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A simple inflationary quintessential model
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In the framework of a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry, we present
a non-geodesically past complete model of our universe without the big bang singularity at finite
cosmic time, describing its evolution starting from its early inflationary era up to the present accel-
erating phase. We found that a hydrodynamical fluid with nonlinear equation of state could result
in such scenario, which after the end of this inflationary stage, suffers a sudden phase transition
and enters into the stiff matter dominated era, and the universe becomes reheated due to a huge
amount of particle production. Finally, it asymptotically enters into the de Sitter phase concluding
the present accelerated expansion. Using the reconstruction technique, we also show that, this back-
ground provides an extremely simple inflationary quintessential potential whose inflationary part is
given by the well-known 1-dimensional Higgs potential, i.e., a Double Well Inflationary potential,
and the quintessential one by an exponential potential that leads to a deflationary regime after this
inflation, and it can depict the current cosmic acceleration at late times. Moreover the Higgs poten-
tial leads to a power spectrum of the cosmological perturbations which fit well with the latest Planck
estimations. Further, we compared our viable potential with some known inflationary quintessential
potential, which shows that our quintessential model, that is, the Higgs potential combined with
the exponential one, is an improved version of them because it contains an analytic solution that
allows us to perform all analytic calculations. Finally, we have shown that the introduction of a
non zero cosmological constant simplifies the potential considerably with an analytic behavior of
the background which again permits us to evaluate all the quantities analytically.
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1. INTRODUCTION

The complete evolution of our universe is still a mystery, and probably, one of the most interesting topics in the
history of cosmology. Until now, we have some theories describing different phases of our universe, in agreement with
the latest observations, which tell us that our universe underwent a rapid accelerating phase during its very early
evolution, namely, the inflation [1, 2], and presently it is going through a phase of accelerated expansion [3, 4]. The
gap between these two successive accelerating expansions is described by three sequential decelerated phases, the
first one is the stiff matter dominated era, then there was a radiation dominated phase, and finally, before its current
accelerating phase, the universe was matter dominated. However, since the beginning of modern cosmology, the big
bang still remains as one of the controversial issues for cosmologists. Hence, it has been questioned several times,
and alternatively, an existence of some kind of “nonsingular” universe (a model of our universe without finite cosmic
time singularity) [5] has been proposed just to replace this big bang singularity, but the evolution of the universe will
remain same. As a result, the prospect of a unified cosmological theory attracted cosmologists in order to describe
the present accelerating phase while still tracing back the early evolution of the universe. To find such a viable
cosmological theory, it has been shown that, in the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry,
the bulk viscous cosmology [6] and the gravitationally induced “adiabatic” particle creations [7] can provide some
quintessential potential, which can describe a scenario of our universe with no big bang singularity at finite cosmic
time, the early inflationary phase, and finally the current accelerating universe. Considering the same spacetime, in
the present work, we have shown that this same feature with the said properties could also be understood in the
context of pure General Relativity, if one assumes a simple nonlinear Equation of State (EoS). The idea of the model
is very simple: for a large value of the Hubble parameter, namely H, the dynamics of the system is depicted by a
first order linear differential equation, namely, the Raychaudhuri equation. With this choice, in spite of the model
leads to a geodesically past incomplete universe, the big bang singularity can be removed at finite cosmic time, while
preserving an inflationary regime during the early evolution of the universe. At the end of this inflationary period,
we introduce an abrupt phase transition to a deflationary period, where the energy density of the background decays
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as a9, where a is the scale factor of the FLRW universe. Moreover, due to the phase transition, the energy density
of the produced particles decreases as a—#, and thus, eventually becoming dominant, it reheats the universe, which
matches with the standard hot Friedmann model. Only at very late times, the background comes back to dominate
going asymptotically to a de Sitter solution, which depicts the current cosmic acceleration.

However, as we discuss at the beginning of section 3, to study the origin of cosmological perturbations, an in-
troduction of an scalar field with its corresponding potential which could mimic the early inflationary dynamics is
mandatory, because it is not clear how hydrodynamical cosmological perturbations leads to a nearly flat power spec-
trum of perturbations that match with current observational data. Surprisingly, we have found that the inflationary
quintessential potential that mimics this dynamics is a simple and well-known potential. Effectively, we have obtained
a combination of the 1-dimensional Higgs potential -a Double Well Inflationary potential [8]- and an exponential one.
The first one is responsible for inflation while the other one for quintessence. This is for us, although indirectly, the
main reason to deal with the background that we present in the work, which in the first instance has been obtained
using a nonlinear EoS.

Further, in order to check the viability of this inflationary potential, we calculate the associated parameters
related to the power spectrum from the background perturbations, such as, the spectral index, its running, and the
ratio of tensor to scalar perturbations. We found that the model fits well with the recent parameter estimations by
Planck [2]. Finally, we compared this scalar field potential with some quintessential models, and noticed that our
model potential has some noteworthy points which differentiate it from the previously introduced potentials, and
hence presents a viable potential alternative to the existing ones.

The paper is organized as follows: In section 2, introducing the model with its nonlinear EoS, we solve the
dynamical equations analytically and discuss its properties. In section 3, we establish that the dynamics governed by
the model could be mimicked by a single scalar field whose extremely simple potential is a combination of the Higgs
potential, and an exponential one, where we note that the incorporation of a scalar field is mandatory when one
deals with the origin of cosmological perturbations. Section 4 is devoted to the study of cosmological perturbations
showing that the theoretical results provided by our models fit well with current observed data [2, 9]. The reheating
process via gravitational particle production is studied in section 5, where we show that our model provides a
reheating temperature below 10° GeV, which is required in order to have a successful nucleosynthesis. Comparison
with other inflationary quintessential models is done in section 6. Finally, in the last section, we introduce the
cosmological constant, and obtain a very simple potential which is the matching of the Higgs potential and the
cosmological constant. This potential also leads to a background that can be calculated analytically and it allows us
to perform all analytic calculations.

The units used throughout the paper are h = ¢ = 871G = 1.

2. THE MODEL

Our model which is non-geodesically past complete but no big bang singularity at finite cosmic time, should have
the following three important ingredients:

1. An inflationary period at early times that could explain the origin of primordial inhomogeneities.

2. A sudden phase transition where particles are produced in a sufficient amount to reheat the universe at a viable
temperature in order to match with the hot Friedmann universe.

3. An accelerated phase at late times, accounting for the current cosmic acceleration.

Considering the above points, and dealing with the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime,
to find such a background we start with a hydrodynamical fluid, the dynamics of which is given by a first order
differential equation of the Hubble parameter H (= a/a), of the form H = F(H), where F is some continuous
function of the Hubble parameter. For example, when one considers a linear Equation of State (EoS) of the form
P(p) = (v — 1)p (where P, p are respectively, the pressure and the energy density of the hydrodynamical fluid, and
v € [1, 2], is its Equation of State parameter), one has F(H) = —%’H? One can easily verify that the solution
of the first order differential equation for model F(H) = —a?H?, with 8 > 1 always predicts a finite cosmic time
singularity at early times (i.e., the big bang singularity). Hence, in order to remove such singularity, for large values
of the Hubble parameter, the function F' must be a linear function of the Hubble parameter. Secondly, to obtain a
phase transition, we will assume that the derivative of F' is discontinuous at some point Hg, and we choose that, for



H > Hg, F(H) = —%’YHQ with % < 7. Due to the phase transition, the energy density of the produced y-particles,
namely, p, decreases as a~%, and the energy density of the background evolves as a=37. Although, the energy density
of the produced particles is initially smaller than the energy density of the background, eventually the density of the
produced particles will be dominant and, as a result, the universe will be reheated, and hence it will evolve as the hot
Friedmann universe. And finally, if our model has to take into account the current cosmic acceleration, the simplest
way is to assume that our dynamical system, H = F(H), should have a fixed point Hy (hence, F(Hy) =0, i.e., a de
Sitter solution), which can be modelled for Hy < H < H, by the function F(H) = —a?(H — Hy)>.

An example of a nonlinear EoS (see the chapter 3 of [10] for a review of cosmology with nonlinear EoS) that leads
to a background with all the properties mentioned above, is one that contains three parameters: a dimensionless one,
namely v, and two energy densities py, p. with the condition py < p.. Thus, it is given by

_ [ et vpe (2v/p = /pe) for p>pE
P(p)_{ —p+7(vp— A7)’ for p<pp, M

where
2
PE = (\//Te +Vvpor+ \/2\/pepf) = e (2)
At energy densities p > p., the EoS of the model is approximately P(p) = —p, which mimics a cosmological

constant, leading to an accelerated phase at early times. We will show that this late accelerating universe could
have a viable inflationary period. After the phase transition, at scales p = pg, the equation is P(p) = (y — 1)p,
where if one chooses 7 = 2, one has a stiff fluid that accounts for a deflationary era. Finally, since the system has a
unique fixed point, i.e., the equation P(p) + p = 0, has only one solution, given by p = py, hence, at late times, the
background asymptotically goes to the de Sitter solution corresponding to this fixed point, and depicts the current
cosmic acceleration.

The well-known Friedmann and Raychaudhuri equations in the flat FLRW geometry are

3 2 ’

and the combination of both leads to the following dynamical equation

H:{—??He(QH_He) for H > Hg (4)

—3(H — Hy)?  for H< Hp,

where we have introduced the notation H; = /&, for i =e, f,and Hg = /5% = H. + Hy + \/2H. Hy = H.,.

The effective Equation of State (EoS) parameter, namely we ¢, which is defined as wepy = —1 — 32%7 for our model

is given by

—14~fe (2— ) for H> Hp

erp(H) = ’ ’
weyyp(H) {_1+7(1_Ig for H < Hp, °

which shows that for H > H, one has w.fs(H) = —1 (early quasi de Sitter period). When H. 2 H > Hy, the
EoS parameter satisfies weyr(H) = —1 + v, and finally, for H 2 H one also has wesy(H) = —1 (late quasi de Sitter
period).

This equation could analytically be solved as

i, KH;{u,/i@) e—mm] for ¢ <0

H(t) = H.++/2H.Hy (6)
S (He++/2H Hy)t+1 + Hy for t >0,
which depicts a background without a finite cosmic time singularity in the past, satisfying H(—o0) = oo, and

H(oo) = Hy, takes the following approximate form

e for ¢t > 0. (7)

% (6’37Hﬁt + 1) for t <0
%H:tﬂ



Remark 2.1 From the solution of H(t), we will see that

—1 43t for t< —
Wess(t) = —l—i—v for 0<t<<H (8)
-1+ H2 = for t> Hf

Integrating H one gets the following scale factor

H g /8 _3yHet
alt) = age <1+ o ) - eh;ct for t<0 (9)
ap (3 (He + /2H, t+1)“"”ert for ¢ >0,

which could be approximated by

(10)

Before finishing this section, an important remark about the incompleteness of our model is in order: Note that the
Hubble parameter, and thus the energy density, only diverge when ¢ — —oo. This means that the big bang singularity
(understood as a divergence of the energy density at finite early cosmic time) is not present in this model. Actually,
in analogy with the so-called little rip singularity where the EoS parameter tends asymptotically to —1 at future time
(see, for instance, [11, 12]), we may argue that, in our model, the universe starts with a little bang. Moreover, following
the arguments given in [13], we will see that our background is not past-complete. This can be easily realized because
for ¢ < 0, the scale factor in our model (9) is given by

a(t) = aEe_&<1+ Lo ) e e%t, (11)

and thus, the maximum affine parameter A\pqp = é fi)oo a(t)dt is finite, meaning that, any backward-going null
geodesic has a finite affine length, i.e., it is past-incomplete. The same happens with massive particles moving along

time-like geodesics. In this case, let pg # 0 be the three-momentum at time ¢ = 0, then the maximum proper time

— (0 __ ma® : . : . . } .
Tmaz = fioo (O 1) dt will also be finite, meaning that, in this system of reference, the singularity (the

divergence of the energy density) is at finite proper time.

In the same way, by choosing periodic potentials one can find a universe starting and ending in a de Sitter phase
(see Egs. (26) and (68) of [7]). The background actually leads to a universe (although not geodesically past-complete)
where the energy density never diverges.

Finally, note that this analysis is only at the classical level, while for energy densities at Planck scales the classical
picture losses it sense. In fact, from the best of our knowledge, in the flat FLRW geometry, the only way to have a
nonsingular universe which is geodesically complete is in the context of bouncing cosmologies [14], where in order to
obtain a bounce one needs to introduce nonstandard matter fields [15] or to go beyond General Relativity [16].

3. THE SCALAR FIELD

At the early time, our background (6) satisfies P(p) 2 —p, which indicates that the universe was of quasi de Sitter
type, and we aim to check whether this background could lead to a power spectrum of cosmological perturbations
that fit well with the current observational data [2].

However, it is unknown how the hydrodynamical perturbations [17] could fit well with current observational data,
because during the inflationary era, the square of the velocity of sound 2, appearing in the Mukhanov-Sasaki equation
2 — P ~ _1

p
modes well inside the Hubble radius. But, in case of a universe driven by a single scalar field, one always has ¢? = 1,
which means that we do not encounter any such instability in this case, and this is one of the main reasons to attempt
to mimic the dynamics governed by the hydrodynamical fluid with nonlinear equation of state described in section
2 by a single scalar field ¢ with potential V(¢). Nevertheless, the fundamental one, which is to find a physical
justification over the choice of a given nonlinear EoS is very complicated. In a similar way as in bulk viscosity or in
gravitational induced “adiabatic” particle creations, we feel the same difficulties to justify some of the coefficients of

[18], becomes ¢ (remember that, we have P(p) = —p), and hence, it leads to the Jeans instability for



viscosity and the particle creation rates used in the current literature [19]. However, as we will immediately show, in
our particular model, assuming a phase transition to inflation to a deflationary regime [20], i.e., for v = 2, which is
what we will consider in the rest of the paper, we obtain an inflationary quintessential potential, the combination of
the well-known 1-dimensional Higgs potential with an exponential one. The first one is responsible for inflation and
the exponential one leads, at late time, to the current cosmic acceleration. From our viewpoint, the simplicity of the
obtained inflationary quintessential potential justifies the choice of the nonlinear EoS in our model.

In order to find the potential, we bring in the scalar field dynamics. Hence, if we represent the energy density and
the pressure of the scalar field by the notations p,, p,, respectively, then in the flat FLRW background, they assume
the following simplest forms

1

. 1,
Py = 5/)3 +V(p), pp= §pi - V(p) (12)

Now, using Eq. (12) and the Raychaudhuri equation in (3), we find

/\/—2 it = /,/— 2 am. (13)
Now, in our case, for H > Hp, one gets

LN 37 o
—_— = = 1 14
—2f -y = H = (G 1), (14)
and for H < Hg, one finds

-2 H—-H
p==n <H+ 2}; )+¢E<:>H:(He+¢m)e—“%—m+ﬂf7 (15)

H oy
where ‘PEE—\/g\/l-I—QHJ-F\/g:—\/%_

Similarly, using Eq. (12) and Eq. (3), the potential of the scalar field becomes V (H) = 3H2 + H. For the case of
a phase transition to a deflationary regime studied in [20, 21] , i.e., for the choice v = 2, one has

3H? —6HH, +3H? for H > Hp

V(H) = { 6HHy —3H?  for H < Hg. (16)
That is,
27H? 2
Vi) = w e or @< (17)
o o () e 1] o o2

To understand the behavior of our model potential (see Eq. (17)), we display it in figure 1, which shows that the
potential is a decreasing function of the scalar field. The figure also indicates that, after a certain time, the potential
becomes nearly zero.

In fact we can see that it depicts the 1-dimensional Higgs potential, or also called Double Well Inflationary potential

2

[8] — it has the shape of a 1-dimensional Mexican hat for ¢ < — 5, and nearly vanishing, and thus, having a

. . 2
deflationary regime, for ¢ > —\/; .

Once we have obtained our background, via reconstruction method, the conservation equation now leads to the
second order differential equation

b+ VEY T4 V(9) 4 Velo) =0, (18)

where V() is the differentiation with respect to ¢, having infinitely many solutions which lead to different back-
grounds. One of these solutions is that which leads to our background, i.e.,

1+2Hf + Ser*?’Ht for t<0
olt) = \f\/ V7 (19)
[ln H—l—\/ )t—|—1)+<pE for t >0,
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FIG. 1: The figure shows the shape of the potential for H, = 10%, and H; = 1.

is a solution of (18), that replaced in H(t) = @ + V(¢(t)), leads to the background (6) with v = 2.

1
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4. COSMOLOGICAL PERTURBATIONS

Now, in order to study the cosmological perturbations, we need to study the slow roll parameters [22]
H

TH 77:26—i (20)

€= 2He’

which allows us to calculate the associated parameters, namely, the spectral index (ng), its running (ay), and the
ratio of tensor to scalar perturbations (r) defined as

Hng

ng—1=—6e+2n, aqf=——7-,
! H?+H

r = 16e. (21)
and finally, we can compare them with the current observational data to realize a viable inflationary potential.
Now, at early times, i.e., when H > Hp, if we consider a phase transition to a deflationary era (i.e., ¥ = 2), then

introducing a new variable x = 656, the slow roll parameters (20) can be expressed in an alternate way as

x x
=7 ( ) 1Tty (22)
and as a consequence, we find ny, — 1 = —3x + —m;. Conversely,

9 4(1 — ny)
x—2<1— 1—27>. (23)

Now, from the observational bound on the spectral index, we can find its range. As the recent PLANCK+WP 2013
data (see table 5 of [2]) predicts the spectral index at 1o Confidence Level (C.L.) to be n, = 0.9583 + 0.0081, this
means that, at 20 C.L., one has 0.0085 < x < 0.0193, and thus, 0.1344 < r = 16¢ < 0.3072.

Since PLANCK+WP 2013 data also provides the constrain r < 0.25, at 95.5% C.L., thus, when 0.0085 < z < 0.0156,
the spectral index belongs to the 1-dimensional marginalized 95.5% C.L., and also r < 0.25, at 95.5% C.L.

Further, for the running at 1o C.L., PLANCK+WP 2013 data gives as = —0.021 £0.012, and our background (6)

leads to the theoretical value a =2 —32¢ >~ 322, Consequently, at the scales we are dealing with, —7 x 107* < a, <

1—e
—2 x 107*, and thus, the running also belongs to the 1-dimensional marginalized 95.5% C.L.
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FIG. 2: Marginalized joint confidence contours for (ns,r), at the 68 % and 95 % CL, in the presence of running of the spectral
indices. The black path corresponds to the curve (ns(x),r(z))) of our model (Figure courtesy of the Planck2015 Collaboration).

Furthermore, as the effective equation of state is given by wesr(H) = -1+ %e, and if we assume € = 1, denotes the
end of the inflation where H.,q be the value of the Hubble parameter, then wes¢(Hend) = —%, which implies that the
universe will just enter into the decelerating phase.

On the other hand, if N(H) denotes the number of e-folds from observable scales exiting the Hubble radius, then

it can be calculated by using N(H) = — [ 5 , %dH , leading to the following equation

1 1 1 12— ZTepg
N(z)=—— —In{—— 24
(z) T Tend + 12" (12 —Tenda T ) (24)
where Teng = 6(1 — /2/3) = 1.1010, denotes the value of the parameter x, when inflation ends. For the values of

x that allow to fit well with the theoretical value of the spectral index, its running and the tensor/scalar ratio with
their corresponding observable values, we will obtain 64 < N(z) < 117.

In the same way we have considered the 2-dimensional marginalized confidence level in the plane (ng,r) in the
presence of running (see figure 2), where the black path corresponds to curve ((ns(x),r(x)) provided by our model.

We notice a slight difference (or, updated measurements) between Planck 2013 and Planck 2015 constraints as
follows: when one considers Planck2013 data [2] at 95% C.L., the parameter = ranges in the interval [0.0075,0.0156]
which means that the number of e-folds is constrained to 64 < N(z) < 133. On the other hand, if one considers
Planck2015 TT+low P data [9] at 95% C.L., the parameter x ranges in the interval [0.0061,0.0124], and hence,
80 < N(z) < 163.

To determinate the value of H., one has to take into account the theoretical [22] and the observational [23] value
of the power spectrum

a2 36H?2
= ——¢ _ >92x 10_97 (25)

8m2e WmilemQ o

P

I

where we have explicitly introduced the Planck’s mass, which in our units takes m,; = v/8r. Finally, using the values
of z in the range [0.0075,0.0156], we may conclude that

H. ~ 10 %m, ~ 10" GeV. (26)
5. THE REHEATING PROCESS

In this section, we will study the reheating of the universe via gravitational particle production due to a sudden
phase transition. First of all, we need to define the modes that depict the vacuum state before and after the phase



transition. The Klein-Gordon equation corresponding to the the Lagrangian density of a scalar field is [25] £ =
%(3,@8“(# — m2¢? — ER@?), and its corresponding Klein-Gordon equation is given by

(=VuV" +m? + ER)¢ =0, (27)

where £ is the coupling constant, and R = G(H + 2H?), is the scalar curvature. The modes of the form ¢y (x,7) =
eikx

(2)_73()Xk(7) (7 is the conformal time) will satisfy the equation
) 2a(T

Xk () + QR (1)x (1) = 0, (28)

where we have introduced the notation Q3 (n) = wi(r) + (£ — 1/6)a?(1)R(7), with w?(n) = m?a®(1) + k.

The definition of the vacuum modes, will depend on the particles involved in the production process, and their
coupling to gravity. We will start with the the production of massless particles which are nearly conformally coupled
to gravity, and just for mathematical simplicity, we will choose, in our model, Hy = 0, and then Hgp = H.. As a
result, after the phase transition, our universe exactly went through a deflationary phase, on consideration v = 2.

Then, at early and late time the term a?R will vanish, and the modes (exact solutions of (28)) given by

_ e_ikT § B 1/6 T 2 . ! / /

Xonr(r) = S = SR [ )R sinlh(r = 7))l (29)
- 6_”“— 6 - 1/6 e . ’ / /

Xout, k(T) = T + 3 /T a2(T)R(T) sin(k(t — 7)) xx (7")d7, (30)

have the following behavior at early and late times respectively
e*ik}T efikr

ink(T) =~ when 7 — —00), out.k(T) =
X ,k() \/ﬂ( ) X t,k() \/ﬂ

Since we are considering particles nearly conformally coupled to gravity, we can consider the term (£ —1/6)a?(7)R(7)
as a perturbation, and we can approximate the “in” and “out” modes by the first order Picard’s iteration as

( when 7 — +00). (31)

e7thT e —1/6 [T

mn T
Xind(T) & 7 = S50 |

efik‘r _ oo o,
§-1/6 a®(T)R(1) sin(k(r — 7'))e”*" dr’, (33)

1

a®(T)R(7) sin(k(r — 7))e~* 7 dr, (32)

)

Ou’T +
Xouth(T) = o=+ =5 |

which will represent, respectively, the vacuum before and after the phase transition.
Then after the phase transition, we could write the “in” mode as a linear combination of the “out” mode and its
conjugate as follows

Xink(T) = @k Xout k(T) + BeXopur 1 (T), (34)

where oy, and [ are the so-called Bogoliubov coefficients. Imposing the continuity of x and its first derivative at the
transition time we obtain, up to order (¢ —1/6)?, the value of these coefficients:

ap1- o) / A(MR(Ydr, f = 8 / e~ %*7 a2 (1) R(7)dr. (35)
2k . 2k o
Finally, the energy density of the produced particles due to the phase transition is given by [25]
b= g | Kl (36)
X 2r2at ’

The integral of the 8-Bogoliubov coefficient (35) is convergent because at early and late time, the term a?(7)R(7)
converges fast enough to zero. Moreover, applying integration by parts twice on the S-Bogoliubov coefficient (35), it
can be shown that, it becomes B ~ O(k~3) (this is due to the fact that H is continuous during the phase transition)
and we will see, this implies that the energy density of produced particles is not ultra-violet divergent. Moreover,



Br = (£ = 1) f(~%—), where f is some function, then the energy density of the produced particles approximately

6 (J,EI‘Ic
becomes
2 ap\ 4
R 4 —_—
px—<s )NHE(Q), (37)

where we have introduced the notation

N = 1 Oos3f2(s)ds

2
2T 0

Remark 5.1 We have bounded this quantity. For the upper bound, we have used the Cauchy-Schwarz inequality and

the Plancherel theorem to obtain
1 o d(a2(t
< = A _— frng
N < o 4a‘]£3\//_ a(t) 7 dt \// t)dt

13 (y—1) 576 3(y=1)
/ (1 —21y — 15y2 + y?) 2dy+ / ——— (2 —4dy+1)2dy+6 = 95.
327‘(’ y12

To obtain the lower bound note that

N> - )2/ K \Bu 2d,

1
2m2Hiap (6 — §)? JrawH.

where A is some positive dimensionless constant.
On the other hand, we have approximated the value of the B-Bogoliubov coefficient, by performing three times
integration by parts and retaining the leading term as

I
Bk 4k4 (6 - )

and thus, choosing A = 30 in order that the leading term will be dominant, we obtain

6561 5
> >~ " g% 1070,
Nz 12872A% A4
Since the sudden transition occurs at H, ~ 10’8mpl ~ 10'! GeV, and at the transition time, the energy density of
the produced particles is of the order

1\2
x ™ 10-% <f - 6) N o, (38)

where p,; = mfjl is the Planck’s energy density. Note that, at the transition time, this energy density is smaller than
the energy density of the background which is of the order p ~ & HZm m2; ~ 1077 ppr.

Now, after this phase transition, the produced particles mteract Wlth each other exchanging gauge bosons between
them, and constitute a relativistic plasma that thermalises the universe [20, 21] before it was radiation dominated.
Moreover, as the background in our model went through a deflationary phase, that means its energy density decays as
a~% and the energy density of the produced particles decreases as a~*. Naturally, the energy density of the produced
particles will dominate, and the universe will become radiation dominated, which matches with the standard hot
Friedmann universe. The universe will expand, subsequently it will gradually cool, and, as a result the produced
particles will be non-relativistic and, thus, the universe will enter a matter dominated phase, which is essential for
the cosmological perturbations to grow. Further, only at very late time, when the energy density of the background
is of the same order of p;, the field comes back, and we observe the current accelerating universe.

The reheating temperature, namely, Tr, is defined as the temperature of the universe when both the energy densities

of the background and of the produced particles are of the same order (p ~ py). Since p, = (§ — l)2,/\/'H4 (“—5)4,
and p = HZm?, (“TE)G, one obtains, ;fs ~ €= 3| VN

P H? L
N1—< ~ 103 56‘ N1t GeV . (39)

1
Tp~ P;M(tR) ~ ‘f 6 e
P
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The reheating temperature in Eq. (39) is below the GUT scale 1016 GeV, which means that the GUT symmetries
are not restored preventing a second monopole production stage. Moreover, it guarantees the standard successes with
nucleosynthesis, as it requires a reheating temperature below 10° GeV [27].

Lastly, we aim to find the temperature of the universe when an equilibrium is reached. We follow the thermalization
process as described by the authors in Refs. [20, 21], where it has been assumed that the interactions between the
produced particles are due to exchange of gauge bosons. The interaction rate, I', is given by I' = n, 0, where o, the

cross section of scattering, is o ~ E—Q (a is a coupling constant, and € ~ H, ( ) denotes the typlcal energy of a
produced particle), and the density of produced particles is [25, 28]

1 o 1\> . /ap\3
ny = Tﬂa?)/o k| Bl2dk = <§—6) mag (227, (40)
where, for our model, we find
- h R2(r)dr = — 007@ i Ay +1)2dy + > ~ T x 10~ 41
i | R = o [T a1y T ay

3
Since the thermal equilibrium is achieved when I' ~ H(te,) = H. ((%;) (recall that, in our model, this process is
produced in the deflationary phase, that means the energy density evolves as a~%), also, one has 2E ~ ol — l|./\/l%
eq

hence, the equilibrium temperature becomes T, ~ |§ | N 4M2aH Therefore, using the value of H,, one
obtains

T,y ~ 10" NiM3ia GeV. (42)

1%
-

And choosing as usual a ~ (1072 — 10~1) [20, 21], one finds that the equilibrium temperature lies in the following
range

115

T.qy ~ (10° = 10'°) ’g —~ 6‘ NTM? GeV . (43)

To end this section, we will study the production of heavy massive particles (m > H,.) conformally coupled to
gravity due to a phase transition to a deflationary regime (see [29] for details). In that case, since the Hubble
parameter is continuous up to second derivative, during the adiabatic regimes, we will use the second order WBK
solution to define approximately the vacuum modes [28]

1 -
WKB _ —i [T Wa k(n)dn
= e ; , 44
X2 k ( ) 2W2,k(7-) ( )
where Ws ;; was calculated in [30] as
2.4 5miab 2.6

Wap = wp — ’Z & (H +3H%) + ;” CH? + 71’2 “J (F +15HH + 10H? + 86 HH? + 60H*) (45)

Wi

ma8 .. . . 221m al 11057718a12 4

(28HH + 19H? + 394HH? + 507H*) + (H + 3H?)H? (46)

3] 32w 128w}

Then the square modulus of the -Bogoliubov coefficient is obtained by calculating the square modulus of the
Wronskian Wx5" 7 (07), x5/ P (01)] (see 28, 29]), where x4, P (7) is evaluated after and before the phase transition.
It is not difficult to show that it will be given by

mtal2 (F(0+) — i(07))”
1024(k2 + m2a%)6 '

|Be|® = (47)
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where F7(07) (resp. H(0T)), is the value of the second derivative of the Hubble parameter before (after) the phase
transition. Recall that, for our model, this quantity is discontinuous at the transition epoch.
Then the number density of produced particles and their energy density will respectively be

n, ~ 107

o HY (ai

3
5 a) . Py~ My (48)

These particles are far from being in thermal equilibrium. The more massive particles will decay into lighter particles,
which will interact through multiple scattering, thus a re-distribution of energies among the different particles occurs
— kinetic equilibrium, and also, an increase in the number of particles — chemical equilibrium. That is, in such process,
in order to obtain a relativistic plasma in thermal equilibrium, both number—conservating and number—violating
reactions are definitely involved [27].

To calculate when thermalization occurs, we consider as in [27], which tells that the thermalization rate of these

1 3 5
processes is I' = a?n?. Then the equilibrium is reached when I' ~ H (t.,) = H. (;’T’z , obtaining ZTEQ ~ 20 (%) °.

Finally, at the time of equilibrium, the energy densities of both produced particles and the background respectively
take the forms

13

_ H.o\*® He\’
prlten) ~ 8 x 102 (B2 )7 i) st (B2 ) (49)

After this thermalization, the relativistic plasma evolves as py (t) = py(teq) (%)4, and the background evolves as

p(t) = p(teq) (%)6, because we are in the deflationary regime. The reheating is obtained when both energy densities

are of the same order, and that will happen when £ ~ %, and thus, we obtain the reheating temperature of
the order
19 19
1 te H? (H, \® H, \?®
Tr ~ px(teq) Pilteq) ~aTie (=6 ~10* [ =2 GeV. (50)
plteq) Mp, \ M m

6. COMPARISON WITH OTHER QUINTESSENTIAL MODELS

In Ref. [20], the author proposed some models to depict quintessential inflation, some of them have the following
forms:

e~ A1¥

14 er2e

V() = v0< ) ,or, V() =Voe ¢, (51)

where A1, Ao and A are positive parameters.

The main problem of those models is that the potential was too smooth to produce a sufficient amount of particles
to reheat the universe. As the number of produced particles is an adiabatic invariant [31], so for smooth potentials,
this quantity is negligible. Only an abrupt phase transition that breaks down the adiabaticity, which can be mimicked
by a discontinuity of some derivative of the potential, could produce a high amount of particles.

One of such possible potentials, proposed by Peebles and Vilenkin in [21] follows

Mt + M%) for <0
Vi) { 2 for >0, ©2)

where A and M are simply real parameters. In [21], the authors chose A = 1074, and M = 8 x 10~ m,,.
The model leads to a power spectrum that matches at 95.5% C.L. with Planck2013 data. Effectively, it is easy to
see that

8 12
?7 n = o (53)

IR

€

which means that the spectral index and the tensor to scalar ratio are related by 1 — ns; = 1—367 (The same relation

happens for our model because in our case we have € & z, and thus, 1 — ng = 3z, and r = 16x). Then, using
Planck2013 data, one can check that, for 0.136 < r < 0.25, both parameters belong to the 1-dimensional marginalized
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95.5% C.L. Moreover, the number of e-folds is given by N(r) = %, then for the range of viable values of r, one has
64 < N(r) < 117, which coincides with the same range of e-folds that we have obtained for our model.

To obtain the value of A\, one has to use the formula (25), where for that model, we have H? = % = %“’4, and
r = %8. Thus, one has
85\ 6m2r3
~ e 2x 107 = A e 107 = 4 x 107 < A <3 x 1071 (54)
3m2r3 85

And to calculate the value of the parameter M, the authors realize that for inflationary quintessential models, after
reheating, the scalar field starts to dominate only when the potential energy at the reheating time is of the same order
with the present energy density py = 3mle§ (where Hy ~ 10*60mpl is the current value of the Hubble parameter).

Then, since at the reheating time, one has ¢(tg) ~ my, the potential energy will be V(p(tg)) ~ )\Mgmpl4, and thus,

M~ AV H ™ 107 my ~ 109GeV (55)

Remark 6.1 From this viewpoint, for our model, when the reheating is due to the production of massless conformally
coupled particles, then using formulas (16) and (39), we obtain

m3H2

€

-3
~ 107882

-3
Mpi- (56)

1 1
£-3 ¢-3

And, when the reheating is done via heavy particles conformally coupled to gravity, we have
HZm3, [ m\ 3 m\ 1
Hy~100—2 (— ] ~107% ( — . 57
f Hél (He ) He mpl ( )

However, the model proposed by Peebles and Vilenkin contains two obscure points that were not clarified in their
paper:

1. The authors claim (based on the investigations by Ford [24]) that, immediately after the end of inflation, the
universe enters into a deflationary regime. However, what is proved in [24] is that for a potential with an absolute
minimum (this is not our case), and a shape of the form V(¢) = A¢p®", when the field oscillates, the effective
EoS of the background is P = Z—Hp, and thus, its energy density decreases as a_n%, and as a consequence,
it decays faster than radiation for n > 2. And for the inflationary quintessential potentials (non-oscillatory
models), the effective EoS, P = p (deflationary regime) is reached only at very late times (that means when
© — 400) for the potentials, that approach a constant value.

2. The authors claim (based in the results obtained in [32] and [33]) that the energy density of produced massless
minimally coupled particles is

4

Px = RH%‘ (%) ) (58)
where R ~ 1072. However, in those works, in order to perform an analytic computation, it is assumed that
the transition from the de Sitter phase to another with a constant effective EoS parameter is too abrupt. In
fact, the Hubble parameter is discontinuous at the transition time, and thus, the energy density of the produced
particles is ultra-violet divergent. For this reason, the authors take a frequency cut-off to calculate p,,, and state
that, if the transition was smoother, this quantity will be convergent, and the value of R will be of the same
order as the value obtained by Ford in [24], where the author considers that the creation of massless particles
nearly conformally coupled to gravity is due to a smooth phase transition to a radiation or matter dominated
universe (H was continuous), which of course, is model dependent, and it is not clear at all whether it applies
to the model (52). In fact, for this potential, up to fourth derivative, the potential is continuous what means
that up to fifth derivative the Hubble parameter is continuous, and thus, the particle production will be lower
than in our model (where the third derivative of the Hubble parameter is discontinuous at the transition time),
and as a final consequence, maybe leading to an abnormally low reheating temperature.
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The first point is essential for the viability of the model because if one is dealing with light minimally coupled
particles, in order to calculate mode solutions of equation (28), and thus, to define the vacuum state after the phase
transition one needs a nearly constant effective EoS parameter (wess). In that case, the vacuum modes after the
phase transition will be (see [29], where a similar situation was studied in the context of bouncing cosmologies)

Xout x(T) = e*“*”%“’t*%h/ "H? (kr), (59)

2(1—3weyys)
(1+3wesy)? "

On the other hand, although w.s; was constant after the phase transition, when the field is not nearly conformally
coupled, it would be a very difficult task to find vacuum modes before the phase transition, because to obtain them
one firstly needs to calculate numerically the scale factor as a function of the conformal time, which could only be
done solving numerically the conservation equation obtaining ¢(t), and consequently the Hubble parameter H(t).
With this Hubble parameter, one can numerically calculate the scale factor as a function of the conformal time, and
finally, once the scale factor has been calculated, one has to solve the differential equation (28).

where H,(,z) is the Bessel’s functions with v,,; = i +

Coming back to the model, we perform a change of variable ¢ = M@, and by re-parameterizing the time coordinate
ast = Wt the conservation equation (18) takes the simple form

&+ Vi [P L v(@) @+ Te(@) =0, (60)

where ¢/’ denotes the derivative with respect to the new time coordinate ¢, and in terms of the new coordinates, the
potential in (52) becomes

74 —
S v [¢"+1 for p<0
v ={ 5 230 (61)
In the new variables the effective EoS parameter is given by
(#)°
weff(f) =—-1+ . (62)
G+ V(@)

We want to integrate the system (60), taking as initial condition when the inﬂation ends. This happens when the
parameter € = 1512 is of the order one. Taking into account that wes; = —1+ 2¢, we obtain from (62) that inflation
ends when ¢/, , = \/gaen 4+ 1, where @c,q is the value of the field at the end of inflation. To obtain that value we

2\ V

Yend = 2¢/2. Finally, using that the variables ¢ and @ are related by the relation ¢ = M@, we will obtain that the
initial condition to integrate numerically the system (61) will be

(eoozmsoez 644+1>. (63)

2
will use that during slow roll € is approximately given by € = 1 (&) , then the condition € = 1 leads to the value

M’ M

We have integrated the dynamical system (60) for M = 1, and M = 0.25 (for smaller values of M, we have checked
numerically and found that the behavior remains same as it is for M = 0.25). We see in figure 3 that, after the
phase transition, a deflationary regime does not exist, rather it seems that wesy = —0.8, and in that case, the energy
density of the created particles will decay faster than the one of the background, which means that the universe never
reheats. On the other hand, for a smaller value of M (we have considered M = 0.25), after the end of the inflation,
the universe immediately enters into the deflationary regime (see figure 4). In that case, eventually the energy density
of the created particles will dominate, and the universe will be reheated. Then, for small enough M, it seems that
the numerical calculations show that the first claim of Peebles and Vilenkin is right. However, regarding the value
of R, we do not know how to calculate approximately the “in” modes. Consequently, their second claim remains an
open question for us.
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FIG. 3: Phase portrait and weys for M = 1. The black point in the second picture represents when the phase transition occurs.
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FIG. 4: Phase portrait and weyss for M = 0.25. The black point in the second picture represents when the phase transition
occurs.

7. THE SIMPLEST MODEL

Now, we come to the last section, where we consider the case of a cosmological constant, namely, A, different from
zero. Performing the replacement p — p 4+ A in the Friedmann equation, this will become H? = 22 T the same

way, choosing v = 2, and performing the replacement p — p+ A, p. = p. + A and py — 0 in the EoS (1) we obtain
the background as

L ((2M +3VAR)e” vEMt 4 2M) for t<0
H(t) = —

(64)
\/3 . e—2V3AL
VA (;ggﬁ;%ﬂm) for ¢ >0,

where once again M = %He.
For this background, the effective EoS parameter satisfies all requirements needed to depict a viable universe:

—1 for t<<*ﬁ
1

Wepf = 1 for 0<t<<1ﬁ (65)
—1 for t>>ﬁ'

And using the reconstruction method, the potential takes the following simplest form

_ M2(<p2—%)2 for v <o¢p
vw{ RN (66)

where op = 4/ % + % Note that, at finite cosmic time, the “nonsingular” background (64) comes from this

potential, and allows us to perform analytical calculations, such as, the spectral index, the ratio of tensor to scalar
perturbations, and the reheating temperature provided by the model.
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Recalling that, in General Relativity, the potential that mimics a hydrodynamical fluid with linear EoS P = (y—1)p
is given by

B [Vole=V37%  for v <1
Vie) = 0 for v=1 (67)
—|Vole=V37¢ for 4 > 1.

We will see that our simple potential (66), is the matching of a double well inflationary potential (which depicts
the inflationary phase), with a potential that mimics a stiff fluid (which depicts the deflationary regime) plus a
cosmological constant (which depicts the current cosmic acceleration).

Finally, note that, all the results obtained above can be applied to this model, that is, the theoretical values about
the cosmological perturbations match correctly with Planck’s data, and also, it leads to a consistent reheating with
recent observations. The values of our parameters are easily calculated: due to the relation between H. and M,
one has M ~ 107%m,,, and to calculate the value of the cosmological constant, one has to use the fact that the
cosmological constant will be dominant when it will be of the same order as the present energy density, that is, when
A~ Hgmfjl ~ 107120,

8. SUMMARY OF THE WORK

The essence of this work is to realize, although geodesically past incomplete, but a universe without the big bang
singularity at finite cosmic time, that unifies the inflation with late time acceleration. Considering a hydrodynamical
fluid with nonlinear equation of state, we found a scenario of our universe which predicts an early inflationary phase
of quasi de Sitter type, then a sudden phase transition from inflation to a deflationary era, and finally, the current
accelerating universe of de Sitter type. Just after this inflationary phase, the universe immediately entered into a stiff
matter era, following a sudden phase transition, which as a result, produces an enough amount of particles. After
this particle productions, the energy density of the produced particles gradually became dominant in compared to
the background energy density. Hence, the universe is reheated. After that, the model goes to the de Sitter universe
in an asymptotic manner showing the current accelerating universe. Thus, the present model can be considered as a
unified cosmic model without the big bang singularity.

It has been shown that the early inflationary stage obtained by our nonlinear EoS can be mimicked by an equivalent
field theoretic description which provides the well-known 1-dimensional Higgs potential, and since we have an analytic
solution (6), it is possible to calculate the analytic expressions for the cosmological parameters, such as, the spectral
index, its running, and the ratio of tensor to scalar perturbations, which, as we have showed, are all in good agreement
with the Planck 2013 observations (see [2]).

We have also compared our model potential with the existing inflationary quintessential potentials [20, 21], and
show that our model is an improved version of the models [20, 21] due to having its analytic behavior which do not
exist in the above models. Finally, introducing a cosmological constant, we have seen that our model simplifies a lot,
but it maintains the same kind of properties, present in our previous quintessential model.
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