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Abstract

Background: Cycles of covalent modification are ubiquitous motifs in cellular signalling. Although such signalling
cycles are implemented via a highly concise set of chemical reactions, they have been shown to be capable of
producing multiple distinct input-output mapping behaviours — ultrasensitive, hyperbolic, signal-transducing and

threshold-hyperbolic.

Results: In this paper, we show how the set of chemical reactions underlying covalent modification cycles can be
exploited for the design of synthetic analog biomolecular circuitry. We show that biomolecular circuits based on the
dynamics of covalent modification cycles allow (a) the computation of nonlinear operators using far fewer chemical
reactions than purely abstract designs based on chemical reaction network theory, and (b) the design of nonlinear
feedback controllers with strong performance and robustness properties.

Conclusions: Our designs provide a more efficient route for translation of complex circuits and systems from
chemical reactions to DNA strand displacement-based chemistry, thus facilitating their experimental implementation

in future Synthetic Biology applications.

Keywords: Covalent modification cycle, Chemical reaction networks, Analog synthetic biomolecular circuits, Linear
and nonlinear operators, Feedback control systems, Synthetic biology applications

Background

The emerging field of Synthetic Biology [1, 2] has provided
a number of recent examples of the successful construc-
tion of digital circuits in cells, including biomolecular
transistors [3, 4] and logic gates [5-7]. A major open chal-
lenge associated with such digital circuitry is to ensure
robust functionality of the designed circuit in the presence
of interactions with the host cell [8, 9]. One possible solu-
tion to this problem is to develop analog circuitry, [10],
since in general analog designs require far fewer devices to
carry out a given computation at the moderate precision
needed in cells, resulting in lower resource requirements
and a reduced metabolic burden on the cell [11, 12]. There
is also a growing realisation that in many cases the use
of purely digital designs can fail to exploit the hybrid
approach to information processing used by cells, which
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often combines digital computation with analog process-
ing of signals with different levels of gradation [13]. The
ability to process signals with different levels of gradation
will be a key requirement for the development of more
complex synthetic circuits with advanced monitoring and
control capabilities.

Transduction of external perturbations via signalling
cascades is a classical examples of analog signal pro-
cessing in the cell, [14-16]. One of the most ubiqui-
tous motifs seen in cell signalling cascades is the cycle
of covalent modification [17, 18], examples of which
include phosphorylation/dephosphorylation of enzymes
[19], DNA methylation [20] and monoclonal antibodies
[21]. The covalent modification cycle is implemented via a
highly concise set of chemical reactions, which have been
shown in [17, 22] to potentially exhibit highly sigmoidal
input-output characteristics, generating so-called ultra-
sensitive or hyperbolic responses (see also [23, 24]). In
[25], the authors systematically examine the steady-state
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and dynamic responses of covalent modification cycles
to time varying perturbations and demonstrate the exis-
tence of two additional types of regimes, termed signal-
transducing and threshold-hyperbolic, giving a total of
four distinct mapping regimes (see Figure 2 of [25]).

Thus, by modifying only the reaction rates for the chem-
ical reactions governing the covalent modification cycle,
four highly distinct input-output mapping behaviours can
be obtained. Here, we show how this flexibility can be
exploited for the design of synthetic analog biomolecu-
lar circuitry. From an engineering design point of view,
this versatile input-output mapping property is highly
attractive, as different combinations of these input-output
mappings can be used to design circuits that can per-
form many different types of computation, information
processing, and control. From an experimental implemen-
tation point of view, the extremely concise set of chemical
reactions used in covalent modification is also very advan-
tageous, since it facilitates circuit designs with fewer reac-
tions and components, hence easing their implementation
using DNA-based chemistry.

Methods

Chemical reactions underlying the covalent modification
cycle motif

Whereas signals in systems and control theory can have
both positive and negative values, this is not the case for
biomolecular concentration, as they can only take non-
negative values. This issue can be addressed following the
framework suggested in [26]. Here, we present a sum-
marised version of this framework, for full details the
reader is referred to [26].

A signal x is represented as the difference in concentra-
tion of two chemical species, x* and x~. Thus, x* and x~
are, respectively, the positive and negative components of
x such that x = x™ —x~. From an implementation point of
view, e.g. using DNA-based chemistry as proposed in [27],
xT and x~ can each represent a DNA strand and the final
concentration of x can be recovered using x = x* — x.
As an example, consider an initial DNA strand, x™ with
10nM concentration present in the system. Then, another
DNA strand, x~ with 20nM concentration is added to
the system and the resulting signal x becomes negative.
In terms of the underlying chemical reactions, ensuring
proper implementation of x = x™ — x~, requires a fast

annihilation reaction between x* and 5™, i.e. xT+x~ - @
with 7 is the annihilation rate.

In this work, we adopt this formalism as it enables the
realisation of negative signals. While there are alternative
formalism available from standard chemical reaction net-
work theory (see e.g. [28]) these cannot deal with negative
signals or realise two-sided subtraction operators, which
are required, for example in feedback control design to
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compute the difference between two signals, where the
resulting difference can result in either a positive or nega-
tive signal.

For conciseness, we use the notation x* — % 4 yF
to represent a pair of reactions, x* — x* + y~ and
x~ — x~ + y*. In [26] and [27] it was shown how sets
of abstract chemical reactions implemented using this for-
malism can be used to design biomolecular circuits that
compute a number of linear operators, such as scalar
gains, summation/subtraction and integration. Circuits
designed using this framework can then be implemented
experimentally using DNA-based chemistry, as discussed
in [29-31]. Using the mathematical formalism of [26], we
can represent a covalent modification cycle of an enzyme-
substrate pair by the following set of 14 abstract chemical
reactions:

n

+ + ki + + ko + ko 4 +
Xy t X, > Ko Xy TR > Xop, Xop T Koy T X,

+ ks 4 4+ ke 4 + _
Xout +Xe = Xcor Xy = X, +%ey X, +%, >V
+ — 1 + — 1 + — 1
Xo txoy = 0 Xyt gy = 0, Xy + Xy —> 0

(1)

where all the x represent biomolecular species and k; (j =
1,---,4) are the reaction rates. The covalent modifica-
tion cycle described by Eq. (1) is illustrated in Fig. 1(a),
and operates in the following manner. xlf represents the
inactive component, which is associated with xi, (i.e., the
enzyme kinase), forming an intermediate species, xa with
reaction rate k;. The intermediate species then produces
the active component, x2, and the remaining unused
x?; with reaction rate kp. This reaction from inactive
state to active state is called the forward reaction. Like-
wise, the active component, x%, is associated with w,
(i.e. the enzyme phosphatase) with reaction rate k3 and
produces another intermediate species, ’%2' This inter-
mediate species produces inactive component, x;[ and the
remaining unused x, with reaction rate k4. This reaction
from active state to inactive state is called the backward
reaction. Note that as x, is externally introduced, it is not
split into positive and negative components.

Using mass action kinetics, (see e.g. [32, 33]), the non-
linear ordinary differential equations (ODE’s) for the cova-
lent modification cycle are given by:

%—kx — k3Xoutx

dt 24C1 3Noutre

dxci

— = kixpxin — kox 2
dt 1*prin 2XC1 ()
dxcz

—= = k3XouXe — kaxco

dt 3XoutXe C

with total concentration x;y,; = X, + x¢2 is constant and
these ODE’s produce four distinct mapping regimes for
the different choices of reaction rates, [25] (see Fig. 1(d)).
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Fig. 1 The dynamics of the covalent modification cycle. a The schematic of the covalent modification cycle. b The abstract chemical reaction
representation of the covalent modification cycle. ¢ The abstract chemical reaction can be described by ordinary differential equations (ODE's) using
mass action kinetics. d Depending on the choice of reaction rates, the set of ODE's exhibits four distinct mapping regimes [25]: (1) Hyperbolic. (1)
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Implementation of chemical reactions via DNA-based
chemistry
A number of recent studies have described how synthetic
circuits composed of abstract chemical reactions may be
readily implemented in DNA-based chemistry (see e.g.
[29, 30, 34, 35]). As highlighted in [35], these chemi-
cal reactions can serve as a programming language for
designing synthetic circuits based on DNA-based chem-
istry. Mathematically expressed components of circuits
designed using DNA can be derived from biologically
synthesised plasmids, in principle enabling the in vitro
implementation of those circuits. A particular advantage
of employing DNA-based chemistry lies in the ease of
implementation, given that the design relies on the choice
of relevant sequences following the well-known Watson-
Crick (i.e. adenine-thymine and guanine-cytosine) pair-
ing. In [30], it is shown that unimolecular and bimolecular
chemical reactions can be compiled into DNA strand dis-
placement (DSD)-based chemistry to achieve the desired
behaviour of the considered biomolecular circuit. Here,
we present a summarised version of the framework and
refer interested readers to [30] for more details.

A simple bimolecular DSD reaction can be described by
the following reaction,

3p
X+Q8;‘Y+R (3)
ub

where 8, and §,;, are the binding and unbinding rate of
the DNA strand respectively. This reaction begins when
Q, called the invader strand, binds with X in a comple-
mentary manner at the toe-hold domain of X. When this
binding takes place, parts of the strand of X are displaced
and this disengagement results in product Y and waste,
R. The partially double stranded product, Y can then
bind with other toe-hold domains of other DNA com-
plexes. Usually, the toe-hold domain has short nucleotides
(6-10 nucleotides) to ensure the reaction is fast and reli-
able. By varying the value of §,; and &, one can control
the rate of reaction. Specifically, the binding and unbind-
ing rates can be changed by changing the length of the
DNA strands. To further elaborate, the reaction rates from
chemical reactions can be mapped into these binding and
unbinding rates of the DNA reactions following the frame-
work of [30]. Based on these binding and unbinding rates,
the designer can determine the length of DNA strands
required to achieve that reaction.

Given that different DNA strands do not interact
directly with each other, their interaction is normally
mediated by auxiliary species that are usually present in
large amounts. The framework of approximating abstract
chemical reactions to DSD presented in [30] considers
the DNA implementation for unimolecular and bimolec-
ular reactions, where these two types of reactions can be
represented by Egs. (4) and (5) respectively.
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X1 +G3 0and0o+ T &% X, + X3 (4)
Xi4L —= H+B,Xo+H 2 0and O+ T 2 X5 (5)
qmax

where G, O, T, L, H, and B are auxiliary species with
appropriate initial concentrations Cy,uy, ¢ = 8/Cypyay is the
partial strand displacement rate and gy, is the maximum
strand displacement rate.

The set of chemical reactions governing the covalent
modification cycle is made up exclusively of unimolecular
and bimolecular reactions, and thus, following the frame-
work shown above, all of the circuits described in the
remainder of this paper can be implemented via nucleic
acids. Note, however, that the experimental challenges
associated with building such circuitry increase with the
number of reactions that are required for a given circuit.
It is therefore imperative that circuit designs utilise as
few reactions as possible, in order to ease experimental
implementation and maximise scalability of the resulting
synthetic systems.

Results and discussions

Computing nonlinear operators

Here, we present analog biomolecular circuit designs,
based on the chemical reactions underlying the cova-
lent modification cycle, that can compute three impor-
tant nonlinear operators — the logarithm of arbitrary
base, the signum function and the absolute value of
a signal. We show that these designs achieve a dra-
matic reduction in circuit complexity when compared
with designs based on purely abstract chemical reaction
networks.

Computing a logarithm of arbitrary base

Consider the operation ¢ = log, 4, i.e. computing the
logarithm of a to the base b. This logarithm can be com-
puted through the change of logarithm base, ie. ¢ =
H‘l—‘b’, where In denotes the natural logarithm. In other
words, ¢ can be realised as a ratio of Ina and Inb.
Several numerical methods exist to compute the natu-
ral logarithm. The most commonly used method is to
use Taylor series, but this method accurately computes
the logarithm of numbers only within the range 0 <
x < 2. A more efficient method to compute the nat-
ural logarithm for x > 2 is based on the area hyper-
bolic tangent series approximation [36]. Thus, using such
approximation, the natural logarithm can be computed as

follows:
z—1 l Z2i+1
— ) =2 6
(1) =2 ©

In(x) =
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where [ is the order of the series. The larger the order / is,
the better the approximation, but the higher the complex-
ity of the circuit. In this paper, we choose / = 10 as this
order allows us to compute the logarithm of numbers up
to 10.

The block diagram of a circuit that can compute the
natural logarithm using the area hyperbolic tangent series
approximation of order / = 10 is shown in Fig. 2(a). This
circuit uses a combination of several linear and nonlinear
operators; summation, subtraction, gain, multiplication
and power exponent, each of which may be implemented
using a number of abstract chemical reactions. For details
of the chemical reactions used in computing the linear
summation, subtraction and gain operators, see [26], (the
numbers of reactions needed are 7, 7, and 5 respectively).
For the nonlinear multiplication and power exponent
operators, their abstract chemical reactions (modified
from [28] and [37]) are given as follows.

Multiplication: Consider the following multiplication:

y = upuy. At steady-state, the set of abstract chemical

reactions that realise this operator is given by u] —|—u§c il

”1 —I—u2 +y ,ul + uj —>u1 +u3 +y, yt RN/
and yt +y~ L ¢, where ym is the multiplication reaction
rate. In total, 7 abstract chemical reactions are required to
realise the multiplication operator, whose ODE is given by
% = ym(mug —y).

Power exponent: Consider the following exponent: y =
u”", where # is a positive integer. At steady-state, the set
of abstract chemical reactions that realise this operator is
given by

St @At

ui+u
ui+zﬁy—>ui+tﬁ+(u2)_
wH* 5

wHt + (uz)_ Xy

wF o+ @ HE D @ E 4yt
ut + @ HF B ouE 4w HF 4y
i yp R

Wy Do

where yp is the power exponent reaction rate. In total,
7(n—1) abstract chemical reactions are required to realise
the power exponent operator, and the corresponding ODE
is given by % = )/p{(l_[;l:l u) —y}.

With [ = 10, we require 13 summation and sub-
traction operators, one multiplication operator, 10 power
exponent operators with exponents 3,5,...,21 and 12
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Fig. 2 Computation of logarithm of arbitrary base. a Block diagram of a circuit to compute natural logarithm based on the area hyperbolic tangent
series approximation of order / = 10. b The hyperbolic regime obtained from covalent modification cycle. ¢ Block diagram of a circuit to compute
logarithm of arbitrary base by taking the ratio of two natural logarithms. d Simulation results for (i) log; 5. (ii) log, 8. (i) In 5. (iv) In 8. (v) In 10. (vi)
In2.1n all simulations, Green dashed-dot line: using area hyperbolic tangent series approximation up to order 10. Black solid line: using hyperbolic

gain operators. This results in a total of 13(7) + 1(7) +
D on=3s,.017/(m — 1) + 12(5) = 928 abstract chemical
reactions. To compute the logarithm of arbitrary base,
as shown in Fig. 2(c), we require one more ¢ that com-
putes the second natural logarithm and one each for
the subtraction, multiplication and gain operator. Thus,
this circuit requires a total of 2(928) + 1(7) + 1(7) +
1(5) = 1875 abstract chemical reactions, which makes
it completely intractable from an experimental point
of view.

The huge number of abstract chemical reactions
required to implement the circuit described above
prompted us to seek alternative, more efficient, designs.
We note that the characteristic of a natural logarithm
resembles the hyperbolic regime of the covalent modi-
fication cycle (see Fig. 1(d)-i) thus, making this regime
potentially useful for computing the natural logarithm.
Interestingly, this response is not governed by the order
of the series approximation. Thus, as long as one can
obtain the appropriate reaction rates for k; to ks, we can
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compute the natural logarithm. Moreover, this approach
requires only 14 abstract chemical reactions. To compute
the logarithm of arbitrary base using this approach, we
replace the ® block in Fig. 2(c) with the covalent modifi-
cation cycle reactions in the hyperbolic regime, as shown
in Fig. 2(b). This results in a total of 2(14) + 7 + 7 + 5 =
47 abstract chemical reactions, a 97 % reduction in circuit
complexity.

Simulation results for computing log;, 5 and log, 8 are
shown in Fig. 2(D-i) and (D-ii) respectively. To imple-
ment the hyperbolic response, reaction rates are k; =
0.22 /M/s, ky = 0.43 /s, k3 = 1.03 /M/s, kg = 35.10 /s, and
xe =1M.

For both approaches, the computed logarithms are close
to the actual value, however the circuit based on the
covalent modification cycle motif is significantly faster in
settling to the correct steady-state value, even though it
uses far fewer chemical reactions. An alternative approach
for the biological computation of logarithms has been
designed and implemented in [13]. This approach utilises
transcriptional regulation, which requires a host cell,
while our approach can be implemented in cell-free condi-
tions (e.g. using DNA Strand Displacement (DSD) frame-
work). Moreover, [13] considers the computation of the
natural logarithm, while our approach enables the compu-
tation of logarithms of arbitrary base.

Computing the signum function

A general signum function outputs +1 for any positive real
valued input and -1 for any negative real valued input.
Mathematically, this is represented as X = sgn(X)|X].
The signum function can be designed using the circuit
shown in Fig. 3(a). Details of the three abstract chemical
reactions used to realise the integrator used in this cir-
cuit are provided in [26]. In this circuit, the input signal
is first squared before taking its square root. The square
root operator can be implemented using the well-known
Newton-Raphson method, which requires two subtrac-
tion operators, two multiplication operators, one power
exponent operator of order 3, one integrator operator and
one gain operator, resulting in a total of 2(7) + 2(7) +
1(14) + 1(3) + 1(5) = 50 reactions. After taking the square
root, the reciprocal of this signal is calculated, and this is
then multiplied by the input signal, which results in either
+1 or -1 depending on the sign of the input signal. With
a power exponent operator of order 2, one square root
operator, one subtraction operator, one gain operator and
two multiplication operators, the total number of reac-
tions required to compute the signum function is 1(7) +
1(50) + 1(7) + 1(5) + 2(7) = 83.

Now, the characteristics of a signum function closely
resemble the ultrasensitive regime of the covalent mod-
ification cycle. Thus, as shown in Fig. 3(b), the cor-
responding chemical reactions can also be utilised to
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compute the signum function. While the ultrasensitive
regime alone could be used to compute the signum func-
tion, we go a step further by appending a gain operator,
K that can be used for scaling purposes. With the intro-
duction of the gain operator, the total number of reactions
required to compute the signum function is now only
14 + 1(5) = 19 reactions, a reduction in complexity
of 77 %.

In the simulation results shown in Fig. 3(c), the input
to our signum function is in the range of 10~¢ while the
output is in the range of 1073. We could have specified
the signum function to produce outputs in the range of
+1 instead of =1 x 1073, however, there could arise sit-
uations where such a response is not achievable due to
the physical constraints on the system. In view of this,
the gain component can be used to scale the output from
41073 to &1. This ultrasensitive response is obtained with
ki = 5,000 /M/s, ky = 5 /s, k3 = 50 /M/s, kg = 0.05 /s
and x, = 0.1u M.

Fig. 3(c) shows the simulation results of the signum
function computed using both circuits. The input is
changed every 10,000 seconds starting with 2.0 x 1079,
55x107%,—3.0 x 107% and —0.5 x 107°. The simulation
result shows that while both circuits are able to compute
the signum function accurately, the much simpler circuit
based on covalent modification exhibits smaller transient
overshoots in response to changes in the value of the input
signal.

Computing the absolute value of a signal

The block diagram of a circuit that can compute the abso-
lute value of a signal is shown in Fig. 4(a). As shown,
the input signal is first squared before taking its square
root. We have introduced the Newton-Raphson method
previously for computing the square root and thus it can
be seen that this circuit requires a total of 7 + 50 = 57
reactions.

We shall now illustrate how the remaining two regimes
of the covalent modification cycle, i.e. signal-transducing
and threshold-hyperbolic, can be utilised to compute the
absolute value of a signal, for which the block diagram
is shown in Fig. 4(b). The threshold-hyperbolic regime
has a dead-zone, (i.e. a non-responsive region given any
input signal) followed by a hyperbolic-like region. To
compute the absolute value, the dead-zone range must
not respond to input signals, u# that are strictly neg-
ative and then respond to input signals that are non-
negative in a linear manner. To achieve this, note that in
the threshold-hyperbolic regime, any hyperbolic response
has an “almost linear” region when the input signal is
small. By taking advantage of this property, we can ensure
that our required threshold-hyperbolic regime has a lin-
ear instead of hyperbolic response after the dead-zone
region. On the other hand, the signal-transducing regime
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has a linear region followed by a plateau region. This
makes this regime suitable for responding only to non-
positive input signals and not to strictly positive input
signals. We also introduce two gain components, K; and
K; for scaling purposes. By combining these two regimes
with two gain components and one subtraction operation,
2(14) + 2(5) + 7 = 45 reactions are required to com-
pute the absolute value, a reduction in circuit complexity
of 21 %.

Since the threshold-hyperbolic response has a linear
response with unity gradient, there is no requirement for
the gain block, Kj or equivalently, K; = 1. To achieve this
threshold-hyperbolic response, we set k1 = 0.0027 /M/s,
ky = 16,640 /s, ks = 0.043 /M/s, ks = 0.008 /s
and v, = 3.5 M. For the signal-transducing response,
suppose that due to the limitations imposed by the sys-
tem, a unity gradient of the linear response cannot be
achieve, resulting in the gradient of the linear response
to be 20. In this case, the gain component is set to
K = 1/20. To achieve this signal-transducing response,
we set ki = 5 /M/s, ko = 100 /s, k3 = 5 /M/s, ks =
630 /s and x, = 1.8 M. Fig. 4(c) shows the simulation
results for six different input signals, # ranging from +1
M to +6 M. At time 10,000 s, these input signals, u are
switched to their negative counterpart ranging from -1 M
to -6 M.

From Fig. 4(c), we see that the circuit using the con-
figuration shown in Fig. 4(a) performs very well. For the
circuit using the covalent modification cycle, the perfor-
mance is also excellent, although when # = +1 M and
+6 M some deviations are observed. This is because the
threshold-hyperbolic and signal-transducing responses
achieved are not a perfect match to the ideal responses, as
shown in Fig. 4(d).

Remarks on choosing the reaction rates of the covalent
modification cycle

In all our illustrations above, the reaction rates (i.e. k;
to ks) of the covalent modification cycle are obtained via
numerical optimisation using the MATLAB® function
‘fminsearch’ The numerical optimisation aims to find the
reaction rates (within biologically valid ranges) that min-
imise the difference between the desired mapping regime
of the covalent modification cycle and the one obtained
from Eq. (2).

Designing nonlinear controllers

Here, we illustrate how the chemical reactions underlying
the covalent modification cycle can be used for the design
of nonlinear biomolecular feedback controllers.

Controller descriptions
Figure 5(a) shows the block diagram of a biomolecular
feedback control circuit. In industrial control systems, the
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most commonly used controller is the linear proportional-
integral (PI) controller, and this type of controller has
been successfully implemented for biomolecular systems
using DNA-based chemistry in previous studies [26, 27].
Interestingly, the signal-transducing regime of the cova-
lent modification cycle resembles the steady-state input-
output mapping of the PI controller (Fig. 5(b)). Here, we
compare the performance and robustness properties of a
nonlinear ‘covalent modification cycle’ (CMC) controller,
designed to operate in its signal-transducing regime, with
those of a classical PI controller.

The modules involved in the biomolecular feedback
controllers are as follows.

PI controller: The classical PI controller considered here
is designed according to the methodology of [26]. The PI
controller is made up of one integrator, one proportional
gain and one summation operator. These three sub-
modules require a total of 15 abstract chemical reactions
to implement as follows:

K
Integrator: et 25 et uTandut +nm KN ?, where
K; is the integral gain of the PI controller and 7 is the
annihilation rate.

K
Proportional gain: e* 2 et +omE, mt LS g and
m* +m~ 2> ¢, where Kp is the proportional gain of the

PI controller, yx is the gain reaction rate.
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L . Vs ¥s
Summation junction: m* = m* + ut, nt =5 gt 4

¥s _ 7 .
ut, ut 2% @, and ut + um — @, where ys, is the

summation reaction rate.

The tuning of this PI controller involves adjusting Kp, K;
and the reaction rates yg and ys,.

CMC controller: The chemical reactions required to
implement the CMC controller are given by Eq. (1) with
e = x5 and u = x4, We choose values for the
CMC controller’s reaction rates that place it in its signal-
transducing input-output mapping regime, which closely
resembles the steady-state input-output mapping of a PI
Controller (see Fig. 5(b)). Note that the CMC controller
requires 14 reactions to implement, 1 fewer than the PI
controller.

Closed-loop system and ODE approximations

Comparative performance of the two controllers is eval-
uated for two biomolecular processes - the first a simple
first order linear process and the second a more complex
second order nonlinear process. The abstract chemical
reactions for both processes are given by

k, k
2 by S goand
¥4y 2 ¢, where ky1 and ky are the catalysis and
degradation rates of the process.

Linear process: u

K kr _

Nonlinear process: u* + p* =5 qt, u* + p¥ =5 ¢,
K ki _

= By +pE 9t 25 pand yt + 97 D 0, where

p and g are intermediate species involved in the second

order process reaction. k1, kyp and k3 are respectively the
binding, catalytic and degradation rates of the process. For

the subtraction operator, the abstract chemical reactions

¥sh Vsh ¥sh
are rt =5 rt ety 5 g et et 5 Pandet +

e > 0.

Using generalised mass action kinetics, the ODEs corre-
sponding to the abstract chemical reactions employed in
the modules of the feedback control system are given as:

Subtraction operator:

de

% = ygb(r—y—e) (7)

PI controller:

dn
= Kje

dt
DI e (Kpe = m) ®)
dt = YKk(Kpe —m

du

P Ysm(m +n — u)

CMC controller:

du
— = koxc1 — kzux,

dt

dxci
dt

dxca

—= = kaux, — kgx
it 3UXe c2

= /(18 — kngl (9)
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Linear process:

% = kpiu — kpoy (10)
Nonlinear process:

% = kriup — kog

Y o~ ksy (1)

According to the formalism of [26], the gain and sum-
mation operators used in the PI controller require mul-
tiple identical reaction rates to be used in their sets of
abstract chemical reactions. However, implementing this
requirement in an experimental setting is unlikely to be
feasible, as experimental biologists are rarely able to spec-
ify the reaction rates of chemical reactions exactly. Addi-
tionally, in practice, as highlighted in [26], unregulated
chemical devices or leaky expressions could potentially
affect production and degradation rates and subsequently
alter the behaviour of the designed component. To investi-
gate these issues, we perform a formal robustness analysis
of both controllers, focussed on the effect of uncertain-
ties in the implemented reaction rates on the closed-
loop stability and performance properties of the feedback
system.

Performance analysis of controllers with linear process

To analyse the performance and robustness of the closed-
loop responses achieved by the feedback controllers with
the linear process, step response tests and Monte Carlo
simulations are performed, respectively. For the Monte
Carlo simulations, all the parameters are randomly drawn
from a uniform distribution. The number of Monte Carlo
simulations required to achieve various levels of estima-
tion uncertainty with known probability are calculated
using the well-known Chernoff bound [38]. Following the
guidelines provided in [39], an accuracy level of 0.05 and
a confidence level of 99 % are chosen for the Monte Carlo
simulation analysis, which requires a total number of 1060
simulations [38, 40]. To investigate the effect of different
levels of uncertainty we vary the parameters within ranges
of 20 %, 50 %, 100 % and 120 % around their nominal
values. Mathematically, we have p(1 + AP(x)), where p €
{Vsb1, Vsb2s Ysb3» VK15 VK2 VSm1s Vsm2s Vsm3» Ki, Kp, k1, k2, ks,
kg, kp1,kp2}, P(x) is the probability distribution and
A € {0.2,0.5,1.0,1.2}. Note that we split reaction rates
vsp» Yk and ysy, according to the number of chemical
reactions in which they are involved.

In our simulations, a step change in the concentration
of the reference species, r from 0 M to 1 M occurs at time
0 s and the purpose of the controller is to ensure that the
process output reaches this new desired concentration.
As quantitative measures of the control system perfor-
mance, the step response characteristics, which comprise
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rise time, ¢, settling time, t;, percentage of overshoot,
Moy and steady-state error, eg are used [41]. For good
closed-loop performance, it is desirable to achieve a small
tr, ts and Moy as well as having e = 0. As a benchmark
for comparison, we first calculate the step response char-
acteristics without parameter uncertainty. Hereafter, we
refer to these as the set of results for the nominal system.
The parameters for the nominal system in the required
abstract chemical reactions are:

Linear process: ky1 = 0.1 /s, kyp = 0.1 /s.

PI controller: ysp1, Ysp2, Ysb3 = 0.4 /8, Ysm1, Vsm2> Vsm3 =
0.8 /s, yx1, vk2 = 0.0004 /s, Kp = 1 and K; = 0.045.

CMC controller: ki, k3 = 0.00185 /M/s, ko, kg = 0.5 /s.
Xp + 1+ xc1 + xcy = 27.5 Mand x, + xc2 = 0.033 M.

Subtractor dynamics: ysp1, Ysp2, Ysp3 = 0.4 /s.

The step response characteristics for both the nominal
systems are tabulated in Table 1. For each of the analysed
uncertainty sets, the worst-case values returned by Monte
Carlo simulation for each of the step response character-
istics and its associated parameter set are shown. Note
that a range of parameters is given here as the parameter
set associated with each worst-case characteristic is dif-
ferent. For example, the parameters yielding the worst ¢,
may not yield the worst £, Moy and eg and vice versa. For
illustration, the step responses depicting the nominal and
worst-case responses for each step response characteris-
tics for A € {0.2,0.5, 1.0, 1.2} are shown in Fig. 6 for both
PI and CMC controllers.

The performance of the two nominal closed-loop sys-
tems is rather similar, which reflects the fact that the
CMC controller is designed to reproduce the steady-
state input-output mapping of the original PI controller.
Interestingly, however, we can clearly see a significantly
improved robustness of the system when the CMC con-
troller is used. With the PI controller, the closed-loop
system become unstable when A = 1.2, while for the
CMC controller, the closed-loop system becomes unsta-
ble only when A = 1.8, showing that the CMC controller
is able to tolerate more than a 50 % larger variability in
the values of the reaction rates in the underlying chemical
reactions.

Performance analysis of controllers with nonlinear process
We proceed to analyse how the two controllers fare in
controlling a more complex second-order nonlinear pro-
cess. The same step test and Monte Carlo simulations
are carried out, with the parameters for the nomi-
nal system in the required abstract chemical reactions
given as:

Nonlinear process: kyy = 0.00005 /M/s, kyy = 1.6 /s,
ky3 = 0.0008 /s, with the total concentration constrained
sothatp +g=55M.

PI controller: ysp1, Vsb2s VSb3» YSmls YSm2s YSm3» YK1»
yK2 = 0.0004 /s, Kp = 0.65 and K; = 0.3.
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Table 1 Step response characteristics and worst-case parameter ranges for Pl and CMC controllers + linear process

Pl controller
Characteristics Nominal A=02
tr (s) 29 44
ts (s) 9% 13
Moy (%) 9.14 22.83
ess (M) 0.00 0.19
Parameters Nominal A =02
Ysb1 (/) 0.400 0.431-0476
Ysb2 (/) 0.400 0.401-0471
Ysb3 (/5) 0400 0.401-0473
K 0.045 0.048-0.054
Kp 1.000 1.016-1.165
i1 (/s) [1073] 0.400 0.436-0477
Yk2 (/s) (1073 0.400 0.403-0.466
Ysm (/s) 0.800 0.809-0.948
Ysma2 (/s) 0.800 0.835-0.943
Ysm3 (/9) 0.800 0.832-0.958
ki (/s) 0.100 0.101-0.116
ko (/s) 0.100 0.101-0.114
CMC controller
Characteristics Nominal A=02
t () 29 37
ts (s) 97 116
Mov (%) 10.12 253
ess (M) 0.00 0.18
Parameters Nominal A =02
Ysb1 (/) 0.400 0.403-0.476
Ysb2 (/) 0.400 0.401-0477
Y53 (/5) 0.400 0.403-0.466
ket (/M/s) [1072] 0.185 0.186-0.221
kpa (/5) 0.500 0.514-0.565
koz (/M/s) [1072] 0.185 0.187-0213
kpa (/5) 0.500 0.516-0.596
ky (/s) 0.100 0.100-0.119
ko (/s) 0.100 0.101-0.114

A =05 A=10 A=12
75 157 173

175 499 Unstable
5225 11417 Unstable
049 091 Unstable

A =05 A=10 A=12
0.532-0.595 0475-0.791 0.584-0.599
0.400-0.584 0.413-0.569 0.428-0.875
0.414-0.593 0.466-0.721 0.412-0.853
0.048-0.061 0.052-0.086 0.058-0.085
1.130-1.359 1.137-1.549 1.159-1.367
0424-0.515 0434-0.674 0.505-0.795
0.401-0.454 0.473-0.666 0.570-0.683
0.863-1.099 0.827-1.544 0.825-1410
0.904-1.012 0.849-1.205 1.152-1.548
0.823-1.140 0.841-1.536 0.853-1.279
0.106-0.142 0.111-0.174 0.127-0.208
0.102-0.139 0.103-0.199 0.123-0211
A =05 A=10 A=12
65 89 117

155 202 353

44.63 60.55 75.00

0.46 0.92 1.12

A =05 A=10 A=12
0.450-0.595 0.412-0.781 0.626-0.857
0.406-0.580 0.407-0.752 0.403-0.745
0.402-0.594 0.577-0.726 0.425-0.806
0.202-0.274 0.199-0.342 0.224-0.365
0.516-0.683 0.621-0.737 0.509-0.747
0.187-0.245 0.242-0.354 0.230-0.318
0.679-0.723 0.553-0.851 0.662-1.008
0.104-0.148 0.130-0.199 0.101-0.174
0.105-0.150 0.106-0.198 0.109-0.209

CMC controller: ki == 0.0000055 /M/s, k3 =
0.000018 /M/s, ko = 12.50 /s, kg = 140 /s, xp + u +xc1 +
xco2 = 66 M and x, + xc2 = 0.00012 M.

Subtractor dynamics: ysp1, Vsp2, Ysp3s = 0.4 /s.

The step response characteristics for both the nom-
inal systems are tabulated in Table 2. As previously,
the step responses depicting the nominal and worst-case
responses for A € {0.2,0.5, 1.0} are shown in Fig. 7 for the

PI and CMC controllers respectively. Note that we do not
consider the case for A = 1.2 as the closed-loop system
becomes unstable for A = 1.0, when the PI controller +
nonlinear process is used.

The performance of the two nominal closed-loop sys-
tems are rather similar, which again reflects the fact that
the CMC controller is designed to reproduce the steady-
state input-output mapping of the original PI controller.
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The closed-loop system with the CMC controller retains
closed-loop stability up until A = 1.6, again demonstrat-
ing a significantly higher level of robustness than exhibited
by the linear PI controller.

Flexible input-output mapping improves robustness

The results thus far have shown consistently better
robustness from the CMC controller compared to the
PI controller. To explain this, we analyse the mapping
of steady-state input-output signals of these two con-
trollers. Fig. 8(a) shows the mapping of steady-state
input-output signals of both controllers as they were
implemented when controlling the linear process. The
mapping of input-output signals for the nominal sys-
tem and the maximum deviation from this response
when A = 1.2 are shown in black solid line and
magenta dash-dotted line respectively. We observe a sig-
nificantly greater change to the gradient of the PI con-
troller’s input-output mappings compared to the CMC
controller.

This intriguing observation leads us to ask how the
gradient of this mapping of steady-state input-output sig-
nals is related to the robustness of the controller? Here,
the gradient is associated with the straight line equation,
y = mx + ¢, where m is the gradient and ¢ is the
intersection of the y-axis given that the mapping of the
steady-state input-output signals are made up of a straight
line.

Given the process to be controlled is a linear process, its
ODE representation (with x := y) is given by

dx
T = —kpzx + kplu (12)
Equation 12 is in the standard state-space representa-
tion (i.e. % = Ax + Bu,y = Cx + Du) with A = —kj»

and B = ky1, C = 1 and D = 0. In linear control the-
ory design using a state-space approach, [42], a standard
control law can be written as u = Kx where K is the con-
troller gain. This linear control law can be viewed as a
mapping of input, x to output, u with K being the gradient.
Substituting # = Kx into Eq. (12), we have

d
dit‘ = —kpox + kp1 K = (kp1K — kpo) %

As Eq. (13) is in scalar form, the overall process is stable
if the real part of the eigenvalue of A (i.e. k,1 K —kj2) is less

(13)

than 0, hence, the following condition, K < % must hold.
In other words, if the controller gain, K is less than the
ratio of the process parameters k to k,1, we have a stable
system. In our simulation, the process parameters of the
nominal system are kp1, ko = 0.1, thus, for the system to
be stable, we require K < % = 1. Looking at Fig. 8(b), a
zoomed-in version using Moy as illustration, the gradient
of both the controllers’ input-output mapping are less than
1 (i.e. & 0.34); the closed-loop system is stable. Note that
for the nominal system, both the controllers’ input-output
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Table 2 Step response characteristics and worst-case parameter ranges for Pl and CMC controllers + nonlinear process

Pl controller

Characteristics Nominal A =02 A =05 A=10
tr (s) 11,139 18,959 31,673 Unstable
ts (s) 26,304 44,138 48,482 Unstable
Moy (%) 242 24.88 4444 Unstable
ess (M) 0.00 0.19 0.48 Unstable

Parameters Nominal A=02 A =05 A=10
Yso1 (/) [1073] 0400 0.445-0.480 0.492-0.596 0472-0.730
Ysb2 (/) [10=3 0.400 0.402-0.475 0.400-0.453 0.533-0.735
Ysb3 (/5) [10=3 0.400 0.427-0.467 0.433-0.591 0.402-0473
K [1073] 0.300 0.301-0.353 0.310-0.420 0.486-0.504
Kp 0.650 0.673-0.771 0.790-0.908 0.806-1.282
vk (/s) [1073] 0.400 0.432-0.461 0.446-0.573 0.498-0.747
yka (/s) [1073] 0400 0.401-0422 0.446-0.586 0.404-0.740
ysm (/s) [1073] 0400 0427-0479 0.424-0.587 0.641-0.791
Ysma (/) [1073] 0.400 0423-0.462 0.469-0.553 0.615-0.730
Ysm3 (/5) [1 03] 0.400 0.409-0.478 0.418-0.539 0.401-0431
ke (/M/s) [1074] 0.500 0.509-0.594 0.536-0.734 0.737-0.945
ey (/5) 1.600 1.633-1.865 1.749-2.232 1.860-2.843
ko (/s) [1073] 0.800 0.812-0.904 0.819-1.102 0.844-0.891

CMC controller

Characteristics Nominal A=02 A =05 A=10
t (s) 11,147 15,501 25,753 30,838
t5 (s) 28,848 28,324 42,494 49,196
Moy (%) 2.84 13.12 26.25 56.37
ess (M) 0.00 0.19 046 0.98

Parameters Nominal A =02 A =05 A=10
Ysor (/) [1073] 0400 0426-0479 0.534-0.597 0.542-0.798
Ysb2 (/3) [10=3 0.400 0.400-0.478 0.404-0511 0.403-0.798
Ysb3 (/5) [10=3 0.400 0.406-0.457 0.425-0.578 0.403-0.633
kp1 (/M/s) [107°] 0.550 0.567-0.644 0.577-0.808 0.619-1.075
kpa (/9) 12.50 12.64-14.75 16.57-17.84 16.99-17.95
kb3 (/M/s) [1074] 0.180 0.182-0.207 0.203-0.238 0.196-0.274
kpa (/5) 140.00 144.48-163.09 165.38-205.25 143.15-278.30
kn (/M/s) 1074 0.500 0.503-0.593 0.523-0.712 0.538-0.807
kr2 (/) 1.600 1.635-1.893 1.839-1.950 1.789-2.861
k2 (/) [1073] 0.800 0.803-0.943 0.804-1.162 0.808-1.525

mappings are very similar, as expected, since the CMC
controller was designed to reproduce the PI controller’s
steady-state input-output mapping.

We now consider the effect of increasing levels of
variability in the values of the parameters in the chemical

reactions implementing the feedback control system. For
the PI controller, at A = 1.2, the process parameters
change from k,; = 0.100 — 0.208 and ky; = 0.100 —
0.124. Thus, the ratio % changes from 1 — 0.596.
Likewise, from Fig. 8(b), we see the gradient of the PI
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controller’s steady-state input-output mapping changes to

1213 > 2
pl

unstable behaviour.

On the other hand, the change of gradient for the CMC
controller is smaller compared to the PI controller. At
A = 1.2, the process parameters change from k,; =
0.1 — 0.174 and kyz = 0.1 — 0.109, leading the ratio
k,
of the CMC controller’s steady-state input-output map-

= 0.596, which accounts for the observed

to change from 1 — 0.628. However, the gradient

ping changes to 0.588 < % = 0.628, thus preserving the

stability of the system.

What makes the CMC more robust (in terms of gradient
change) to parameter uncertainty? Our simulation results
using the nonlinear process shed some light on this matter.
The steady-state mapping of input-output signals simu-
lated 1060 times at A = 1.0 for both the controllers when
controlling the nonlinear process is shown in Fig. 9(a).
For the nominal system both the controllers’ input-output
mapping retains a the linear behaviour. While the PI con-
troller’s steady-state input-output mapping stays linear for
all 1060 uncertainty combinations, the CMC controller’s
input-output mapping displays a ‘hyperbolic’ behaviour
for some parameter combinations. Recall that this ‘hyper-
bolic’ behaviour is one of the input-output signal map-
pings reported in [25] (see also Fig. 5(b)). Thus, our
simulation results seem to indicate that parameter uncer-
tainty has the capacity to change the operating regime

of the CMC controller from signal-transducing to hyper-
bolic. Thus, the question we are interested in is whether
this change in the mapping regime accounts for the better
robustness of the CMC controller.

As the process is now nonlinear, the notion of eigen-
value no longer applies while the notion of stability for
a nonlinear system is also more mathematically involved
and beyond the scope of this paper. However, we can
informally explain the difference in the robustness of both
controllers by extending our arguments on the ‘gradient’
of the steady-state input-output mapping, as was done
for the linear process. Figure 9(b) shows the nominal and
worst-case deviation in the input-output mapping for both
controllers at A = 1.0.

From Fig. 9(c), we can see that despite both controllers
having very similar mapping of input-signal signals for
the nominal system, when subjected to parameter uncer-
tainty, the gradient of the PI controller’s steady-state
input-output mapping becomes steeper and subsequently
affects the stability of the system. On the other hand,
not only does the CMC controller’s input-output map-
ping show a smaller change in response to uncertainty, it
becomes more hyperbolic. The CMC controller’s innate
ability to achieve hyperbolic behaviour seems to be able
to prevent the adverse effect of parameter uncertainty, as
it enables the gradient of its input-output mapping when
subjected to parameter uncertainty to remain small. In
this particular case, we show through an extensive analysis
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that the change in the mapping behaviour of the CMC
controller from the linear signal-transducing regime to
the hyperbolic regime actually acts to improve the robust-
ness of the CMC controller.

Conclusions

In this paper, we have shown how the set of chemi-
cal reactions underlying the covalent modification cycle
motif may be used to design a range of analog biomolec-
ular circuits for computation, information processing and
control. By exploiting the four distinct input-output map-
ping behaviours of the covalent modification cycle, we
have designed biomolecular circuits to compute complex
nonlinear operators and implement nonlinear feedback
controllers. Our design approach results in a dramatic
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Fig. 9 a The mappings of steady-state input-output signals of Pl
controller and CMC controller simulated 1060 times for A = 1.0.
Nominal systems are shown in thick dotted grey line. b The mapping
of steady-state input-output signals of the PI controller (top row) and
the CMC controller (bottom row) when controlling the nonlinear
process. Black solid line: Nominal system. Green dash-dotted line:
worst-case response for A = 1.0. ¢ The zoomed-in version of the
mapping of steady-state input-output signals of the Pl controller
(bold line) and the CMC controller (thin line) for Moy from (B). Black
solid line: Nominal system. Green dash-dotted line: worst-case
response for A =1.0
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reduction in circuit complexity compared to the use of
purely abstract reactions from standard chemical reaction
network theory, and requires far fewer chemical reac-
tions to be implemented experimentally. Our designs also
demonstrated significantly greater robustness to variabil-
ity in circuit parameters that will inevitably arise in exper-
imental implementations of synthetic circuitry. Given the
range of input-output mappings that can be produced
by the set of chemical reactions underlying the covalent
modification cycle, it is likely that they could be used
to efficiently design many other types of operators and
controllers. As the chemical reactions concerned are all
represented either in unimolecular or bimolecular form,
the resulting circuits can then be readily implemented
using DNA-based chemistry either in vitro or in vivo for
future Synthetic Biology applications.
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