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Abstract

In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used
for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to
non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems:
two ‘‘traditional’’, rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial
neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time
series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments
demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction
error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum
Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to
financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult
to manage non-stationary environments.
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Introduction

Most financial data is non-stationary by default, this means that

the statistical properties, such as the mean and variance, of the

data changes over time. These changes are a result of various

business and economic cycles such as the high demand for air

travel in the summer months effecting on exchange rates and fuel

prices [1]. While isolated information is usually taken into account,

for example in the current closing price of a stock, share or

exchange rate, the consequences of this knock-on effect means that

the long term study of the behaviour of a specific variable is not

always the best indicator of future market behaviour.

Stock market fluctuations are a result of complex interactions

and the effect of these fluctuations are often interpreted as a

sequence of stock price time series plots [2]. The most significant

variations that are looked for are: trend, periodic variations and

day-to-day variations. Trend is an identifiable long term variation

in the stock market time series, while the periodic variations follow

either seasonal patterns or the business cycle in the economy.

Short-term and day-to-day variations usually appear at random

and are difficult to predict with the exception of the case of

‘‘special events’’ such as public holidays, specific product launch

dates or predicable breaking news, but these are often the source

for stock trading gains and losses, especially in the case of day

traders [2,3,4].

The prediction of financial time series is notoriously difficult and

a nontrivial problem since it depends not only on known but also

on unknown (and often unknowable) factors and frequently data

that is used for the prediction is noisy, uncertain and incomplete.

The financial series are affected by many highly correlated

economic, political and even psychological factors; as a result it has

been suggested that some financial time series are not at all

predictable [5,6,7]. Despite this, the practical prediction of

financial time series attracts interest due to its potential for

massive financial gain.

Researchers and practitioners have long been striving for an

explanation of the movement of financial time series. In order to

maximise profits from the liquidity market different forecasting

techniques have been used by traders [8]. Assisted by computer

technologies, traders no longer rely on a single technique to

provide information about the future of the market. From purely

statistical to esoteric methods of artificial intelligence, there are

many choices of techniques which can be used to make a forecast.

The traditional methods for financial time series forecasting are

based around statistical approaches, none of which have proved to

be completely satisfactory due to the nonlinear nature of most of

the financial time series [9]. Other more advanced techniques

have been used such as Support Vector Machine [10], genetic

algorithms [11,12,13] fuzzy logic [14], have only achieved limited

success and tend to be focused toward a particular application

domain. Other methods that have been used for time series

analysis also include detrended fluctuation analysis and detrended

cross correlation analysis [15,16]

Neural networks are believed to have great potential in the

financial time series prediction domain due to their predictive

ability, adaptability to different domains and robust behavioural

characteristics in uncertain environments.
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Multi-Layer Perceptrons (MLPs) have been successfully applied

to a broad class of financial markets predictions [3,8,17,18].

However, MLPs use computationally intensive and training

algorithms such as error back propagation [19] and can easily

get stuck in local minima. In addition, these networks have poor

interpolation performance, especially when using limited training

sets.

For some tasks, including time-series prediction, higher order

combinations of some of the neural networks inputs or activations

may be appropriate to help form good representations for

modeling non-linear problems.

Higher-Order Neural Networks (HONNs) distinguish them-

selves from ordinary feedforward networks by the presence of high

order terms in the network [20,21,22]. In the specific case of

financial data predictions various forms of Higher Order neural

Networks, including Pi-Sigma networks, Ridge Polynomial Net-

works, and Functional Link Networks have been applied; these

show favourable results when compared to the performance of

Multi-Layer Perceptron networks [22,23,24] in such complex

environments.

Traditional neural networks use firing rate as a way to encode

and process information. This is normally done by averaging the

weighted sum of inputs and mapping this onto a continuous

activation function. This destroys important information that may

be encoded into the patterns of activation such as strong outlying

correlations in specific patterns of data.

It has been observed [25] that correlations and interdependen-

cies exist between markets so that some stocks show a large degree

of coupling. It has also been suggested that changes to highly

coupled stocks could help predict agitation in financial markets.

Yet this dynamic is very difficult to encode into traditional neural

networks. The Index Cohesive Force; or ICF is the ratio between

the raw and residual stock correlations [26]. This correlation may

be used by neural networks tuned to react to individual

correlations in the market; that is by neural networks that encode

information temporally and that explicitly preserve the relation-

ship between potentially useful correlations.

More recently, Spiking Neural Networks (SNNs) have demon-

strated the power of this type of neural networks in solving difficult

problems in complex and informationally ‘‘messy’’ environments.

Unlike the older class of neural networks, this so called ‘‘third

generation’’ of neural networks use spike times to encode data

[27,28]. It is argued that these new generations of neural networks

are potentially much more powerful at predicting non stationary

patterns, and are, in reality, a superset of the ‘‘traditional’’ or rate

encoded neural networks hither to used [29].

SNNs are inherently suited to manage highly non-linear and

temporal based input data that traditional neural networks

struggle with. A small number of researchers have applied spiking

neural network systems in order to classify and predict financial

time series data [30,31]. However, most spiking neural networks

applied to financial forecasting, if not direct adaptations of

traditional neural networks, can indirectly trace their origins to

older types of neural networks already applied to this field.

Typically such networks involve choosing a particular feature set

which is then used to explicitly analyse and classify financial data.

Apart from Glackin [32], who uses fuzzy logic to analyse patterns

of spike trains in a SNN as the basis for financial forecasting in a

novel way, in most SNNs applied to this area of financial

forecasting often the temporal financial information gets over-

whelmed by other factors or is just simply ignored.

As such, despite their potential, the application of SNNs into

meaningful financial data predictions seems to be under-explored;

which in turn suggests that this particular field of research is very

much in its infancy.

Therefore, it is proposed in this paper that the explicit

engineering of the temporal aspects of the financial data into a

spiking neural network make the SNNs more suited to time series

analysis than traditional rate encoded neural networks that

preceded them or the SNN derived from thee rate encoded

networks [33,34,35].

The remainder of this paper is organized as follows: section 2

discusses the methodology and algorithmic design choices for the

proposed Spiking neural network. Section 3 describes the

proposed Polychronous neural network paradigm for financial

time series prediction. Simulation results and discussions are

presented in sections 4 and 5 respectively. Section 6 covers

conclusions and the future research directions.

Methods

Spiking Neural Networks for Financial Data Forecasting
Temporal point processes are often used to describe signals that

occur at a finite set of time points. Unlike continuous valued

processes, which can take on countless values at each point of time,

a temporal point process use binary events that occur in

continuous time [36,37]. As most signal processing techniques

are designed for continuous valued data, care needs to be taken to

transfer the probability theory of point processing [38] into

meaningful spike data. This can be done in three ways; by

encoding the information by spike counting, by relative spike

timing or by absolute spike timing [39].

The SNN proposed in this paper uses absolute spike times to

directly correlate with the closing prices of several financial

markets. This is an appropriate correlation for a number of

reasons:

1. markets prices are measured at discrete time intervals,

2. markets have a discrete closing and opening price, and

3. markets are always ‘‘naturally’’ bounded by ultimately finite

resources and are often far more restricted than this by being

‘‘bounded rationally’’ [40].

SNNs used so far in financial modeling and predication use a

simple Leakey Integrate and Fire model. This paper postulates the

argument that it is logical to use a neuron model that has the

Table 1. Time series data used in the experiments.

Data Signal Dates Number of data points

Oil Price 01/01/1985 to 01/11/2008 389

IBM 17/05/1961 to 02/11/1962 360

US/Euro rate 03/01/2000 to 04/11/2005 1525

doi:10.1371/journal.pone.0103656.t001
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capability for significant temporal control in order to accurately

model the temporal nature of the financial time series. For this

reason the Izhikevich neural model [41,42] was favoured over the

LIF model [29].

Izhikevich argues [41] that a potentially major contributing

factor to learning is often neglected in spiking neural network

research; that of axonal delay. Consequently our system acknowl-

edges this by using the Spike Time Dependent Plasticity (STDP)

learning rule [43,44], which is derived from traditional Hebbian

learning.

This gives our SNN the capability to rapidly recognize complex

patterns, often with a single neuron’s spiking output being a

flagged as a result of a pattern of other afferent neurons’ reaction

to stimulation.

This idea is referred to as the theory of neuronal group selection

(TNGS) or neural Darwinism [45,46]. It is this novel method that

the authors of this paper utilise in order to predict values in an

evolving and non-stationary financial environment.

Experimental Design
When comparing two fundamentally different types of neural

networks and a standard linear classifier system a number of

compromises have to be taken. While it may be possible to

perform a direct comparison between SNN, traditional NNs, and

linear systems; this often necessitates modification of the SNN to

such an extent that it resembles the function in a similar way to a

standard Linear Predictor Coefficients model or traditional rate

encoded neural network. By modifying the SNN in this way it may

lose many of its advantageous characteristics.

The experiments performed for this paper therefore did not

adopt the aforementioned approach and instead use the SNN

firing patterns in order to select candidate routes that match the

real world financial data. In order to make an equivalent

traditional neural network or a linear classifier performs in this

way would necessitate very many runs of the network requiring

feedback of potential solutions into the network over a very long

time period. Even if these modification where made to the

Figure 1. Exchange rate between the US Dollar and the Euro (a), the correlogram of the exchange rate between the US dollar and
Euro signal (b), and histogram of the exchange rate between the US dollar and the Euro (c).
doi:10.1371/journal.pone.0103656.g001
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different types of network, their fundamental intrinsic differences

would still mean that a direct comparison may not be achievable.

Care had to be taken in the design of the systems involved in this

experiment as design factors can have a major impact on the

accuracy of network forecast; for example: the selection of the

input-output variables; the choice of data, the initial weight state,

and the stopping criterion during the training phase can influence

results. Similarly issues such as the learning parameters, the

number of nodes and the activation function are also important.

The way the data is pre-processed may also have a significant

effect. In order to accurately diagnose the mechanisms working in

a system, it is important to present the data to each of the systems

in as ‘‘pure’’ and unmodified way as possible, which minimises

pre-processing and promotes simplicity.

In this research work, three financial time series signals are

considered as shown in Table 1.

The IBM closing stock price was used, as it is a well-known time

series described by Box [47]; the foreign exchange market is used

as this is the largest and most liquid of the financial market with an

estimated $1 trillion traded everyday [8,48]; and the price of oil is

used as this is becoming an important time series and it exhibits

extreme non stationary behaviours. The financial data forecasting

problem is reliant on predicting various prices, as in the case of

forecasting return or log returns [49,50,51].

The oil and the exchange rates time series were obtained from

the Federal Reserve banks and the Board of Governors, which was

established by the Congress in 1913 and which is shown in the

following website http://economagic.com/ecb.htm/fedstl.htm,

while the IBM common stock closing price time series was taken

from the Time Series Data Library [52].

The exchange rate is an important economic measure in the

international monetary market. Its importance comes from the

fact that both governments and companies use it to make decisions

on investment and trading. It is believed that the exchange rates

have direct influence to all changes in the economic policies, and

as a result, any attempt to predict the behaviour of an economy is

materialised in the foreign exchange rates. The foreign exchange

rates time series show high nonlinearity, very high levels of noise,

and significant nonstationarity. In this paper the exchange rate

Figure 2. Brent crude oil price (a), the correlogram of the oil data signal (b), and histogram of the Brent crude oil price (c).
doi:10.1371/journal.pone.0103656.g002
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between the US Dollar which is acting as a reference currency and

the euro is considered as shown in Figure 1 (a).

The Oil prices data is a monthly data that represents the Oil

price of West Texas Intermediate crude and which covers the

interval between 01/01/1985 and 01/11/2008 as shown in

Figure 2 (a).

On the other hand, Figure 3 (a) shows the IBM common stock

price in the period between 17/05/1961 to 2/11/1962. The IBM

closing price, owned by the world’s largest information technology

company was selected as it is a well-known time series, described

by Box et.al [53].

As shown in Figures 1, 2, and 3 (b), the correlograms of the

IBM, the oil and the daily exchange rate between the US Dollar

and the Euro time series indicated that the autocorrelation

coefficient drops to zero for large values of the lag. As a result, we

can conclude that the time-series are non-stationary signals.

Furthermore, the signals exhibit high volatility, complexity, and

noise as shown in the histogram images (refer to Figures 1, 2, and

3(c))

The data is scaled to accommodate the limits of the network’s

transfer function. Manipulation of the data using this process

produces a new bounded dataset. The calculation for the standard

minimum and maximum normalization method is as follows:

x’~ max2{min2ð Þ � x{min1

max1{min1

� �
zmin2 ð1Þ

where x9 refers to the normalized value, x refers to the observation

value (original value), min1 and max1 are the respective minimum

and maximum values of all observations, and min2 and max2 refer

to the desired minimum and maximum of the new scaled series.

The statistical measures used in evaluating the performance of

the neural networks are the Mean Squared Error (MSE), the

Normalized Mean Squared Error (NMSE), and the Mean

Absolute Error (MAE). However, for financial time series

forecasting, the aim of the prediction is also to achieve trading

profits based on prediction results in addition to the forecasting

Figure 3. IBM stock values (a), the correlogram of the IBM stock value signal (b), and histogram of the IBM stock values (c).
doi:10.1371/journal.pone.0103656.g003

Financial Prediction Using Neural Networks

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e103656



accuracy. As a result, financial criteria were used as the primary

test as to whether the model is of economic value in practice [8].

The prediction performance of this work were measured using

three financial metrics, and two statistical and signal processing

metrics, as shown in Table 2.

The objective of using financial metrics is to use the networks

predictions to ultimately generate profit, whereas the statistical and

signal processing metrics were used to provide accurate tracking of

the signals, for forecasting accuracy purposes.

Choosing a suitable forecasting horizon is a very important step

in financial forecasting. From the trading aspect, the forecasting

horizon should be sufficiently long such that excessive transaction

cost resulting from over-trading is avoided [10]. Similarly the

forecasting horizon should be short enough as the persistence of

financial time series is of limited duration. Thomason in his work

[54] suggested that a forecasting horizon of five days is a suitable

choice for daily data. To systematically select the appropriate

prediction horizon, linear predictor was utilised for the prediction

of 1-step, 5 steps, 10 steps, and 15 steps prediction for the three

time series and evaluated using the SNR and the MSE

performances. The simulation results as shown in Tables 3 and

4 and in Figures 4 and 5 indicated that no significant performance

changes using the MSE and the SNR were noticed for 5 step

ahead prediction.

Hence, considering the trading and prediction aspects from

both literatures and the simulation results, this research work

consequently implements a 5-days steps ahead forecasting horizon.

Table 2. Signal processing and trading simulation performance measures.

Metrics Calculations

Annualized Return (AR)
AR~252 � 1

n

Xn

i~1

Ri

Ri~
yij j (yi)(ŷyi)§0

{ yij j otherwise

�

Maximum Drawdown (MD)
MD~Min

Xn

i~1

CPi{1{Max CP1,::::::CPið Þ
 !

where

CP~
Xn

i~1

ŷyi(t)

Signal to Noise Ratio (SNR) SNR~10 � log10 sigmað Þ

sigma~
m2 � n

SSE

SSE~
Xn

i~1

(yi{ŷyi)

m~max(y)

Normalized Mean Square Error (NMSE)
NMSE~

1

s2n

Xn

i~1

yi{ŷyið Þ2

s2~
1

n{1

Xn

i~1

(yi{�yy)2

�yy~
Xn

i~1

yi

Annualized Volatility (AV) AV~
sffiffiffiffiffiffiffiffi
252
p

where

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1 y2

i

n
{

Pn
i~1 yi

n

� �2
s

n is the total number of data patterns.
y and ŷy represent the actual and predicted output value.
doi:10.1371/journal.pone.0103656.t002

Table 3. 1,5,10 and 15 step ahead prediction Mean Squared Error for the Linear Predictor Classifier.

Step Ahead Prediction Oil Price IBM Stock Value US/Euro Exchange Rate

1 0.2075 0.4471 1.2342

2 0.2411 0.4335 1.3486

10 0.2591 0.4802 1.425

15 0.2658 0.5169 1.5107

Mean MSE 0.243375 0.469425 1.379625

doi:10.1371/journal.pone.0103656.t003
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A Polychronous Spiking Neural Model for Financial Time
Series Prediction

Given the aforementioned considerations, we propose using

Polychronous Spiking Neural (PSN) network. Recently, Johnson

and Venayagamoorthy have shown how real values can be

encoded into such a network [55]. However their work focuses on

encoding non temporal data into such a network whereas our

focus is on encoding temporal financial data into such a network.

Financial data usually has temporal ordering and precise timing as

major factors contributing to different patterns of market

behaviour.

Several possible encoding methods were considered, especially

inter spike interval representing market values at particular points

in time; encoding financial data as a neuronal gray value bit

pattern, however it was decided to map the values onto distinct

neurons. The reasons for adopting this methodology are:

1. Simplicity, it is relatively easy to scale and then to map the

financial data onto a set of neurons;

2. Easy to decode, the nature of the Polychronous Spiking Neural

network means that at any time interval many different

patterns of neuronal activation can exist in the network

representing possible ‘‘candidate’’ solutions. If a complex

encoding scheme is used this may hide, or even destroy, the

causal chain of neuronal activity;

3. Easy to encode; temporal information is encoded directly into

the network without manipulation;

4. Easy to interpret; causal neuronal chains in the network

correspond to different candidate solutions; these in turn can

be mapped back to real data.

Training of the network started with scaling and rounding the

raw data to the nearest integer so that it would map onto 100

neurons. These neurons represent the real values of the data (in

the case of US/EU exchange rate data this also required

multiplication by 100 in order access the significant digits).

This scaled data was then presented to the network via ‘‘thalmic

input’’. This is represented by the value W in equation 2 and

amounts to the total influx on spiking information at a particular

time step after synaptic delays have been accounted for. It is this

variable that we use to fire the relevant neuron represented the

scaled financial data value. These firing patterns are shown in

Figure 6.

W (x)~Az exp
{x

tz

� �
for xw0

W (x)~A{ exp
x

t{

� �
for xv0

ð2Þ

where parameters A+ and A2 are parameters dependant on the

value of the current synaptic weight and t+ and t2 are time

constants/boundaries normally in the order of 10 ms.

During experimentation three different training architectures

were investigated:

Table 4. 1,5,10 and 15 step ahead prediction Signal to Noise Ratio for the Linear Predictor Classifier.

Step Ahead Prediction Oil Price IBM Stock Value US/Euro Exchange Rate

1 28.6086 26.4725 25.9932

2 28.1832 26.5651 25.7979

10 28.0913 26.0978 25.7307

15 28.3049 25.8201 25.6745

Mean SNR 28.297 26.23888 25.79908

doi:10.1371/journal.pone.0103656.t004

Figure 4. Step Ahead Prediction Mean Squared Error (MSE) for Linear Predictor Coefficient Model.
doi:10.1371/journal.pone.0103656.g004
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1. Randomly connected neurons with random delays, these along

with their afferent neurons were updated after each training

cycle.

2. Bands of connected neurons (with a 10 neuron neighbour-

hood), with each band and their afferent neurons being

updated at each training cycle.

3. A focused single neuron and its afferent neurons being updated

with each training cycle.

It was found that this last method exhibited faster training by a

factor of 4 and produced comparable results to the other 2

methods. It was noted that during training the system periodically

entered bursts of activity indicated that afferent neurons were

being activated (in a manner suggesting a gamma cycle) in a

focused way (Figures 7 and 8).

Training consisted of presenting the financial data values 100

times to the network (experimentation with lower numbers of

training session, down to 10, also produced similar results).

The 5 days up to the midpoint of the data (values 195–200) were

then taken as the ‘‘anchor’’ neurons. These are neurons that have

been influenced, or will influence, other significant neurons. The

network then looked for all possible pre-synaptic firing patterns in

the previous 200 afferent neuron values that were similar to the

previous 200 real data values, with a tolerance of 65 ms. These

were labelled as ‘‘candidate’’ paths.

After running the network the candidate path that most closely

resembled the real data was chosen and a prediction made based

on the continuation of firing of the candidate path to the efferent

neuron most likely to fire in the 201st or 205th spike time. This is

illustrated in Figure 6.

Different combinations of possible neuronal paths were ranked

according to when neurons fired and which afferent neurons

influenced them. A path through the network that resembles the

real financial data pattern was deemed to be the best approximate

forecast of the current and, via subsequent firings, future market

conditions.

Simulation Results

Graphs presented in Figures 9, 10, and 11 show on the x-axis

400 trading days and on the y-axis the closing values representing

the number of the maximally fired neuron. The data from day 0–

Figure 6. Activation chains of firing patterns through the network instigated by thalamic input signals representing real value data.
doi:10.1371/journal.pone.0103656.g006

Figure 5. Step Ahead Prediction Signal to Noise Ratio (SNR) for Linear Predictor Coefficient Model.
doi:10.1371/journal.pone.0103656.g005
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200 forms the basis of the prediction. The movement traced in the

Y axis represents the maximally fired neuron at a particular time

(65 ms), the error at a particular instance can be deduced by how

far a neuron is from the real data value when it fired.

It can be seen that for the most part, the system has been trained

to fire neurons at approximately the correct times in order to

mimic the movement of the real data.

From this a 5-step prediction is made based on the firing chain

of events pattern that occurred in the afferent neurons over the

0–200 time frame. These neurons are used to fire an efferent

neuron on day 201 or on day 205; the neurons following the

market behaviour are used to see what other neurons can be fired

if they fire at the times specified.

Initially, we experimented with the Linear Predictor Coeffi-

cients (LPC) model [56] for the prediction of the 3 types of

financial times serried shown in this paper. The simulation results

indicated that the LPC models generate less favourable annualised

return results, in comparison with our neural network models.

This was found to be consistent with previous findings in this area.

For examples, Ferreira [51] showed that MLP network obtained

results better than a LPC model, for all financial time.

In Table 5, 5-step prediction results are shown for the closing

prices for Brent crude oil, IBM stocks and US/Euro exchange

rates, using three types of neural networks:

1. A Linear Predictor Coefficients (LPC) model (ARMA based)

2. A traditional MLP network,

3. A Dynamic Ridge Polynomial Neural Network DRPNN, a

recurrent form of higher order neural networks which proved

to perform favourably in the prediction of financial time series

[24], and

4. Our proposed PSN network.

The performance of the PSN network is primarily evaluated

using the signal processing and trading metrics defined in Table 2

in which the prediction performance of our networks was

evaluated using three financial metrics, where the objective is to

use the networks predictions to make financial gain, and two

Figure 7. Training the PSN (no Gamma Cycle).
doi:10.1371/journal.pone.0103656.g007

Figure 8. Training the PSN (Gamma Cycle).
doi:10.1371/journal.pone.0103656.g008
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statistical metrics which are used to provide accurate tracking of

the signals.

The ability of the networks was evaluated by the Annualized

Return (AR), a real trading measurement which is used to test the

possible monetary gains and to measure the overall profitability in

a year (252 working days), through the use of the ‘buy’ and ‘sell’

signals [17]. The AR is often the most significant economic

measurement for a specific market. This is a scaled calculation of

the observed change in the time series value, where the sign of the

change is correctly predicted.

The 5-step prediction results from Table 5 are, for the most

part, consistent. For annualised return the PSN consistantly had

the best results by a large margin. The DRPNN produced a better

prediction compared to MLP and LPC for Oil price and US/Euro

rate prediction but on the other hand generated a small loss in oil

price prediction (20.2958). Overall for this most important

indacator, PSN exhibited highly favourable performance.

Maximum drawdown (MD) is an indicator of the risk of a

particular portfolio. It measures the largest single drop from peak

to bottom in the value of a portfolio, before a new peak is

achieved. It is the percentage loss that a fund incurs from its peak

net asset value to its lowest value. Taking into account scaling

factors all three of the neural networks concur.

The Signal to Noise Ratio (SNR) compares the level of a desired

signal to the level of background noise; in this case it is the ratio of

useful information about a portfolio compared to false or

irrelevant data. The 5-step predictions show consistent results.

Again, the PSN has the best SNR; for IBM shares and the US/

Euro rate this is particularly pronounced.

Normalised Mean Squared Error (NMSE) shows overall

deviations between predicted and measured values. NMSE is a

useful measure because if a system has a very low NMSE, then it

indiates that it is correctly identifing patterns.The PSN produced

significantly better NMSE results for the IBM and oil prices,

consistantly achieving NMSE error values less than 1 (0.0883 and

0.0662 respectively), which are well below the NMSE values for

the MLP, DRPNN and LPC predictors. DRPNN has the best

performing neural network for the US/EU data having a NMSE

of only 0.4337.

Annualized Volatility (AV) is the measure of the changeability

in asset returns, which means less volatility is preferable. It

describes the variability in a stock price and is used as an estimate

of investment risk and for profit possibilities. The volatility is of

great interest for financial analyst and provides useful information

when estimating investment risk in real trading. This is calculated

as the standard deviation of the portfolio price return over a

working year (252 days). The PSN results obtained are consistent

with the advantages that this network shows over the other systems

tested.

Figure 9. IBM stock prices (5-step prediction).
doi:10.1371/journal.pone.0103656.g009

Figure 10. Brent crude oil prices (5-step prediction).
doi:10.1371/journal.pone.0103656.g010
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In order to assess the statistical validity of the performance of

the PSN network, a paired t-test [57] was conducted to determine

if there is any significant difference among the proposed spiking

neural network for financial time series prediction and the MLP

and the DRPNN based on the absolute value of the error on out of

sample data. The calculated t-value showed that for all the

predicted signals the proposed Polychronous Spiking Networks

technique outperform the other neural networks predictors with

a= 5% significance level for a one tailed test. This is confirmed by

the simulation results as shown in Table 6 for out of sample data.

We have utilised 50% of the data as out of sample for the T-test

experiments. These results clearly indicate that the proposed

spiking neural network is significantly better than the DRPNN and

the MLP networks in predicting these financial time series

datasets.

Discussion

This work has aimed to demonstrate the applicability of a

particular type of spiking neural network (the PSN) to financial

forecasting in a non-stationary environment and shows that, given

the right settings, it can function more effectively than both

standard LPC system and traditional rate encoded neural

networks.

As can be seen by the NMSE results in Table 5, the PSN

developed for this research is dependent on good spread of values

that can be mapped onto the network in an effective manner. If

the mapping is well distributed the results are highly favourable,

whereas if the distribution is poor the results are less favourable. In

either case we have shown that the PSN can make a good

prediction at 5-steps into the future. Statistical validation of the

results of the out of sample results confirms the significance of the

improved performance shown by our proposed network

It should also be noted that although the NMSE is poorer for

the PSN for US/EU exchange rates than with some other data

Figure 11. US/EU exchange rate (5-step prediction) - The Y axis represents the Neuron Index; The X axis represents time. In
Figures 9–11 The ‘Blue’ line represents the real data over time; the red line represents the closest synfire chain; i.e. chain of ‘firing’ neurons.
doi:10.1371/journal.pone.0103656.g011

Table 5. 5-step time-series prediction results.

Measure Network Oil Price IBM US/Euro rate

AR LPC 219.4035 25.5758 15.1846

MLP 2.6385 1.6523 2.9824

DRPNN 14.6108 20.2958 8.63152

PSN 94.5051 96.2261 27.162

SNR LPC 28.1832 26.5651 25.7979

MLP 15.06 7.87 16.21

DRPNN 22.98 18.43 20.52

PSN 30.1939 92.3077 81.6514

NMSE LPC 0.2411 0.4335 1.3486

MLP 3.3703 10.7787 1.1719

DRPNN 0.6098 0.9437 0.4337

PSN 0.0883 0.0662 14.5187

AV LPC 180.2314 94.4259 1.0142

MLP 17.7153 20.1867 10.8801

DRPNN 17.6485 20.1777 10.8731

PSN 55.8574 65.0968 20.9892

doi:10.1371/journal.pone.0103656.t005
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sets, the value achieved by the main measure of success (AR) is

excellent (more than trebling the annual revenue achieved by the

best results of the traditional neural networks; 27.162 compared to

8.63152 for DRPNN). This behaviour is not surprising as axonal

delays are an important aspect of learning in the PSN. It is

reasonable to assume that the ability to explore different paths

through this network will directly influence learning. If a narrow

spread of values is used then the network will have less opportunity

to explore different solutions. This can be considered, using

traditional rate encoded neural network terminology, to be

equivalent to the PSN converging onto local minima [58].

However, it should be emphasised that unlike traditional neural

networks, this behaviour has a less significant effect on the overall

final prediction capability of the network. Our PSN exhibited

faster training capability in that stable results were achieved after

only 10 training cycles.

However, comparing training cycles between the different types

of neural network needs to take into account that the PSN

functions in a fundamentally different way to the other neural

networks; unlike the other neural networks and the LPC, the PSN

uses a number of different spiking signal patterns in each of its

training cycles. These spike patterns effectively compete as to

which pattern should persist to the next epoch. This raises one of

the practical challenges with the current application of the PSN;

this is in classifying and grading the very large number of

candidate solutions generated. As the PSN uses spike trains and

delays to influence Spike Timed Dependence Plasticity learning a

very large number of candidate routes can be derived from a

relatively small number of neurons. We used 100 neurons over 200

time steps. This has the potential to generate 1.866524e+160

possible different permutated routes through the network, each

representing different forecasts. Given the very high number of

candidate routes generated an exhaustive search would take a very

long time. However, in practice poorly performing routes can be

dismissed or are, as in our system, automatically discounted by the

network as training takes place. This was done in our system by

using simple Euclidean distance to exclude out poor routes.

One major concern for the prediction of financial time series is

the fact that the published literature has mostly concentrated on

the nonlinearity of the signals and ignored the non-stationary

properties of the financial data due to the difficulties involved with

the implementation of adaptive filtering [59]. This has led

researchers to assume that predictability is only possible if a

stationary relationship can be found between the present and past

values of the signals [60]. However, Kim et al. [61] showed that

financial data can be considered close to stationary if it varies

slowly; they used the Korea stock price index as an example of a

non-stationary signal that can be modelled as an asymptotic

stationary auto-regressive AR process. As this condition does not

apply to all types of financial data, this work also supports the

argument that the utilisation of the PSN in financial time series

prediction promises to offer a favourable alternative. The results of

the experimentation performed in our research supports this

hypothesis.

Conclusions

We have applied a specific type of spiking neural network, a

Polychronous Spiking Network (PSN) to solve non-stationary

financial data prediction problems in order to exploit the temporal

characteristics of the spiking neural model in an appropriate way.

Our spiking neural network model adopted the Izhikevich

neural architecture using axonal delays encoding the information

such that its temporal aspects were preserved.

Experiments using our PSN showed that it outperforms a

standard Linear Predictor Coefficients (LPC) Model and more

traditional, rate-encoded, neural networks, namely Multi-Layer

Perceptrons (MLP) and a Dynamic Ridge Polynomial Neural

Network (DRPNN), when solving three different financial datasets

of IBM stock data, the US/Euro exchange rate and the price of

Brent crude oil. The PSN superior performance was evidenced by

its performance using the key financial measure of Annualised

Return (AR) and the Mean Square Error for 5-step ahead

prediction. Other metrics such as Maximum Drawdown, Signal-

To-Noise ratio, and Mean Square Error were used, and supported

in large the PSN’s superior performance over the other systems.

This work has both demonstrated the applicability of a

particular type of PSN to financial data forecasting and its

potential to perform more effectively than traditional neural

networks in non-stationary environments.

Future work will focus on the exploration of improved ways to

map the data onto the PSN, and the adaptation of the

classification and grading of candidate solutions for parallel

architectures so that different parts of the problem can be solved

by decompositions of the search space of candidate solutions.
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