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Abstract

In this paper, we compute the probability that an N × N matrix
from the generalised Gaussian Unitary Ensemble (gGUE) is positive
definite, extending a previous result of Dean and Majumdar [14]. For
this purpose, we work out the large degree asymptotics of semi-classical
Laguerre polynomials and their recurrence coefficients, using the steep-
est descent analysis of the corresponding Riemann–Hilbert problem.

1 Introduction and main results

The Gaussian Unitary Ensemble (GUE) is the most classical and studied
example of a unitarily invariant Hermitian random matrix ensemble. Given
the set of N ×N Hermitian matrices HN , one defines a probability density

dP (MN ) =
1

ZN
e−N TrV (MN )dMN , (1.1)

where dMN is the usual Lebesgue measure on HN , and ZN is the partition
function:

ZN =

∫
HN

e−N TrV (MN )dMN . (1.2)

The potential V is a smooth function with sufficient growth at infinity,
so that (1.2) is well defined, and the GUE corresponds to the quadratic case
V (x) = x2, see references [3, 20, 23] for relevant background.
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In this paper we are interested in the probability that matrices drawn
at random from (1.1) are positive definite, denoted here by P(MN > 0). As
well as being a natural question within random matrix theory, in several sit-
uations in the physics literature MN is used to model the Hessian matrix of
random high-dimensional energy surfaces, see e.g. [1, 10, 14, 21] and refer-
ences therein. In such contexts P(MN > 0) provides important information
on the stability (maxima and minima) of such energy surfaces.

In the GUE case, the earliest investigations of this probability appeared
in the string theory and cosmology literature [1], where it was argued that
P(MN > 0) decays exponentially in N2 (at least implicitly, this already
followed from the large deviations principle of Ben Arous and Guionnet
[4]). However, the multiplicative constant in these asymptotics remained
unknown until the work of Dean and Majumdar [14], who showed using
Coulomb gas techniques that

logP(MN > 0) = −c1N2 + o(N2) (1.3)

where

c1 =
log 3

2
. (1.4)

Then in subsequent work [8], further terms in the asymptotic expansion of
(1.3) were computed using the technique of loop equations, where it was
shown that

logP(MN > 0) = −c1N2 + c2 log(N) + c3 + o(1) (1.5)

where

c2 = − 1

12
, c3 =

log 3

8
− log 2

6
+ ζ ′(−1), (1.6)

and ζ(s) is the Riemann-Zeta function. Our aim will be to give a proof of
(1.5) using the firmly established methods of orthogonal polynomials. Our
results also apply to the generalised GUE, leading to a 1-parameter extension
of the asymptotics (1.5), which as far as we are aware have not appeared in
either the mathematics or physics literature.

Like the ordinary GUE, the generalised GUE is defined on the set of
N ×N Hermitian matrices, but now the probability measure has the form

dP (MN ) =
|det(MN )|λ

ZgGUE
N

exp
(
−N Tr(M2

N )
)
dMN , (1.7)

where we assume Reλ > −1 to ensure finiteness of the normalizing constant
ZgGUE
N , which depends implicitly on λ although for simplicity of notation we
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do not emphasize it. Ensembles of the form (1.7), with extra algebraic terms
in the density, were studied extensively in the literature on matrix models
under the name Gauss-Penner model, see [16, 2] for details and applications.

The main purpose of this paper is to prove the following

Theorem 1.1. Let P(M
(λ)
N > 0) denote the probability that a random matrix

from ensemble (1.7) is positive definite. Then for any fixed λ with Reλ >
−1, we have the asymptotic expansion as N →∞,

logP(M
(λ)
N > 0) = −c1N2 − λ log(3)

2
N +

(
c2 +

λ2

4

)
log(N) + c3

+
3λ2

4
log(2)− λ2

2
log(3)− log

G(32)G(12)G(λ+ 1)

G(λ+3
2 )G(λ+1

2 )G(1)
+O(N−1),

(1.8)

where c1, c2 and c3 are the explicit constants defined above and G(z) is the
Barnes G function [17, §5.17].

We note that in the case λ = 0 we immediately recover the result (1.5)
of [8] as a special case. We also mention the work [9] where the dependence
of the leading term c1 on growing λ ∼ N is investigated.

Figure 1 illustrates the accuracy of the asymptotic expansion (1.8) for
increasing N and several values of λ. The comparison has been made with
respect to brute force calculation of the Hankel determinant expression for
the partition functions, see Appendix A, which is quite time consuming and
needs a large number of digits in Maple.

To prove Theorem 1.1 we will study the partition function:

ZN (s) =

∫ ∞
0

. . .

∫ ∞
0

N∏
j=1

w(xj ;λ, s)
∏

1≤p<q≤N
(xq − xp)2 dx1 . . . dxN (1.9)

where w(x;λ, s) = xλe−x+sx(1−x). Note that this deformed weight interpo-
lates between the classical Laguerre weight if s = 0 and the generalized GUE
if s = 1. Diagonalizing MN in (1.7) and integrating out the eigenvectors (see
e.g. [3, 20, 23]) we see that

logP(M
(λ)
N > 0) = log

(
ZN (1)

ZgGUE
N

)

=

∫ 1

0

Z ′N (s)

ZN (s)
ds+ logZN (0)− logZgGUE

N .

(1.10)
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Figure 1: Absolute errors (in log10 scale) as a function of N and for different
values of λ, taking all the terms in (1.8) up to order O(1) (included).

As the quantities ZN (0) = ZLUE
N and ZgGUE

N turn out to have explicit eval-
uations in terms of Gamma functions (see Lemmas A.1 and A.2), our main
task is to compute the integrand in (1.10).

1. We write Z ′N (s)/ZN (s) in terms of the recurrence coefficients αN (s)
and βN (s) of a suitable family of semiclassical Laguerre polynomials,
orthogonal with respect to w(x;λ, s) on x ∈ [0,∞).

2. We compute the first terms in the asymptotic expansion of αN (s) and
βN (s) as N →∞, using the corresponding Riemann–Hilbert problem
and the Deift–Zhou method of steepest descent.

3. We show that such asymptotic expansions are uniform in s ∈ [0, 1] and
we integrate term by term in (1.10).

2 Proof of Theorem 1.1

Semi-classical Laguerre orthogonal polynomials (OPs): πn(x) = πn(x;λ, s)
are defined by the orthogonality∫ ∞

0
πn(x)xkw(x;λ, s)dx = 0, k = 0, 1, 2, . . . , n− 1, (2.1)

where the weight function is

w(x;λ, s) = xλe−NV (x;s), λ > −1. (2.2)
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Here the potential is
V (x; s) = x+ s(x2 − x), (2.3)

constructed in such a way that V (x; 0) = V (x) = x corresponds to the
classical Laguerre OPs, while V (x; 1) = x2 is the potential that we are
interested in. Such a deformation follows a similar idea as the construction
by Bleher and Its in [6]. The quantities considered here were also recently
investigated in the complementary regime of fixedN and large parameters by
Clarkson and Jordaan [13]. Part of this interest stems from the fact that the
recurrence coefficients for semi-classical Laguerre polynomials, with weight
w(x;λ, t) = xλ exp(−x2 + tx), satisfy deformation equations (in t) that are
closely related to the Painlevé IV differential equation [7, 18, 13].

Since the weight function (2.2) is positive and integrable on [0,∞) for
s ∈ [0, 1], it follows from the general theory [11, 22], that the orthogonal
polynomials πn(x) exist uniquely for all n ≥ 0 and s ∈ [0, 1], and they satisfy
deg πn = n. Furthermore, they are solutions of a three term recurrence
relation (written in monic form):

xπn(x) = πn+1(x) + αnπn(x) + βnπn−1(x), (2.4)

with initial data π−1(x) = 0, π0(x) = 1, and recurrence coefficients αn =
αn(λ, s) and βn = βn(λ, s). Next, we consider n = N and we write
Z ′N (s)/ZN (s) in terms of these recurrence coefficients.

Lemma 2.1. We have the following deformation equation

Z ′N (s)

ZN (s)
= βNcN,λ(s)−N2 [(1− 3s)EN + 2sFN ] , (2.5)

where

cN,λ(s) := N2(3− s) + λN (2.6)

EN := βN (αN + αN−1) (2.7)

FN := βN (βN+1 + βN + βN−1 + α2
N + αNαN−1 + α2

N−1) (2.8)

Proof. A simple computation shows that

Z ′N (s)

ZN (s)
= −N

∫ ∞
0

(x2 − x)ρN (x) dx (2.9)

where ρN (x) is the so-called ‘one-point correlation function’ or ‘eigenvalue
density’ corresponding to the weight (2.2), see e.g. [3, 23] for definitions and
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basic properties of this quantity. In particular it is known that ρN (x) can
be computed explicitly by means of the Christoffel-Darboux formula:

ρN (x) =
π′N (x)πN−1(x)− πN (x)π′N−1(x)

hN−1
(2.10)

Inserting (2.10) into (2.9) yields four different contributions which can all
be written in terms of the recurrence coefficients αN and βN . One term
vanishes due to ∫ ∞

0
xπ′N−1(x)πN (x)w(x) dx = 0, (2.11)

a consequence of orthogonality. So (2.9) can be decomposed as I = I1+I2+
I3, where

I1 :=
N

hN−1

∫ ∞
0

x2π′N−1(x)πN (x)w(x) dx (2.12)

I2 := − N

hN−1

∫ ∞
0

x2π′N (x)πN−1(x)w(x) dx (2.13)

I3 :=
N

hN−1

∫ ∞
0

xπ′N (x)πN−1(x)w(x) dx (2.14)

First observe that I1 = N(N − 1)βN (as a consequence of hN/hN−1 = βN ).
An exercise in integration by parts shows that

I2 = N(N + 1 + λ)βN −N2(1− s)EN − 2sN2FN (2.15)

I3 = (1− s)N2βN +N22sEN (2.16)

where

EN :=
1

hN−1

∫ ∞
0

πN (x)πN−1(x)x2w(x) dx (2.17)

FN :=
1

hN−1

∫ ∞
0

πN (x)πN−1(x)x3w(x) dx (2.18)

Combining all these terms yields (2.5). Finally the identities (2.7) and (2.8)
follow from the three term recurrence relation (2.4).

The recurrence coefficients in Lemma 2.1 can be computed by solving
the following coupled system of recurrence relations in the limit N →∞.
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Proposition 2.2 (String equations). The recurrence coefficients αN (s) and
βN (s) in (2.4) satisfy

2s(βN+1 + βN + α2
N ) + (1− s)αN = 2 +

λ+ 1

N
,

s2βN

(
2αN +

1− s
s

)(
2αN−1 +

1− s
s

)
= (2sβN − 1)

(
2sβN − 1− λ

N

)
.

(2.19)

Proof. The string equations are known from [13, Lemma 4.2], and also [7,
Theorem 1.1], [18] adapting the potential V (x; t) = x2 − tx to the present
one.

We remark in passing that Boelen and Van Assche [7] have shown that
(2.19) can be obtained from an asymmetric discrete Painlevé IV equation
by a limiting process.

To solve this system of equations asymptotically as N →∞, we exploit
the following fact, the proof of which is postponed to the next section.

Proposition 2.3. Let q ∈ Z be fixed and set n = N + q. The recurrence
coefficients αn(s) and βn(s) in (2.4) have asymptotic expansions in inverse
powers of N :

αn(λ, s) ∼
∞∑
k=0

fk(λ, s)N
−k, βn(λ, s) ∼

∞∑
k=0

gk(λ, s)N
−k. (2.20)

The coefficients fk(λ, s) and gk(λ, s) depend implicitly on q and are analytic
functions of s ∈ [0, 1].

With these ingredients in hand, we can now prove Theorem 1.1. We
insert the expansions (2.20) into the recurrence (2.19) and equate terms with
equal powers of N . At leading order the solution that remains bounded as
s→ 0+ is

f0 =
s− 1 + ∆

6s
, g0 =

s2 + 10s+ 1 + (s− 1)∆

72s2
, (2.21)

where ∆ =
√
s2 + 22s+ 1. Next, we have

f1 =
λ+ 1

∆
, g1 =

(∆ + s− 1)λ

12∆s
. (2.22)
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Higher order corrections can be computed systematically in Maple, but
become quite cumbersome. If we substitute the terms up to order O(N−2)
(included) into the right hand side of (2.5), we get

Z ′N (s)

ZN (s)
= A(s)N2 +B(s)N + C(s) +O(N−1), N →∞, (2.23)

where

A(s) =
∆3(s+ 1) + s4 + 34s3 − 216s2 − 34s− 1

432s3
, (2.24)

B(s) =
λ(s2 − 12s− 1 + (s+ 1)∆)

24s2
, (2.25)

C(s) =
λ2(s+ 1)[s2 + 6s+ 1 + (s− 1)∆]

4s(s2 − 10s+ 1)∆
(2.26)

− (s+ 1)3∆ + (s2 − 1)(s2 + 14s+ 1)

12s(s2 − 10s+ 1)∆2
, (2.27)

using again ∆ =
√
s2 + 22s+ 1. Now integrating from s = 0 to 1, we get∫ 1

0

Z ′N (s)

ZN (s)
ds = N2

∫ 1

0
A(s)ds+N

∫ 1

0
B(s)ds+

∫ 1

0
C(s)ds+O(N−1)

= N2

(
3

4
− log 6

2

)
+N

(
1

2
− log 6

2

)
λ

+
λ2 log(2/3)

2
+

log 3

8
− log 2

6
+O(N−1).

(2.28)
The integrals in (2.28) are easily calculated in any computer algebra package.
Combining (2.28) with the known asymptotics for logZN (0) and logZgGUE

N

(see Lemmas A.1 and A.2 respectively) in (1.10) completes the proof of
Theorem 1.1. In the next section we prove Proposition 2.3.

3 1/N expansion for the recurrence coefficients

The main purpose of this section is to justify the Ansatz (2.20) which we
inserted into the string equations. This is based on the fact that the recur-
rence coefficients can be computed in terms of the solution of an appropriate
Riemann-Hilbert problem (RHP). Then their asymptotics can be analysed
very precisely using the Deift–Zhou method of steepest descent.
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3.1 Equilibrium measure

In the steepest descent analysis, a key role is played by the equilibrium
measure dµV , which minimises the logarithmic energy

E(ν) =

∫∫
log

1

x− y
dν(x)dν(y) +

∫
V (x; s)dν(x), (3.1)

over all probability measures supported on [0,∞), where the external field
V (x; s) is given by (2.3). Such a problem has a unique solution, since
w(x;λ, s) = xλe−NV (x;s) is an admissible weight function in the sense of
Saff and Totik [25, Def. 1.1]. Moreover, in this case the support and density
of this equilibrium measure can be worked out explicitly:

Lemma 3.1. Let s ∈ [0, 1], the equilibrium measure corresponding to the
weight function w(x;λ, s) = xλe−NV (x;s), with V (x; s) given by (2.3) is sup-
ported on the interval (0, c) where

c =
s− 1 +

√
s2 + 22s+ 1

3s
. (3.2)

If we write dµV (x) = ψV (x)dx, the density is given by

ψV (x) = − 1

π
(ax+ b)

√
c− x
x

, (3.3)

with

a = −s, b =
2s− 2−

√
s2 + 22s+ 1

6
. (3.4)

Proof. We apply the change of variables x 7→ x2, and then we take the
potential

W (x; s) =
1

2
V (x2) =

1

2
(x2 + s(x4 − x2)).

SinceW ′′(x; s) = 6sx2+1−s ≥ 0 for all x ∈ R and s ∈ [0, 1], the potential
is convex, and the equilibrium measure corresponding to this weight, say
dµW (x) = ψW (x)dx is supported on a single interval [−

√
c,
√
c]. Consider

the resolvent

ω(z) =

∫ √c
−
√
c

dµW (x)

z − x
,

which is analytic in C \ [−
√
c,
√
c] and satisfies

ω(z) =
1

z
+O(z−2), z →∞,

ω+(x) + ω−(x) = W ′(x),
(3.5)
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where ω±(x) indicates the boundary values for x ∈ (0, c), from above and
below the real axis respectively. Consequently, we look for ω(z) of the form

ω(z) =
W ′(z)

2
+ (az2 + b)(z2 − c)1/2,

with a branch cut on [−
√
c,
√
c]. The first equation in (3.5) gives the coeffi-

cients a, b and c in (3.2) and (3.4).
The density of the equilibrium measure is recovered as

ψW (x) =
1

2πi
(ω−(x)− ω+(x)) = − 1

π
(ax2 + b)

√
c− x2, x ∈ [−

√
c,
√
c].

(3.6)
See [5] for more details. Next, we apply a result of Claeys and Kuijlaars [12,
Lemma 2.2] which gives the density of the equilibrium measure correspond-
ing to V (x) in terms of that corresponding to W (x):

ψW (x) = |x|ψV (x2),

so

ψV (x) = − 1

π
(ax+ b)

√
c− x
x

, x ∈ (0, c),

which is the form given in the lemma.

We observe that the form of the equilibrium measure is uniform in s ∈
[0, 1]. This will be crucial in the asymptotic expansions obtained below.

3.2 RH problem

Following the original idea of Fokas, Its and Kitaev [19] in this context, the
(monic) semiclassical Laguerre polynomials πn(x) are the (1, 1) entry of a
2 × 2 matrix Y (z) = Yn(z;λ, s) : C 7→ C2×2 that satisfies the following RH
problem:

1. Y (z) is analytic in C \ [0,∞).

2. On [0,∞), oriented from left to right, the boundary values of Y satisfy

Y+(x) = Y−(x)

(
1 xλe−NV (x;s)

0 1

)
,

where (·)±(x) indicates the boundary values from above and below the
real axis respectively.
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3. As z →∞, we have

Y (z) =

(
I +

Y1
z

+
Y2
z2

+O
(

1

z3

))(
zn 0
0 z−n

)
(3.7)

4. As z → 0, we have

Y (z) =



(
O(1) O(zλ)

O(1) O(zλ)

)
, λ < 0,(

O(1) O(log z)

O(1) O(log z)

)
, λ = 0,(

O(1) O(1)

O(1) O(1)

)
, λ > 0.

(3.8)

It is known [15] that the recurrence coefficients αn(λ, s) and βn(λ, s) in
(2.4) can be written as follows:

αn =
(Y2)12
(Y1)12

− (Y1)22, βn = (Y1)12(Y1)21 (3.9)

where Y1 and Y2 are the matrices that appear in the asymptotic expansion
(3.7), see [5, §3.2] or [15].

3.3 Steepest descent

The steepest descent of Deift and Zhou consists of a series of transformations
that lead to a final RH problem that can be solved asymptotically as N →
∞, uniformly in z in the complex plane. Since we are only using the steepest
descent method in order to prove existence of an asymptotic expansion in
powers of 1/N for the recurrence coefficients, and not to obtain the details
of the coefficients therein, the presentation will be quite brief. We refer the
reader to the work of Vanlessen [26], or Zhao et al. [27] for a more detailed
explanation in a similar setting.

The basic steps in this case are the following:

Y 7→ T 7→ S 7→ R. (3.10)

The first step Y 7→ T is a normalization at infinity:

T =

(
e−N`/2 0

0 eN`/2

)
Y

(
e−N(g(z)−`/2) 0

0 eN(g(z)−`/2)

)
, (3.11)
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where ` is a constant (Lagrange multiplier of the equilibrium problem), and
g is the logarithmic transform of the equilibrium measure:

g(z) =

∫ c

0
log(z − x)dµV (x), (3.12)

which is analytic in C\(−∞, c], with c given by (3.2), and as z →∞ satisfies

g(z) = log z − µ1,s
z
− µ2,s

2z2
+O(z−3), (3.13)

where µk,s =
∫ c
0 x

kdµV (x), k ≥ 1, are the moments of the measure dµV ,
that can be computed explicitly. As a consequence, we have the expansion

eNg(z)σ3 =

(
eNg(z) 0

0 e−Ng(z)

)
=

(
zN 0
0 z−N

)(
I +

G1

z
+
G2

z
+O(z−3)

)
,

(3.14)
as z →∞, where G1 and G2 are diagonal matrices (and dependent of s and
N).

The second step T 7→ S deforms the jump contours by opening a lens
around the interval [0, c]. This step does not make any change away from
a small neighbourhood of [0, c], and since we will be using information as
z →∞ for the recurrence coefficients, see (3.9), we can replace T = S.

The final step, S 7→ R uses both a global parametrix P (∞), away from
the endpoints z = 0 and z = c, and two local parametrices, PAiry and PBessel

built out of Airy functions in a neighbourhood z = 0 and Bessel functions
in a neighbourhood of z = c. Then we construct

R =


S[P (∞)]−1, z ∈ C \Dδ(0) ∪Dδ(c),

S[PAiry]−1, z ∈ Dδ(c),

S[PBessel]
−1, z ∈ Dδ(0),

where Dδ(0) and Dδ(c) are discs of fixed radius δ > 0 around z = 0 and
z = c respectively. The RH problem for R can be solved iteratively, since R
is normalized at infinity and all jumps are close to the identity, see [5, §11]
or [15]. The consequence is an asymptotic expansion of the form:

R(z) ∼
∞∑
m=0

R(m)

Nm
, N →∞, (3.15)

uniformly in z away from a contour ΣR around the interval [0, c], see [15,
Chapter 7] or [27]. It is at this stage that the uniform form of the equilibrium

12



measure with respect to s is fundamentally important, since the parametrices
depend on s but they have the same structure for s ∈ [0, 1], and then result
(3.15) holds uniformly.

In addition, R has an asymptotic expansion as z →∞, that we write

R(z) ∼ I +
∞∑
k=1

Rk
zm

, (3.16)

and combining (3.16) with (3.15), each coefficient Rk can be expanded
asymptotically in inverse powers of N .

Away from the interval [0, c], we write T = S = RP (∞) and replace this
in (3.11):

Y =

(
eN`/2 0

0 e−N`/2

)
RP (∞)

(
eN(g(z)−`/2) 0

0 e−N(g(z)−`/2)

)
. (3.17)

The global parametrix P (∞) satisfies a RH problem analogous to the
one presented in [26, Section 3.5], but on [0, c] instead of [0, 1]. Making the
corresponding changes, we have

P (∞) = I +
P

(∞)
1

z
+
P

(∞)
2

z2
+O(z−3), (3.18)

as z →∞, with some matrices P
(∞)
1 and P

(∞)
2 that can be computed explic-

itly, but whose precise form is not relevant in the present discussion. Using
(3.16) in (3.17) and identifying terms, we obtain

Y1 = e
N`σ3

2 (P
(∞)
1 +G1 +R1)e

N`σ3
2

Y2 = e
N`σ3

2 (G2 + P
(∞)
1 G1 + P

(∞)
2 +R1 + P

(∞)
1 +R1G1 +R2)e

−N`σ3
2

(3.19)
From this, we can obtain an expression for the recurrence coefficients in

terms of all the matrices involved. The terms in the expansion of P (∞) are
independent of N , and the ones for G contain only integer powers of N .

This result, together with (3.19), gives asymptotic expansions in powers
of 1/N for the recurrence coefficients, as desired.

Finally, we note that this result applies to αn and βn with n = N , but
similar expansions can be obtained for n = N ± q, needed in the string
equations (2.19). We can rewrite

NV (x; s) = n
V (x; s)

t
, t =

n

N
,
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and work with the potential V (x; s)/t. Since t will be close to 1 when N
is large and n is in the regime n = N ± q with q fixed, and all quantities
depend analytically on t, we get the same kind of asymptotic expansions in
the steepest descent method.
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A Asymptotic expansions for LUE and gGUE par-
tition functions

Lemma A.1. The partition function of the Laguerre Unitary Ensemble:

ZLUE
N =

∫ ∞
0
· · ·
∫ ∞
0

∏
1≤j<k≤N

(xk − xj)2
N∏
j=1

xλj e
−Nxjdxj , (A.1)

with λ > −1, can be written as

ZLUE
N = N−N(N+λ)

N∏
j=1

Γ(j + 1)Γ(j + λ), (A.2)

and as N →∞ we have

logZLUE
N = −3

2
N2 +N logN + (log(2π)− 1− λ)N +

3λ2 + 2

6
logN

+
1 + 3(λ+ 1) log(2π)

6
− 2 logA− logG(λ+ 1)

+
2λ3 − λ+ 1

12N
+O(N−2),

(A.3)
where G is the Barnes G-function, see [17, §5.17], and

A = exp

(
1

12
− ζ ′(−1)

)
(A.4)

is the Glaisher–Kinkelin constant, A = 1.2824271291 . . .
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Proof. The explicit formula (A.2) is a consequence of the fact that (A.1)
can be written as a Selberg integral. See [3, Theorem 2.5.8, Corollary 2.5.9],
and also [27] and the monograph by Mehta [23]. Next, we rewrite (A.2) as
follows:

ZLUE
N = N−N(N+λ)G(N + 2)G(N + λ+ 1)

G(2)G(λ+ 1)
(A.5)

again in terms of the Barnes G-function. This function has a known asymp-
totic expansion:

logG (z + 1) ∼ 1
4z

2 + z log Γ(z + 1)−
(
1
2z(z + 1) + 1

12

)
log z

− logA+
∞∑
k=1

B2k+2

2k(2k + 1)(2k + 2)z2k
, z →∞,

(A.6)

see for example [17, 5.17.5]. Here B2k+2 are Bernoulli numbers. Replacing
this asymptotic expansion in (A.5) and using Maple, we obtain (A.3).

Next, we consider the generalised GUE partition function:

ZgGUE
N :=

∫
RN

N∏
j=1

dxj |xj |λe−Nx
2
j

∏
1≤k<j≤N

(xk − xj)2 (A.7)

Lemma A.2. For fixed λ > −1, the partition function (A.7) can be written
as

ZgGUE
N = (2N)−N

2/2(2π)N/2N−λN/2
N∏
j=1

Γ(λ+1
2 + b j2c)

Γ(12 + b j2c)
j!

= (2N)−N
2/2(2π)N/2N−λN/2

G(32)G(12)

G(λ+3
2 )G(λ+1

2 )

×
G(N + 2)G(λ+N+3

2 )G(λ+N+1
2 )

G(N+3
2 )G(N+1

2 )
(A.8)

where G is the Barnes G-function. Here bj/2c denotes the largest integer
less than or equal to j/2, and we assumed that N is even for simplicity. As
N →∞, we have

logZgGUE
N =

(
−3

4
− log 2

2

)
N2 +N log(N)

+

(
log(2π)− λ(1 + log(2)) + 2

2

)
N

+
3λ2 + 5

12
log(N) + c0 +

c1
N

+O(N−2),

(A.9)
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where c0 and c1 are explicit constants

c0 =
1− 3λ2 log(2)− 12 logA+ 6(λ+ 1) log(2π)

12
+ log

G(32)G(12)

G(λ+3
2 )G(λ+1

2 )

c1 =
λ3 + λ+ 1

12
. (A.10)

Proof. The first equality in (A.8) was obtained by Mehta and Normand
in [24]. For completeness we reproduce their derivation here. The Heine
identity

ZN (λ) = N !DN (λ), DN (λ) = det [µj+k]
N−1
j,k=0 , (A.11)

allows us to write the partition function in terms of the Hankel determinant,
which is constructed with the moments of the weight function:

µk = µk(λ) =

∫ ∞
0

xkxλe−x
2
dx, k ≥ 0. (A.12)

Thus, the partition function (A.7) can be written as

ZgGUE
N = c

(λ)
N det

{∫
R
xi+j |x|λe−x2 dx

}N−1
i,j=0

= c
(λ)
N det

{
Φi,j

}N−1
i,j=0

(A.13)

where c
(λ)
N = N−N(N+λ)/2N ! and Φi,j = Γ((λ+1+i+j)/2) if i+j is even and

Φi,j = 0 if i+ j is odd. This determinant has a ‘checkerboard structure’ of
zeros and by elementary row and column manipulations, it can be arranged
so that all Φi,j with purely even indices appear in the top-left block and Φi,j

with odd indices in the bottom-right. This allows us to write (A.13) as a
product

ZgGUE
N = c

(λ)
N det{Φ2i,2j}b(N−1)/2ci,j=0 det{Φ2i+1,2j+1}b(N−2)/2ci,j=0 . (A.14)

The latter determinants can be computed from the simple fact that for
generic z ∈ C we have

det{Γ(z + i+ j)}Mi,j=0 =
M∏
j=0

j!Γ(z + j) (A.15)

which is a simple exercise to prove from, say the classical Laplace expansion
of the determinant. Applying (A.15) to (A.14) shows that

ZgGUE
N

ZGUE
N

= N−λN/2
N∏
j=1

Γ(λ+1
2 + b j2c)

Γ(12 + b j2c)
(A.16)
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where we used that the left-hand side must equal 1 when λ = 0. The first
equality in (A.8) now follows from (A.16) and the well-known formula for
ZGUE
N := ZgGUE

N |λ=0 (see e.g. [23]). The second equality in (A.8) and the
asymptotics follow from the general properties and corresponding asymp-
totic expansion (A.6) of the Barnes G-function.
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