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                                                             ABSTRACT 

Introduction: Diabetic cardiomyopathy (DCM) is defined by hypertrophy, oxidative stress, 

fibrosis and inflammation of the cardiac muscle. Hyperglycemia-associated oxidative stress 

plays an important role in the development of cardiac hypertrophy. Naringenin a citrus fruit-

derived flavonoid has previously been demonstrated to have antioxidant, anti-diabetic, anti-

inflammatory and cardioprotective properties by as yet unknown mechanisms. 

Aim: To investigate the effects of naringenin on oxidative stress parameters in cardiac muscles 

of diabetic rats. 

Methods:  Wister rats (250-300g) were randomly divided into six groups (n=7). Groups I and 

IV were orally treated daily for 56 days with 3.0 ml/ kg Body Weight (BW) of distilled water 

and 60 mg/kg BW of naringenin in distilled water, respectively. Groups II, III, V and VI were 

made diabetic by a single intraperitoneal injection of 60 mg/kg BW of streptozotocin (STZ) 

and similarly treated with naringenin, except group VI which was treated with insulin 2.0 

U/BW bid. Group V was pre-treated with naringenin for a period of one week before STZ 

administration. On day 57 the animals were euthanized, blood samples collected, and the hearts 

were excised, weighed and stored at -80ᴼC. Antioxidant activity (catalase, glutathione 

peroxidase and superoxide dismutase) was measured using colorimetric commercial kits. 

Malondialdehyde (MDA) levels were measured using the Thiobarbituric acid reactive 

substances assay (TBARS) while fasting plasma insulin was measured using a commercial 

enzyme-linked immunosorbent assay (ELISA) kit and insulin resistance was calculated using 

Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and pro-inflammatory 

cytokine levels were measured by commercial ELISA kits. 
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Results:  Diabetic animals presented with significant (p< 0.05) weight loss, polydipsia, 

increased fasting blood glucose (FBG) levels and glucose intolerance (GI) compared to control. 

Naringenin treatment significantly increased antioxidant enzyme levels (cardiac tissue) in 

diabetic animals compared to the untreated diabetic groups. MDA and TNF-α levels (in cardiac 

tissue) were significantly increased in the untreated diabetic groups compared to the control. 

Cardiac mass to body weight ratio was increased in the untreated diabetic rats compared to the 

naringenin treated diabetic rats. 

Conclusion: Naringenin pre-treatment and naringenin post STZ treatment improved diabetic 

symptoms, antioxidant levels, heart weights and reduced inflammation suggesting its 

cardioprotective effects in diabetic cardiomyopathy are due to its antioxidant properties.   
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CHAPTER 1: INTRODUCTION & LITERATURE REVIEW 

1.1. DIABETES MELLITUS 

1.1.1. Epidemiology of diabetes mellitus 

According to the International Diabetes Federation (IDF), 425 million people were diagnosed 

with diabetes by the year 2017 and this number is estimated to rise by 48% in 2045, where 

approximately 629 million people will be diagnosed with diabetes worldwide (International 

Diabetes Federation, Diabetic Atlas 2017; Cho et al., 2018) (Fig 1). Sedentary lifestyle, 

genetics and unhealthy food choices are the main risk factors for type 2 diabetes (World health 

organisation, 2016). Diabetic patients who develop DCM are at a higher risk of increased 

morbidity and mortality worldwide (Ogurtsova et al., 2017).  

 

 

 

 

 

 

 

 

 

 

Figure 1. Worldwide prevalence of diabetes (image adapted from the International Diabetes 

Federation, Diabetic Atlas 2017). 
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1.1.2. Diabetes mellitus 

Diabetes causes microvascular and macrovascular end-point complications (Skyler et al., 2017) 

(Fig. 2). There are different types of diabetes mainly type I, type II, gestational diabetes and 

other specific types (monogenic diabetes i.e. MODY), these forms are grouped according to 

different etiologic classifications (Baynes, 2015). Although there are different classifications 

of diabetes, the underlying problem is high blood glucose levels (hyperglycaemia) 

accumulating outside the cells because of insulin defects (Baynes, 2015).  Insulin produced by 

β-cells of the islets of Langerhans in the pancreas, interacts with the insulin receptors to form 

a cascade of intracellular reactions catalysed by different enzymes. Insulin does not only 

facilitate glucose entrance into the cells but it also regulates the expression of enzymes that 

control glucose homeostasis (Guthrie and Guthrie, 2004). In the absence of insulin, the liver 

produces glucose (gluconeogenesis) to provide the cells with energy, this leads to a further rise 

and accumulation of blood glucose levels (hyperglycaemia) (Skyler et al., 2017).  

 

 

 

 

 

 

 

 

Figure 2. Microvascular and macrovascular complications resulting from different forms of 

diabetes mellitus (Adapted and modified from Skyler et al., 2017). 
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1.1.3. Type I diabetes  

Type I diabetes mellitus (T1DM) can be a genetic disease resulting from autoimmune 

destruction of insulin producing pancreatic β- cells leading to progressive and irreversible 

failure of insulin secretion resulting in hyperglycaemia and a tendency to ketoacidosis (Ogbera 

et al., 2014; Kahanovitz et al.2017). There are two classes of human leucocyte antigens HLA-

DR3 and HLA-DR4 haplotypes located on chromosome number 6 which are responsible for 

insulin gene expression, responses to viral infections and regulation of T cell activation 

(DiMeglio et al., 2018). When these genes malfunction, they lead to autoimmune diseases, type 

1 diabetes included (Guthrie and Guthrie, 2004) (Paschou et al., 2018). 

Chemicals and environmental factors (viruses) can also induce type I diabetes by damaging the 

pancreatic β-cells continuously over an extended period or rapidly over a short period of time 

(Baynes, 2015). 

Streptozotocin (STZ) is an antibiotic isolated from streptomyces achromogenes known to cause 

pancreatic β-cell destruction and is widely used in experimental diabetes (Wu and Huan, 2008; 

Atkinson et al., 2015). Once taken up by the pancreatic beta cells via GLUT 2 transporters, 

STZ   induces cell death in three ways: generating free radicals, increasing nitric oxide 

production by increasing guanyl cyclase activity and DNA methylation, forming carbonium 

ion (CH3+) that activates the nuclear enzyme (poly ADP-ribose synthetase) that is part of the 

cell repair mechanism (Ventura-Sobrevilla et al., 2011; Tesch, 2007). It causes permanent 

diabetes in animal models by damaging pancreatic β-cells through generation of superoxide 

anions that act on the mitochondria causing an increase in the activity of the enzyme xanthine 

oxidase resulting in complete or partial destruction of the pancreatic β-cells (Atkinson et 

al.,2015). STZ administered in small doses to induce diabetes and administered in one large 

single dose to cause a complete necrosis of the pancreatic β-cells (Wu and Huan, 2008). Rats 
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are usually administered 45-60 mg/kg body weight of STZ to induce T1DM (Wang-Fischer 

and Garyantes, 2018). 

Diabetic animals have increased malondialdehyde (MDA) levels but decreased endogenous 

antioxidant enzyme levels (glutathione peroxidase, catalase and superoxide dismutase) when 

compared with control animals in experiments (Wang-Fischer and Garyantes, 2018). The 

decrease in antioxidant activities and simultaneous increases in MDA activities, indicates 

increased oxidative stress (Eleazu et al., 2013). Metabolism of STZ results in the degradation 

of ATP by xanthine oxidase producing uric acid as the final product this reaction generates 

ROS such as superoxide and hydroxyl radicals emanating from H2O2 dismutation during 

hypoxanthine metabolism, accelerating the process of pancreatic beta cell destruction (Eleazu 

et al., 2013; Wang-Fischer and Garyantes, 2018). 

T1DM is managed by daily injection of insulins such as rapid-acting, short-acting, immediate-

acting, long-acting and pre-mixed (IDF, 2017). 

 

1.1.4. Type II diabetes 

Type II diabetes mellitus (T2 DM) is characterised by impaired insulin secretion caused by the 

dysfunction of pancreatic β-cells or impaired insulin action through insulin resistance 

(Ozougwa et al., 2013). There are many factors that cause insulin resistance (IR) including 

obesity, sedentary lifestyle, unhealthy dietary intake, age and genetic disorders (Baynes, 2015) 

(Fig 3). 

IR is the initial defect in T2 DM as it can manifest long before any clinical symptoms can be 

detected and long before blood glucose levels are high enough to make a clinical diagnosis 

(Taylor, 1994; Guthrie and Guthrie, 2004). Insulin resistance occurs in the skeletal muscles 

and fat cells (peripheral tissues). IR can occur due to environmental factors (e.g. aging and 
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obesity) and genetic mutations in the insulin receptors (IRS) and GLUT 1-5, whereby insulin 

cannot bind to the receptors to activate the required reactions for glucose uptake (Chan et al., 

1994; Skyler et al., 2017).  

Defects in translocation of GLUT-4 protein is caused by reduced tyrosine phosphorylation of 

IRS-1 (Colditz et al., 1995). Phosphorylated IRS proteins serves as multisite binding proteins 

for various effector molecules that have Src homology 2 (SH2) domains, including 

phosphatidylinositol-3-kinase (PI3K) regulatory subunits, tyrosine kinases and growth factor 

receptor binding proteins (Wagner et al., 2013). IRS proteins work as essential signaling 

intermediates of activated cell surface insulin receptors and play an important role in 

maintaining basic insulin-mediated cellular functions including fatty acid synthesis, glycogen 

synthesis, cell survival through glucose uptake, protein synthesis and inhibit gluconeogenesis 

(Albegali et al., 2019) 

 IR occurs at multiple levels in cells, from the cell surface to the nucleus including insulin 

receptor desensitization. Inhibition of IRS-1 and insulin receptor substrate-2 (IRS-2) results in 

the suppression of IRS protein functioning and inhibition of PI3K signaling. Insulin stimulates 

amino acid uptake, inhibits protein degradation and promotes protein synthesis and a shortage 

in the diabetic state causes an increase in protein catabolism, rather than a decline in protein 

synthesis (Colditz et al., 1995). 

In the development of IR, insulin production increases in the pancreatic β-cells to maintain 

homeostasis of blood glucose levels for normal bodily functions (Chan et al., 1994). If IR 

increases or persists over an extended period, the β-cells undergo genetic changes or exhaustion 

(Taylor et al., 1994; Van der Zijl et al., 2011). This causes decrease in insulin secretion and 

continuation of IR resulting in the rise of blood glucose levels favouring the development of 

T2 DM (Guthrie and Guthrie, 2004). The Homeostatic Model Assessment of Insulin Resistance 
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(HOMA-IR) is used for the diagnosis of IR or metabolic syndrome (MetS) (Esteghamati et al., 

2010). 

 

 

 

Figure 3. Factors contributing to the development of Type II diabetes mellitus. 
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1.1.5. Other forms of Diabetes Mellitus  

Some forms of diabetes are more common than others, gestational diabetes (GDM) is defined 

as glucose intolerance with onset of pregnancy and it has become one of the global health 

concerns in pregnant women, GDM is diagnosed in the second or third trimester of pregnancy 

(Mishra et al., 2018). Overweight women, women who have had GDM before or have a family 

history of diabetes are at an increased risk of developing gestational diabetes. GDM left 

untreated can result in problems with the fetus such as respiratory problems and low blood 

sugar levels.  

GDM is associated with increased risks of maternal and fetal complications (Nien et al.,2007; 

Morampudi et al., 2017). Fetal macrosomia is a common complication of diabetes in pregnancy 

it is caused by fetal hyperinsulinemia that occurs as a physiological response to maternal 

hyperglycemia. Women pregnant with macrosomic fetuses are at increased risk of 

preeclampsia, labor abnormalities, severe perineal lacerations, risks of preterm birth and 

cesarean section. The fetus is at risk of stillbirth, intracranial hemorrhage, shoulder dystocia 

and malformations (Nien et al., 2007). The new born baby is at risk of developing 

hyperbilirubinemia, hypocalcemia, hypoglycemia, hypomagnesemia, polycythemia vera and 

neonatal cardiomyopathy (Morampudi et al., 2017). Later in life, the baby may be at an 

increased risk for obesity and T2DM (Mishra et al., 2018).   

Maturity Onset Diabetes of the Young (MODY) is a rare form of diabetes linked with family 

history (Gerber et al., 2003). It is inherited in the form of an autosomal dominant trait, which 

is normally a result of mutations in the glucokinase gene on chromosome 7p; glucokinase is 

the main enzyme of glucose metabolism in the pancreas and the liver (Baynes, 2015). MODY 

is characterized by a slow onset of symptoms, the absence of obesity, lack of ketosis, and no 

evidence of β-cells autoimmunity (Ozougwu et al., 2013). There are five different forms of 

MODY.  MODY 1, MODY 3 and MODY 5 are caused by mutations in the hepatocyte nuclear 
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transcription (HNF) 4α, HNF-1α and HNF-1β factors respectively. These transcription factors 

are expressed in the liver but also in other tissues including the pancreatic islets and the kidney. 

They affect islet development or the expression of genes important in glucose-stimulated 

insulin secretion and the maintenance of β-cells mass (Baynes, 2015).   

Individuals with MODY 2 have mutations in the glucokinase gene that plays a key role in 

glucose metabolism and insulin secretion and MODY 4 is a rare variant form caused by 

mutations in insulin promoter factor (IPF) 1, which is a transcription factor that regulates 

pancreatic development and insulin gene transcription together with other genes involved in 

glucose metabolism (Gerber et al., 2003). 

 

1.1.6. Complications associated with diabetes 

There are various complications resulting from T1 and T2 DM affecting various parts of the 

body, these complications can be microvascular complications (small vascular injury) affecting 

the retina, kidneys and nerves and macrovascular complications (injury to large blood vessels) 

affecting the heart, brain and veins (Barret et al., 2017) (Table 1). The mechanisms by which 

some of these complications develop is similar to that of people who do not have diabetes but 

diabetic patients have accelerated development due to specific risk factors (Guthrie and 

Guthrie, 2004) (Table 1).  
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Table 1. Complications, risk factors & interventions in Microvascular and macrovascular 

complications of diabetes.  

 

                                                                     MICROVASCULAR 

 

 Risk Factors Screening Methods Therapeutic Interventions  

Retinopathy ➢ Hyperglycaemia 

➢ Hypertension 

➢ Dyslipidemia 

➢ Oxidative stress 

 

➢ Fundal photography 

➢ Ophthalmoscopy 

 

➢ Improved glycaemic 

control 

➢ Laser therapy 

 

Nephropathy 

 

➢ Hypertension 

➢ Dyslipidemia 

➢ Smoking 

➢ Oxidative stress 

 

➢ Urinary 

albumin/creatinine 

ratio 

 

➢ Improved glycaemic 

control 

➢ Blood pressure decrease 

 

Neuropathy 

 

➢ Hyperglycaemia 

➢ Hypertension 

➢ Dyslipidemia 

➢ Oxidative stress 

 

➢ History & physical 

examination 

 

➢ Improved glycaemic 

control 

 

                                                                     MACROVASCULAR 

Diabetic 

cardiomyopathy 

 

Stroke 

 

Peripheral arterial 

disease 

 

➢ Hyperglycaemia 

➢ Hypertension 

➢ Dyslipidemia 

➢ Smoking 

➢ Oxidative stress 

 

➢ Lipid profile every 

5 years 

➢ Blood pressure 

➢ Echocardiology 

➢ Tissue doppler 

imaging (TDI) 

➢ Magnetic resonance 

imaging (MRI) 

➢ Nuclear Imaging  

 

➢ Improved glycaemic 

control 

➢ Blood pressure control 
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1.1.7. Diagnosis, management and current treatment for diabetes mellitus 

Blood glucose criteria is used to diagnose diabetes either by fasting blood glucose levels (FBG) 

(normal 5.6 mmol/L), (prediabetes 5.6-6.9 mmol/L) and (diabetes ≥7.0 mmol/L) or random 

blood glucose levels (normal <11.1 mmol/L) and (diabetes ≥11.1 mmol/L) or the 2 hours blood 

glucose (2h-BG) value after 75 g oral glucose tolerance test (OGTT) whereby (normal <5.6 

mmol/L),(prediabetes 7.8-11.0 mmol/L) and (diabetes ≥ 11.1 mmol/L) (American Diabetes 

Association, 2018). There are various medications approved by the FDA used in the 

management of diabetes (Gourgari et al., 2017) (Table 2). 
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Table 2. Antidiabetic drugs approved by the FDA (Gourgari et al., 2017). 

 

 

CLASS 

MEDICATION 

(DRUG) 

 

CLINICAL EFFECTS 

 

 SIDE EFFECTS 

 

Biguanides 

➢ Metformin ➢ Reduces insulin resistance. 

➢ Increases skeletal muscle 

glucose uptake. 

 

Diarrhoea, metallic 

after taste, nausea 

 

Glucagon-like 

peptide-1(GLP-1) 

receptor agonist 

➢ Exenatide  

  

➢ Increases secretion of insulin 

from the pancreas, delays 

gastric emptying. 

➢ Decreases glucagon release 

after meals. 

 

Nausea, diarrhoea, 

vomiting 

Alpha-glucosidases 

inhibitors 

➢ Acarbose 

➢ Miglitol 

 

➢ Decreases digestion and 

absorption of glucose in the 

intestines. 

Bloating and 

flatulence 

 

Thiazolidinediones 

(TZD) (PPAR γ -

Agonist) 

➢ Pioglitazone  

➢ Rosiglitazone  

 

➢ Increase insulin sensitivity of 

the body cells  

➢ Reduces gluconeogenesis in 

the liver. 

➢ Increases GLUT4 

expression. 

Water retention, 

weight gain, 

increased risk of 

bladder cancer and 

increased risk of non-

fatal heart attack  

 

Sulfonylureas 

➢ Glimepiride  

➢ Gliclazide 

➢ Glyburide 

 

➢ Insulin secretagogues.  Hypoglycaemia (low 

blood sugar) 

Meglitinides ➢ Repaglinide 

➢ Nateglinide 

 

➢ Stimulate the pancreas to 

produce more insulin. 

Hypoglycaemia (low 

blood sugar) 

Dipeptidyl-

peptidase-4 (DPP-4) 

inhibitors 

➢ Saxagliptine 

➢ Sitagliptine 

 

 

➢ Increases secretion of insulin 

by the pancreas. 

➢ Decreases glucagon release 

after meals. 

➢ Block the degradation of 

GLP-1, increasing its half-

life. 

 

Pharyngitis, headache 

Sodium glucose 

cotransporter 2 

(SGLT2) inhibitors 

 

➢ Dapagliflozine  

➢ Empagliflozine 

➢ Canaglifozine 

 

 

➢ Inhibits glucose re-

absorption in the glomerulus 

leading to glycosuria.  

 

Genital and urinary 

infections, frequent 

urination and diabetic 

ketoacidosis. 
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1.2   OXIDATIVE STRESS & HYPERGLYCEMIA 

1.2.1 Hyperglycemia induced oxidative stress 

Oxidative stress is defined as an imbalance between ROS production and antioxidant defence 

mechanisms (Shin et al., 2001; Stykal et al., 2017; Poljšak and Fink, 2014). ROS have the 

ability to damage DNA, lipids and other biomolecules in the body. They can also accelerate 

the development of diseases such as cardiovascular diseases, cancer and diabetes (Valko et al., 

2007).  In diabetes, free radicals are produced from uncontrolled hyperglycaemia through a 

number of mechanisms such as the initiation of the polyol pathway, autoxidation of glucose 

and enhanced formation of intracellular Advanced- Glycation- End -Products (AGEs) (Giacco 

and Brownlee 2010). Weight loss, polydipsia, polyuria blurred vision are some of the 

symptoms associated with diabetes (ADA, 2016). 

 

1.2.2 The Polyol pathway 

This polyol pathway is a major contributor of hyperglycaemia-induced oxidative stress, 

because about 30% of glucose enters this pathway (Cheng and González, 1986) (Fig. 4A).  

Activation of the aldose reductase pathway increases the rate of NADH/NAD+ altering the 

redox potential therefore increasing levels of superoxide ions and decreasing nitric oxide (NO) 

levels leading to oxidative stress that later results in endothelial dysfunction, 

hypercoagulability and inflammation implicated in cardiovascular dysfunction (Koya et. al., 

1998). This initially starts by a conversion of NAD+ to NADH by sorbitol dehydrogenase 

increasing the concentration of NADH which is a substrate for NADH oxidase which can 

produce large amounts of superoxide radicals in the presence of oxygen and other related 

oxidant species (Griendling et. al 2000) (Fig. 4A). If these superoxide radicals are produced in 

large amounts, they can form peroxynitrite when they react with NO, thereby causing a decline 
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in nitric oxide levels (Beckman and Koppenol, 1996; Pacher et al., 2007). NO levels play a 

role in the formation of other oxidants, if levels of NO are normal other oxidants will not be 

formed (Fig. 4 A). The rise in glucose results in an increased level of fructose, this excess 

glucose is transferred into sorbitol by aldose reductase using NADPH as a cofactor. Sorbitol 

dehydrogenase oxidizes sorbitol to form fructose and produce NADH.  The increase in fructose 

concentrations can activate protein kinase C (PKC) whereby glyceraldehyde-3-phosphate 

dehydrogenase is inhibited by poly (ADP-ribose) polymerase due to increased ratio of 

NADH/NAD+, this then favours the production of diacylgycerol which initiates PKC activation 

(Du et. al., 2003) (Fig. 4 A). PKC participates in redox imbalance thereby causing oxidative 

stress and a decrease in NO resulting in an inflammatory response causing endothelial 

dysfunction later leading to cardiovascular dysfunction (Kim et al., 2013) (Fig.4 A). 

 

 



14 
 

Figure 4 A.  Mechanism by which hyperglycaemia leads to oxidative stress, inflammation and 

cardiovascular dysfunction through activation of polyol pathway (aldose reductase pathway) 

(Adapted and modified from Domingueti et al., 2016). 

 

1.2.3 Autoxidation & Protein glycation 

Elevated levels of glucose (hyperglycaemia) lead to the increased production of products such 

as hydroxyl radicals, hydrogen peroxide, and superoxide (Wolff and Dean 1987) (Fig. 4 B). 

All these products bind and damage proteins and lipids by fragmentation as they accelerate the 

formation AGEs (Baynes, 1991; Zhao, 2001) (Fig. 4 B). Protein glycation is a non-enzymatic 

reaction in glucose and amino acid groups of proteins increasing the production of ROS leading 

to oxidative stress and decreased NO resulting into endothelial dysfunction, hypercoagulability 

and inflammation (Aroson and Rayfeild, 2002) (Fig. 4 B). ROS are also are produced when the 

AGEs interact/bind with their cell receptors RAGEs (Creager et al., 2006) (Fig. 4 B). AGEs 

produced in this way cause cellular damage by several mechanisms, proteins changed by these 

precursors attach to the AGE receptors and cause glucotoxicity in cells like endothelial cells, 

monocots/macrophages (Wright et al., 2006). Once these intracellular ROS are generated, it 

further activates the nuclear factor-ҡB (NF-kB) that increases the production of pro-

inflammatory cytokines and pro-coagulant molecules resulting into endothelial dysfunction 

and later cardiovascular dysfunction (Basta et al., 2002; Esposito et al., 2002) (Fig. 4 B). 
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Figure 4 B. Mechanism by which hyperglycaemia leads to oxidative stress, inflammation  

and cardiovascular dysfunction through the production of AGEs (Adapted and modified from 

Domingueti et al., 2016). 

 

1.3 DIABETIC CARDIOMYOPATHY, INFLAMMATION & SIGNALLING 

PATHWAYS 

1.3.1 Diabetic cardiomyopathy 

Diabetes increases the risk of developing cardiovascular diseases (CVDs) such as DCM, 

diabetic dyslipidaemia, coronary artery disease, ischemia and heart failure (Jia et al., 2018). It 

has been recorded that approximately 18 million diabetic patients die from CVDs every year 

(Danaei et al., 2013). DCM affects the myocardium and is characterised by myocardial fibrosis, 

dysfunctional remodelling, hypertrophy and cardiac stiffness (Jia et al., 2018). DCM is one of 
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the major cardiac complications in diabetic patients resulting from hyperglycaemia-induced 

oxidative stress, causing cardiac diastolic dysfunction and systolic dysfunction, later leading to 

heart failure (Jia et al., 2018; Beran and Yudkin, 2010). High levels of ROS lead to oxidative 

damage by interacting with lipids and proteins within the myocardium thus affecting the 

functioning, growth and repairing abilities of cardiomyocytes (Beran and Yudkin, 2010).  

 

1.3.2 Pathophysiology of diabetic cardiomyopathy 

Hyperglycemia, fatty acids and IR activate multitude cellular mechanisms in the myocardium 

and when the cardiomyocytes fail to assimilate glucose it is converted into AGEs, hexosamine 

and polyols which activate pro-inflammatory and pro-oxidant responses (Milwidsky et al., 

2015) (Fig. 5). As a compensatory mechanism fatty acid transporter are increased since ATP 

generation relies on fatty acid degradation. The free fatty acids (FFA) are taken up in large 

amounts and some saturate β-oxidation and accumulate in the cytosol as toxic secondary 

metabolites such as ceramides, diglycerides (DAG) and ROS (Lorenzo-Almoros et al., 2017) 

(Fig. 5). Lipo/gluco-toxicity and lack of ATP production promote calcium imbalance between 

the sarcoplasmic reticulum and cytosol, reducing actin-myosin complexes, triggering chronic 

inflammation, fibrosis and contractile dysfunction. FFA also bind to the Peroxisome 

Proliferator- Activated receptors (PPAR) to upregulate mitochondrial beta-oxidation enzymes 

which produce ROS and non-efficient ATP, triggering apoptosis and mitochondrial 

dysfunction (Bugger et al., 2014). All these stimuli promote the expression of miRNAs, pro- 

fibrotic and pro-hypertrophic factors which may have paracrine and autocrine effects on the 

adipocytes and myofibroblasts (Lorenzo-Almoros et al., 2017) (Fig. 5). 
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Figure 5.  Pathophysiology of diabetic cardiomyopathy (Lorenzo-Almoros et al., 2017). (UR 

Unspecific receptors, TLRs Troll like receptors, IGFBP-7 Insulin-like growth factor binding 

protein-7, TGFβ Transforming growth factor beta, IGF-1 Insulin growth factor -1, TnI 

Troponin I/T, CT-1 Cardiotropin-1, ANP Atrial natriuretic, BNP Brain natriuretic peptide) 

1.3.3 Developmental stages of diabetic cardiomyopathy 

DCM occurs through progressive metabolic disturbances. In the early stages, structural and 

functional defects are apparent (Fang et al., 2004). DCM is clinically asymptotic in its early 

stages due to hyperglycaemia which increases the levels of antioxidants in the heart muscle as 

a compensatory mechanism (Boudina and Abel, 2010). The early stages of DCM are 

characterised by increased stiffness and Left Ventricular (LV) diastolic pressure. The 
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underlying pathological factors include cardiac insulin resistance, increased FFA levels, 

inflammation, imbalanced calcium levels and oxidative stress (Jia et al., 2018) (Fig. 6). 

The later stages of DCM show visible symptoms and antioxidant depletion leaving the 

myocardium exposed to free radicals (Gilica et al., 2017; Boudina and Abel, 2010). The 

complications in the later stages of DCM include left ventricular hypertrophy (LVH), impaired 

diastolic filling, arterial filling and relaxation, cardiac remodelling and fibrosis and as the DCM 

stages progress ischemic heart diseases develop leading to heart failure (Jia et al., 2018) (Fig. 

6). 

 

 

Figure 6. Different stages of the development of diabetic cardiomyopathy (Fang et al., 2004). 
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1.3.4 Other diabetes associated cardiovascular complications 

1.3.4.1 Diabetic dyslipidaemia 

Hyperglycaemia and defects in insulin action result in changes in plasma lipoproteins in 

diabetic patients, leading to increased risk of developing DCM compared to non-diabetic 

individuals (Adiels et al., 2008). High density lipoproteins (HDL) assists the body in the 

removal of excess cholesterol preventing atherosclerosis development (Wang et al., 2018). 

Whereas low density lipoproteins (LDL) favours the build-up of cholesterol resulting into the 

clogging of arteries causing atherosclerosis (Basta et al.,2004).  Dyslipidaemia is defined by 

overproduction of very low-density lipoprotein (VLDL) particles, lower levels of HDL and 

higher levels of LDL and triglycerides (TG) (Mulvihill et al., 2009; Schofield et al., 2016).  

 

1.3.4.2 Atherosclerosis and Coronary heart disease 

Type 1 & Type 2 diabetes both lead to the development of coronary heart disease, stroke, 

microvascular disease and accelerated atherosclerosis which have become the main cause of 

morbidity and mortality in diabetic patients worldwide (Basta et al., 2004). Atherosclerosis 

affects the functioning of multiple arteries in the body such as coronary arteries, brain arteries, 

renal arteries and carotid arteries (Orhan et al., 2015; Wang et al., 2018). Atherosclerosis is a 

chronic inflammatory condition in the blood vessels resulting in the formation of atheromatous 

plaques in the endothelial lining within the blood vessels causing stiffness and dysfunction of 

the endothelial cell lining (Chowdhury et al., 2010; Ali et al., 2010). Hypercholesterolemia is 

considered as one of the major contributors to atherosclerosis, by causing damages to the 

permeability of the endothelium which allows migration of lipids, such as LDL particles 

(Biddinger et al., 2008; Bergheanu et al., 2017). Atherogenic dyslipidaemia is one of the major 

causes of coronary atherosclerosis and coronary heart disease (CHD) and is characterised by 
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increased plasma concentrations of TG, very low density lipoproteins (VLDL), cholesterol –

rich LDL and low levels of high density lipoproteins (Mulvihill et al., 2010). 

1.3.4.3 Ischemia and Heart failure 

Hypertension, diabetes and hypercholesterolemia increase the risk of ischemia-reperfusion (I-

R) injury and heart failure (Collard and Gelman, 2001). Myocardial ischemia is caused by 

reduced blood flow to the coronary arteries, due to atherosclerosis (Han et al., 2009). The 

narrowing of blood vessels or plaque build-up cause insufficient flow of blood resulting in 

decreased cellular oxidative phosphorylation leading to failure in producing ATP and 

phosphocreatine (Bai et al., 2014) (Aziz and Yadaz, 2016). This affects the functioning of the 

ionic pump allowing calcium, sodium and water uptake, this cellular oxidative imbalance 

causes accumulation of ROS (Crossman, 2004) (Kara et al., 2014). 

 

1.3.5 Inflammation associated with diabetes 

Inflammation is characterized by swelling, redness and warmth in response to metabolic 

disturbances (Scott et al., 2004). The most dominant pro-inflammatory mediators responsible 

for initiating inflammation in various organs in the body include tumour necrosis factor (TNF-

α), interleukin-1beta (IL-1β), interleukin-6 (IL-6) and other pro-inflammatory cytokines and 

chemokines (Akash et al., 2018).  

Diabetes and hyperglycaemia alter plasma concentrations of pro-inflammatory markers 

following oxidative stress (Hansen et al., 2010; Brownlee, 2005). Diabetes leads to increased 

production of a non-specific C-reactive protein (CRP) (Fröhlich et al., 2000). Its production by 

the liver is increased during inflammation or acute infection, and it has been suggested that 

type II diabetes causes acute inflammation where there is increased release of adipokines 

(Schultz and Arnold, 1990; Pickup and Crook, 1998). Increased interlukin 6 and CRP 
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sometimes predict diabetic complications (Su et al., 2011). Increase in these cytokines 

especially TNF- α does not only affect insulin action but may also cause beta-cell failure 

(Moreli et al., 2015; Domingueti et al., 2016).  

1.4 PHARMALOGICAL EFFECTS OF NARINGENIN 

1.4.1 Medicinal plants vs Modern medicines 

Medicinal plants have bioactive compounds which can be extracted from morphological parts 

and used as medicinal agents. Medicinal plants play a vital role in ethnopharmacological health 

systems all over the world (Hosseinzadeh et al., 2015). They are considered as rich sources of 

ingredients that can be used in the development and production of drugs. They serve as 

reservoirs for bioactive compounds that are vital to human health (Mosa et al., 2015). Herbal 

medications can be suitable alternatives in combination with other fractional replacements for 

conventional medicines (Zhao et al., 2015). 

According to World Health Organisation, about 80% of the world’s population is using 

medicinal plants and currently there is increased interest in the discovery of plant-derived 

antidiabetic drugs especially in Africa (Piero et al., 2012). Herbal treatments are used mostly 

in developing countries since they are cheaper (Wadkar et al., 2008). Galega officinalis L. 

(Fabaceae) (also called French lilac) was the first medicinal plant to be described with clear 

antidiabetic properties, the plant has been used to treat diabetes ever since the Middle Ages and 

synthetic products made from this plant include metformin (Bedekar et al., 2010). 

 

1.4.2 Naringenin 

Phenolic compounds and flavonoids are known as secondary metabolites of plants, they have 

an aromatic ring consisting of at least one hydroxyl group (Tungmunnithum et al., 2018). Over 

8000 phenolic compounds occur naturally as substances from plants and a majority of these 
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compounds are classified as flavonoids occurring as aglycone, glycosides and methylated 

derivatives (Yao et al., 2004). Flavonoids are commonly found in vegetables and fruits they 

are characterized by a benzo-y-pyrone structure and vary in the structure of heterocyclic 

oxygen ring but all have the same C6-C3-C6   carbon skeleton (Corradini et al., 2011) (Fig. 7). 

 

 

Figure 7. Whole grape fruit and the structure of naringenin (Corradini et al., 2011).                                  

Flavonoids include flavones, flavanones, flavonols, isoflavones, anthocyanidins, and flavanols. 

They are regarded as potent antioxidants, free radical scavengers, metal chelators and inhibitors 

of lipid peroxidation (Ramprasath et al., 2014; Cook and Samman, 1996). By scavenging ROS, 

flavonoids limit the perpetuation of oxidative stress and prevent the formation of ROS (Cavia- 

Saiz et al., 2010). Naringenin (4, 5, 7-trihydroxyflavonon) is a flavonoid abundant in citrus 

fruits, and the skin of tomatoes (Fig.7).  

Naringenin is an aglycone of naringin following hydrolysis by naringinase. Naringin is 

hydrolyzed by α-L-rhamnosidase of naringinase to rhamnose and prunin, the prunin formed is 

then hydrolyzed by β-D-glucosidase forming naringenin and glucose (Ribeiro et al., 2008) (Fig. 

8). 
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Figure 8. Enzymatic hydrolysis of naringin to produce naringenin (Thomas et al., 1958, 

Ribeiro et al., 2008) 

Naringenin possess pharmacological effects such as anti-hypersensitive, hypolipidemic, anti- 

diabetic, anti-fibrotic, hepatoprotective and cardioprotective properties (Ramprasath et al., 

2014) (Fig. 9). Naringenin increases the expression of PPAR-γ and promotes peripheral 

glucose uptake by increasing GLUT-4 translocation (Mahmoud and Hussein, 2016) (Fig. 9).  

As a result, naringenin as a dietary supplement could mitigate hyperglycemia-induced 

oxidative stress which has been implicated in the development of DCM.  
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Figure 9.  Anti-diabetic mechanism of naringenin (Mahmoud and Hussein, 2016). (NO Nitric 

oxide, GSH-GPx Glutathione peroxidase, SOD Superoxide dismutase, LPO Lipid 

peroxidation, CAT Catalase, PPARγ Peroxisome proliferator gamma, IL Interleukin) 
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1.5 HYPOTHESIS, AIM & OBJECTIVES 

1.5.1  Hypothesis 

Rats with STZ induced diabetes treated with naringenin experience less cardiac oxidative stress 

than untreated rats.  

 

1.5.2  Aim 

 To investigate the effects of naringenin on oxidative stress parameters in cardiac muscles of 

diabetic rats. 

 

1.5.3 Objectives 

• To determine the effect of naringenin on the different biochemical (enzymes) and 

biological (cytokines) parameters that help to explain the oxidative stress that leads to 

cardiomyopathy. 

• To compare the effect of naringenin on heart/body weight ratio and left ventricular 

weight/heart weight ratio of normal and diabetic rats treated with naringenin and 

insulin.  
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CHAPTER 2: MATERIALS & METHODS 

2.1 EXPERIMENTAL  

2.1.1    Materials and methods 

All the Enzyme Linked Immuno-Sorbent Assay (ELISA) and colorimetric assay kits were 

purchased from Biocom Africa Diagnostics, South Africa (SA). Unless otherwise stated, all 

the chemicals and reagents were purchased from Sigma Aldrich TM SA. The glucometer, 

glucometer test strips and insulin were purchased at the local pharmacy, Durban, SA. 

2.1.2  Reagents and chemicals 

➢ Sodium citrate dehydrate  

➢ pH meter (Crison Basic 20, pH-meter, crison instruments, SA) 

➢ Sodium chloride  

➢ DiSodium hydrogen phosphate  

➢ Glucometer and glucometer strips (OneTouch Select®; Lifescan Inc., Milpitas, 

California, USA) 

➢ EZ 400 Microplate Reader (Biochrom® Ltd, Cambridge, UK) 

➢ Z383k Hermle centrifuge (Labortechnik, Germany) 

2.1.2.1 Naringenin preparation 

Commercial powdered naringenin extract (3.0 g) was dissolved in 100 ml of distilled water due 

to its poor solubility it formed a suspension. 

2.1.2.2 Preparation of citrate buffer (0.1 M, pH 4.5) solution  

Citric acid crystals (1.92 g) and sodium citrate dehydrate (2.94 g) were dissolved in 100 ml of 

distilled water.  
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After these two separate solutions were prepared, they were mixed together and the pH was 

adjusted to 4.5 pH. 

2.1.2.3 Preparation of streptozotocin solution 

STZ (504 mg) was dissolved in 28 ml of citrate buffer (18 mg/ml) and administered at 60 mg/kg 

BW to the rats. 

2.1.2.4 Preparation of normal saline (0.9 % NaCl) solution  

 Sodium chloride (0.9 g) was dissolved in 100 ml of distilled water. 

2.1.2.5 Preparation of D-glucose 

This solution was prepared by dissolving (18.75 g) of D-glucose anhydrous in 50 ml normal 

saline (0.38 g/ml). 

2.1.2.6 Preparation of phosphate buffered saline (PBS) 

This solution was prepared by dissolving (8.0 g) sodium chloride, (200 mg) of potassium 

chloride, diSodium hydrogen phosphate (1.44 g) and (240 mg) of potassium dihydrogen 

phosphate into distilled water. The volume was brought up to one liter (1 L) and pH was 

adjusted to 7.4.  

2.1.2.7 Preparation of Lysis buffer 

Tris-HCL (50 mM) and EDTA (2 mM) were added into distilled water and brought up to 100 

ml, pH was adjusted to 7.4. 

 

2.1.3 Experimental animals 

Male Wister rats (250-300g) were obtained from the Biomedical Research Unit (BRU) of the 

University of Kwa-Zulu Natal (UKZN), Durban, SA and they were divided into six groups 

(n=7). The rats were given one week to acclimatize to their new environment before the study 

commenced. Temperature at (23-25℃), humidity (55-60%) and 12-hour day-light/dark cycle 
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throughout the study period were maintained. The rats were given ad libitum access to food 

and water and they were treated in humane manner following animal treatment guidelines 

provided by the Animal Research Ethics committee of the UKZN, Ethical clearance number: 

AREC /067/018M. 

2.1.4  Experimental design 

Groups I and IV were orally treated with 3.0 ml/ kg Body Weight (BW) of distilled water and 

100 mg/kg BW of naringenin in distilled water, respectively. Groups II, III, V and VI were 

made diabetic by a single intraperitoneal injection of 60 mg/kg BW streptozotocin and similarly 

treated with naringenin except group VI which was treated with insulin 2.0 U/kg BW (Table 

3). Three days after STZ injection, the rats were fasted overnight and the development of 

diabetes was confirmed using tail pick method to check blood glucose levels using the 

glucometer and glucometer strips. Rats with fasting blood glucose (FBG) of more than 11.0 

mmol/L were included in the study and those with FBG bellow were excluded from the study, 

the rats were fed and treated for a period of 56 days (Fig. 10). The animals were weighed every 

week and water intake was measured every day. 

On day 56 of the study glucose tolerance tests (GTT) were carried out by overnight fasting 

followed by intraperitoneal injection of D-glucose (3.0 g/kg BW) dissolved in 0.9% normal 

saline. Blood droplets mounted on glucometer strips were collected via tail pricks and then 

glucose levels measured at time intervals of 0, 30, 60, 90, and 120 minutes, by glucometer 

machine. Blood glucose time plots were done and the Area Under the Curve (AUC), expressed 

as AUC units [time (min)x blood glucose (mM)]. 

On day 57, the animals were euthanized by isoflurane overdose, blood samples were collected 

using cardiac puncture in heparinized tubes then separated into plasma and stored at -20˚C for 

further biochemical analysis. The hearts were quickly excised and washed in ice-cold 
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phosphate buffered saline (PBS). LVs were dissected and weighed. The tissues were snap 

frozen in liquid nitrogen and stored at -80℃ for further analysis (Fig. 10). The LV tissue 

homogenates were prepared by cutting (100 mg) of tissue and it was inserted into a 

microcentrifuge tube and 500 µl of lysis buffer was added and an electric homogeniser was 

used to homogenise the tissue, the tissue samples were immediately snap frozen in -80℃. 

 

 

Table 3. Animal treatment protocol 

(Group III received STZ treatment before naringenin treatment and group V received 

naringenin treatment before STZ treatment and naringenin treatment again.) 

 

 

 

Groups 

of rats 

 

 

Water 

(3.0 ml/kg 

BW) 

 

 

Streptozotocin 

(60 mg/kg BW) 

 

 

Naringenin 

(100 mg/kg 

BW) 

 

 

Streptozotocin 

(60 mg/kg BW)  

 

 

 

 

Naringenin 

(100 mg/kg 

BW) 

 

 

Insulin 

 (2 U/kg BW) 

     I           X      

    II             X     

   III             X          X    

   IV                X     

    V            X X X  

    VI             X             X 
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Figure 10. Schematic summary of methodology.  

 

2.1.5 Plasma insulin and HOMA IR 

Rat insulin (ELISA) assay was done by using the sandwich-ELISA principle to measure plasma 

insulin concentrations as per the manufacturer’s instructions. In a 96 well plate (100 µl) of the 

standard and samples was pipetted in triplicates in the wells and the plate was incubated for 90 

minutes at 37 ℃. The liquid in the wells was aspirated and (100 µl) of the biotinylated detection 
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working solution was added, the plate was incubated at 37 ℃ for one hour. The liquid was 

aspirated again and the plate was washed three times using (350 µl) wash buffer , the plate was 

blotted dry on absorbent paper, HRP conjugate working solution (100 µl) was added in the 

wells and incubated for 30 minutes at 37 ℃, the liquid was aspirated and the plate was washed 

5 times using the wash buffer. After the final wash (90 µl) of the substrate reagent was added 

and the plate was incubated for 15 minutes at 37 ℃. The reaction was stopped by the addition 

of (50 µl) stop solution and optical density (OD) was measured at 450 nm using the EZ 400 

microplate reader, fasting plasma insulin is expressed in (μ IU ml/L). 

Insulin resistance was calculated  using the Homeostasis Model Assessment of Insulin 

resistance (HOMA-IR) equation ( Salgado et al., 2010).  

Insulin Resistance =
FPI x FBG

22.5
, where FPI: Fasting Plasma insulin (μ IU ml/L), and FBG: 

Fasting Blood Glucose (mM). 

 

2.1.6 Antioxidant Assays  

2.1.6.1 Catalase (CAT) Assay  

Catalase (CAT) is an antioxidant enzyme and it catalyses the detoxification of hydrogen 

peroxidase (H2O2) (a reactive oxygen species) forming water and oxygen molecule (Kaushal 

et al., 2018).  

                                                     

The CAT assay kit (Biocom Africa Diagnostics, SA) was used to measure the CAT activity in 

the tissue homogenate samples of the heart, following the manufacturer’s protocol. In this kit, 

(H2O2) reacts with ammonium molybdate used to stop the decomposition reaction above 

forming a yellowish complex used to calculate CAT activity using the measured OD. The kit 
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contained reagents such as: buffer solution (1.0 ml), substrate solution (0.1 ml), chromogenic 

agent (1.0 ml) and clarificant (0.1 ml) ,these reagents were pipetted in appropriate amounts into 

different tubes separated into control tubes and sample tubes containing the tissue homogenate 

samples, all the mixtures were incubated for 5 minutes at 37 ℃. Following the protocol, 

appropriate reagents were added continuously and the mixtures were incubated again for 1 

minute at 37 ℃. The tubes containing the mixtures were allowed to stand for 10 minutes at 

room temperature and OD was measured at 405 nm with 0.5 cm diameter cuvettes using the 

ThermoSpectronic spectrophotometer. Catalase activity (U/mgprot) was calculated using the following 

formula: CAT activity (U/mgprot) = (ODControl − ODSample) × (32.5 /1 × the volume of sample) × 

Dilution factor of sample before tested ÷ Protein concentration of tested sample (𝑚𝑔𝑝𝑟𝑜𝑡/𝑚𝐿). 

2.1.6.2 Superoxide Dismutase (SOD) Assay  

Superoxide Dismutase (SOD) catalyses the breakdown of superoxide (O2
-) radical into 

hydrogen peroxide (H2O2) or oxygen (O2) molecules (Indo et al., 2015). The activity of SOD 

was measured using the SOD assay kit (Biocom Africa Diagnostics, SA), following the 

manufacturers protocol. In the SOD assay kit superoxide ions are produced when xanthine and 

(O2) are converted into uric acid and (H2O2), this reaction is catalysed by xanthine oxidase 

(XOD). Tetrazolium salt is converted into formation dye by a superoxide anion, superoxide 

levels are reduced by the addition of SOD into the reaction, this decreases the levels of 

formazan dye formation. Therefore, in experiments SOD activity is measured as the inhibition 

percentage of the level of formazan dye production (Tulcan et al., 2013). 
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In a 96 well plate (20 µl) of the sample (tissue homogenate) was pipetted into the appropriate 

sample wells. Distilled water (20 µl) was pipetted into the control and blank wells of the plate. 

Thereafter (20 µl) of the enzyme working solution, enzyme diluent and substrate application 

solutions were added into the appropriate sample and control wells following the 

manufacturer’s instructions. The mixtures were mixed fully and incubated at 37 ℃ for 20 

minutes. Thereafter the OD was measured at 450 nm using the EZ 400 microplate reader 

(Biochrom Ltd, Cambridge, UK). SOD activity (U/mg prot) was calculated using the formula provided 

in the kit: Inhibition ratio of SOD (%) = [(A Control-A Blank control) -(A Sample-A Blank sample)/ A 

Control-A Blank control] ×100%. SOD activity (U/mg prot) = Inhibition ratio of SOD (%) ÷ 50% × ( 

240 μL/20 μL ) × Dilution factor of sample before tested ÷ Protein concentration of sample (mgprot/mL) 

2.1.6.3 Glutathione Peroxide (GPx) Assay  

Glutathione peroxidase (GPx) is an antioxidant that catalyses the breakdown of hydrogen 

peroxide (H2O2). GSH-Px catalyses the reaction of (H2O2) and reduced glutathione (GSH) to 

produce water molecules and oxidised glutathione (GSSG) (Kalpakcioglu and Senel, 2008). 
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The amount of GPx was measured using the GPx assay kit (Biocom Africa Diagnostics, SA) 

following the manufacturer’s instructions. Glutathione activity can be calculated by the 

consumption of reduced glutathione. The appropriate amount of tubes for the samples were 

used and they were separated into two groups of non-enzyme tubes and enzyme tubes, (0.2 ml) 

of 1 mmol/L GSH solution was added into the tubes containing the homogenate samples 

(enzyme tubes) and those without. These tubes were preheated at 37 ℃ in a water bath for 5 

minutes. Thereafter (0.1 ml) of the reagent application solution was added into the tubes. The 

tubes were heated in a 37℃-water bath again for another 5 minutes. An acid reagent (2.0 ml) 

was added at the end of the enzymatic reaction. The mixtures were centrifuged at 3100 g using 

the Z383k Hermle centrifuge for 10 minutes and (1.0 ml) of the supernatant was used to initiate 

the chromogenic reaction. Appropriate tubes were assembled according to the number of 

samples and the tubes were separated into blank tubes, standard tubes, non-enzyme tubes and 

enzyme tubes. GSH standard application solution (1.0 ml) was added into the appropriate tubes, 

(1.0 ml) of 20 µmol/L GSH standard solution was also added. The (1.0 ml) supernatant was 

added into the appropriate tube and (1.0 ml) of the application, solution was also added into 

the tubes. DTNB solution (0.25 ml) was added into all the tubes, (0.05 ml) salt reagent 

application solution was added at the end. The mixtures were allowed to stand for 15 minutes 

at room temperature, and the OD was measured at 412 nm using the ThermoSpectronic 

spectrophotometer. The GPx activity (nmol/mgprot) was calculated using the following 

formula: GSH − PX = (OD Non-enzyme tube-OD Enzyme tube)/ (OD Standard-OD Blank) × 

20 μmol/L × f2 × f ÷ (V × Cpr) where: f: dilution factor of sample before tested, f1: dilution 

factor of serum/plasma in enzymatic reaction (6 times) and Cpr: concentration of protein in 

sample (mgprot/mL). 
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2.1.6.4 Thiobarbituric Acid Reactive Substances (TBARS) Assay 

Thiobarbituric acid reactive substances assay was carried out in cardiac tissue homogenates as 

per the modified method previously described by Halliwell and Chrico in 1993 (Halliwell and 

Chirico, 1993; Adebiyi et al., 2016).  Left ventricular tissues (100 mg) were homogenised in 

(500 µl) of 0.2 % phosphoric acid. This homogenate mixture was centrifuged for 5 minutes at 

a temperature of 4℃ at 1600 g. Cardiac tissue supernatants (200 µL) were placed in new test 

tubes and (5 µl) of 2 % phosphoric acid, (400 µl) of 7 % phosphoric acid and (400 µl) of 

BHT/TBA solutions were added into the tubes as well. Hydrochloric acid 1.0 M (400 µl) was 

used to initiate the reaction and test tubes were then boiled at 100℃ in a water bath for 15 

minutes and the tubes were allowed to cool down at room temperature. n- butanol (1.5 ml) was 

then added into each test tube and mixed thoroughly and allowed to settle. Top phase (200 µl) 

was pipetted into a 96 well microplate in triplicates. The OD was measured at 532 nm and 600 

nm using the EZ 400 microplate reader. The concentrations MDA were calculated from the 

differences between the absorbances measured at 532 nm and 600 nm using an extinction 

coefficient of 1.56 x 105 cm-1M-1 and the MDA concentrations were expressed in 

(nmol/mgprot). 

2.1.7 Inflammatory cytokine tests 

2.1.7.1 Tumor Necrosis Factor Alpha (TNF- α) ELISA Assay 

Rat TNF-α (ELISA) kit using the sandwich-ELISA principle was used to determine the plasma 

TNF-α concentrations following the manufacturer’s protocol. In a 96 well plate (100 µl) of the 

standard and plasma samples was pipetted in triplicates in the wells and the plate was incubated 

for 90 minutes at 37 ℃. The liquid in the wells was aspirated and (100 µl) of the biotinylated 

detection working solution was added, the plate was incubated at 37 ℃ for one hour. The liquid 

was aspirated again and the plate was washed three times using (350 µl) wash buffer , the plate 

was blotted dry on absorbent paper, HRP conjugate working solution (100 µl) was added in 
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the wells and incubated for 30 minutes at 37 ℃, the liquid was aspirated and the plate was 

washed 5 times using the wash buffer. After the final wash (90 µl) of the substrate reagent was 

added and the plate was incubated for 15 minutes at 37 ℃. The reaction was stopped by the 

addition of (50 µl) stop solution, optical density (OD) was measured at 450 nm using the EZ 

400 microplate reader. TNF-α is expressed in pg/mL. 

2.1.8 Cardiac mass estimation  

LVs were dissected, weighed and the heart weight/body weight ratio (mg/g) and Left 

Ventricular Weight (LVW) /heart weight ratio (mg/g) were calculated. 

 

2.1.9 Statistical analysis  

Data was expressed as mean ± standard deviation. Unpaired t-tests with Welch’s correction or 

One-way ANOVA was used to determine statistical significance. GraphPad Prism® Software 

Version 8.0. (Graphpad Prism® Software, Inc. San Diego, CA, USA) was used to compare 

statistical difference between control and treatment groups. Values of p < 0.05 were considered 

statistically significant. 
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CHAPTER 3: RESULTS 

3.1 EVIDENCE OF DIABETES 

3.1.1 Weight gain 

The untreated diabetic group showed significantly (p < 0.0001) reduced weight gain compared 

to controls (Fig. 11). However, the naringenin or insulin treatment of diabetic rats significantly 

(p < 0.05) reduced weight loss compared to untreated diabetic group. Naringenin pre-treatment 

significantly (p < 0.05) showed improved body weights compared to naringenin post STZ 

treatment (Fig. 11). Naringenin treatment significantly (p < 0.0001) maintained a steady weight 

gain compared to controls. 

Figure 11. Changes in live body weights between days 0 and 57 of treatment (*, #p < 0.0001 

compared to control, ^, @ p < 0.05 compared to STZ group and &p < 0.05 compared to STZ+ 

NAR group).  

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR),Naringenin+Streptozotocin+Narigenin(NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 

  * 
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3.1.2 Water intake  

Average daily water consumption per gram body weight was significantly (p < 0.0001) 

increased in the untreated diabetic group when compared to the controls. However, the 

naringenin or insulin treated groups showed a significantly (p < 0.05) decreased water 

consumption compared to untreated diabetic group (Fig. 12). Naringenin pre-treatment 

significantly (p < 0.05) showed reduced water intake compared to naringenin post STZ 

treatment (Fig. 12). 

 

Figure 12.  Average daily water intake per gram body weight in all treatment groups (****p < 

0.0001 compared to control group, @ p < 0.05 compared to STZ group and &p < 0.05 compared 

to STZ + NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.1.3 Fasting blood glucose  

FBG concentrations were significantly (p < 0.05) elevated in the untreated diabetic group 

compared to the controls. Naringenin or insulin treatment significantly (p < 0.05) reduced FBG 

concentrations compared to untreated diabetic group (Fig. 13). Naringenin pre-treatment had 

no statistical significance when compared to naringenin post STZ treatment (Fig. 13). 

 

 Figure 13. Fasting blood glucose concentrations (***p <0.05 compared to control group, 

 # #, # # #p < 0.05 compared to STZ group). 

 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.1.4 Glucose tolerance test (GTT) & Calculated Area under the curve (AUC) 

The untreated diabetic rats presented with impaired glucose tolerance (Fig. 14 A). Calculated 

area under the curve (AUC) showed untreated diabetic rats significantly (p<0.0001) had more 

glucose intolerance compared to control (Fig. 14 B). Treatment with naringenin did not 

improve glucose intolerance. However, insulin treatment significantly (p < 0.05) improved it 

(Fig. 14 A & B). 

 

                      A                                                                                                 B 

 

Figure 14. Glucose tolerance tests (GTT) in various treatment groups. A) Blood glucose 

concentrations vs time (GTT curves) B) Calculated AUC from the GTT plots (****p < 0.0001 

compared to control group and # p < 0.05 compared to STZ group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.2 INSULIN RESISTANCE 

3.2.1 Fasting plasma insulin 

FPI concentrations were significantly (p<0.05) reduced in diabetic untreated group compared 

to the controls, while naringenin or insulin treatment significantly (p<0.05) improved FPI 

concentrations compared to untreated diabetic group (Fig. 15). Naringenin pre-treatment 

significantly (p< 0.05) improved FPI concentrations compared naringenin post STZ treatment 

(Fig.15). 

 

Figure 15. Fasting plasma insulin concentrations (****p < 0.05 compared to control group, 

@p < 0.05 compared to STZ group and 
&

p < 0.05 compared to STZ+ NAR group).  

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.2.2 HOMA-IR  

Calculated HOMA-IR was significantly (p<0.0001) elevated in untreated diabetic group 

compared to controls (Fig. 16). However, naringenin or insulin treatment of diabetic groups 

significantly (p<0.05) decreased HOMA-IR values compared to untreated diabetic rats, 

respectively. Naringenin pre-treatment significantly (p < 0.05) reduced HOMA-IR compared 

to naringenin post STZ treatment (Fig. 16). 

 

Figure 16. Homeostasis Model Assessment (HOMA) of insulin resistance in all treatment 

groups (****p < 0.0001 compared to control group, @ p < 0.05 compared to STZ group and 

&p < 0.05 compared to STZ+ NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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 3.3 ANTIOXIDANT STATUS 

3.3.1 Thiobarbituric Acid Reactive Substances (TBARS) 

Cardiac tissue MDA (marker of Lipid peroxidation) levels were significantly (P<0.05) 

increased in the untreated diabetic group compared to the control. Naringenin or insulin treated 

diabetic groups had significantly (p<0.05) decreased MDA concentrations compared to the 

untreated diabetic group. Naringenin pre-treatment significantly (p<0.0001) decreased MDA 

concentrations compared to naringenin post STZ treatment (Fig. 17). 

Figure 17. MDA concentrations were measured as an index of lipid peroxidation in all the 

treatment groups (****p < 0.05 compared to control, @p < 0.05 compared to STZ group and & 

p < 0.0001 compared to STZ+NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.3.2 Catalase (CAT) activity 

Cardiac tissue catalase activity was significantly (p<0.05) reduced in the untreated diabetic 

group compared to the controls (Fig.18). However, naringenin or insulin treatment showed a 

significantly (p<0.0001) increased catalase activity compared to untreated diabetic rats. 

Naringenin pre-treatment significantly (p < 0.05) improved catalase activity compared to 

naringenin post STZ treatment (Fig. 18). 

 

Figure 18. Catalase activity in all treatment groups (#p < 0.05 compared to control group, @p 

< 0.0001 compared to STZ group and &p < 0.05 compared to STZ + NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.3.3 Superoxide dismutase (SOD) activity 

Cardiac tissue SOD activity was significantly (p<0.05) decreased in the untreated diabetic 

group compared to the control group (Fig. 19). However, naringenin or insulin treatment 

significantly (p<0.05) increased SOD activity compared to untreated diabetic group. 

Naringenin pre-treatment significantly (p<0.05) improved SOD activity compared to 

naringenin post STZ treatment (Fig.19). Naringenin treatment of non-diabetic rats significantly 

(p < 0.05) increased SOD activity compared to controls. 

 

Figure 19. Superoxide dismutase (SOD) activity in all the treatment groups (**, # p < 0.05 

compared to control group, @p < 0.05 compared to STZ group and & p< 0.05 compared to STZ 

+ NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.3.4 Glutathione peroxidase (GPx) activity 

Cardiac tissue glutathione peroxidase (GPx) levels significantly (p<0.0001) decreased in the 

untreated diabetic group compared to the control (Fig. 20). However, a significant (p<0.05) 

increase was observed in the naringenin or insulin treated groups compared to the untreated 

diabetic group. Naringenin pre- treatment significantly (p<0.0001) increased GPx activity 

compared to naringenin post STZ treatment group. Naringenin treatment also showed a 

significant (p<0.0001) increase in GPx activity when compared to control group (Fig. 20).  

Figure 20. Glutathione peroxide (GPx) activity in all the treatment groups (****, #p < 0.0001 

compared to control group, @ p < 0.05 compared to STZ group and &p < 0.0001 compared to 

STZ +NAR group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS) 
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3.4 INFLAMMATORY CYTOKINE LEVELS 

3.4.1 Tumor Necrosis Factor Alpha (TNF- α) activity 

Cardiac tissue TNF-α activity significantly (p<0.05) increased in the untreated diabetic group 

compared to the control. Naringenin or insulin treatment of diabetic rats significantly (p<0.05) 

decreased TNF-α compared to untreated diabetic rats. Naringenin pre-treatment significantly 

(p<0.05) decreased TNF-α activity compared to naringenin post STZ treatment (Fig.21). 

 

Figure 21. Tumor necrosis factor alpha (TNF-α) activity in all treatment groups (****p < 0.05 

compared to control group, # p< 0.05 compared to STZ and &p< 0.05 compared to STZ+NAR 

group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.5 Cardiac mass: Body mass ratio 

3.5.1 Heart weight/ Body weight ratio 

Untreated diabetic rats showed significant (p<0.05) increase in the HW/BW and LVW/HW 

ratios compared to the control group (Fig. 22 and 23). Naringenin or insulin treated diabetic 

groups showed a significant (p<0.05) decrease in the HW/BW and LVW/HW ratios compared 

to the untreated diabetic group, respectively. Naringenin pre-treatment significantly (p<0.05) 

decreased the HW/BW ratio compared to naringenin post STZ treatment (Fig.22).  

 

Figure 22. Calculated HW: BW ratio (****p < 0.05 compared to control group, 
#
p < 0.05 

compared to STZ group and 
&

p < 0.05 compared to STZ+NAR group). 

 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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3.5.2 Left ventricular weight/ Heart weight ratio  

 

Figure 23. Left ventricular weight to heart weight ratio (LVW/HW), (****p < 0.05 compared 

to control group, 
#
p < 0.05 compared to STZ group and &p<0.05 compared to STZ+NAR 

group). 

Normal control (NC), Naringenin (NAR), Streptozotocin (STZ), Streptozotocin+Naringenin 

(STZ+NAR), Naringenin+Streptozotocin+Narigenin (NAR+STZ+NAR), 

Steptozotocin+Insulin (STZ+INS). 
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CHAPTER 4: DISCUSSION OF RESULTS 

4.1 DISCUSSION 

Diabetes is a multifaceted metabolic disorder with characteristic changes of glucose 

metabolism resulting in increased production of ROS (Kapoor and Kakkar, 2014). Increased 

ROS causes an imbalance between oxidants and antioxidants. When antioxidants are depleted 

normal bodily functions are disrupted and vital body organs are damaged by exposure to ROS. 

Naringenin has been classified as a relatively harmless, safe and non-toxic substance, this is 

based on the classification of relative toxicity of chemicals (Surampalli e al., 2014). A study 

done on the preservation of intestine mucosal biochemical composition and cardiac muscle 

structure and function clarified naringenin as a safe drug (Surampalli et al.,2014, Deferme et 

al., 2008). These studies support the findings that suggest naringenin the naturally occurring 

substance has the potential to serve as a safe and novel pharmaceutical adjuvant.  

In this current study, we investigated whether naringenin treatment could mitigate some 

complications caused by myocardium exposure to hyperglycemia, using rat models of diabetes 

induced with STZ. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg 

BW), which caused a destruction to the pancreatic β-cells resulting into elevated hyperglycemia 

and hyperglycemia-induced oxidative stress (Nishigaki et al., 1989; Cheng et al., 2013).  

The untreated diabetic group exhibited significant weight loss when compared to the control 

(Fig. 11), type I diabetic patients normally lose weight regardless the food intake. Insulin 

deficiency prevents the body from getting glucose to supply the body with energy. As a 

compensatory mechanism the body utilizes stored fat and muscle energy causing a reduction 

in the overall body weight of the diabetic individual (McPherson and McEneny, 2012). 

Naringenin treatment attenuated weight loss by ameliorating lipolysis and proteolysis that is 
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increased in type I diabetic state. Naringenin pre-treatment improved weight loss compared to 

naringenin post STZ treatment suggesting that naringenin is a weight stabilizer (Shulman et 

al., 2011). Insulin treatment did not bring the animal weights to normal this could be due to 

insulin resistance resulting into glucose build-up forcing kidneys to remove the excess glucose 

through urine later resulting into weight loss (due to loss of calories) and dehydration.  

Naringenin treatment of non-diabetic rats showed a decrease in weight gain compared to 

control group both these groups had unlimited access to food and water. Naringenin treatment 

is known to prevent obesity and improve lipid levels in diabetic rats by inducing hepatic fatty 

acid oxidation, reducing lipid availability (especially triglycerides) allowing for the assembly 

and secretion of apolipoprotein B- containing lipoproteins, this leads to reduced hepatic lipid 

accumulation (Mulvihil and Huff, 2012). However, naringenin does not stimulate fatty acid 

oxidation in skeletal muscles instead it reduces lipid accumulation and promotes glucose 

uptake, it is also a weight stabilizer like metformin (Assini et al., 2015).  

The untreated diabetic group showed increased polydipsia compared to the control group (Fig. 

12). Diabetic patients have polydipsia due to hyperglycemia increasing osmotic pressure and 

diuresis leading to dehydration (Kraut and Madias, 2007). As a compensatory mechanism 

elevated osmolarity activates osmoreceptors which reduce antidiuretic hormone (ADH), which 

corrects the state of hyperosmolarity. If this compensatory mechanism fails, thirst is activated 

causing increased water intake. Naringenin treatment reversed polydipsia in the diabetic groups 

because there was reduced water consumption. Naringenin pre-treatment reversed polydipsia 

compared to naringenin post STZ treatment.  

Naringenin treatment improved fasting blood glucose compared to the untreated diabetic group 

we can thereby postulate that naringenin has an antihyperglycemic effect (Fig. 13), naringenin 

has previously been shown to reduce hepatic expression of the key gluconeogenic enzymes, 
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glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) which 

play a pivotal role in gluconeogenesis (Annadurai et al., 2012, Murunga et al., 2016). The 

untreated diabetic group showed elevated fasting blood glucose levels as expected for diabetic 

rats. Naringenin pre-treatment did not improve the fasting blood glucose levels compared to 

naringenin post STZ treatment this is due to insulin deficiency resulting into the inability of 

naringenin to affect blood glucose levels. 

Glucose tolerance tests were similar between the naringenin treated non-diabetic and control 

rats and so were the calculated AUC (Fig. 14). However, the untreated diabetic rats showed 

glucose intolerance when compared to the control. The calculated AUC also supported these 

results, since naringenin and insulin treatment were withheld on the day of GTT, it is therefore 

expected that glucose levels would not improve in both the naringenin and insulin treated 

groups. Naringenin pre-treatment did not have any effect on glucose tolerance compared to 

naringenin post treatment. The untreated diabetic rats showed glucose intolerance and the 

calculated AUC significantly supported these results (Fig. 14). 

The untreated diabetic rats showed lower levels of fasting plasma insulin and highly elevated 

HOMA-IR levels compared to controls (Fig. 15 and 16), HOMA-IR is a measure of IR and 

uses fasting plasma insulin levels and fasting blood glucose levels. High levels of fasting 

plasma insulin and increased resistance to insulin mediated glucose uptake are closely related, 

an increase in fasting plasma insulin levels is known to be a compensatory attempt to overcome 

the resistance to glucose uptake (Olefsky et al., 1973). Hence, the results show that the 

untreated diabetic rats have high levels of insulin resistance and the compensatory mechanism 

has failed to overcome the resistance of glucose uptake. STZ destroyed pancreatic β-cells but 

naringenin treatment improved their function by either regeneration or by reducing oxidative 

stress. Therefore, naringenin treatment significantly improved the fasting plasma insulin levels 

when compared to the untreated diabetic rats and the HOMA-IR levels were significantly 
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improved, showing improvement in the level of insulin resistance in the rats. Naringenin pre-

treatment significantly improved the fasting plasma insulin and HOMA-IR levels when 

compared to naringenin post treatment. 

Increased ROS leads to oxidative stress that causes lipid peroxidation leading to an 

overproduction of MDA, which is used as a biomarker of lipid peroxidation. MDA levels were 

significantly increased in the untreated diabetic rats compared to the control; these results were 

expected due to hyperglycemia-induced oxidative stress in the diabetic rats (Fig. 17). 

Naringenin treatment significantly decreased MDA levels compared to the untreated diabetic 

rats. These results suggest that naringenin treatment decreased lipid peroxidation by 

scavenging free radicals reducing oxidative stress (Song et al., 2018). Naringenin pre-treatment 

significantly reduces MDA levels compared to naringenin post-treatment.  

SOD, CAT and GPx antioxidants are known as first line defense antioxidants, they suppress or 

prevent the formation of free radicals or reactive oxygen species, low levels of these 

antioxidants show the presence of oxidative stress (Ighodaro and Akinloye,2018).  

CAT is a common antioxidant enzyme that uses iron or manganese as a cofactor and catalyzes 

the detoxication of harmful radicals into less harmful molecules. The untreated diabetic rats 

showed low levels of CAT activity when compared to control (Fig. 18), this suggests that there 

were high levels of oxidative stress which is expected for diabetic rats. Naringenin treatment 

significantly increased CAT levels compared to the untreated diabetic group, these results 

suggest that naringenin either scavenged free radicals causing reduced consumption of the 

antioxidants or naringenin could be binding free radicals resulting in less production of the 

antioxidant enzymes. Naringenin pre-treatment significantly improved CAT levels compared 

to naringenin post treatment. 
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SOD is an inducible antioxidant enzyme, it catalyzes the dismutation of harmful superoxide 

anions making less harmful substances. The untreated diabetic rats showed low levels of SOD 

when compared to control (Fig. 19). These results show that there were increased levels of 

oxidative stress, naringenin treatment significantly increased the SOD levels, showing that 

naringenin decreased free radicals or directly enhanced the production of antioxidants in the 

presence of free radicals. Naringenin treatment in the non-diabetic rats was also increased the 

antioxidant this could be because oxidative stress was completely reduced leading to an 

accumulation of the antioxidant enzyme SOD. Naringenin pre-treatment significantly 

increased SOD levels compared to naringenin post treatment. 

GPx is an inducible antioxidant enzyme that also plays a critical role in inhibiting the lipid 

peroxidation process reducing oxidative stress. The untreated diabetic rats showed significantly 

low levels of GPx compared to control (Fig. 20), these results show elevated levels of oxidative 

stress, which is expected in diabetic rats. Naringenin treatment significantly elevated GPx 

levels compared to the untreated diabetic rats, suggesting that naringenin could have reduced 

the levels of free radicals by enhancing the antioxidant levels or by binding the free radicals 

leading to reduced production of the enzyme. Non- diabetic naringenin treated group showed 

elevated levels of GPx activity compared to control, since GPx is an inducible antioxidant it 

gets used up when there are free radicals, so once the free radical levels are decreased pressure 

to detoxify them is reduced and this could resort to an accumulation of the excess GPx 

antioxidant. Naringenin pre-treatment significantly increased GPx levels compared to 

naringenin post treatment. 

Oxidative stress stimulates the production of pro-inflammatory cytokines such as TNF-α, 

which can be used as a biomarker of inflammation and/or oxidative stress (Chen et al., 2008). 

TNF-α injures endothelial cells resulting into endothelial dysfunction, inflammation and 

insulin resistance, it does this by damaging the mitochondrial chain complex III and this leads 
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to increased production of oxygen radicals inside the mitochondrion. TNF-α levels were highly 

elevated in the untreated diabetic rats compared to the control (Fig. 21), naringenin treatment 

significantly decreased TNF-α levels compared to untreated diabetic rats. The mechanism by 

which naringenin inhibits cytokine release is not limited to a specific stimulus, naringenin 

could have inhibited the activation of NF-kB and MAPK signaling pathways which are 

responsible for the development of inflammation or by scavenging free radicals reducing 

oxidative stress (Jin et al., 2017).  Naringenin pre-treatment significantly reduced TNF-α 

compared to naringenin post treatment. 

Left ventricular remodeling is characterized by inflammation or increased cardiomyocyte 

diameter/size (Wei et al., 2001; Adebiyi et al., 2016). Untreated diabetic rats showed 

significantly large heart weights compared to controls (Fig. 22 and 23), this could be due to 

constant hyperglycemia resulting in cardiomegaly. Cardiac mass was significantly reduced 

compared to control in the naringenin and insulin treated diabetic rats, this supports a study 

suggesting that naringenin retarded the development of left ventricular remodeling in diabetic 

rats by reducing MAPK and PKC levels responsible for cardiac remodeling and inflammation 

(Sabri et al., 1998; Adebiyi et al.,2016). Prior treatment of naringenin improved the cardiac 

inflammation and cardiac antioxidant levels of the diabetic rats, this supports the cardio-

protective ability of naringenin (Kamel et al., 2016). Naringenin treatment could have activated 

PPAR- α and PPAR-γ (PPARs are ligand-activated transcription factors that modulate several 

biological processes implicated in obesity, inflammation and metabolism of lipids and glucose) 

leading to the down regulation of NF-kB expression, responsible for hypertrophy (Zhang et al., 

2010). Naringenin pre-treatment improved the heart weights compared to naringenin post 

treatment. 
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CHAPTER 5: CONCLUSION 

5.1 CONCLUSION 

This study has shown that naringenin treatment has as an antidiabetic, anti-inflammatory and 

cardioprotective effect on the cardiac muscle this could be attributed to the ability of flavonoids 

to activate an antioxidant defense system by reducing ROS and increasing antioxidant levels. 

The findings support the claims of naringenin being a promising anti-diabetic plant extract that 

can be used to manage diabetes, mitigate diabetic conditions associated with cardiac 

complications. Prior treatment of naringenin before diabetes induction showed a great 

improvement in antioxidant, inflammatory cytokine levels and reduced cardiac mass, this 

supports the cardioprotective claims of naringenin. 

  

5.2 FUTURE STUDIES 

The study recommends future work using the same diabetic model and the same animal 

treatment protocol but the pre-treatment period of naringenin should be extended, to identify 

the potential ability of naringenin to prevent the onset of diabetes. Pathological studies 

particularly histology of the cardiac muscle will be included.  

 

5.3 STUDY LIMITATIONS 

In this study, pre-exposure time of naringenin treatment was limited, this could have had an 

impact on the results obtained and maybe the onset of diabetes could have been mitigated 

completely. 
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