND            
 P ND   ND ND     N/A N/A N/A 
 R ND   ND ND        
 W ND   ND ND        
 Total ND   ND ND        

ND – Not Detected <0.1%.  Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet respectively, (CCA=5, 
PCA=5, RCA=5, WCA=5, PPA=5, RRA=5, WWA=5). Data analysed by two-way ANOVA with Bonferroni post-hoc test.  Nonparametric data analysed by Mann 
Whitney “b” or Kruskal-Wallis “d”.  Significance P<0.05.  1SFA sum of FAs: C10+C12:0+C14:0+C15:0+C16:0+C17:0+C18:0+C19:0+C20:0+C22:0+C23:0+C24:0    2MUFA cis sum of FAs: 

C14:1+C16:1,7c/8c+C16:1,9c+C18:1, 9c+C18:1,11c+C18:1,12c+C18.1,13c+ C18:1,14c/16t+C20:1,11c+C24:1,15c.    3PUFAcis sum of FAs: C18:2 n-6+C18;3 n-3+C20:2 n-9+C20:3 n-3+C20:4 n-6+C22:4 n-
6+C22:5 n-3+C22:6 n-3.     4Trans sum of FAs: C18;1,6-8t+C18;1,9t+C18:1,10t+C18;1,11t+C18;1,12t+       5CLA sum of FAs: CLA 9c,11t + CLA 9t, 11c 
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 The Impact of Maternal Consumption of a P, R or W Diet throughout Pregnancy and 
Lactation on the Development of Atherosclerosis in Offspring 

 

As previously described 7μm sections were captured onto slides and the lipid stained with Oil Red 

O (Method 3.1). These were analysed at a distance of 14μm between sections from the 

appearance of the aortic valves from aortic arch towards the heart, and then imaged and 

quantified (Method 3.2). All analyses were performed blind without knowledge of diet group.  

Mean atherosclerotic area (μm2) was calculated for each section and plotted to show pattern of 

atherosclerosis expression (data not shown). N=10 equidistant sections from each diet group 

from the three valves joining (Section 1) were analysed for the results. 

 

The effect of maternal diet during pregnancy on the development of atherosclerosis was 

statistically analysed in 3 different ways.  Initially, the impact of different pregnancy diets 

(C,P,R.W), followed by C diet during lactation, was analysed by repeated -measures (for section 

number) ANOVA, with blocking for animal and litter from which offspring were derived.   As can 

be seen in Figure 5.6, the area of atherosclerotic lesions increased progressively in sections 

closest to the heart, with a strong effect of section number (P<0.001). There was also a significant 

effect of pregnancy diet (P=0.013), with the two TFA diets clearly resulting in lower levels of 

atherosclerosis compared to either the C or W diet. There was no significant interaction between 

pregnancy diet and section number (P=0.510).  
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Figure 5.6 Impact of maternal pregnancy diet on development of atherosclerosis in the aorta 
of the offspring fed an atherogenic (A) diet 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, 

respectively. (C: CCA=11, P: PCA=8, R: RCA =10, W: WCA=10). Data was transformed to square root “a” and analysed 

by repeated measures (for section number) ANOVA with blocking for animal and litter from which the animals were 

derived.  P values for the effect of lactation diet, second number and interaction between the two are presented. 

Significance P<0.05. 
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Next, the impact of each of the experimental fat diets during pregnancy and lactation was 

analysed separately (Figure 5.7(a-c)) by repeated measures (for section number) ANOVA. In 

offspring of dams fed the P-rich diets there was a strong effect of lactation diet (Figure 5.7(a), 

P<0.001), with those offspring from mothers fed P during lactation clearly displaying more 

atherosclerosis than those fed C. In offspring of mothers fed the R-diet (Figure 5.7(b), P=0.596) 

or W diet (Figure 5.7(c), P=0.901) there was no effect of continuing to feed the experimental fat 

diets during lactation. 

 

Figure 5.7a The Impact of Maternal Consumption of P Diet throughout Pregnancy and Lactation 
on the Development of Atherosclerosis in Offspring fed an atherogenic (A) diet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, 

respectively. (PCA=8, PPA=10). Data was transformed to square root “a” and analysed by repeated measures (for 

section number) ANOVA with blocking for animal and litter from which the animals were derived.  P values for the 

effect of lactation diet, second number and interaction between the two are presented. Significance P<0.05. 
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Figure 5.7b The Impact of Maternal Consumption of R Diet throughout Pregnancy and Lactation 
on the Development of Atherosclerosis in Offspring fed an atherogenic (A) diet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, 

respectively. (RCA =10, RRA=12). Data was transformed to square root “a” and analysed by repeated measures (for 

section number) ANOVA with blocking for animal and litter from which the animals were derived.  P values for the 

effect of lactation diet, second number and interaction between the two are presented. Significance P<0.05. 
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Figure 5.7c The Impact of Maternal Consumption of W Diet throughout Pregnancy and 
Lactation on the Development of Atherosclerosis in Offspring fed an atherogenic (A) diet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, 

respectively. (WCA=10, WWA=12). Data was transformed to square root “a” and analysed by repeated measures 

(for section number) ANOVA with blocking for animal and litter from which the animals were derived.  P values for 

the effect of lactation diet, second number and interaction between the two are presented. Significance P<0.05. 
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Finally, the impact of continuing to feed the experimental fat diet during lactation, was  analysed 

by repeated measures (for section number) ANOVA with pregnancy diet and lactation diet as 

factors. While section number had a clear effect (p<0.001) there was no interaction between 

section number and pregnancy (p=0.868), lactation diet (p=0.371) or both (p=0.139).  Therefore, 

the data presented in Figure 5.8 represents the mean of all sections.   These results showed that 

feeding a maternal TFA diet during pregnancy reduced postnatal atherogenic diet-induced atherosclerosis 

in offspring compared to offspring of mothers fed W (P=0.002).  However, this effect was abolished when 

feeding of P, but not R, continued into lactation, and the nature of the lactation diet had no effect in the 

offspring of W-fed dams.  Overall, this resulted in a significant interaction between pregnancy and 

lactation diets (p=0.039). 

 

Figure 5.8 Impact of Maternal Pregnancy and Lactation Diet on Development of Atherosclerosis 
in the Aorta of Offspring fed an atherogenic (A) diet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diet, 

respectively. ( PCA=8/PPA=10,RCA =10/RRA=12, WCA=10/WWA=12). Data was transformed to square root “a” and 

analysed by repeated measures (for section number) ANOVA with blocking for animal and litter from which the 

animals were derived.  P values for the effect of lactation diet, second number and interaction between the two are 

presented. Significance P<0.05.  

PCA       PPA                           RCA       RRA                        WCA      WWA 
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5.5 DISCUSSION 

 

The original hypothesis for this study was that fetal and neonatal exposure to the two sources of 

TFA in the maternal diet would have differing effects on the development of atherosclerosis due 

to the differing TFA isomers profiles.  Few studies have looked at the effects of TFA in the 

maternal diet on disease susceptibility in the offspring.  As already discussed, such fatty acids 

cross the placenta and are secreted in the mother’s milk proportionately to the amount in the 

diet (Innis, 2006).  This study shows that TFA derived from PHVO and those from ruminant milk 

fat accumulate in the adipose tissue of dams.  Those fed R showed a disproportionate 

accumulation of CLA C18:2c9t11, predominantly through the action of stearoyl Co-A desaturase 

on the 18:1t11 in the dietary fat.  It therefore seems appropriate to assume that the developing 

fetuses were exposed to different TFA isomer concentrations depending upon the diet fed to the 

dams.  As no impact of maternal diet was seen on maternal body weight, differences in 

susceptibility of the offspring to atherosclerosis could not be attributed to maternal adiposity. 

 

It has been previously shown that the AEL mouse model MLP diet during pregnancy increased the 

susceptibility of the offspring to high dietary fat/cholesterol induced atherosclerosis (Yates et al., 

2009).  However, this was with increased plasma cholesterol concentrations in the offspring.  In 

contrast, it has also been shown that a diet enriched in cholesterol and SFA (similar to the W diet 

used in this study but including 0.25% cholesterol) also enhanced the development of 

atherosclerosis but in the absence of changes in plasma cholesterol in the offspring (Tarling et al., 

2016).  This diet resulted in maternal plasma cholesterol concentrations more than doubling 

through the course of pregnancy.  This supports earlier studies by Napoli et al., (1999) who 

showed that dramatic hypercholesterolemia induced by feeding cholesterol to pregnant ApoE 

knock-out mice also increased atherosclerosis in the offspring in the absence of changes to the 

offspring plasma cholesterol.  In this study, no cholesterol was added to the maternal diet and 

maternal serum cholesterol was not increased in mothers fed the W diet, compared with those 

fed chow, and the offspring of these animals showed no increased susceptibility to 
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atherosclerosis.  Both the P and R diets tended to modestly increase both non-HDL and HDL-

cholesterol with no change in the ratio of the two. 

 

It was noticeable that the high fat diets fed during pregnancy had an effect on food intake data 

for the animals (as C57 mice are prone to stress-related loss of pregnancy, this data was not 

collected), it is difficult to pinpoint the exact reason for this.  However, given that rodents 

effectively defend energy intake and adjust food intake when fed hyperenergetic diets (Sampey 

et al., 2011), it is likely that intakes of protein and micronutrients were lower in these groups.  

This makes comparison of the data in this study to the other previous study of MLP in AEL mice 

(Yates et al., 2009) particularly pertinent.  Demands for protein and micronutrients would be 

particularly high during lactation. 

 

After offspring had been exposed to an atherogenic post-natal diet for 12 weeks, the impact of 

maternal diet on the development of atherosclerosis was assessed.  The W diet showed no effect 

(either during pregnancy or pregnancy + lactation) compared with the chow diet (Figure 5.7c).  

However, both sources of TFA, when fed only during pregnancy, appeared to provide protection 

from postnatal atherogenic diet-induced atherosclerosis to approximately equal extents (Figures 

5.6, 5.7a, 5.7b).  When maternal TFA feeding was extended through lactation, much of the 

protective effect of P was lost and clear differences were seen in the distribution of 

atherosclerosis along the length of the aorta (Figure 5.7a, Figure 5.8).  Unlike the results of Yates 

et al’s (2009) study investigating MLP, these changes in susceptibility were not associated with 

changes in offspring plasma cholesterol.  It is possible that unidentified risk factors are 

responsible for the observed differences and these could include the aforementioned differences 

in protein and micronutrient intakes that may exist between chow fed mice and mice fed diets of 

altered fatty acid composition.  However, an alternative explanation may be differences in the 

development of lesions in neonatal life.  This has been previously advocated to explain 

differences in the development of atherosclerosis in heterozygous ApoE-deficient mice born to 

wild type or homozygous ApoE knock-out mothers (Palinski and Napoli, 2002). While the offspring 

showed no difference in plasma lipids, those born of ApoE-deficient mothers exhibited a greater 
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susceptibility to atherosclerosis.  The authors showed specific changes in gene expression in the 

aortas of affected animals and suggested that susceptibility to atherosclerosis may be imprinted 

during neonatal life.  It is similarly possible that in this experiment, during fetal life alterations to 

the biology of the developing aorta, in response to the type of fat in the mother’s diet, have 

resulted in the differences in susceptibility to atherosclerosis in later life.  In contrast, direct 

exposure to P during suckling increased susceptibility to atherosclerosis.  These results suggest 

that the impact of TFA on the early genesis of atherosclerosis are complex and that the effects in 

utero are different to the effects during suckling.  The impact of TFA on atherosclerosis in adult 

animals are well documented.  Bassett et al (2009) reported that whilst PHVO induced 

atherosclerosis in LDL receptor-deficient mice, ruminant TFA have an anti-atherogenic effect 

(Bassett et al., 2010), but this is the first report of their effects during early development.  It might 

be speculated that the differential effects of TFA sources during pregnancy and lactation could 

be due to differences in the pattern of expression of pro- (and/or anti-) inflammatory factors and 

further work would be required to confirm this. It is of note, however, that such programming 

persists even when offspring have been challenged with an atherogenic diet for 12 weeks.  This 

adds weight to the hypothesis that the TFA impact upon early lesion development during fetal 

and neonatal life.  Further investigation will be required to examine early lesions in fetal and 

neonatal vessels in order to confirm this.  Combining such an investigation with transcriptomic 

analysis of the fetal vasculature and maternal liver will contribute to a more detailed mechanistic 

understanding of the relationship between TFA, maternal cholesterol and early lesion 

development. 

 

The only other phenotypic effect was an increase in adipose tissue weight, both perirenal and 

gonadal, in the offspring of mothers fed R.  This study provides no obvious explanation for the 

‘programming’ of increased adiposity associated with maternal consumption of R.  It should be 

noted that the effect was very modest (combined increased in weight of both depots equals 

about 0.4% of total body weight) and that this needs to be confirmed in more detailed 

experiments of body composition and include measurements of food intake.  Feeding high fat 

diets during lactation had no impact upon offspring body weight or adiposity, which is consistent 
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with some other, but not all, rodent studies of overfeeding in lactation (Akyol et al., 2012).  

However, any effect of maternal diet during suckling may have been masked by feeding of the 

atherogenic diet post-weaning.  It has previously been shown in rats that phenotypes 

programmed in lactation can be modulated by post-weaning diets  (Akyol et al., 2012, Gugusheff 

et al., 2013). 

 

 CONCLUSION 

 

In conclusion, consumption of TFA during pregnancy appeared to protect offspring from later 

postnatal atherogenic diet-induced atherosclerosis, independently of the isomeric distribution of 

the TFA.  However, if feeding is maintained during lactation, this protection may be partly lost, 

particularly when TFA derived from P are consumed.  The mechanisms underlying these changes 

remain to be established, but they are not associated with changes in lipoprotein concentrations 

at the point when atherosclerosis was measured. 
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CHAPTER 6: STUDY 3 - THE IMPACT OF PHVO, RTFA OR WESTERN DIET 
THROUGHOUT LIFESPAN ON THE DEVELOPMENT OF ATHEROSCLEROSIS IN 
THE AEL MOUSE 

 

6. INTRODUCTION 

In this study we addressed the impact of exposure to the different TFA isomers (P and R) and SFAs 

(W) throughout the lifespan of offspring:  Dams consumed the different experimental fat diets 

throughout pregnancy and lactation, and then offspring were weaned onto a corresponding fat 

diet in post-natal life.  As outlined in the General Introduction, the impact of consumption of 

dietary SFAs and TFA on CHD Risk are established (Mensink et al., 2003, Mozaffarian and Clarke., 

2009). Ruminant dairy and meat products contain trans VA that can be converted to CLA 

(C18:2c9t11) by the action of stearoyl Co-A desaturase in the tissues of animals and humans.  In 

animals diet enriched in CLA (C18:2c9t11) have been shown to have a beneficial impact on 

lipoprotein metabolism (Lock et al., 2005).  

 

Energy dense diets rich in SFA and TFA manifest in maternal obesity with dyslipidaemia and 

elevated inflammatory markers present (Flick et al., 2010, Dong et al., 2013). In humans, maternal 

obesity has recently been linked with premature death and CVD in offspring (Reynolds et al., 

2013).  In animal studies offspring of obese mothers that continued to suckle through early 

postnatal development were found to have increased adiposity and vascular endothelial 

dysfunction (Ghosh et al., 2001, Koukkou et al., 1998, Fan et al., 2013). Additionally, in humans 

(Napoli et al., 1999) and the AEL mouse it has been shown that maternal hypercholesterolemia 

can increase susceptibility to atherosclerosis in offspring (Tarling et al., 2016). 

 

it is recognised that TFAs can be passed across the placenta during development and through 

breast milk to the neonate (Innis, 2006). In human cohorts, maternal consumption of TFAs during 

pregnancy have been reported to reduce EFA availability for the developing fetus and neonate, 

and potentially a negative impact on birth anthropometry (Hornstra et al., 2006, Innis 2007, Desci 
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and Boehm, 2013). Studies in children with low EFAs have been found to have visual impairments 

and psychological disorders (e.g. attention deficit/hyperactivity disorder) (Arbex et al., 2015).  In 

mice, maternal consumption of TFAs during pregnancy and lactation have also been reported to 

retard growth of offspring (Kavanagh et al., 2010).  Oben et al., (2010) observed that in obese C57 

mice the “critical early postnatal period” lactation diet was pivotal in development of metabolic 

disease in offspring.  

 

The results of the dams are discussed in Chapter 5.  However, in summary, dams consuming the 

fat diets during pregnancy and lactation (PP, RR or WW) significantly increased serum total 

cholesterol concentration by 80% for all fat diet groups, with RR dams having 88% higher 

concentrations compared to C. As no cholesterol was added to the diets these results clearly 

indicate that the fat diets and particularly the R and P diets, increased maternal cholesterol 

metabolism.  Another important factor was that the dams that continued to consume fat diets 

throughout lactation reduced their bodyweight by 11%, independently of type of test fat.  It is 

acknowledged that mice defend energy intake when fed hyperenergetic diets (Sampey et al., 

2012).  However, as C57 mice are highly sensitive to stress -induced pregnancy and litter loss, 

maternal feed intake measurements were not obtained for these studies.  It was therefore 

proposed that as demand for nutrients is high during lactation, protein and micronutrient intake 

may have been reduced in these dams. 

 

 AIM AND HYPOTHESIS 

 

The previous two chapter were designed to specifically look at the impact of maternal 

consumption of trans fatty acids, during pregnancy, or pregnancy and suckling, on atherosclerotic 

risk in the offspring.  This final study investigates the effect of exposure of the offspring 

throughout life (starting at conception) to different sources of trans fatty acids. 

 

Hypothesis:  It was hypothesised that exposure PHVO throughout lifespan would increase 

susceptibility to atherosclerosis in offspring to a greater extent compared to Western and RTFA 



 

161 
 

diets.  It was further considered that the Western diet would have a greater influence on 

programming atherosclerosis in offspring compared RTFA diet. 

 

 METHOD 

 

In order to examine the study’s hypothesis, chow diets were supplemented with 15% TFA, 

equivalent to 5% daily energy in mice.  Dietary fats were similar to those initially used by 

Chardigny et al (2008) in the human TRANSFACT study (see Methods Chapter 2, Table 2.1).  Fatty 

acid composition of experimental diets (% FAME) are shown in Chapter 2, Methods, Figure 2.2.  

See Methods paragraph 2.2.6 for full descriptive of diet groups. 

 

Seven-week-old wild type female (n=10 per diet group) C57BL/6J mice (dams) were mated with 

randomly selected AEL males (sires) (approx. eight weeks age) over a two oestrous cycle period 

of eight days. Groups were matched for variations in bodyweight. During mating 25% of the mice 

were fed Chow “C”, with the remaining 75% mice being fed one of three experimental fat diets 

(P, R, W Figure 2.4).  On the eighth day the sires were removed and dams remained on their 

allocated diets throughout pregnancy and lactation (see Figure 2.4 “Pregnancy” and “Lactation”). 

 

Female AEL pups were weaned onto either Chow giving rise to a control group C (CCC) or their 

corresponding maternal experimental fat diet giving rise to three fat diet groups P (PPP), R (RRR), 

and W (WWW), (Figure 2.4, Sector 3, Post-Natal).  The post-natal diets (P, R, W) did not contain 

additional dietary cholesterol.  Offspring remained on post-natal diets for 12 weeks (84 days), 

after which, at the age of 15 weeks, mice were culled by Schedule 1 procedure in accordance with 

ASPA (Home Office, 1986) and tissues harvested (Chapter 2, Methods, paragraph 2.3). 
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 OFFSPRING RESULTS:  THE IMPACT OF MATERNAL CONSUMPTION OF PHVO, RTFA OR 

WESTERN DIET THROUGHOUT LIFESPAN ON THE DEVELOPMENT OF ATHEROSCLEROSIS IN 

OFFSPRING (AEL MOUSE) 

 

It was observed that exposure to a maternal P or W diet during pregnancy and lactation caused 

offspring to have significantly lower bodyweight at weaning (Day 0) compared to offspring 

exposed to C or R diet (Figure 6.1a P<0.01).  However, at the end of 12 weeks on their 

corresponding post-natal diets, (C, P, R or W), P offspring had gained significantly more weight 

compared to C offspring (Figure 6.1b). However, due to the lower weaning weights of P, R and W 

offspring there was no difference in the final bodyweight (C: 20.6g±0.37, P: 19.9g±0.41, R: 

19.7g±0.33, W: 18:2g±0.52).   

 
Figure 6.1a The Impact of Maternal PHVO or Western Diet throughout Pregnancy and Lactation 
on the Weaning body weight of Offspring 
 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy andlactation diets respectively: 

(C: CC=11, P: PP=10, R: RR=9, W: WW=10). Data analysed by ANOVA with Bonferroni post hoc test. Unlike letters 

(x,y) are significantly different P<0.05. 
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Figure 6.1b The Impact of a PHVO diet on Weight Gain of Offspring  
 

 

 

 

 

 

 

 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 

respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10).. Nonparametric data analysed by Mann Witney (b). 

Unlike letters (x,y) are significantly different P<0.05.  W offspring weight gain not significantly different from P: 

P=0.057. 
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 The Impact of P, R or W Diet throughout Lifespan on the Body Composition and 
Organ Weights of Offspring at 15 weeks of age 

 

It was found that offspring exposed to P and W fat diets, had reduced liver weight compared to 

C offspring (Figure 6.2). R offspring liver weight was lower P=0.058 compared to C-offspring. 

 

Figure 6.2 The Impact of a P, R or W diet throughout Lifespan on Liver weight of Offspring  

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 

respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10). Data analysed by ANOVA with Bonferroni post hoc 

test. Unlike letters (x,y) are significantly different P<0.05. *R vs. C P=0.058. 
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Overall, it was found R offspring had significantly more total visceral adipose tissue compared to 

offspring C, P, and W diet groups (P<0.05).  Analysis of the adipose tissue showed that these 

differences were predominantly found in the amount of perirenal adipose tissue (P<0.01, Figure 

6.3).   

 

Figure 6.3 The Impact of an RTFA Diet throughout Lifespan on Visceral Adipose Tissue of 
Offspring 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 
respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10).  Data analysed by ANOVA with Bonferroni post hoc 
test. PAT: Perirenal Adipose Tissue unlike letters (x,y) are significantly different P<0.05.  
Ɨ
Gonadal Adipose Tissue P=0.047.  Bonferroni post hoc test not significant: R vs C Not significant, R vs P P=0.078,  

R vs W P=0.096 

  

Ɨ 
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 The Impact of a P, R or W diet throughout Lifespan on Liver Lipids of Offspring at 15 
weeks of age 

 
Offspring consuming the P post-natal diet had increased liver TAG compared to offspring 

consuming the W diet (P<0.05), but not C or R offspring (Figure 6.4, TAG). Offspring consuming 

the P diet also showed higher levels of liver cholesterol compared to offspring consuming the R, 

W or C diet (P<0.01, Figure 6.4 Cholesterol).  

 
Figure 6.4 The Impact of P Diet on Liver Lipids of Offspring 
 

 

Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 

respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10).  Data transformed square root “c” and analysed 

by ANOVA and Bonferonni post hoc tests. For each liver lipid, unlike letters (x,y) are significantly different P<0.05. 
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 The Impact of Different Dietary Fats throughout Lifespan on Serum Glucose and 
Serum Lipids of Offspring at 15 weeks of age 

 

There were no differences observed between groups for serum glucose or serum TAG (Table 6.1).   

 

Offspring consuming experimental fat diets had almost a two-fold increase in serum cholesterol 

compared to C offspring, independently of type of test fat (P<0.01, Figure 6.5).  There were no 

differences observed in the LDL:HDL ratio (Table 6.1). However, R offspring had the highest HDL-

cholesterol concentrations of all the diet groups and lowest non-HDL cholesterol of the three fat 

groups (see Figure 6.5). This resulted in a lower Non-HDL:HDL ratio (P=0.058, Table 6.1) compared 

to chow fed offspring.  

 

 Figure 6.5 The Impact of P, R or W Diet on Serum Cholesterol of Offspring 

 
 
Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 

respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10).  Data transformed to log 10 “a” or Square root “c” 

and analysed by ANOVA with Bonferonni post-hoc test. Unlike letters (x,y) are significantly different P<0.05. 
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Table 6.1 The Impact of P, R or W Diet on Serum Glucose, TAG and Cholesterol ratios of 
Offspring 

 Diet Mean SEM  ANOVA (P) 

Serum Glucose (mmol/L) C 8.69 0.34  0.508 
 P 8.43 0.79   
 R 9.75 0.59   
 W 9.44 0.93   
 Total 9.19 0.45   

Total TAG (mmol/L)a C 2.64 0.14  0.871a 
 P 2.65 0.31   
 R 2.43 0.16   
 W 2.53 0.13   
 Total 2.53 0.12   

Non-HDL:HDL ratiob,d C 2.81 0.26  0.058d 

 P 2.26 0.26   

 R 1.89 0.06   

 W 2.10 0.09   

 Total 2.08 0.09   

LDL:HDL ratio C 0.91 0.07  0.182 
 P 1.05 0.14   

 R 0.78 0.03   

 W 0.96 0.06   

 Total 0.93 0.05   

Data are shown as mean ±SEM for n observations per group showing pregnancy, lactation and post-natal diets 

respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10). Data transformed to log 10 “a” and analysed by 

ANOVA with Bonferonni post-hoc test. Nonparametric data were analysed by Independent sample Mann Whitney 

“b” or Kruskal-Wallis “d”.  
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 The Impact of P, R and W diets on Perirenal Adipose Tissue fatty acid profile in 
Offspring at 15 weeks of age 

 

FAME FAs were extracted from perirenal adipose tissue and measured (Method 2.7.1., A. Lock, 

University of Michigan).  The distribution of trans fatty acids in the perirenal adipose tissue are 

shown in Figure 6.6.  As expected, the TFA isomers in the offspring perirenal adipose tissue 

reflected that of the P and R diets consumed (for diets see Table 2.1 and Figure 2.1) with P 

offspring having greater amounts of C18:1t9, and R predominantly C18:t11 and CLA (P<0.01, 

Figure 6.6). P Offspring had significantly greater total C18:1 trans compared to R and W offspring 

(P<0.01).   
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Figure 6.6 C18:1 trans Fatty Acid Composition of Perirenal Adipose Tissue of Offspring 

 

<0.1% FAME Not Detected (ND).  Data are shown as mean ±SEM for n observations per group showing pregnancy, 

lactation and post-natal diets respectively: (C: CCC=11, ND data not shown, P: PPP=10, R: RRR=9, W: WWW=10)..  

Nonparametric data transformed to Log10 “c” and analysed by ANOVA with Bonferroni post-hoc test.  

For each isomer bars with unlike letters (x, y, z) are significantly different P<0.05. 
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 The Impact of Different Dietary Fats throughout Lifespan on the Fetal Programming 
of Atherosclerosis in Offspring 

 

As previously described 7μm sections were captured onto slides and the lipid stained with Oil Red 

O (Method 3.1). These were analysed at a distance of 14μm between sections from the 

appearance of the aortic valves from aortic arch towards the heart, and then imaged and 

quantified (Method 3.2). All analyses were performed blind without knowledge of diet group.  

Mean atherosclerotic area (μm2) was calculated for each section and plotted to show pattern of 

atherosclerosis expression (data not shown). N=10 equidistant sections from each diet group 

from the three valves joining (Section 1) were analysed for the results. 

 

The effect of exposure to a high fat diet (P, R ,W) throughout the lifespan of offspring (pregnancy, 

lactation and 12 weeks on post-natal diets), and consequent susceptibility to atherosclerosis was 

analysed by repeated measures (for section number) ANOVA with blocking for animal and litter 

from which offspring were derived.  There was a significant interaction between section number 

and diet (P<0.01, Figure 6.7).  This was primarily due to a relatively high level of atherosclerosis 

in earlier sections (12 and 15) of aortas from control-fed animals compared to those on high fat 

diets.  This was confirmed when statistical analysis of high fat diets alone showed no such 

differences (P=0.577) nor diet x section interaction (P=0.512). 
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Figure 6.7 The Impact of P, R or W Diet throughout Lifespan on the Development of 
Atherosclerosis in Offspring 

 
Data are shown as mean ±SEM for n observations per group, showing pregnancy, lactation and post-natal diets 
respectively: (C: CCC=11, P: PPP=10, R: RRR=9, W: WWW=10). Data was transformed to square root “a” and analysed 
by repeated measures (for section number) ANOVA with blocking for animal and litter from which the animals were 
derived.  P values for the effect of lactation diet, second number and interaction between the two are presented. 
Significance P<0.05. 
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 DISCUSSION 

 

This study aimed to ascertain if dietary PHVO and ruminant-derived trans fatty acids would have 

different effects on maternal lipoprotein metabolism during fetal and neonate development that 

would cause changes in the offspring’s physiology and lipid metabolism, increasing their risk to 

atherosclerosis development in later life.  PHVO contain a wide distribution of trans isomers, the 

composition of which is dependent on the parent oil from which they are derived.  PHVO 

adversely affect lipoprotein concentrations (Mensink et al., 2003) and increase CVD risk in 

humans (Mozaffarian et al., 2009). In contrast, ruminant derived TFA (RTFA) present in dairy and 

meat products are thought to improve lipoprotein metabolism (Mensink et al., 2003).  Ruminant-

derived products contain predominantly VA (C18:1 t11).  This is particularly significant as a 

proportion of dietary VA is converted to CLA isomer C18:2c9t11, through the action of stearoyl 

CoA desaturase in the tissues of animals, including humans (Turpeinen et al., 2002, Kuhnt et al., 

2006).  It has also been demonstrated that there are potential beneficial effects of butter 

enriched in VA and CLA C18:2c9t11 on lipoprotein profiles in animals (Lock et al., 2005).  In 

humans and animals, maternal dietary PHVO TFAs are transferred across the placenta into the 

circulation and tissues of developing offspring. Additionally they can be passed to the neonate in 

the mother’s milk. 

 

The hypothesis for this study was that fetal, neonate and post-natal exposure to two sources of 

TFA (P, R), and SFAs in the Western (W) diet, would have differing effects on the development of 

atherosclerosis.  It is acknowledged that dietary TFAs can cross the placenta and are present in 

the mother’s milk, proportional to maternal dietary intake (Innis, 2006).  Both P and R-specific 

TFA isomers were found to be present in the maternal adipose tissue, with R dams having 

disproportionate amounts of CLA C18:2c9t11 through the action of stearoyl Co-A desaturase on 

dietary VA.  In this study offspring were weaned onto their maternal corresponding fat diet (P, R 

W). Both P and R-specific TFA isomers were found in offspring’s adipose tissue. As for the 

maternal analysis above, offspring consuming R showed a disproportionate accumulation of CLA. 
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It was therefore appropriate to conclude that offspring were exposed to these different FA 

isomers during fetal and neonate development and post-natal life. 

 

In the mouse it has been shown that maternal nutrient availability during pregnancy and lactation 

can influence atherosclerosis development in their offspring. Yates (2009) showed that a 

maternal protein-deficient diet increased susceptibility to postnatal atherogenic diet-induced 

atherosclerosis in AEL offspring, with an associated diet-induced increase in offspring’s 

lipoprotein metabolism. In comparison, Tarling et al., (2016) reported that a maternal SFA-

cholesterol rich diet (similar to the Western diet but cholesterol was not added in our study) 

doubled maternal serum cholesterol concentrations during pregnancy and increased 

susceptibility to atherosclerosis in AEL offspring, but with no changes to offspring lipoprotein 

metabolism.  The impact of the experimental fat diets on maternal physiology are discussed fully 

in Chapter 5, Paragraph 5.5.  However, in summary and relevant to this study it was noted that: 

(i) maternal serum total cholesterol concentrations were significantly increased, independently 

of test fat, with R-fed dams having 88% higher concentrations compared to C.  As no cholesterol 

was added to the experimental fat diets it was considered that different TFA isomers and SFA in 

W diet were pivotal to this outcome. (ii) dams consuming fat diets during suckling reduced their 

bodyweight by 11%, independently of type of test fat, compared to C. The difference in body 

weight could not be explained by tissue differences, with adipose depots and liver weights similar 

between all diet groups. An explanation for this could be that the dams adjusted their feed intake, 

as rodents defend energy intake when fed hyperenergetic diets (Sampey et al., 2012). However, 

this data was not collected as C57 mice are prone to stress-related pregnancy loss. Taking this 

into consideration, it was proposed that intake of protein and micronutrients were lower in these 

groups, particularly during lactation when demand for nutrients are high.  It was therefore 

appropriate to assume that offspring were exposed to different maternal TFA isomers, 

hypercholesterolemia and potentially reduced protein and micronutrient availability during fetal 

development and suckling. 
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Offspring consuming fat diets in post-natal life had double the serum cholesterol concentrations 

compared to C offspring, independently of type of test fat. However, it was interesting to note 

that of the three fat diet groups, offspring consuming R had the highest HDL-cholesterol and 

lowest Non-HDL cholesterol concentrations, resulting in a lower Non-HDL:HDL ratio compared to 

C fed animals (P=0.058). The improved serum cholesterol concentrations observed in R-fed 

offspring is supported by other animal studies that found diets enriched with VA improved serum 

cholesterol concentrations for example lowering VLDL and IDL/HDL ratio (Tyburcz et al., 2009, 

Lock et al., 2005) or increasing small-HDL (Rice et al., 2010). In our study, R offspring also 

displayed significantly greater quantities of CLA and VA within the adipose tissue compared to 

other offspring.  These study outcomes add credence to the hypothesis that endogenous VA-RA 

CLA synthesis could have a beneficial health impact on serum cholesterol and confer a reduced 

CHD-risk. Despite the two-fold difference in serum cholesterol concentrations observed in the fat 

groups no clear effect of diet on atherosclerosis was seen.  However, a significant diet x section 

number interaction was observed in atherosclerosis between all diet groups (C, P, R, W P<0.01).  

This was primarily due to a relatively high level of atherosclerosis in earlier sections (12 and 15) 

of aortas from control-fed animals compared to those on high fat diets which was confirmed 

when statistical analysis of high fat diets alone (P, R, W: P=0.557) showed no differences nor diet 

x section interaction (P=0.512). As outlined in Chapter 3, there is variation in atherosclerosis 

expression throughout the aortic valve region.  As rigorous analyses of atherosclerosis data did 

not show any further differences, there is no conclusive explanation for the anomaly observed in 

the two early sections of aorta of chow fed offspring. However, the lack of difference in 

atherosclerosis between the fat groups support a previous study in guinea pigs by Rice et al., 

(2010). They fed post-natal diets rich in P or R (similar to those used in this study) and although 

the diets increased serum cholesterol concentrations there were no differences in atherosclerosis 

compared to C-fed animals. It has been suggested that dietary cholesterol is key to the 

development of atherosclerotic lesions in guinea pigs (Kind et al, 1999). A previous study has 

shown that maternal Western diets (similar to the diet used in this study but containing 0.25% 

cholesterol) increased susceptibility to atherosclerosis development in AEL offspring (Tarling et 

al., 2016). The effect of the lack of cholesterol in the post-natal diets, and subsequent lack of 
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atherosclerosis, in this study is substantiated by comparison with Chapter 5 offspring 

atherosclerosis results. These offspring were likewise exposed to maternal dietary test fats during 

pregnancy and suckling but were weaned onto a post-natal atherogenic diet that contained SFAs 

and 0.25% cholesterol. These offspring had a 30% increase in serum cholesterol concentrations 

and a remarkable 95% increase in atherosclerosis compared to the offspring on post-natal 

experimental fat diets in this study.  It was also interesting to note that for all offspring exposed 

to fat during pregnancy and lactation, although significantly different in the amount of 

atherosclerosis present due to the post-natal A diet, showed similar patterns of atherosclerosis 

as there were no differences in atherosclerosis between C, P, R, W diet groups. These results 

confirm that AEL mice are highly sensitive to post-natal high fat/cholesterol diet-induced 

atherosclerosis.  Furthermore, it is noted that in some mouse models (e.g. LDL receptor deficient) 

mice on chow and low-fat diets, atherosclerotic lesions can take up to 12 months to develop (Getz 

and Reardon, 2012).  Other atherosclerosis studies using the AEL mouse and feeding chow or fat 

diets without cholesterol confirm this outcome (Yates et al., 2009, Tonge, 2011). The results of 

our studies support that if a post-natal diet without cholesterol is used for atherosclerosis 

assessment in AEL mice, the trial should be extended beyond 15 weeks of age to allow for 

atherosclerosis manifestation. 

 

Another phenotypic outcome in offspring that can be ascribed to maternal dietary factors during 

pregnancy and suckling, is that P offspring weighed significantly less at weaning compared to C 

offspring. P offspring ‘caught-up’ in bodyweight by day 4 post-weaning, presumably by increasing 

their feed intake, however feed intake data was not available to confirm this. After 12 weeks on 

post-natal P diet offspring had gained significantly more weight compared to C offspring.  It is 

recognised in MLP rat studies (Langley-Evans, 2000) and human maternal undernutrition and 

obesity, offspring are prone to low birth weights, and rapid weight gain during early development 

that is termed “catch up growth” are correlated with  increased prevalence of CVDs in later life 

(Eriksson et al., 2001a, Eriksson et al., 1999, Kajantie et al., 2005). The potential for maternal 

protein and micronutrient restriction during fetal and neonate development outlined above may 

be pertinent to this outcome. However, as there were no differences in offspring weaning 
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bodyweight of R and W offspring compared to C, the results indicate that this is a P diet-specific 

effect of exposure during pregnancy and suckling.  Maternal P consumption is shown to have an 

inverse relationship with EFA availability and offspring birthweight in the first week of life in 

human cohorts (Hornstra et al., 2006, Innis, 2007), rats (Bayol et al., 2010), and C57 mice 

(Kavanagh et al., 2010).  The pups in our study were not weighed at birth as C57 mice are prone 

to stress-related litter loss.  However, the fact that after suckling for 3 weeks P offspring still 

showed retarded growth adds weight to this maternal-TFA hypothesis.  Additionally, the catch-

up growth identified in the first week post-weaning is synonymous with that described in the low-

birth weight studies above.  To identify if maternal nutrient supply was restricted during suckling 

(e.g. reduced FAs, protein, or EFAs) in our study, further analyses of milk samples would be 

required. 

 

Offspring bodyweight at 15 weeks of age was similar between the diet groups. However, there 

were notable differences in tissue weights. In conjunction with the reported outcome for 

retarded growth early post-weaning, it was found that offspring consuming P and W diets (but 

not R, P=0.058) had smaller livers compared to chow offspring.  Liver lipid analysis showed that 

P-offspring had significantly greater liver TAG compared to W offspring and liver cholesterol 

compared to P, R and W offspring. These results support research studies in human cohorts and 

animals, that maternal undernutrition can cause fetal growth restriction which result in growth 

retardation of organs such as the liver and kidneys (Greenwood and Bell, 2003, Boito et al., 2002, 

Langley-Evans et al., 1999). These results add weight to the argument that maternal protein and 

micronutrients were reduced during fetal and neonate development for all offspring in terms of 

liver organogenesis. However, the effect of P isomers during fetal and neonate development 

cannot be ignored, with retarded growth, reduced liver size and elevated liver TAG and 

cholesterol prevalent. 

 

Adiposity observed in R offspring in this study was not able to be attributed to maternal diet due 

to offspring consuming fats throughout lifespan.  However, offspring exposed to R had 

significantly more total adipose tissue (for both perirenal and gonadal depots) compared to C, P, 
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and W, offspring.  However, it is noted that the effect was very modest (combined increase in 

both depots equals 0.4% of total body weight) and this would need to be confirmed through 

detailed experiments of body composition and food intake measurements. It has been shown in 

rats (Akyol et al., 2012, Gugusheff et al., 2013) and mice (Oben et al., 2010), that phenotypes 

caused by post-natal diets (from lactation onwards) can be modulated by feeding low fat, chow 

diets. These outcomes reflect that early life and post-natal nutrition is key. 

 

It is acknowledged that limitations of this study include the lack of feed intake data for C57 

mothers due to stress-related pregnancy and litter loss that would have indicated the reason for 

weight loss and nutrient availability during fetal and neonate development.  Also, for the latter 

reason litters were not disturbed during early development and pup birth weights and daily body 

weights were not collected over the three weeks during suckling. Therefore, it cannot be 

categorically ascertained if the offspring of R and W dams had retarded growth during fetal 

development.  In order to understand retarded growth of P and reduced liver size in fat groups 

was an effect of maternal nutrient deficiency or an effect of the dietary FAs, more detailed 

investigation into maternal body composition and composition of milk samples would be 

required. 

 

In order to clarify the effect of FAs during development, investigations of offspring whole body 

composition, kidneys (potential for reduced nephron number), liver morphology, cellular 

composition, and hepatic metabolism markers (e.g. PPARα, SREBP).   
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 CONCLUSION 

 

In conclusion, although the diets increased maternal and offspring lipoprotein metabolism, there 

was no effect of maternal P, R, or W diet on the development of atherosclerosis in offspring. 

Offspring of P-fed dams showed phenotypic outcomes that pertain to maternal undernutrition 

and/or an effect of the dietary P trans isomers. These outcomes included significant growth 

retardation at weaning compared to C offspring, retarded liver growth and elevated liver TAG 

and Cholesterol. W offspring (but not R P=0.058) also had retarded liver growth. Offspring 

consuming a post-natal R diet had significantly greater adipose tissue compared to P, W and C  

offspring. 
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7. GENERAL DISCUSSION 

 

As discussed in the introduction and Chapter 5, a maternal low protein diet increased risk of 

atherosclerosis in offspring when fed high fat/cholesterol post-natal diets, with associated 

increased lipoprotein metabolism (Yates et al., 2009). In contrast, a western maternal diet (similar 

to the one used in this study but with 0.25% cholesterol added) caused maternal cholesterol 

metabolism to increase two-fold and elevated risk of atherosclerosis in offspring in the absence 

of changes to cholesterol metabolism (Tarling et al 2016).  PHVO are known to adversely affect 

serum cholesterol concentrations and increase CVD risk (Mensink et al., 2003). RTFA has been 

shown to have a beneficial impact on lipoprotein profiles in animals (Lock et al., 2005). 

 

The hypothesis for this study was that fetal, neonate and post-natal exposure to two sources of 

TFA (P, R), and SFAs in the Western (W) diet, would have differing effects on the risk of 

atherosclerosis development in later life.  It is acknowledged that dietary TFAs can cross the 

placenta and are present in the mother’s milk, proportional to maternal dietary intake and have 

possible metabolic consequences (Innis, 2006).  It is noted that the experimental fat diets (P, R 

W) fed to dams and offspring in this study did not contain cholesterol and therefore maternal and 

offspring outcomes are reflective of the FA and trans isomer compositions of these diets. 

 

 The Effect of Maternal Consumption of P and R Diets on Maternal Physiology and 
Lipoprotein Metabolism During Pregnancy and Lactation (C57 Mouse) 

 

The maternal results showed that both P and R-specific TFA isomers were found to be present in 

their adipose tissue, with R dams having disproportionate amounts of CLA (C18:2c9t11) mainly 

through the action of stearoyl Co-A desaturase on dietary VA (Fig 1.5).  These results confirmed 

that TFAs were present in the maternal metabolism and able to be passed to the offspring during 

pregnancy and lactation development periods. During pregnancy (at day 17 gestation) serum 

total cholesterol and serum TAG concentrations were increased in P-fed animals compared to R. 

However, in Study 2 when measurements were taken after 3 weeks of suckling, it was found that 
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P or R-fed animals (but not W) had similar and significant increases in total serum cholesterol 

compared to C-fed animals. Continuing to consume the fat diets (P, R, W) throughout lactation, 

caused significant increases in serum total cholesterol concentrations for all experimental fat diet 

groups (P, R, W) compared to C. R-fed animals had an 88% higher serum total cholesterol 

compared to C, and significantly greater concentrations compared to both P and W.  These results 

indicated that P and R diets during pregnancy alone, or P, R or W diets consumed during 

pregnancy and lactation could instigate maternal hypercholesterolemia with the potential to 

confer perturbations in the fetal and neonate environment during development. 

 

 The Effect of Maternal Consumption of P, R, W Diets on Offspring Physiology and 
Atherosclerosis Development (AEL Mouse) 

 

Study 1 confirmed previous studies that reported AEL mice are highly sensitive to post-natal A 

diet-induced (rich in SFA and cholesterol) atherosclerosis (Groot et al., 1996, Gijbels et al., 1999) 

The atherogenic diet increased serum total cholesterol concentrations by 71% and 

atherosclerotic area by 94% compared to C offspring (P<0.01, Figure 4.9 and 4.10). However, as 

there was no chow control group for Study 1, the effect of the maternal TFA diets on 

atherosclerosis risk in offspring could not be categorically confirmed.  There was a maternal diet 

x section interaction observed with atherosclerosis increasing in R offspring and decreasing in P 

offspring in sections closest to the heart (P<0.01). However, rigorous analysis of the pattern of 

atherosclerosis expression (see Chapter 3) did not explain this anomaly, with mean lesion area 

similar between the two maternal diet groups (P=0.383). 

 

Study 2 assessed the impact of P, R and W diets during pregnancy, or pregnancy and lactation on 

atherosclerosis risk in offspring. All offspring were weaned onto an atherogenic diet for 12 weeks.  

The atherogenic diet caused a uniform increase in offspring cholesterol metabolism across all diet 

groups with no differences observed (C, P, R and W). However, it was found that maternal TFA 

consumption during pregnancy appeared to protect offspring from postnatal atherogenic diet-

induced atherosclerosis in later life, irrespective of isomeric distribution of the TFA (P=0.013, 

Figure 5.6).  However, this effect was lost and atherosclerosis increased if the TFA diet was 
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continued to be fed during lactation and early development periods (Figures, 5.7a, 5.7b and 

Figure 5.8). Previous maternal studies in several mouse models (e.g. AEL, ApoE deficient, and LDLr 

deficient mouse) have shown that maternal hypercholesterolemia has induced changes in 

offspring susceptibility to atherosclerosis, both with (Napoli et al., 2002, Napoli et al., 1999), and 

without (Tarling et al., 2016), diet-induced changes to offspring lipoprotein metabolism.  Napoli 

et al (1999, 2002) showed specific changes in aortic gene expression may be imprinted during 

neonatal life.  Therefore, it is plausible that in response to maternal dietary TFAs during fetal 

organogenesis, alterations in aortic biological development could occur resulting in differences 

to susceptibility to atherosclerosis.  It is also of note that offspring displayed this biological 

difference, even after being challenged by an atherogenic diet for 12 weeks (Figure 5.6 and Figure 

5.8). In LDLr deficient mice it has been reported that PHVO have increased atherosclerosis 

(Bassett et al., 2009), whilst RTFAs have an anti-atherogenic effect (Bassett et al., 2010). However, 

this is the first report of both P and R TFA having athero-protective effects during early 

development.  It is acknowledged that the effects of pro-anti-inflammatory factors in the TFA 

diets could have differential effects in pregnancy and lactation development periods.  

 

 The impact of P, R or W Throughout Lifespan on Atherosclerosis Development in 
Offspring (AEL Mouse) 

 

In Study 3, offspring were weaned onto corresponding maternal diets (CCC, PPP, RRR, WWW).  

The fat diets increased offspring serum cholesterol concentrations by 50% compared to C 

offspring, with R offspring having the lowest Non-HDL:HDL ratio compared to C (P=0.058). There 

was a significant interaction between section number and diet (P<0.01, Figure 6.7), with control 

offspring having greater atherosclerosis in two early sections of aorta.  However, rigorous 

analyses of the atherosclerosis data did not show any further differences between all diet groups 

with mean atherosclerosis lesion area similar between all groups (P=0.627).  There was no 

conclusive explanation for the anomaly observed in the two early sections of aorta of chow fed 

offspring. However, it was considered that a lack of cholesterol in the post-natal fat diets 

contributed to the lack of atherosclerosis observed in these offspring (95% less atherosclerosis 

compared to offspring that had consumed an atherogenic post-natal diet: CCA, PPA, RRA, WWA 
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diet groups).  Studies in animals and humans of fetal growth restriction and maternal 

undernutrition suggest that this can result in growth retardation of organs (e.g. liver and kidneys) 

(Greenwood and Bell, 2003, Boito et al., 2002). In this study we observed that offspring 

consuming fat diets (P, R and W) had significantly smaller livers compared to C offspring. An 

explanation for could be that the mothers of these offspring had reduced protein and 

micronutrient availability during fetal development. C57 mice defend energy intake when fed 

hyperenergetic diets (Sampey et al., 2012).  It was observed that mothers consuming the fat diets 

throughout pregnancy and lactation had reduced their bodyweight by 11% compared to C, 

potentially reducing their feed intake. As C57 mice are prone to stress related pregnancy and 

litter loss, feed intake data was not obtained. However, this explanation is plausible and therefore 

it was considered that maternal protein and micronutrients would have been lower during this 

period when demand for nutrients is high.  

 

It is recognised in maternal low protein rat studies (Langley-Evans, 2000) and human maternal 

undernutrition and obesity, offspring are prone to low birth weights, and rapid weight gain during 

early development that is termed “catch up growth”, and are correlated with  increased 

prevalence of CVDs in later life (Eriksson et al., 2001a, Eriksson et al., 1999, Kajantie et al., 2005). 

Therefore, the maternal nutrient deficiency proposed above could also have played a role in the 

retarded growth of P offspring at weaning that “caught up” in body weight by day 4 post-weaning, 

and after 12 weeks on post-natal diets had gained significantly more weight compared to C 

offspring. Although all offspring were potentially exposed to maternal nutrient deficiency during 

development, it is acknowledged that R and W offspring did not display this effect.  However, as 

the effect of retarded growth was still present after 3 weeks of suckling, it adds weight to the 

outcome that this was an effect of the maternal P-diet on offspring development.  

 

The only other phenotypic effect was an increase in adipose tissue weight in the offspring of 

mothers fed R in Study 2.  However, the combined increase in weight of both gonadal and 

perirenal adipose depots is very modest (0.4% of total body weight) compared to C, P and W 

offspring.  Finally, adiposity observed in R offspring in Study 3 was not able to be attributed to 
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maternal diet due to offspring consuming fats throughout lifespan.  However, as for study 2, R-

fed offspring had a significant (but modest 0.4%) increase in both adipose depots compared to C, 

P and W offspring.  In order to confirm these outcomes, feed intake analysis and more detailed 

experiments on body composition would be required.  Feeding high fat diets during lactation had 

no impact upon offspring body weights or adiposity of P, W and C, which is consistent with some 

other, but not all, rodent studies of overfeeding in lactation (Akyol et al., 2012).  However, any 

effect of maternal diet during suckling may have been masked by feeding of the atherogenic diet 

post-weaning. It has been shown in rats (Akyol et al., 2012, Gugusheff et al., 2013) and mice 

(Oben et al., 2010), that phenotypes caused by post-natal diets (from lactation onwards) can be 

modulated by feeding low fat, chow diets.   

 

 STUDY LIMITATIONS 

 

In the pregnancy study and study 1, no chow group was included, therefore outcomes for RTFA 

on maternal physiology and the impact of both maternal PHVO and RTFA during pregnancy on 

atherosclerosis development in offspring could not be categorically ruled out.   

 

A limitation of Study 2 and Study 3 was that due to the extensive workload and time constraints 

of large cohort animal studies not all diet groups were included for example, the effect of fat 

during lactation, (e.g. CPC, CWC, CRC); or the effect of exposure to fat during development and 

post-natal chow groups, (e.g. PPC, RRC, WWC).  

 

In hindsight in Study 3, Fat throughout Lifespan groups (PPP, RRR, WWW), the addition of 

cholesterol to the post-natal diets may have instigated differential atherosclerosis outcomes.  It 

has recently been shown that a maternal Western diet (similar to the one used in this study, but 

with added 0.25% cholesterol) influenced the development of atherosclerosis in AEL offspring 

(Tarling et al., 2016). In our study without cholesterol, these offspring groups (P, R W) showed 

remarkably little atherosclerosis at 15 weeks of age and were similar to the C offspring. It is also 

noted that in some mouse models (e.g. LDL receptor deficient) mice on chow and low-fat diets, 
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atherosclerotic lesions can take up to 12 months to develop (Getz and Reardon, 2012).  Other 

atherosclerosis studies using the AEL mouse and feeding chow or fat diets without cholesterol 

confirm this outcome (Yates et al., 2009, Tonge, 2011). The results of our studies support that if 

a post-natal diet without cholesterol is used for atherosclerosis assessment in AEL mice, the trial 

should be extended beyond 15 weeks of age to allow for atherosclerosis manifestation.  

 

As previously discussed, rodents defend energy intake when fed hyperenergetic diets (Sampey et 

al., 2012).  Therefore, feeding high fat and TFA-rich diets during pregnancy and lactation could 

have resulted in the mothers reducing their feed intake.  This is particularly pertinent as mothers 

consuming the fat diets throughout pregnancy and lactation reduced their body weight by 11% 

compared to C fed mothers.  Therefore, it was proposed that these mothers would have reduced 

protein and micronutrient availability during lactation, when demand for nutrients is high. 

Collecting Feed intake data of mothers and offspring would have helped to identify changes in 

feeding patterns.  Therefore, caution is advised when considering offspring phenotypic outcomes 

as reduced protein and micronutrient intake confer an additional perturbation to the developing 

neonate.  

 

Finally, comparisons are being drawn upon the atherosclerosis presented in murine aortic 

arch/heart valve samples whereas in humans it would be the heart coronary arteries and 

associated vasculature (Zadelaar et al., 2007, Kleemann et al., 2007).. It is also acknowledged that 

mice and humans differ in the lipid and lipoprotein metabolism and atherosclerosis pathways.  In 

human physiology LDL-cholesterol metabolism drives atherosclerosis progression (Wang and 

Paigen, 2005), whilst in AEL mice Chylomicron, IDL, VLDL and remnants are prevalent (van den 

Maagdenberg et al., 1993). 

 

 MAIN IMPLICATIONS AND FUTURE WORK 

 

The UK Government’s Public Health Outcomes Framework 2013-2016 set out key areas for 

improvement that address reducing premature mortality from CVDs through public health 
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improvements, including reducing the number of low birth weight term babies, implementation 

and support for breastfeeding initiatives, and, reducing excess body weight in adults and children 

through diet (DH, 2012c). Langley-Evans (2015) notes that pregnancy and infant nutrition provide 

a significant opportunity for improving the health of future generations, especially as parents are 

often more willing to make lifestyle changes during this period for the sake of their children.  This 

makes our studies into maternal consumption of FAs during pregnancy and lactation and their 

impact on susceptibility to atherosclerosis development in offspring particularly relevant.   

 

The results showed that exposure to TFA during pregnancy protected offspring from 

atherosclerosis, irrespective of dietary TFA isomer distribution, however this effect was lost if the 

TFA diets continued to be consumed during lactation.  This study indicates that the effects of pro- 

and-anti-inflammatory factors in the TFA diets could have differential effects in pregnancy and 

lactation development periods. For the effect of TFAs and athero-protective outcome observed 

in Study 2offspring, further investigation and examination of early lesions in fetal and neonate 

vessels would be required. Combining this with transcriptomic analysis of fetal vasculature and 

maternal liver will contribute to a more detailed understanding of the relationship between TFA, 

maternal cholesterol and early lesion development. 

 

Additionally, mothers consuming (P, R or W) throughout pregnancy and lactation, reduced in 

bodyweight (see study limitations), potentially conferring reduced protein and micronutrient 

availability during this period. Therefore, in order to clarify the maternal nutrient status further 

investigation of maternal total body composition and milk samples would be necessary. These 

investigations would also shed light on the impact of maternal diet on observed outcomes in 

Study 3 offspring:  P offspring had retarded growth at weaning, and all offspring had reduced liver 

weights.  Further studies of whole-body composition for offspring, and morphology of liver and 

kidney tissue could indicate whether maternal low protein/nutrient restriction was responsible 

tissue remodelling outcomes.  Whole body composition of offspring in Study 2 and 3, would also 

confirm the phenotype of adiposity in offspring of R-fed dams, and those offspring consuming R 

in post-natal life.  



 

187 
 

 

 CONCLUSION 

 

In conclusion, our studies provided an insight into the impact of maternal consumption of 

different isomers of trans fatty acids on the development of atherosclerosis in offspring. Our 

studies consistently showed that C18:1 trans isomers derived from dietary PHVO (predominantly 

EA) and ruminant milk fat (predominantly VA and CLA) accumulated in the adipose tissue of dams.  

It was therefore appropriate to assume that the developing fetus and neonate were exposed to 

different TFA isomer concentrations depending on the diet fed to the dams.  However, it was 

found that maternal consumption of TFA diets during pregnancy conferred an anti-atherogenic 

effect in offspring fed an atherogenic-diet postnatally independently of the isomeric distribution 

of the TFA.  However, if the maternal TFA diet is maintained during lactation this protection is 

lost and postnatal atherogenic diet-induced atherosclerosis increases particularly when PHVO 

TFA are consumed.  The mechanisms underlying these changes remain to be established, but they 

are not associated with changes in lipoprotein concentrations at the point when atherosclerosis 

was measured. There was an unexpected outcome of no effect of the maternal Western diet on 

the development of atherosclerosis in offspring. However,  this may be due to the absence of 

added cholesterol in these diets. 
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