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Exposure to ambient air pollution (AP) exposure has been linked to type 2 diabetes (T2D) risk. Evidence on the
impact of T2D genetic variants on AP susceptibility is lacking. Compared to single variants, joint genetic variants
contribute substantially to disease risk. We investigated the modification of AP and diabetes association by a ge-
netic risk score (GRS) covering 63 T2D genes in 1524 first follow-up participants of the Swiss cohort study on air
pollution and lung and heart diseases in adults. Genome-wide data and covariates were available from a nested
asthma case-control study design. AP was estimated as 10-year mean residential particulate matter b10 μm
(PM10). We computed count-GRS and weighted-GRS, and applied PM10 interaction terms in mixed logistic re-
gressions, on odds of diabetes. Analyses were stratified by pathways of diabetes pathology and by asthma status.
Diabetes prevalence was 4.6% and mean exposure to PM10 was 22 μg/m3. Odds of diabetes increased by 8%
(95% confidence interval: 2, 14%) per T2D risk allele and by 35% (−8, 97%) per 10 μg/m3 exposure to PM10.
We observed a positive interaction between PM10 and count-GRS on diabetes [ORinteraction = 1.10 (1.01, 1.20)],
associations being strongest among participants at the highest quartile of count-GRS [OR: 1.97 (1.00, 3.87)].
Stronger interactions were observed with variants of the GRS involved in insulin resistance [(ORinteraction =
1.22 (1.00, 1.50)] than with variants related to beta-cell function. Interactions with count-GRS were stronger
among asthma cases. We observed similar results with weighted-GRS. Five single variants near GRB14, UBE2E2,
PTPRD, VPS26A and KCNQ1 showed nominally significant interactions with PM10 (P b 0.05). Our results suggest
that genetic risk for T2D may modify susceptibility to air pollution through alterations in insulin sensitivity.
These results need confirmation in diabetes cohort consortia.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Epidemiologic evidence shows a positive association between air pol-
lution and type 2 diabetes (T2D) risk (Eze et al., 2014a, 2015a; Park et al.,
2015). The underlyingmechanisms and susceptibilities are still subject to
active research. Effects of inhaled pollutants that are supported by exper-
imental and epidemiological evidence include the contribution to system-
ic inflammation, autonomic imbalance, weight gain, and to insulin
resistance, thought to be in part the result of inhalants stimulating an in-
nate immune response, influencing endoplasmic reticulum, glucose and
lipid metabolism, and activating the central nervous system (Rao et al.,
2015).
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Gene-environment interaction (GEI) can inform on biological path-
ways by which air pollution affects diabetes, an aspect of relevance to
air quality regulation. So far, GEI studies in areas of air pollution have fo-
cused on candidate genes in the domains of oxidative stress and inflam-
mation on cardio-respiratory and metabolic outcomes (Curjuric et al.,
2012; Eze et al., 2016;Minelli et al., 2011; Zanobetti et al., 2011). The de-
gree of reduction in markers of heart rate variability, in relation to air
pollutants, was associated with deletions in GSTM1 (Chahine et al.,
2007), long GT repeats of HMOX-1 (Schwartz et al., 2005), wild-type
HFE (Park et al., 2006), and IL6-572GC (Adamet al., 2014). A stronger ef-
fect of ozone on lung functionwas reported among carriers of combined
NQOI wild-type/GSTM1 null genotype, GSTP1 and long GT repeats on
HMOX-1 (Alexeeff et al., 2008; Chen et al., 2007). A variant in CDH13
showed the strongest signal in a genome-wide interaction study be-
tween PM10 and lung function decline (Imboden et al., 2015). Particle
number significantly increased fibrinogen concentrations in individuals
with high genetic risk score (GRS) of genes in the oxidative stress path-
way, and increased C-reactive proteins and intracellular adhesion
molecule-1 concentrations in individuals with higher genetic scores of
metal-processing gene variants (Bind et al., 2014).

Over the years, T2D susceptibility loci have been increasingly identi-
fied through meta-analyses of agnostic genome-wide analyses. So far,
N60 T2D genetic risk variants have been identified (Morris et al.,
2012). By selecting diabetes gene risk variants identified in genome-
wide association studies (GWAS) for interaction with air pollution, a
novel mechanistic understanding may evolve. This approach has been
applied to factors other than air pollution, and to single diabetes gene
risk variants (Cornelis and Hu, 2012).

Physical activity and variants near the FTO gene are one of the most
studied GEI in T2D (Kilpelainen and Franks, 2014), demonstrating an
attenuation of the effect of an FTO variant on BMI among the physically
active compared to the inactive (Kilpelainen et al., 2011). Variants near
HNF1B (Brito et al., 2009) and CDKN2A also interacted with physical ac-
tivity on T2D incidence (Moore et al., 2008). The Pro12Ala variant of
PPARG was shown to modify the association between physical activity
and glucose regulation in people with (Adamo et al., 2005) andwithout
diabetes (Kahara et al., 2003). Evidence from GEI studies on nutrition
and T2D also demonstrated that the carriers of this PPARG variant are
more responsive to the beneficial effects of unsaturated fat and less sus-
ceptible to the adverse effects of saturated fat on glucose regulation and/
or bodymass index (Lamri et al., 2012). Carriers of a TCF7L2 risk variant
had a lower T2D risk when they were on low glycemic diet (Cornelis
et al., 2009a). An SLC30A8 variantmodified the negative relationship be-
tween zinc intake and glucose homeostasis (Kanoni et al., 2011).

Compared to single genetic variants, a combination of genetic vari-
ants may contribute more substantially to disease risk and might thus
be useful to better characterize high-risk populations (Talmud et al.,
2015; Vassy et al., 2014). Few studies have explored the impact of the
T2D genetic risk score on its associated phenotypes such as coronary ar-
tery disease (Hamad et al., 2015), or explored itsmodifying effect on the
diabetes association with basic risk factors including age, sex, physical
activity (Langenberg et al., 2014), weight gain (Andersson et al.,
2013), obesity and family history (Cornelis et al., 2009b; Langenberg
et al., 2014). No study explored the interaction of the T2D genetic risk
score with air pollution.

Several studies on the effects of T2D risk variants on quantitative
traits of glucose metabolism have identified pathways through which
some of these variants impact on T2D. Pathways through which the
risk variants impact directly on T2D include the impairment of beta-
cell function (BCF) and insulin resistance (IR) (Dimas et al., 2014;
Harder et al., 2013; Manning et al., 2012; Perry and Frayling, 2008;
Scott et al., 2012) or other pathways may confer insulin resistance indi-
rectly through obesity risk increasing genetic variants (near FTO and
M4CR) (Perry and Frayling, 2008; Scott et al., 2014).

We generated GWAS-derived polygenic risk scores and explored
modification of our previously reported association between air
pollutants and diabetes (Eze et al., 2014a) among participants of the
Swiss cohort study on air pollution and lung and heart diseases in adults
(SAPALDIA), in general and in pathway-analyses approach. Genome-
wide data and detailed covariate informationwere available from a pre-
vious nested asthma case-control study design.
2. Materials and methods

2.1. Study population and sample selection

The SAPALDIA study has been described elsewhere (Martin et al.,
1997) but in brief, the participants include 9651 population-
representative adults, aged 18 to 60 years when they were recruited
in 1991, from eight Swiss communities (Aarau, Basel, Davos, Geneva,
Lugano, Montana, Payerne, andWald) which represent the diverse geo-
graphic characteristics of Switzerland. At baseline (SAPALDIA1) andfirst
follow-up in 2002 (SAPALDIA2), 8047 participants had computer-
assisted interviews on health and lifestyle characteristics. Venipuncture
for biomarker and genetic assays was also done at follow-up. Details of
follow-up participation rates can be found elsewhere (Ackermann-
Liebrich et al., 2005). Participants gave prior written informed consent
(including to genetic testing). The study protocols were approved by
the Swiss National Ethics Committee and the Regional Ethics Commit-
tees of the eight study centers. As part of the European asthma consor-
tium, GABRIEL, a nested asthma case-control study was designed using
the SAPALDIA2 samples and data involving 1612 participants (Moffatt
et al., 2010). Participants were identified as having asthma if they
responded “yes” to the question: “have you ever been diagnosed of
asthma”? Corresponding controls were selected from participants who
responded “no” to this question. Eligible participants in the GABRIEL
study comprised 654 asthma cases and 958 randomly selected asthma
controls (Moffatt et al., 2010) and underwent genome-wide typing.
The present cross-sectional analyses include 1524 (615 asthma cases
and 913 controls) SAPALDIA2 participants who had genome-wide
data and data on other relevant variables for current research question.
2.2. Case identification

We identified participants with diabetes as having at least one of the
following at follow-up: a self-report of physician-diagnosed diabetes;
use of diabetesmedication in the pastmonth; non-fasting blood glucose
N11.1 mmol/L or HbA1c N 0.065. HbA1c was measured only in partici-
pants with non-fasting glucose N 6.1 mmol/L (Eze et al., 2014b). We
did not have information on diabetes status at baseline, thus precluding
the study of incident diabetes.
2.3. Air pollution exposure assignment

Consistentwith our previous publication (Eze et al., 2014a), we con-
sidered 10-year mean residential exposure to particulate matter
b10 μm (PM10) as our air pollution exposure measure of interest. We
did not consider nitrogen dioxide (NO2) in this study because PM10

showed a sustained effect on diabetes and metabolic syndrome inde-
pendent of NO2 (in adjusted two-pollutantmodels) in the SAPALDIA co-
hort (Eze et al., 2014a, 2015b). PM10 was assigned to participants'
residential addresses in 1990 and 2000 using validated dispersion
models, at a resolution of 200m× 200m, based on various emission in-
ventories including road and rail traffic, agriculture and industries (Liu
et al., 2007). Annual estimates of ambient residential PM10 levels of up
to ten years of follow-up were computed using annual trends at fixed
monitoring stations closest to the residential addresses, and partici-
pants' residential histories. We computed 10-year means as a marker
of long-term exposure to PM10 (Eze et al., 2014a).
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2.4. Genotyping, imputation and selection of T2D risk variants

Genomic DNA was extracted using PUREGENE™ DNA Purification
Kit (GENTRA Systems, Minneapolis, USA), from EDTA-buffered whole
blood (Ackermann-Liebrich et al., 2005). Whole genome genotyping
was done at the Centre National de Génotypage (CNG, Evry, France)
within thenested asthma case-control study (N=1612), using Illumina
Human610K Quad BeadChip (Illumina, San Diego, CA, USA) covering
567′589 autosomal single nucleotide polymorphisms (SNPs) (Moffatt
et al., 2010). Following quality control, 35 participants were excluded
for having low genotyping call rate (b97%), leaving 1577 participants
with high quality genome-wide data for analyses. Successfully geno-
typed SNPs were imputed to 2.5 million SNPs using MaCH v1.0 (Li
et al., 2010; Soler Artigas et al., 2015).

T2D risk variants were selected if they were identified or confirmed
as achieving genome-wide significance (P b 5 × 10−8) irrespective of
population ancestry. A recent meta-analysis identified 65 T2D variants
reaching genome-wide significance (Morris et al., 2012). We included
63 T2D in our GRS. Genotype data on two variants (rs6819243 near
gene MAEA and rs4458523 near WFS1) on chromosome 4 (including
proxies with R2 ≥ 0.8) were not captured on the Illumina 610 K Quad
BeadChip, thus, the genetic risk scores computed for this study were
based on 63 T2D SNPs each representing the top GWAS-identified vari-
ant of one T2D associated locus.

2.5. Genetic risk scores

We computed two polygenic risk scores, “count-GRS” and
“weighted-GRS”, based on the 63 selected SNPs. We calculated the
count-GRS by summing up the number of risk alleles across the 63
SNPs, giving a minimum of 52 risk alleles and a maximum of 82 risk al-
leles. Count-GRS assumes that alleles contribute to disease risk in an ad-
ditivemanner, i.e., with a value of 0 for non-risk and 1 for each risk allele
(Cornelis et al., 2009b). The additive model is more plausible when
the genetic model is unknown (Balding, 2006). We calculated the
weighted-GRS byfirst, weighting by size of the beta-coefficients derived
from the largest genome-wide meta-analysis on T2D (Morris et al.,
2012). We weighted the SNPs by multiplying the number of risk alleles
of each SNP (i.e., 0, 1, and 2) by the reported beta-coefficient associated
with the SNP. Next, we summed up the products across the 63 SNPs. To
facilitate interpretation of effect size per risk allele, and enable compar-
ison with count-GRS, we standardized the weighted-GRS by dividing it
by 5.34 (the sum of the beta-coefficients) and multiplying by 63 (the
possible maximal number of risk variants) (Cornelis et al., 2009b). The
minimum and maximum weighted-GRS were 49.9 and 84.6 risk alleles
respectively.

We also computed count- andweighted-GRS, using the same proce-
dure, for themajor pathwaymarkers of T2D pathology including insulin
resistance (count-GRSIR; weighted-GRSIR; involving variants near GCKR,
GRB14, IRS1, PPARG, ANKRD55, KLF14,HMGA2, FTO,M4CR and PEPD) and
beta-cell function (count-GRSBCF; weighted-GRSBCF; involving variants
near PROX1, THADA, UBE2E2, ADCY5, IGF2BP2, CDKAL1, DGKB, GCK,
ANK1, SLC30A8, GLIS3, CDKN2A/B, CDC123, HHEX/IDE, TCF7L2, KCNQ1,
KCNJ11, ARAP1, MTNR1B, C2CD4A and BCAR1) or of related traits likely
to mediate insulin resistance based on two T2D GWAS variants, one
near FTO and one in theM4CR gene.

2.6. Potential confounders

Similar to our previous publication on air pollution and diabetes (Eze
et al., 2014a), we considered the following potential confounders: age
(years; continuous), sex, body mass index (kg/m2; continuous), years
of formal education (≤9; N9), neighborhood socio-economic index
(expressed as a percentage; developed from a principal component
analysis involving occupation and educational level of household
head, median rent and number of persons in a household (Panczak
et al., 2012)). Additionally we considered active smoking history
(never, former, current; and pack-years), exposure to passive smoke
(yes/no) and occupational vapors, gases, dusts and fumes (yes/no), as
well as nutritional habits like alcohol consumption (including beers,
wines, spirits and liquors: never; ≤1 glass/day; N1 glass/day); consump-
tion of at least one portion of fruits and raw vegetables respectively
(never; ≤3 days/week; N3 days/week) and moderate physical activity
(defined as at least 150 min/week of participation in activities that
make one out of breath). All models were adjusted for genome-wide
population stratification.

2.7. Statistical analyses

We summarized characteristics at follow-up of participants with
and without diabetes and contrasted them to follow-up participants
not included in the current analysis. We assessed risk allele frequency
(RAF) and Hardy-Weinberg equilibrium of the selected risk variants.
We explored associations of diabetes with GRS and with ambient air
pollution in this sample.

We first assessed interactions between PM10 and each of the 63 T2D
genetic risk variants on diabetes. Then we fitted interaction terms be-
tween the GRS and PM10, on a continuous scale to assess potential risk
dependent effect modification. We also explored associations between
PM10 and diabetes across quartiles of GRS. For the pathway-related ge-
netic risk, we fitted interaction terms between count- and weighted-
GRS, and PM10 for insulin resistance, obesity-mediated insulin resis-
tance and beta cell function pathway separately (count-GRSIR and
count-GRSBCF) to explore their specific interaction with PM10 on diabe-
tes. In sensitivity analyses, we repeated all analyses with weighted-GRS
by i) stratifying our analyses by asthma status, ii) omitting BMI from co-
variates, iii) assessing impact of selection bias by applying inverse prob-
ability weighting (IPW) to the models and iv) performing models with
study center as fixed effect. All analyses were performed with STATA
version 14 [STATA Corporation, Texas, USA] and involvedmixed logistic
regression models, with random intercepts by study area.

3. Results

Characteristics at the first follow-up (SAPALDIA2) of participants
and non-participants in the presented analyses and comparison of the
included participants with and without diabetes are presented in
Table 1.

Overall, the participant characteristicswere similarly distributed be-
tween the included (no diabetes) and excluded participants, despite a
low inclusion rate of ~20% (Table 1). Among included participants, dia-
betes prevalence was 4.6%, and highly comparable to the diabetes prev-
alence in the non-participants (4.7%); and mean PM10 exposure was
22.1 μg/m3 in participants and 22.5 μg/m3 in non-participants. Com-
pared to participants without diabetes, diabetes cases were more likely
to be male, of lower social status, obese, smokers and consumed more
alcohol. Moreover, they were exposed to higher PM10 concentrations.
Prevalent asthma and mean count- and weighted GRS were also signif-
icantly higher among participants with diabetes (Table 1). Mean (SD)
count-GRS was 67 (4.8) risk alleles whereas mean (SD) weighted-GRS
was 66.5 (5.3) risk alleles. Both GRS were normally distributed in the
study population (0.4 ≤ P-value of Shapiro-Wilk test ≤0.8). Table 2 de-
scribes all included SNPs, indicating chromosomal location, nearby
gene, risk allele and its frequency. All SNPs were in Hardy-Weinberg
Equilibrium (P N 0.01), with risk allele frequency (RAF) ≥3%.

The previously published positive association between PM10 and di-
abetes (Eze et al., 2014a) persisted in this smaller sample in both crude
(odds ratio (OR): 1.23 (0.88, 1.73) per 10μg/m3 exposure to PM10) and
adjusted models (OR: 1.35 (0.92, 1.97)). Additional adjustment for
count-GRS (while adjusting for BMI), and removal of BMI (while
adjusting for count-GRS) only increased the odds of diabetes by 2%
and 6% respectively.



Table 1
Characteristics of participants at first follow-up of SAPALDIA study, included and excluded from present study.

Characteristics (% or mean (SD)) Diabetes
N = 70

No diabetes
N = 1454

Excluded % or
mean (SD); N

Age (years) 60.7 (8.4) 51.5 (11.3)a 52.1 (11.6); 6156
Females 33.8 51.7a 52.1; 6156
Body mass index (kg/m2) 30.6 (5.2) 25.7 (4.3)a 25.9 (4.5); 5074
Formal education ≤9 years 15.5 6.1a 8.7; 6145b

Neighborhood socio-economic index (%) 60.9 (9.8) 63.6 (10.2)a 63.3 (10.3); 6466
Ever-smokers 70.4 56.1a 58.1; 6523
Pack-years smoked 16.6 (27.4) 9.9 (17.6)a 11.3 (18.7); 5972
Exposure to passive smoke 54.9 47.5 47.6; 6523
Occupational exposure to vapors, gases, dusts and fumes 48.6 43.0 31.0; 6523b

Alcohol consumption N1 glass/day 11.4 8.2 9.4; 5038
Consumption of fruits - never/seldom 7.0 8.9 8.9; 5036
Consumption of raw vegetables - Never/seldom 4.2 2.0 2.0; 5040
150 min of moderate physical activity /week 51.4 46.8 49.9; 5019
Asthma cases 52.1 39.9a 43.4; 53
Diabetes cases 100 0a 4.7
10-year mean PM10 (μg/m3) 23.1 (7.0) 22.0 (7.0) 22.5 (7.5); 6052
Total count-GRS 68.5 (4.8) 66.9 (4.7)a 67.3 (3.9); 53
Total weighted-GRS 68.2 (5.2) 66.4 (5.3)a 66.6 (4.4); 53
Insulin resistance count-GRS 10.8 (2.1) 10.4 (1.9) 10.4 (1.8); 53
Insulin resistance weighted-GRS 10.7 (2.2) 10.4 (2.0) 10.4 (2.0); 53
Beta-cell function count-GRS 24.1 (3.1) 23.5 (3.2) 20.7 (2.7); 53
Beta-cell function weighted-GRS 20.7 (2.7) 19.9 (3.1)a 2.2 (0.3); 53
Insulin resistance (obesity variants) count-GRS 1.6 (0.9) 1.4 (0.9) 1.6 (1.0); 53
Insulin resistance (obesity variants) weighted-GRS 1.7 (1.0) 1.4 (1.0)a 1.6 (1.0); 53

GRS: genetic risk score; PM10: particulate matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and lung and heart diseases in adults.
a Significant difference in proportion or mean between diabetes cases and participants without diabetes (P b 0.05).
b Significant difference in proportions or means between participants and non-participants of the presented analyses (P b 0.05).

266 I.C. Eze et al. / Environment International 94 (2016) 263–271
The direction of association of 41 alleles agrees with that of
published risk alleles on T2D, despite perfect agreement in the RAFs
(Supplementary Table 1). We observed positive associations between
count- and weighted-GRS and diabetes in our sample. In the crude
model, odds of diabetes was increased by 7% (2, 12%) and 6% (2, 11%)
per unit of count- and weighted-GRS respectively. Adjusted models,
which did not depend on adjustment for BMI or PM10, showed similar
results (Table 2).

Table 2 also shows the results of the single SNP interactions with
PM10 on the odds of diabetes. Interaction with only five variants (near
GRB14, UBE2E2, PTPRD, VPS26A and KCNQ1) showed nominal signifi-
cance (P b 0.05). Although nominally non-significant, we observed
strong interaction signals with variants near THADA, PPARG, KLF14,
ZMIZ1, DUSP8, ARAP1, PRC1 and FTO (Table 2). No single variant interac-
tion remained significant following Bonferroni correction at P b 0.0016
(0.1/63), false discovery rate P b 0.0016 (0.1 ∗ 1/63) or family-wise
error rate P b 0.0016 (1-(1–0.1)1/63).

Looking at the combination of T2D variants, we observed a signifi-
cant positive interaction between 10-year mean PM10 and 63-loci GRS
(Table 2). The association between PM10 and diabetes increased across
quartiles of count-GRS, being strongest among those in the highest
quartile of genetic risk (Table 3). Compared to those at lowest genetic
risk (Q1), odds of diabetes (per 10 μg/m3 exposure to PM10) increased
by 106% among those at highest risk (Q4). Interactions between PM10

and weighted-GRS on odds of diabetes were similar, and sometimes
stronger, compared to those observed with count-GRS (Table 3).

Fig. 1 shows interaction odds ratios for PM10 and pathway-specific
GRS. Odds of diabetes (per 10μg/m3 exposure to PM10) increased by
22% (95% CI: 0, 49%) per T2D risk allele of insulin resistance GRS
(count-GRSIR).

We observed a positive and weaker interaction with beta cell
function GRS (count-GRSBCF), the odds of diabetes (per 10 μg/m3

exposure to PM10) increased by 6% (−8, 22%) per T2D risk allele
of count-GRSBCF (Fig. 1). Interactions with weighted-GRS were almost
identical to those observed with count-GRS for both pathways
(Supplementary Table 2), andwere insensitive to BMI in the interaction
model.
Interactions with 63-loci GRS were comparable between asthma
cases and controls, but pathway-specific GRSIR showed stronger signif-
icant interactions with PM10 among asthma cases (Fig. 2).

When considering only obesity-dependent variants in the count-
GRSIR, asthma cases had amore than twofold increased odds of diabetes
(per 10 μg/m3 exposure to PM10 and per T2D risk variant) (Fig. 2).
These observations were also very consistent with weighted-GRS
(Supplementary Table 2) andwere insensitive to BMI.When comparing
participants by asthma status, significant differences were only
observed for age, BMI, alcohol consumption and diabetes status
(Supplementary Table 3).

Sensitivity analyses proved robust results. In particular, interactions
were not sensitive to body mass index. Adjusting the analyses for
selection bias or treating study area as fixed effect also did not change
the results of PM10-GRS interactions (Table 4).

4. Discussion

This is the first study to show a positive interaction between T2D
polygenic risk and particulatematter, on prevalent diabetes. Individuals
at higher genetic risk for diabetes were more susceptible to PM10. This
was especially true for genetic variants functionally related to T2D
through alteration of insulin sensitivity. Our findings, which remained
robust across sensitivity analyses, also indicate that stronger associa-
tions may be observed in pathway-based analyses, providing a promis-
ing handle to disentangle the complex disease etiology by assessing
gene-environment interactions.

Similar to our finding of a positive relationship between T2D poly-
genic risk and diabetes and its modifiability by air pollution, in the
Health Professionals Follow-up and Nurses' Health Study, a ten-SNP
score-associated risk of T2D was higher among the obese and persons
with family history of diabetes (Cornelis et al., 2009b). Another study
of a GRS of 49 SNPs also showed the positive association with incident
T2D to be modified by age and obesity (Langenberg et al., 2014). A
study by Andersson et al (Andersson et al., 2013) showed a polygenic
risk score of 46 SNPs to predict T2D especially among weight gainers
(Andersson et al., 2013). A 65-loci GRS was associated with prevalent



Table 2
Interactions of PM10 with candidate SNPs and genetic risk scores on the odds of diabetes in the SAPALDIA study.

RS number CHR Gene(pathway)
a Risk/other allele Risk allele frequency Association with diabetesb Increase in odds of diabetes per 10 μg/m3 increase in PM10

b

OR (95% CI) OR (95% CI)

rs10923931 1 NOTCH2 T/G 0.09 0.89 (0.46, 1.71) 0.73 (0.29, 1.87)
rs2075423 1 PROX1(BCF) G/T 0.64 0.71 (0.49, 1.04) 1.15 (0.66, 1.99)
rs780094 2 GCKR(IR) C/T 0.54 1.07 (0.74, 1.55) 0.77 (0.46, 1.27)
rs10203174 2 THADA(BCF) C/T 0.89 2.20 (1.02, 4.71)c 0.35 (0.11, 1.13)
rs243088 2 BCL11A T/A 0.48 0.95 (0.66, 1.37) 0.71 (0.43, 1.19)
rs7569522 2 RBMS1 A/G 0.47 1.16 (0.78, 1.73) 0.76 (0.43, 1.32)
rs13389219 2 GRB14(IR) C/T 0.62 0.85 (0.58, 1.24) 2.19 (1.26, 3.80)c

rs2943640 2 IRS1(IR) C/A 0.66 1.19 (0.80, 1.17) 1.33 (0.74, 2.38)
rs1801282 3 PPARG(IR) C/G 0.89 0.75 (0.42, 1.33) 0.55 (0.23, 1.28)
rs1496653 3 UBE2E2(BCF) A/G 0.82 0.80 (0.49, 1.31) 1.98 (1.01, 3.90)c

rs12497268 3 PSMD6 G/C 0.84 0.95 (0.56, 1.61) 1.28 (0.55, 2.96)
rs6795735 3 ADAMTS9 C/T 0.56 1.27 (0.85, 1.88) 0.69 (0.40, 1.21)
rs11717195 3 ADCY5(BCF) T/C 0.80 1.35 (0.83, 2.20) 0.65 (0.31, 1.37)
rs4402960 3 IGF2BP2(BCF) T/G 0.31 1.25 (0.84, 1.86) 1.17 (0.65, 2.12)
rs17301514 3 ST64GAL1 A/G 0.10 1.51 (0.86, 2.63) 0.97 (0.42, 2.26)
rs459193 5 ANKRD55(IR) G/A 0.74 0.99 (0.63, 1.57) 1.11 (0.60, 2.07)
rs6878122 5 ZBED3 G/A 0.30 1.00 (0.67, 1.49) 1.00 (0.56, 1.79)
rs7756992 6 CDKAL1(BCF) G/A 0.28 1.24 (0.82, 1.88) 1.20 (0.65, 2.21)
rs4299828 6 ZFAND3 A/G 0.72 0.96 (0.61, 1.50) 1.06 (0.55, 2.06)
rs3734621 6 KCNK16 C/A 0.03 1.03 (0.37, 2.88) 1.20 (0.34, 4.24)
rs17168486 7 DGKB(BCF) T/C 0.15 0.98 (0.58, 1.66) 1.85 (0.83, 4.15)
rs849135 7 JAZF1 G/A 0.50 0.87 (0.60, 1.25) 1.27 (0.76, 2.14)
rs10278336 7 GCK(BCF) A/G 0.60 1.01 (0.68, 1.49) 1.13 (0.64, 1.99)
rs17867832 7 GCC1 T/G 0.92 0.89 (0.44, 1.79) 1.01 (0.36, 2.81)
rs13233731 7 KLF14(IR) G/A 0.54 1.46 (0.99, 2.15) 1.61 (0.91, 2.83)
rs516946 8 ANK1(BCF) C/T 0.73 1.05 (0.69, 1.60) 0.75 (0.41, 1.39)
rs7845219 8 TP53INP1 T/C 0.50 1.06 (0.74, 1.52) 0.90 (0.53, 1.53)
rs3802177 8 SLC30A8(BCF) G/A 0.73 0.88 (0.59, 1.31) 1.38 (0.75, 2.53)
rs10758593 9 GLIS3(BCF) A/G 0.42 1.07 (0.74, 1.55) 1.00 (0.58, 1.74)
rs16927668 9 PTPRD T/C 0.24 1.26 (0.83, 1.91) 0.50 (0.28, 0.92)c

rs10811661 9 CDKN2A/B(BCF) T/C 0.80 1.54 (0.92, 2.58) 0.86 (0.42, 1.79)
rs17791513 9 TLE4 A/G 0.94 1.57 (0.63, 3.94) 0.95 (0.20, 4.41)
rs2796441 9 TLE1 G/A 0.61 1.08 (0.73, 1.59) 1.01 (0.58, 1.73)
rs11257655 10 CDC123(BCF) T/C 0.20 0.86 (0.54, 1.37) 1.23 (0.62, 2.43)
rs12242953 10 VPS26A G/A 0.93 0.79 (0.41, 1.53) 2.96 (1.04, 8.41) c

rs12571751 10 ZMIZ1 A/G 0.54 1.01 (0.69, 1.48) 1.52 (0.90, 2.57)
rs1111875 10 HHEX/IDE(BCF) C/T 0.61 1.03 (0.71, 1.51) 1.30 (0.77, 2.21)
rs7903146 10 TCF7L2(BCF) T/C 0.33 1.33 (0.91, 1.94) 0.81 (0.47, 1.40)
rs2334499 11 DUSP8 T/C 0.40 0.80 (0.55, 1.15) 1.59 (0.92, 2.75)
rs163184 11 KCNQ1(BCF) G/T 0.47 1.16 (0.80, 1.69) 1.87 (1.09, 3.20)c

rs5215 11 KCNJ11(BCF) C/T 0.37 0.87 (0.59, 1.28) 1.00 (0.56, 1.77)
rs1552224 11 ARAP1(BCF) A/C 0.86 1.79 (0.90, 3.55) 0.50 (0.18, 1.37)
rs10830963 11 MTNR1B(BCF) G/C 0.27 1.28 (0.79, 2.07) 0.68 (0.34, 1.37)
rs11063069 12 CCND2 G/A 0.18 1.93 (1.12, 3.33) a 1.40 (0.64, 3.08)
rs10842994 12 KLHDC5 C/T 0.82 1.26 (0.75, 2.12) 1.10 (0.53, 2.30)
rs2261181 12 HMGA2(IR) T/C 0.12 0.81 (0.43, 1.51) 1.47 (0.59, 3.66)
rs7955901 12 TSPAN8 C/T 0.47 1.24 (0.85, 1.81) 1.25 (0.73, 2.13)
rs12427353 12 HNF1A (TCF1) G/C 0.80 1.39 (0.81, 2.37) 1.34 (0.63, 2.88)
rs1359790 13 SPRY2 G/A 0.73 0.96 (0.63, 1.44) 1.16 (0.66, 2.05)
rs4502156 15 C2CD4A(BCF) T/C 0.57 1.12 (0.77, 1.64) 0.99 (0.58, 1.72)
rs7177055 15 HMG20A A/G 0.70 1.02 (0.68, 1.53) 0.90 (0.51, 1.60)
rs11634397 15 ZFAND6 G/A 0.65 1.24 (0.82, 1.86) 1.41 (0.77, 2.59)
rs2007084 15 AP3S2 G/A 0.93 1.26 (0.58, 2.74) 0.65 (0.19, 2.20)
rs12899811 15 PRC1 G/A 0.31 1.00 (0.67, 1.50) 1.64 (0.94, 2.86)
rs9936385 16 FTO(IR) C/T 0.42 1.35 (0.93, 1.96) 1.59 (0.92, 2.73)
rs7202877 16 BCAR1(BCF) T/G 0.90 2.31 (1.06, 5.03)c 0.52 (0.17, 1.60)
rs2447090 17 SRR A/G 0.64 0.83 (0.57, 1.21) 0.82 (0.46, 1.44)
rs11651052 17 HNF1B (TCF2) G/A 0.49 0.92 (0.63, 1.33) 1.47 (0.86, 2.53)
rs12970134 18 MC4R(IR) A/G 0.28 1.08 (0.72, 1.63) 0.95 (0.52, 1.72)
rs10401969 19 CILP2 C/T 0.07 0.15 (0.03, 0.87)c 1.07 (0.07, 15.6)
rs8182584 19 PEPD(IR) T/G 0.38 1.20 (0.81, 1.76) 0.87 (0.50, 1.51)
rs8108269 19 GIPR G/T 0.32 1.02 (0.68, 1.51) 1.07 (0.59, 1.95)
rs4812829 20 HNF4A A/G 0.18 1.16 (0.72, 1.89) 0.71 (0.35, 1.44)
Count genetic risk score 1.08 (1.02, 1.14)c 1.10 (1.01, 1.20)c

Weighted genetic risk score 1.09 (1.03, 1.14)c 1.07 (0.99, 1.16)d

BCF: Beta-cell function; CI: confidence intervals; IR: Insulin resistance; OR: Odds ratio; PM10: particulate matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and
lung and heart diseases in adults; SNPs: Single nucleotide polymorphisms.

a SNPs were genotyped using Illumina Human610Kquad BeadChip and imputations done using MaCH v1.0 software.
b All models adjusted for age, sex, educational level, neighborhood socio-economic index, smoking status and pack years, passive smoke exposure, consumption of alcohol, fruits and

vegetables, physical activity, body mass index and genome-wide population stratification.
c P b 0.05.
d P b 0.1.
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Table 3
Associations between PM10 and quartiles of count-GRS on the odds of diabetes in the SAPALDIA study.

Quartile N Range of risk alleles Association with diabetesa Increase in odds of diabetes per 10 μg/m3 increase in PM10
b

Count-GRS OR (95% CI) OR (95% CI)
Q1 385 51.67–63.83 Reference 0.82 (0.41, 1.65)
Q2 378 63.84–67.09 0.93 (0.40, 2.14) 0.92 (0.55, 1.54)
Q3 381 67.10–70.22 1.66 (0.76, 3.61) 1.54 (0.95, 2.49)d

Q4 380 70.23–82.33 1.86 (0.86, 3.99) 1.97 (1.00, 3.87)c

Q4 vs. Q1 765 51.67–82.33 2.31 (1.03, 5.19)c 2.06 (0.69, 6.19)

Weighted-GRS
Q1 381 49.92–62.84 Reference 0.83 (0.39, 1.74)
Q2 382 62.85–66.49 1.28 (0.55, 2.99) 1.04 (0.62, 1.73)
Q3 380 66.50–70.13 1.40 (0.60, 3.28) 1.21 (0.73, 1.99)
Q4 381 70.14–84.62 3.28 (1.48, 7.27)c 2.01 (1.04, 3.88)c

Q4 vs. Q1 762 49.92–84.62 3.61 (1.55, 8.42)c 2.53 (0.82, 7.76)

Abbreviations: CI, confidence intervals; GRS, genetic risk score; OR, Odds ratio; PM10, particulate matter b10 μm in diameter; SAPALDIA, Swiss cohort study on air pollution and lung and
heart diseases in adults.

a ORs and 95%CIs represent increase in odds of diabetes per risk allele.
b ORs and 95%CIs represent increase in odds of diabetes per 10 μg/m3 increase in exposure to PM10.
c P b 0.05.
d P b 0.1.
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T2D among people with European ancestry (Talmud et al., 2015)
whereas a 62-loci GRS equally predicted T2D in both blacks and whites
(Vassy et al., 2014).

Experimental and epidemiologic evidence have demonstrated the
contribution of fine particulate matter to insulin resistance. PM2.5 was
shown to enhance insulin resistance in a mouse model of diet-induced
obesity (Sun et al., 2009). Kelishadi and colleagues found PM2.5 to be as-
sociated with markers of insulin resistance among Iranian children
(Kelishadi et al., 2009). On the other hand, NO2 was also associated
with insulin resistance among two cohorts of German children
(Thiering et al., 2013). In a study of 25 healthy adults, Brook and col-
leagues found an association between a sub-acute exposure to PM2.5

and insulin resistance (Brook et al., 2013). Postulated mechanisms for
Fig. 1. Interactions between PM10 and count-GRS on prevalent diabetes in the SAPALDIA
study. GRS: total genetic risk score; GRS-BCF: beta-cell function genetic risk score; GRS-
IR: insulin resistance genetic risk score; GRS-IR (no obesity variants): insulin resistance
genetic risk score excluding polymorphisms on FTO and M4CR with primary effect on
obesity; GRS-IR (only obesity variants): insulin resistance genetic risk score including
only polymorphisms on FTO and M4CRwith primary effect on obesity; PM10: particulate
matter b10 μm in diameter; SAPALDIA: Swiss cohort study on air pollution and lung and
heart diseases in adults. Count-GRS was computed by summation of risk alleles. Odds
ratios represent increase in odds of diabetes per 10 μg/m3 exposure to PM10 and per risk
allele. All associations were adjusted for obesity, age, sex, socio-economic status,
smoking habits, consumption of alcohol, fruits and vegetables, physical activity and
genome-wide population stratification. Study area was treated as a random effect in all
models.
the observed association include systemic inflammation, alteration of
insulin signaling following oxidative stress, endothelial vasoconstric-
tion, hypothalamic-adrenal stress response and augmentation of sym-
pathetic activity (Liu et al., 2013; Rajagopalan and Brook, 2012).

Our results also suggest that individualswith pre-existing inflamma-
tion like asthma or at risk of obesity are potentially most susceptible to
air pollution increasing the risk for developing diabetes. We observed a
stronger interaction of PM10 with insulin resistance variants among
asthma cases which was even stronger when we restricted the score
to the FTO and M4CR variants which are known to be causally related
to higher BMI over the course of life (Perry and Frayling, 2008; Scott
et al., 2014) (Fig. 1). Air pollution exposure has been linked to both asth-
ma and obesity (Eze et al., 2015b; Jacquemin et al., 2015; Jerrett et al.,
2014), and studies have linked asthma to obesity and insulin resistance
(Husemoen et al., 2008; Sanchez Jimenez et al., 2014; Singh et al., 2013).
While there is a consensus that obesity-related systemic inflammation
likely contributes to the asthma etiology, epidemiological evidence on
the relationship between asthma and diabetes is limited and conflicting.
Some studies reported a link between asthma and diabetes (Ehrlich
et al., 2010; Mueller et al., 2013) especially in obese people (Mueller
et al., 2013), others did not (Rana et al., 2004).

While asthma and obesity are recognized inflammatory conditions
andwith experimental data from animal models corroborating that vis-
ceral adiposity-related inflammation may act as mediator for PM2.5 to
increase the risk for insulin resistance (Sun et al., 2009), other studies
have shown discordance between systemic inflammation and severity
of symptoms in obese asthmatics (Beuther et al., 2006; Haldar et al.,
2008). Other lines of evidence suggest that non-inflammatory pathways
might also link PM to insulin resistance (Brook et al., 2013), with exper-
imental animal models providing evidence for insulin resistance in
muscle tissues resulting from lipid and protein oxidation by-products
upon acute exposure to ozone (Kodavanti, 2015; Vella et al., 2015).
Hence, despite the strong evidence for a central role of pre-existing in-
flammation, e.g., due to asthma or being at genetic risk of obesity,
other non-inflammation based mechanisms cannot be ruled out to un-
derlie or contribute to the air pollution-diabetes association.

There is some evidences on the impact of environmental pollutants
(including organophosphorus compounds, persistent organic pollutants
andmetals) on various aspects of beta-cell dysfunction that lead to dia-
betes (Hectors et al., 2011), but there is to date no experimental evi-
dence on the impact of air pollutants on BCF. Although interactions
with the polygenic risk involving the BCF variants in the 63-loci GRS
were not significant, we observed some positive signals among non-
asthmatics in the BCF pathway (Fig. 2) and nominally significant

Image of Fig. 1


Fig. 2. Interactions between PM10 and count-GRS on prevalent diabetes in the SAPALDIA
study, stratified by asthma status. GRS: total genetic risk score; GRS-BCF: beta-cell
function genetic risk score; GRS-IR: insulin resistance genetic risk score; GRS-IR (no
obesity variants): insulin resistance genetic risk score excluding polymorphisms on FTO
and M4CR with primary effect on obesity; GRS-IR (only obesity variants): insulin
resistance genetic risk score including only polymorphisms on FTO and M4CR with
primary effect on obesity; PM10: particulate matter b10 μm in diameter; SAPALDIA:
Swiss cohort study on air pollution and lung and heart diseases in adults. Count-GRS
was computed by summation of risk alleles. Odds ratios represent increase in odds of
diabetes per 10μg/m3 exposure to PM10 and per risk allele. All associations were
adjusted for obesity, age, sex, socio-economic status, smoking habits, consumption of
alcohol, fruits and vegetables, physical activity and genome-wide population
stratification. Study area was treated as a random effect in all models. N (asthma) =
615; N (no asthma) = 909.
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interactions with single variants in the BCF pathway (Table 2). This
might indicate that PM may also have some impact on T2D through
some alterations in the BCF.

This study has several strengths. It provides comprehensive
evidence on the modifying effect of a polygenic risk score (including
pathway-related components) on the association between ambient air
pollution and DM. The SAPALDIA study contains a rich data set on
well characterized participants including a large number of phenotypes
and lifestyle characteristics, in addition to genomic data. We attempted
to identify undiagnosed diabetes, using non-fasting blood tests, to limit
outcome misclassification. Our estimates of air pollution derive from
validated models, which have been applied to other SAPALDIA studies.
Table 4
Sensitivity analyses using inverse probability weighting to assess for potential selection bias, an
diabetes by GRS in the SAPALDIA study.

Model Interactions b
count-GRS on

Inverse probability weighting for selection bias OR (95% CI)

63-loci GRS 1.10 (1.02, 1.2
GRS-beta cell function 1.07 (0.95, 1.2
GRS-insulin resistance 1.25 (1.03, 1.5
GRS-insulin resistance excluding obesity variants 1.21 (0.96, 1.5
GRS-insulin resistance (only obesity variants) 1.25 (0.86, 1.8

Study area as a fixed effect
63-loci GRS 1.10 (1.01, 1.2
GRS-beta cell function 1.06 (0.92, 1.2
GRS-insulin resistance 1.22 (1.00, 1.5
GRS-insulin resistance excluding obesity variants 1.18 (0.95, 1.4
GRS-insulin resistance (only obesity variants) 1.29 (0.87, 1.9

Abbreviations: CI, confidence intervals; GRS, genetic risk score; OR, Odds ratio; PM10, particulat
heart diseases in adults.

a ORs and 95%CIs represent increase in odds of diabetes per 10 μg/m3 increase in exposure t
intercepts for study areas, and adjusted for age, sex, educational attainment, neighborhood so
dusts, gases and fumes, consumption of alcohol, fruits and vegetables, physical activity, body m

b P b 0.05.
These estimateswere assigned to participants' residential address histo-
ry, thus limiting exposure misclassification.

Despite these strengths, our study has also limitations. First is our in-
ability to distinguish T1D and T2D. We assumed most of our diabetes
cases to be type 2, since N90% of adult diabetes is type 2 (Alberti and
Zimmet, 1998). We observed strong associations between the con-
firmed T2D risk alleles and our diabetes cases, in the range of published
literature, thus strengthening our assumption of T2D. Moreover, when
we limited the diabetes definition to either medication use or those
without a diagnosis but increased non-fasting glucose levels, the associ-
ationswith GRS remained unchanged.We had limited sample size (62%
statistical power) for this analysis due to lacking genome-wide data. As-
suming the observed effect is identical to the true effect, wewould have
needed twice the size of our sample to achieve 90% power for detecting
this effect at the usual significance level of 5%. However, wemade some
salient findings, and IPW revealed no effect of potential selection bias in
our study. This was a cross-sectional analysis, precluding any causal in-
ferences. To limit this design bias, we focused on the 10-year mean of
PM10 exposure, rather than on the mean during the year preceding
the health assessment. Our study of genetic variation also limits this
design bias to some extent considering that genetic variants remain un-
changed throughout life. Furthermore, we studied PM10, instead of
PM2.5, which may have stronger health effects due to its physical prop-
erties. Modeled PM2.5 was not available for our study, but there is a
high correlation between both pollutants across SAPALDIA study areas
(R = 0.8) (Eze et al., 2014a). We would expect similar, if not stronger
associations with PM2.5. Lastly, our observations may be biased by the
relationship between asthma (and its treatment) and diabetes, but we
did not observe substantial differences in interactions between PM10

and total genetic risk, on stratification by asthma status.
Future studies should explore the possible role of air pollution in the

impairment of BCF, and explore the role of unclassified T2D variants in
disease etiology. Our present findings need confirmation and follow-
up in diabetes cohort consortia. Consideration should also be given to
ultra-fine particles, which can penetrate even further into the respirato-
ry tract than PM2.5 or PM10.

In conclusion, our results indicate that polygenic risk of T2D may
modify the effects of air pollutants on the risk of diabetes through alter-
ation of insulin sensitivity among people with some existing back-
ground inflammation. This study is relevant given the need for the
knowledge of genetic risk in disease prevention, and the importance
of genotypes as research instrument in disentangling complexities and
mechanisms in causality of modifiable risks.
d testing study area as a fixed effect, in themodification of associations between PM10 and

etween PM10 and
prevalent diabetesa

Interactions between PM10 and
weighted-GRS on prevalent diabetesa

OR (95% CI)

0)b 1.08 (1.00, 1.16)b

0) 1.04 (0.93, 1.15)
1)b 1.23 (1.03, 1.47)b

3) 1.20 (0.95, 1.52)
3) 1.54 (0.50, 4.69)

0)b 1.07 (0.99, 1.15)b

2) 1.03 (0.91, 1.15)
0)b 1.21 (1.00, 1.48)b

7) 1.17 (0.93, 1.47)
1) 1.32 (0.90, 1.92)

e matter b10 μm in diameter; SAPALDIA, Swiss cohort study on air pollution and lung and

o PM10 and per unit risk allele. All models were mixed logistic regression with random
cio-economic index, smoking status, exposure to passive smoke and occupational vapors,
ass index and genome-wide population stratification.
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5. Current SAPALDIA team

Study directorate: NM Probst-Hensch (PI; e/g); T Rochat (p), C
Schindler (s), N Künzli (e/exp), JM Gaspoz (c).

Scientific team: JC Barthélémy (c), W Berger (g), R Bettschart (p), A
Bircher (a), C Brombach (n), PO Bridevaux (p), L Burdet (p), Felber Die-
trich D (e), M Frey (p), U Frey (pd), MW Gerbase (p), D Gold (e), E de
Groot (c), W Karrer (p), F Kronenberg (g), B Martin (pa), A Mehta (e),
D Miedinger (o), M Pons (p), F Roche (c), T Rothe (p), P Schmid-
Grendelmeyer (a), D Stolz (p), A Schmidt-Trucksäss (pa), J Schwartz
(e), A Turk (p), A von Eckardstein (cc), E Zemp Stutz (e).

Scientific team at coordinating centers: M Adam (e), I Aguilera
(exp), S Brunner (s), D Carballo (c), S Caviezel (pa), I Curjuric (e), A Di
Pascale (s), J Dratva (e), R Ducret (s), E Dupuis Lozeron (s), M Eeftens
(exp), I Eze (e), E Fischer (g), M Foraster (e), M Germond (s), L Grize
(s), S Hansen (e), A Hensel (s), M Imboden (g), A Ineichen (exp), A
Jeong (g), D Keidel (s), A Kumar (g), N Maire (s), A Mehta (e), R Meier
(exp), E Schaffner (s), T Schikowski (e), M Tsai (exp).

(a) allergology, (c) cardiology, (cc) clinical chemistry,
(e) epidemiology, (exp) exposure, (g) genetic and molecular biology,
(m) meteorology, (n) nutrition, (o) occupational health,
(p) pneumology, (pa) physical activity, (pd) pediatrics, (s) statistics.

Local fieldworkers: Aarau: S Brun, G Giger, M Sperisen, M Stahel,
Basel: C Bürli, C Dahler, N Oertli, I Harreh, F Karrer, G Novicic, N
Wyttenbacher, Davos: A Saner, P Senn, R Winzeler, Geneva: F Bonfils,
B Blicharz, C Landolt, J Rochat, Lugano: S Boccia, E Gehrig, MT Mandia,
G Solari, B Viscardi, Montana: AP Bieri, C Darioly, M Maire, Payerne: F
Ding, P Danieli A Vonnez, Wald: D Bodmer, E Hochstrasser, R Kunz, C
Meier, J Rakic, U Schafroth, A Walder.

Administrative staff: N Bauer Ott, C Gabriel, R Gutknecht.
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