
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 1

Implementation of a Fully-Parallel Turbo Decoder
on a General-Purpose Graphics Processing Unit

An Li, Robert G. Maunder, Bashir M. Al-Hashimi, Lajos Hanzo

Abstract—Turbo codes comprising a parallel concate-
nation of upper and lower convolutional codes are widely
employed in state-of-the-art wireless communication stan-
dards, since they facilitate transmission throughputs that
closely approach the channel capacity. However, this ne-
cessitates high processing throughputs in order for the
turbo code to support real-time communications. In state-
of-the-art turbo code implementations, the processing
throughput is typically limited by the data dependencies
that occur within the forward and backward recursions of
the Log-BCJR algorithm, which is employed during turbo
decoding. In contrast to the highly-serial Log-BCJR turbo
decoder, we have recently proposed a novel Fully Parallel
Turbo Decoder (FPTD) algorithm, which can eliminate the
data dependencies and perform fully parallel processing.
In this paper, we propose an optimized FPTD algorithm,
which reformulates the operation of the FPTD algorithm
so that the upper and lower decoders have identical
operation, in order to support Single Instruction Multiple
Data (SIMD) operation. This allows us to develop a
novel General Purpose Graphics Processing Unit (GPGPU)
implementation of the FPTD, which has application in
Software-Defined Radios (SDRs) and virtualized Cloud-
Radio Access Networks (C-RANs). As a benefit of its higher
degree of parallelism, we show that our FPTD improves
the higher processing throughput of the Log-BCJR turbo
decoder by between 2.3 and 9.2 times, when employing
a high-specification GPGPU. However, this is achieved at
the cost of a moderate increase of the overall complexity
by between 1.7 and 3.3 times.

Index Terms—fully-parallel turbo decoder, parallel pro-
cessing, GPGPU computing, software defined radio, could
radio access network

I. INTRODUCTION

Channel coding has become an essential com-
ponent in wireless communications, since it is ca-
pable of correcting the transmission errors that
occur when communicating over noisy channels.
In particular, turbo coding [1]–[3] is a channel

The financial support of the EPSRC, Swindon UK un-
der the grants EP/J015520/1, EP/L010550/1 and the TSB,
Swindon UK under the grant TS/L009390/1 is gratefully ac-
knowledged. The research data for this paper is available at
http://eprints.soton.ac.uk/id/eprint/385323.

coding technique that facilitates near-theoretical-
limit transmission throughputs, which approach the
capacity of a wireless channel. Owing to this, turbo
codes comprising a concatenation of upper and
lower convolutional codes are widely employed in
state-of-the-art mobile telephony standards, such as
WiMAX [4] and LTE [5]. However, the processing
throughput of the turbo decoding can impose a
bottleneck on the transmission throughput in real-
time or very throughput-demanding applications,
such as flawless, high-quality video conferencing.
In dedicated receiver hardware, a state-of-the-art
turbo decoder Application-Specific Integrated Cir-
cuits (ASICs) may be used for eliminating the
bottleneck of the turbo decoding. However, this
bottleneck is a particular problem in the flexible
receiver architectures of Software-Defined Radio
(SDR) [6] and virtualized Cloud-Radio Access Net-
work (C-RAN) [7], [8] systems that employ only
programmable devices, such as Central Process-
ing Unit (CPU) or Field-Programmable Gate Array
(FPGA), which typically exhibit a limited process-
ing performance capability or a high-cost. Although
CPUs are capable of carrying out most of the LTE
and WiMAX baseband operations, they are not
well-suited to the most processor-intensive aspect,
namely turbo decoding [9], [10]. Likewise, while
high-performance and large-size FPGAs are well-
suited to the parallel processing demands of state-of-
the-art turbo decoding algorithms, they are relatively
expensive. By contrast, General-Purpose Graphics
Processing Units (GPGPUs) offer the advantages of
high performance parallel processing at a low cost.
Owing to this, GPGPUs have been favoured over
CPUs and FPGAs as the basis of SDRs, where a
high processing throughput at a low cost is required
[11], [12]. This motivates the implementation of the
turbo decoding algorithm on GPGPU, as was first
demonstrated in [13], [14].

However, turbo decoder implementations
typically operate on the basis of the serially-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by e-Prints Soton

https://core.ac.uk/display/46576803?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 2

PIVI

...1st window 2nd window P th window

Backward recursion

PIVI

PIVI

PIVI

PIVI

PIVI

Backward recursion Backward recursion

N -bit frame

Forward recursion

Backward recursion

Forward recursion Forward recursion Forward recursion

Fig. 1: Schematic of the Log-BCJR turbo decoder using windowing and PIVI techniques.

oriented Logarithmic Bahl-Cocke-Jelinek-Raviv
(Log-BCJR) algorithm [15]. More specifically, this
algorithm processes the bits of the message frame
using both forward and backward recursions [16],
which impose strict data dependencies and hence
require processing, which is spread over numerous
consecutive clock cycles. In order to mitigate the
inherent bottleneck that the serial nature of the
Log-BCJR algorithm imposes on the achievable
processing throughput, the above-mentioned
GPGPU implementation of [13] invoke a variety
of methods for increasing the parallelism of the
algorithm. For example, the windowing technique
of [17], [18] decomposes each frame of N bits into
P equal-length windows, giving a window length
of W = N

P
, as shown in Figure 1. The processing

throughput may be increased by a factor of P
upon processing the windows concurrently, each
using separate forwards and backwards recursions.
Here, the Previous Iteration Value Initialization
(PIVI) technique of [17], [18] may be employed
for allowing the adjacent windows to assist each
others’ operation. However, the error correction
capability of the PIVI Log-BCJR turbo decoder is
degraded as the number P of windows is increased.
For this reason, the maximum number of windows
employed in previous GPGPU implementations of
the LTE turbo decoder associated with N = 6144
was P = 192 [13], [17], [18], which avoids any
significant error correction performance degradation
and facilitates a 192-fold increase in the grade
of parallelism [19]. Furthermore, the concept of
trellis state-level parallelism may be employed

[12]. More specifically, the forward and backward
recursions of the Log-BCJR algorithm operates
on the basis of trellises comprising M states per
bit [15]. Since there are no data dependencies
amongst the calculations performed for each of
the M states, these can be performed concurrently.
Since the LTE turbo decoder relies on M = 8
states, the combination of the trellis state-level
parallelism and windowing facilitates a degree of
parallelism up to P ×M = 1536, occupying 1536
concurrent threads on a GPGPU. However GPGPUs
are typically capable of exploiting much higher
degrees of parallelism than this [20], implying
that the existing GPGPU based turbo decoder
implementations do not exploit the full potential
for achieving a high processing throughput.
Although a higher degree of parallelism may be
achieved by processing several frames in parallel
[21], this would only be useful when several
frames were available for simultaneous decoding.
Furthermore, the act of processing frames in
parallel does not improve the processing latency
of the turbo decoder, which hence exceeds the
tolerable transmission latency of many applications.

Motivated by these issues, we previously pro-
posed a Fully-Parallel Turbo Decoder (FPTD) al-
gorithm [22], which dispenses with the serial data
dependencies of the conventional Log-BCJR turbo
decoder algorithm. This enables every bit in a frame
to be processed concurrently, hence achieving a
much higher degree of parallelism than the previ-
ously demonstrated in the literature. Thus, the FPTD
is well suited for multi-core processors [23], poten-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 3

tially facilitating a significant processing throughput
gain, relative to the state-of-the-art. However, our
previous work of [22] considered the FPTD at
a purely algorithmic level, without addressing its
hardware implementation. Against this background,
the contribution of this paper is follows.

1) We propose a beneficial enhancement of the
FPTD algorithm of [22] so that it sup-
ports Single Instruction Multiple Data (SIMD)
operation and therefore it becoming better
suited for implementation on a GPGPU. More
specifically, we reformulate the FPTD algo-
rithm so that the operations performed for the
upper decoder are identical to those carried
out by the lower decoder, despite the differ-
ences between the treatment of the systematic
bits in the upper and lower encoders. The
proposed SIMD FPTD algorithm also requires
less high-speed memory and has a lower
computational complexity compared to the
FPTD algorithm of [22], which are desirable
characteristics for GPGPU implementations.

2) We propose a beneficial GPGPU implemen-
tation of our SIMD FPTD for the LTE turbo
code, achieving a throughput of up to 18.7
Mbps. Furthermore, our design overcomes
a range of significant challenges related to
topological mapping, data rearrangement and
memory allocation.

3) We implement a PIVI Log-BCJR LTE turbo
decoder on a GPGPU as a benchmarker,
achieving a throughput of up to 8.2 Mbps,
while facilitating the same BER as our SIMD
FPTD having a window size of N/P = 32,
which is comparable to the throughputs of 6.8
Mbps and 4 Mbps, demonstrated in the pair
of state-of-the-art benchmarkers of [13] and
[17], respectively.

4) We show that when used for implementing
the LTE turbo decoder, the proposed SIMD
FPTD achieves a degree of parallelism that is
between 4 and 24 times higher, representing a
processing throughput improvement between
2.3 to 9.2 times as well as a latency reduction
between 2 to 8.2 times. However, this is
achieved at the cost of increasing the overall
complexity by a factor between 1.7 and 3.3.

The rest of the paper is organized as follows.
Section II provides an overview of GPGPU com-

puting and its employment for the Log-BCJR turbo
decoder. Section III introduces our SIMD FPTD
algorithm proposed for the implementation of the
LTE turbo decoder. Section IV discusses the im-
plementation of the proposed SIMD FPTD using
a GPGPU, considering topological mapping, data
rearrangement and memory allocation. Section V
presents our simulation results, including error cor-
rection performance, degree of parallelism, process-
ing latency, processing throughput and complexity.
Finally, Section VI offers our conclusions.

II. GPU COMPUTING AND IMPLEMENTATIONS

GPUs offer a flexible throughput-oriented pro-
cessing architecture, which was originally designed
for facilitating massively parallel numerical compu-
tations, such as 3D image graphics [9] and physics
simulations [24]. Additionally, the GPGPU technol-
ogy provides an opportunity to utilize the GPU’s
capability to perform several trillion Floating-
point Operations Per Second (FLOPS) for general-
purpose applications, such as used for the computa-
tions performed in an SDR platform. In particular,
the Compute Unified Device Architecture (CUDA)
[20] platform offers a software programming model,
which enables programmers to efficiently exploit
a GPGPU’s computational units to be exploited
for general-purpose computations. As shown in
Figure 2, a programmer may specify GPGPU in-
structions using CUDA kernels, which are software
subroutines that may be called by the host CPU and
then executed on the GPU’s computational units.
CUDA manages these computational units at three
levels, corresponding to the grids, thread blocks
and threads. Each call of a kernel invokes a grid,
which typically comprises of many thread blocks,
each of which typically comprises many threads,
as shown in Figure 2. However, during the kernel’s
execution, all threads are grouped into warps, each
of which comprises 32 threads. Each warp is oper-
ated in a Single Instruction Multiple-Data (SIMD)
[25] fashion, with all of the 32 constituent threads
executing identical instructions at the same time, but
on different data elements.

There are several different types of memory in a
GPU, including global memory, shared memory and
registers, as shown in Figure 2. Each different type
of memory has different properties, which may be
best exploited in different circumstances in order to

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 4

Thread

T
h
re
ad

b
lo
ck

Global memory

Shared
memory

Grid

Device (GPU)Host (CPU)

Memory

Kernel

Reg

Thread

Thread

Thread

Thread

Reg

Reg

Reg

Reg

Thread

Thread

Thread

Thread

Reg

Reg

Reg

Reg

Kernel

KernelS
er
ia
l
ex
ec
u
ti
on

Thread

Thread

Thread

Reg

Reg

Reg

Shared
memory

Shared
memory

Fig. 2: Schematic of GPU computing

optimize the performance of the application. More
specifically, global memory is an off-chip mem-
ory that typically has a large capacity accessible
from the host CPU, as well as from any thread
on the GPU. Global memory is typically used for
exchanging data between the CPU and the GPU,
although it has the highest access latency and most
limited bandwidth, compared to the other types
of GPU memory. By contrast, shared memory is
user-controlled on-chip cache, which has very high
bandwidth (bytes/second) and extremely low access
latency. However, shared memory has a limited ca-
pacity and an access scope that is limited to a single
thread block. Owing to this, a thread in a particular
thread block cannot access any shared memory
allocated to any other thread block. Furthermore,
all data stored in shared memory will be released
automatically once the execution of the correspond-
ing thread block is completed. In comparison to
global and shared memory, registers have the largest
bandwidth and the smallest access latency. However,
registers have very limited capacity and their access
scope is limited to a single thread.

Considering these features, many previous re-
search projects have explored the employment of
GPGPUs in SDR applications, as shown in Figure 3.
Note that the GPGPU-based virtualized C-RAN
implementation has not been exploited, although a
C-RAN system has been implemented on the Ama-
zon Elastic Compute Cloud (Amazon EC2) [48]
using only CPUs. More specifically, [37] compared

2008 · · · · · ·•
[26] LTE receiver
[27] Massive parallel LDPC
[28] Parallel belief propagation LDPC

2009 · · · · · ·• [29], [30] Parallel LDPC

2010 · · · · · ·• [31] Entire WiMAX handset
[13], [14] Turbo decoder

2011 · · · · · ·•

[32] 2× 2 MIMO WiMAX transmitter and
receiver
[33] FFT, QPSK demapper and IIR filter
[34] DVB-T2 physical layer
[21] LTE turbo decoder
[35] Soft-out MIMO detector
[36] DVB-S2 LDPC

2012 · · · · · ·•

[37] Software-defined radio architecture for
cognitive testbeds
[18] Programmable turbo decoder
[11] Soft-out MIMO detector

2013 · · · · · ·• [38], [39] LTE turbo decoder
[40] WiMax and WIFI LDPC

2014 · · · · · ·•

[41] FFT and FIR filtering
[42] LTE transmitter and receiver
[10] WiFi and WiMAX
[17], [43] LTE turbo decoder
[44], [45] Maximum a posteriori algorithm
[46] LDPC block codes and LDPC

convolutional codes

2015 · · · · · ·• [12] LTE base station
[47] Parallel LDPC

Fig. 3: Selected implementations of GPU based SDRs, where the
implementations of an entire transmitting system is colored in red,
whilst the implementations focusing on a particular application is
colored in black.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 5

several different SDR implementation approaches in
terms of programmability, flexibility, energy con-
sumption and computing power. In particular, [37]
recommended the employment of GPGPU as a
co-processor to complement an ASIC, FPGA or
Digital Signal Processor (DSP). Additionally, [33]
characterized the performance of GPGPUs, when
employed for three different operations, namely
Fast Fourier Transform (FFT), Quadrature Phase
Shift Keying (QPSK) demapper and Infinite Impulse
Response (IIR) filter. Similarly, [41] compared the
processing throughput and energy efficiency of a
particular FPGA and a particular GPGPU, when
implementing both the FFT and a Finite Impulse
Response (FIR) filter.

As shown in Figure 3, [12], [26], [31], [32],
[42] implemented an entire transmitter, receiver or
transceiver for the LTE or WiMAX standard on a
SDR platform that employs GPGPUs. Additionally,
[11], [35] implemented a soft-output Multiple-Input
Multiple-Output (MIMO) detector, while [34] im-
plemented the Digital Video Broadcasting (DVB)
physical layer on a GPGPU. All of these previous
research efforts demonstrated that GPGPUs offer
an improved processing throughput, compared to
the family of implementations using only a CPU.
Furthermore, [12] showed that an LTE base station
supporting a peak data rate of 150 Mbps can be
implemented using four NVIDIA GTX 680 GPUs,
achieving a similar energy efficiency to a partic-
ular dedicated LTE baseband hardware. However,
[12], [42] demonstrated that turbo decoding is the
most processor-intensive operation of basestation
processing, requiring at least 64% of the processing
resources used for receiving a message frame, where
the remaining 36% includes the FFT, demapping,
demodulation and other operations. Motivated by
this, a number of previous research efforts [13],
[14], [17], [18], [21], [38], [39], [43]–[45] have pro-
posed GPGPU implementations dedicated to turbo
decoding, as shown in Figure 3. Additionally, the
authors of [27]–[30], [36], [40], [46], [47] have pro-
posed GPGPU implementations of LDPC decoders.

III. SINGLE-INSTRUCTION-MULTIPLE-DATA
FULLY-PARALLEL TURBO DECODER ALGORITHM

In this section, the operation of the proposed
SIMD FPTD algorithm is detailed in Section III-A

and it is compared with the FPTD algorithm of [22]
in Section III-B.

A. Operation of the proposed SIMD FPTD algo-
rithm

In this section, we detail our proposed SIMD
FPTD algorithm for the LTE turbo decoder, using
the schematic of Figure 4(a). The corresponding
turbo encoder is not illustrated in this paper, since it
is identical to the conventional LTE turbo encoder
[5]. As in the PIVI Log-BCJR turbo decoder, the
proposed SIMD FPTD employs an upper decoder
and a lower decoder, which are separated by an in-
terleaver. Accordingly, Figure 4(a) shows two rows
of so-called algorithmic blocks, where the upper
row constitutes the upper decoder, while the lower
decoder is comprised of the lower row of algorith-
mic blocks. Like the PIVI Log-BCJR turbo decoder,
the input to the proposed SIMD FPTD comprises
Logarithmic Likelihood Ratios (LLRs) [49], where
each LLR b̄ = ln[Pr(b = 1)/Pr(b = 0)] conveys
soft information pertaining to the corresponding bit
b within the turbo encoder. More specifically, when
decoding frames comprising N bits, this input com-
prises the six LLR vectors shown in Figure 4(a): (a)
a vector [b̄a,u

2,k]
N+3
k=1 comprising N + 3 a priori parity

LLRs for the upper decoder; (b) a vector [b̄a,u
3,k]

N
k=1

comprising N a priori systematic LLRs for the
upper decoder; (c) a vector [b̄a,u

1,k]
N+3
k=N+1 comprising

three a priori message termination LLRs for the
upper decoder; (d) a vector [b̄a,l

2,k]
N+3
k=1 comprising

N+3 a priori parity LLRs for the lower decoder; (e)
a vector [b̄a,l

3,k]
N
k=1 comprising N a priori systematic

LLRs for the lower decoder; (f) a vector [b̄a,l
1,k]

N+3
k=N+1

comprising three a priori message termination LLRs
for the lower decoder. Note that vectors [b̄a,u

2,k]
N+3
k=1

and [b̄a,l
2,k]

N+3
k=1 include LLRs pertaining to the three

parity termination bits of the two component codes
[5]. Furthermore, the vector [b̄a,l

3,k]
N
k=1 is not provided

by the channel, but may instead be obtained by
rearranging the order of the LLRs in the vector
[b̄a,u

3,k]
N
k=1 using the interleaver π, where b̄a,l

3,k = b̄a,u
3,π(k).

Moreover, as in the PIVI Log-BCJR turbo decoder,
the SIMD FPTD algorithm also employs the iter-
ative operation of the upper and lower decoders.
As shown in Figure 4(a), these iteratively exchange
vectors [b̄e,u

1,k]
N
k=1 and [b̄e,l

1,k]
N
k=1 of extrinsic LLRs

through the interleaver π, in order to obtain a priori
message vectors [b̄a,u

1,k]
N
k=1 and [b̄a,l

1,k]
N
k=1 for the upper

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 6

Interleaver

...
ᾱu

0 ᾱu
1 ᾱu

N−1 ᾱu
N

β̄
u
0 β̄

u
1 β̄

u
3 β̄

u
N−1 β̄

u
Nβ̄

u
2

b̄a,u3,1 b̄a,u3,2 b̄a,u3,3 b̄a,u3,N
b̄a,u2,1 b̄a,u2,2 b̄a,u2,3 b̄a,u2,N

b̄a,u1,1 b̄a,u1,2 b̄a,u1,3 b̄a,u1,Nb̄e,u1,1 b̄e,u1,2 b̄e,u1,3 b̄e,u1,N

ᾱu
2 ᾱu

3

...

β̄
u
N+1

b̄a,u2,N+1

uN+1

β̄
u
N+2

b̄a,u2,N+2

uN+2

β̄
u
N+3

b̄a,u2,N+3

uN+3

lN+1 lN+2 lN+3

b̄a,l3,1 b̄a,l3,2 b̄a,l3,3 b̄a,l3,N
b̄a,l2,1 b̄a,l2,2 b̄a,l2,3 b̄a,l2,N b̄a,l2,N+1 b̄a,l2,N+2 b̄a,l2,N+3

ᾱl
0 ᾱl

1 ᾱl
N−1 ᾱl

N

β̄
l
0 β̄

l
1 β̄

l
3 β̄

l
N−1 β̄

l
Nβ̄

l
2

ᾱl
2 ᾱl

3

β̄
l
N+1 β̄

l
N+2 β̄

l
N+3

b̄e,l1,1 b̄e,l1,2 b̄e,l1,3 b̄e,l1,Nb̄a,l1,1 b̄a,l1,2 b̄a,l1,3 b̄a,l1,N

b̄a,u1,N+1 b̄a,u1,N+2 b̄a,u1,N+3

b̄a,l1,N+1 b̄a,l1,N+2 b̄a,l1,N+3

β̄
u
N

β̄
l
N

u1 u3u2 uN

l1 l2 l3 lN

(a) FPTD algorithm for the case of employing an odd-even interleaver

...

Global memory

M0 MN−1M1 M2 M3 MN

b̄e,u1,1 b̄e,l1,2 b̄e,u1,3 b̄e,l1,N

...M0 MN−1M1 M2 M3 MN

u1 lNl2 u3

l1 uNu2 l3

ᾱu
0

β̄
u
0

ᾱu
1

β̄
u
1

ᾱl
1

β̄
l
1 β̄

l
2

ᾱl
2

β̄
u
2

ᾱu
2

β̄
u
3

ᾱu
3 ᾱl

N−1

β̄
l
N−1

ᾱl
N

β̄
l
N β̄

u
N

β̄
l
N

ᾱu
N−1 ᾱu

N

β̄
u
N−1 β̄

u
Nβ̄

l
3β̄

l
2

ᾱl
2 ᾱl

3ᾱu
1

β̄
u
1 β̄

u
2

ᾱu
2ᾱl

0 ᾱl
1

β̄
l
0 β̄

l
1

b̄e,l1,1 b̄e,u1,2 b̄e,l1,3 b̄e,u1,N

b̄a,u3,1 b̄a,u3,3b̄a,u2,1 b̄a,u2,3b̄a,l3,2 b̄a,l3,Nb̄a,l2,2 b̄a,l2,N

β̄
u
N+1

b̄a,u1,N+1

b̄a,u2,N+1

uN+1

β̄
u
N+2

b̄a,u1,N+2

b̄a,u2,N+2

uN+2

β̄
u
N+3

b̄a,u1,N+3

b̄a,u2,N+3

uN+3

lN+1 lN+2 lN+3

b̄a,l1,N+1

b̄a,l2,N+1

b̄a,l1,N+2

b̄a,l2,N+2

b̄a,l1,N+3

b̄a,l2,N+3

β̄
l
N+1 β̄

l
N+2 β̄

l
N+3

b̄a,u1,1 b̄a,u1,3b̄a,l1,2 b̄a,l1,N

b̄a,l1,1 b̄a,l1,3b̄a,u1,2 b̄a,u1,N

b̄a,l3,1 b̄a,l3,3b̄a,l2,1 b̄a,l2,3b̄a,u3,2 b̄a,u3,Nb̄a,u2,2 b̄a,u2,N

Global memory

Global memory

Execute on CPUExecute on GPU

(b) Mapping of the proposed SIMD FPTD algorithm onto the GPGPU

Fig. 4: Schematics of the proposed SIMD FPTD algorithm and its mapping for the GPGPU, where Mk represents global memory on the
GPGPU device.

and lower decoders respectively [19], where b̄a,l
1,k =

b̄e,u
1,π(k) and b̄a,u

1,π(k) = b̄e,l
1,k. Following the completion

of the iterative decoding process, a vector [b̄p
1,k]

N
k=1

of a posteriori LLRs can be obtained, where b̄p
1,k =

b̄a,u
1,k + b̄a,u

3,k + b̄e,u
1,k. Throughout the remainder of this

paper, the superscripts ‘u’ and ‘l’ are used only
when necessary to explicitly distinguish between the
upper and lower components of the turbo code and
are omitted when the discussion applies equally to
both.

As in the PIVI Log-BCJR turbo decoder, the
proposed SIMD FPTD algorithm employs two half-

iterations per decoder iteration. However, the two
half-iterations do not correspond to the separate op-
eration of the upper and lower decoders, like in the
PIVI Log-BCJR turbo decoder. Furthermore, during
each half-iteration, the proposed SIMD FPTD al-
gorithm does not operate the algorithmic blocks of
Figure 4(a) in a serial manner, using forward and
backward recursions. Instead, the first half-iteration
performs the fully-parallel operation of the lightly-
shaded algorithmic blocks of Figure 4(a) concur-
rently, namely the odd-indexed blocks of the upper
decoder and the even-indexed blocks of the lower
decoder. Furthermore, the second half-iteration per-

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 7

γ̄tk(Sk−1, Sk) = b1(Sk−1, Sk) · b̄a,t−11,k + b2(Sk−1, Sk) · b̄a2,k + b3(Sk−1, Sk) · b̄a3,k (1)

ᾱtk(Sk) = max*

{Sk−1|c(Sk−1,Sk)=1}

[
γ̄tk(Sk−1, Sk) + ᾱt−1k−1(Sk−1)

]
(2)

β̄tk−1(Sk−1) = max*

{Sk|c(Sk−1,Sk)=1}

[
γ̄tk(Sk−1, Sk) + β̄t−1k (Sk)

]
(3)

b̄e,t1,k =

[
max*

{(Sk−1,Sk)|b1(Sk−1,Sk)=1}

[
b2(Sk−1, Sk) · b̄a2,k + ᾱt−1k−1(Sk−1) + β̄t−1k (Sk)

]]
−
[

max*

{(Sk−1,Sk)|b1(Sk−1,Sk)=0}

[
b2(Sk−1, Sk) · b̄a2,k + ᾱt−1k−1(Sk−1) + β̄t−1k (Sk)

]] (4)

forms the concurrent operation of the remaining
darkly-shaded algorithmic blocks of Figure 4(a), in
a fully-parallel manner. This decomposition of the
algorithmic blocks into odd-even algorithmic blocks
is motivated by the odd-even nature of the Quadratic
Permutation Polynomial (QPP) interleaver [19] used
by the LTE turbo code and the Almost Regular
Permutation (ARP) interleaver used by the WiMAX
turbo code [4]. More explicitly, QPP and ARP inter-
leavers only connect algorithmic blocks in the upper
decoder that have an odd index k to specific blocks
that also have an odd index in the lower decoder.
Similarly, even-indexed blocks in the upper decoder
are only connected to even-indexed blocks in the
lower decoder. It is this fully-parallel operation of
algorithmic blocks that yields a significantly higher
degree of parallelism than the PIVI Log-BCJR turbo
decoder algorithm, as well as a significantly higher
decoding throughput. More specifically, rather than
requiring 10s or 100s of consecutive time periods
to complete the forward and backward recursions in
each window of the PIVI Log-BCJR turbo decoder,
the proposed SIMD FPTD algorithm completes each
half-iteration using only a single time period, during
which all algorithmic blocks in the corresponding
set are operated concurrently. Note also that this
odd-even concurrent operation of algorithmic blocks
in the upper and lower decoder represents a signif-
icant difference between the FPTD algorithm and
a PIVI Log-BCJR decoder employing a window
length of W = 1, as considered in [38]. More
specifically, a PIVI Log-BCJR decoder having a
window length of W = 1 may require as many
as I = 65 iterations to maintain a similar BER
performance as a PIVI Log-BCJR decoder having

a window length of W = 32 and I = 7 iterations
[38]. By contrast, taking advantage of the odd-even
feature our FPTD algorithm requires only I = 36
iterations to achieve this, as it will be detailed in
Section V-A.

In the tth time period of proposed SIMD FPTD,
each algorithmic block of the corresponding odd or
even shading having an index k ∈ {1, 2, 3, . . . , N}
accepts five inputs and generates three outputs, as
shown in Figure 4(a). In addition to the LLRs
b̄a,t−1

1,k , b̄a
2,k and b̄a

3,k, the kth algorithmic block re-
quires the vectors ᾱt-1

k−1 = [ᾱt-1
k−1(Sk−1)]M−1

Sk−1=0 and
β̄t-1
k = [β̄t-1

k (Sk)]
M−1
Sk=0. Here, ᾱt-1

k−1(Sk−1) is the for-
ward metric provided for the state Sk−1 ∈ [0,M−1]
in the previous time period t-1 by the preceding al-
gorithmic block, where the LTE turbo code employs
M = 8 states. Similarly, β̄t-1

k (Sk) is the backward
metric provided for the state Sk ∈ [0,M − 1] in the
previous time period by the following algorithmic
block.

Sk−1 Sk

0

1

(b1,k ≡ b3,k)/b2,k
0/0

1/1

1/0

0/1

0/1

1/0

1/1

0/0

1/1

0/0

0/1

1/0

1/0

0/1

0/0

1/1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Fig. 5: State transition diagram of the LTE turbo code.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 8

The kth algorithmic block combines these inputs
using four steps, which correspond to Equations (1),
(2), (3) and (4), respectively. As in the conventional
Log-BCJR turbo decoder, (1) obtains an a priori
metric γ̄tk(Sk−1, Sk) for the transition between a
particular pair of states Sk−1 and Sk. As shown
in Figure 5, for the case of the LTE turbo code,
this transition implies a particular binary value for
the corresponding message bit b1,k, parity bit b2,k or
systematic bit b3,k. Note that since b3(Sk−1, Sk) ≡
b1(Sk−1, Sk) for the LTE turbo code, there are only
four possible values for γ̄tk(Sk−1, Sk), namely b̄a

2,k,
(b̄a,t−1

1,k + b̄a
3,k), (b̄a,t−1

1,k + b̄a
2,k + b̄a

3,k) and zero. All
four of these possible values can be calculated using
as few as two additions, as shown in Figure 6,
which provides an optimized datapath for the kth

algorithmic block of the proposed SIMD FPTD.
Following this, (2) and (3) may be employed to
obtain the state metrics ᾱt

k and β̄tk−1, respectively.
Here, c(Sk−1, Sk) adopts a binary value of 1, if there
is a transition between the states Sk−1 and Sk in the
state transition diagram of Figure 5, while

max∗(δ̄1, δ̄2) = max(δ̄1, δ̄2) + ln(1 + e−|δ̄1−δ̄2|) (5)

is the Jacobian logarithm [16], as is employed
by the Log-BCJR decoder. Note that the Jacobian
logarithm may be approximated as

max∗(δ̄1, δ̄2) ≈ max(δ̄1, δ̄2) (6)

in order to reduce the computational complexity, as
in the Max-Log-BCJR. Note that for those tran-
sitions having a metric γ̄tk(Sk−1, Sk) of zero, the
corresponding terms in (2) and (3) can be ignored,
hence reducing the number of additions required.
This is shown in the optimized datapath of Figure 6.
Finally, (4) may be employed for obtaining the
extrinsic LLR b̄e,t

1,k, as shown in Figure 6. This LLR
may then be output by the algorithmic block, as
shown in Figure 4(a).

When operating the kth algorithmic block in the
first half-iteration of the iterative decoding pro-
cess, the a priori message LLR provided by the
other row is unavailable, hence it is initialized as
b̄a,t−1

1,k = 0, accordingly. Likewise, the forward state
metrics from the neighboring algorithmic blocks are
unavailable, hence these are initialized as ᾱt−1

k−1 =
[0, 0, 0, . . . , 0] for k ∈ [2, N]. However, in the
case of the k = 1st algorithmic block, we em-
ploy ᾱt−1

0 = [0,−∞,−∞, ...,−∞] in all decoding

iterations, since the LTE trellis is guaranteed to
start from an initial state of S0 = 0. Similarly,
before operating the kth algorithmic block in the first
half-iteration, we employ β̄t−1

k = [0, 0, 0, . . . , 0] for
k ∈ [1, N − 1]. Furthermore, we employ β̄t−1

N+3 =
[0,−∞,−∞, ...,−∞], since the LTE turbo coding
employs three termination bits to guarantee SN+3 =
0. Note that (1), (2), (3) and (4) reveal that β̄N is in-
dependent of ᾱN . Therefore, the algorithmic blocks
with indices k ∈ [N+1, N+3], shown as unshaded
blocks in Figure 4(a), can be processed before
and independently of the iterative decoding process.
This may be achieved by employing only equations
(1) and (3), where the term b3(Sk−1, Sk) · b̄a

3,k is
omitted from (1). More specifically, these equations
are employed in a backward recursion, in order
to successively calculate β̄N+2, β̄N+1 and β̄N , the
latter of which is employed throughout the iterative
decoding process by the N th algorithmic block.

B. Comparison with the FPTD algorithm of [22]

In this section, we compare the proposed SIMD
FPTD algorithm with the original FPTD algorithm
of [22]. In particular, we compare the operation,
temporary storage requirements and computational
complexity of these decoders. Note that in analogy
to (1), the FPTD algorithm of [22] employs a sum-
mation of three a priori LLRs, when operating the
algorithmic blocks of the upper row having an index
k ∈ {1, 2, 3, . . . , N}. However, a summation of just
two a priori LLRs is employed for the correspond-
ing blocks in the lower row of the FPTD algorithm
of [22], since in this case the term b3(Sk−1, Sk) · b̄a

3,k

is omitted from the equivalent of (1). By contrast,
the proposed SIMD FPTD algorithm employs (1)
in all algorithmic blocks, ensuring that all of them
operate in an identical manner, hence facilitating
SIMD operation, which is desirable for GPGPU
implementations. This is achieved by including the
a priori systematic LLR b̄a

3,k in the calculation of
(1), regardless of whether the algorithmic block
appears in the upper or the lower row. Furthermore,
in contrast to the FPTD algorithm of [22], b̄a

3,k is
omitted from the calculation of (4), regardless of
which row the algorithmic blocks appears in.

A further difference between the proposed SIMD
FPTD algorithm and the original FPTD algorithm of
[22], is motivated by reductions in memory usage
and computational complexity. More specifically,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 9

+

+

+

+

+

+

max*

+

+

+

+

+

+

b̄a2,k

b̄a3,k

b̄a,t−1
1,k

ᾱk(7)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

b̄a2,k
b̄a,t−1
1,k + b̄a2,k + b̄a3,k

b̄a,t−1
1,k + b̄a3,k

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

Eq.(1)

Eq.(2) Eq.(3)

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

b̄e,t1,k

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

max*

Eq.(4)

+
-

+

+

ᾱt−1
k−1(0)

ᾱt−1
k−1(1)

ᾱt−1
k−1(2)

ᾱt−1
k−1(3)

ᾱt−1
k−1(4)

ᾱt−1
k−1(5)

ᾱt−1
k−1(6)

ᾱt−1
k−1(7)

ᾱt
k(0)

ᾱt
k(1)

ᾱt
k(2)

ᾱt
k(3)

ᾱt
k(4)

ᾱt
k(5)

ᾱt
k(6)

β̄t−1
k (0)

β̄t−1
k (1)

β̄t−1
k (2)

β̄t−1
k (3)

β̄t−1
k (4)

β̄t−1
k (5)

β̄t−1
k (6)

β̄t−1
k (7)

β̄t
k−1(0)

β̄t
k−1(1)

β̄t
k−1(2)

β̄t
k−1(3)

β̄t
k−1(4)

β̄t
k−1(5)

β̄t
k−1(6)

β̄t
k−1(7)

ᾱt−1
k−1(0)

ᾱt−1
k−1(1)

ᾱt−1
k−1(2)

ᾱt−1
k−1(3)

ᾱt−1
k−1(4)

ᾱt−1
k−1(5)

ᾱt−1
k−1(6)

ᾱt−1
k−1(7)

ᾱt−1
k−1(0)

ᾱt−1
k−1(1)

ᾱt−1
k−1(2)

ᾱt−1
k−1(3)

ᾱt−1
k−1(4)

ᾱt−1
k−1(5)

ᾱt−1
k−1(6)

ᾱt−1
k−1(7)

β̄t−1
k (0)

β̄t−1
k (4)

β̄t−1
k (5)

β̄t−1
k (1)

β̄t−1
k (2)

β̄t−1
k (6)

β̄t−1
k (7)

β̄t−1
k (3)

β̄t−1
k (4)

β̄t−1
k (0)

β̄t−1
k (1)

β̄t−1
k (5)

β̄t−1
k (6)

β̄t−1
k (2)

β̄t−1
k (3)

β̄t−1
k (7)

Fig. 6: The optimized datapath inside the kth algorithmic block of
the proposed SIMD FPTD algorithm for the LTE turbo decoder.

the algorithmic blocks of the proposed SIMD FPTD
algorithm are redesigned to use fewer intermedi-
ate variables and computations. In particular, the
transition metric γ̄k(Sk−1, Sk) of (1) can only adopt
three non-zero values, as described above. By con-
trast, the original FPTD algorithm of [22] needs
to calculate and store a different transition metric
δ̄k(Sk−1, Sk) for each of the sixteen transitions.
The proposed approach allows a greater propor-
tion of the intermediate variables to be stored in
the GPGPU’s limited number of low-latency regis-
ters, with less reliance on its high-latency memory.

Since the GPGPU’s low-latency registers are shared
among all N algorithmic blocks, the benefit of
reducing the reliance of each block on intermediate
variables is magnified by N times. Owing to this,
a slight reduction in the memory usage of each
algorithmic block results in a huge reduction in the
total memory usage, especially when N is large.

Furthermore, while the proposed SIMD FPTD
algorithm, the original FPTD algorithm of [22]
and the PIVI Log-BCJR decoder all require the
same number of max* operations per algorithmic
blocks, the proposed SIMD FPTD algorithm re-
quires the fewest additions and subtractions. More
specifically, as shown in the optimized datapath
for the LTE turbo code of Figure 6, the proposed
SIMD FPTD algorithm requires only 45 additions
and subtractions per algorithmic block. This is
approximately 5% lower than the 47.5 additions
and subtractions required by the original FPTD
algorithm of [22], as well as approximately 19%
lower than the 55.5 required by the PIVI Log-BCJR
decoder. Note that this computational complexity
reduction is achieved by exploiting the relation-
ship max*(A + C, B + C) = max*(A, B) + C [50].
This relationship holds for both the exact max* of
(5) and approximate max* of (6). More specifically,
(4) requires sixteen additions for obtaining ᾱk−1+β̄k
for the sixteen transitions in the LTE trellis, eight of
which also require an extra addition for obtaining
ᾱk−1 + β̄k + b̄a

2,k, before the max* operation. By
grouping the transitions carefully, the additions of
b̄a

2,k can be moved to after the max* operation.
Owing to this, only two additions are required,
rather than eight, as shown in Figure 6. Note that the
datapath of Figure 6 has been specifically optimized
for the LTE turbo code. By contrast, the FPTD
algorithm of [22] is optimized for general turbo
code applicability, yielding a more desirable design
in the case of the duo-binary WiMAX turbo code
[4], for example.

IV. IMPLEMENTATION OF THE SIMD FPTD
ALGORITHM ON A GPGPU

This section describes the implementation of the
proposed SIMD FPTD algorithm using an NVIDIA
GPGPU platform, adopting the Compute Unified
Device Architecture (CUDA) [20]. The mapping of
the SIMD FPTD algorithm onto the GPGPU and its
memory allocation are discussed in Sections IV-A

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 10

and IV-B, respectively. The pseudo code of the pro-
posed GPGPU kernel designed for implementing the
SIMD FPTD algorithm is described in Section IV-C.

A. Mapping the SIMD FPTD algorithm onto a
GPGPU

The proposed SIMD FPTD algorithm of Fig-
ure 4(a) may be mapped onto a CUDA GPGPU
using a single kernel. Here, two approaches are
compared. In the first approach, each execution of
the kernel performs one half iteration of the pro-
posed algorithm, requiring 2I kernel repetitions in
order to complete I number of decoding iterations.
For this approach, the GPU kernel repetitions are
scheduled serially by the CPU, achieving synchro-
nization between each pair of consecutive half itera-
tions by the CPU. This synchronisation ensures that
all parts of a particular half iteration are completed,
before any parts of the next half iteration begin.
However, this synchronization occupies an average
of 31.3% of the total processing time, which is due
to the communication overhead between the CPU
and the GPU, according to our experimental results.
Owing to this, our second approach performs all
2I half iterations within a single GPU kernel run,
eliminating the requirement for any communication
between the CPU and the GPU during the iter-
ative decoding process. However, the inter-block
synchronization has to be carried out by the GPU
in order to maintain the odd-even nature of the
operation. Since CUDA GPGPUs do not have any
native support for inter-block synchronization, here
we include the lock-free inter-block synchronization
technique of [51]. We perform this synchronization
at end of every half iteration, which reduces the
time dedicated to the synchronization from 31.3% to
15.5%, according to our experimental results. Ow-
ing to this superior performance compared to CPU
synchronization, inter-block synchronization on the
GPU is used for our proposed FPTD implementation
and its performance is characterized in Section V.

Our kernel employs N number of threads, with
one for each of the N algorithmic blocks that are
operated within each half iteration of Figure 4(a).
Here, the kth thread processes the kth algorithmic
block in the upper or lower row according to the
odd-even arrangement of Figure 4(a), where k ∈
[1, N]. Note that it would be possible to achieve
further parallelism by employing eight threads per

algorithmic block, rather than just one. This would
facilitate state-level parallelism as described in Sec-
tion I for the conventional GPGPU implementation
of the PIVI Log-BCJR turbo decoder. However, our
experiments reveal that state-level parallelism offers
no advantage for the proposed SIMD FPTD algo-
rithm. More specifically, according to the Nsight
profiler of [52], the processing throughput of the
proposed FPTD implementation is bounded by the
memory bandwidth rather than memory access la-
tency, which implies that the parallelism of N is
already large enough to make the most of the GPG-
PUs computing resource. Furthermore, employing
state-level parallelism would result in a requirement
for more accesses of the global memory, in order to
load the a priori LLRs b̄a

1,k, b̄a
2,k and b̄a

3,k, which
would actually degrade the throughput.

The algorithmic blocks of the proposed SIMD
FPTD algorithm are arranged in groups of 32, in
order for the corresponding threads to form warps,
which are particularly suited to SIMD operation. In
order to maximize the computation throughput, spe-
cial care must be taken to avoid thread divergence.
This arises when ‘if’ and ‘else’ statements cause the
different threads of a warp to operate differently,
resulting in the serial processing of each possible
outcome. However, the schematic of Figure 4(a) is
prone to thread divergence, since each half iteration
comprises the operation of algorithmic blocks in
both the upper and the lower row, as indicated using
light and dark shading. More specifically, ‘if’ and
‘else’ statements are required to determine whether
each algorithmic block resides in the top or bottom
row of Figure 4(a), when deciding which inputs and
outputs to consider. This motivates the alternative
design of Figure 4(b), in which all algorithmic
blocks within the same half iteration have been
relocated to the same row in order to avoid these
‘if’ and ‘else’ statements. More specifically, the
algorithmic blocks that have an even index in the
upper row have been swapped with those from the
lower row. As a result, the upper row comprises the
lightly-shaded blocks labeled uk|k is odd and lk|k is even,
whilst the lower row comprises the darkly-shaded
blocks labeled uk|k is even and lk|k is odd. Consequently,
the operation of alternate half iterations corresponds
to the alternate operation of the upper and lower
rows of Figure 4(b). Note that this rearrangement
of algorithmic blocks requires a corresponding re-
arrangement of inputs, outputs and memory, as will

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 11

be discussed in Section IV-B.
As described in Section III, the consideration of

the termination bits by the three algorithmic blocks
at the end of the upper and lower rows can be
isolated from the operation of the iterative pro-
cesses. Therefore, we recommend the processing of
all termination bits using the CPU, before beginning
the iterative decoding process on the GPGPU. This
aids the mapping of algorithmic blocks to warps and
also avoids thread divergence, since the processing
of the termination bits is not identical to that of the
other bits, as shown in Figure 4(b).

B. Data arrangement and memory allocation

Note that because the proposed SIMD FPTD em-
ploys the rearranged schematic of Figure 4(b) rather
than that of Figure 4(a), the corresponding datasets
must also be rearranged, using swaps and mergers.
More specifically, for the a priori parity LLRs
b̄a

2 and the systematic LLRs b̄a
3 the rearrangement

can be achieved by swapping the corresponding
elements in the upper and lower datasets, following
the same rule that was applied to the algorithmic
blocks of Figure 4(b). For the forward and back-
wards metrics ᾱ and β̄ as well as for the a priori
message LLRs b̄a

1 the rearrangement can be achieved
by merging the two separate datasets for the upper
and lower rows together. Furthermore, there is no
need to store both the a priori and the extrinsic
LLRs, since interleaving can be achieved by writing
the latter into the memory used for storing the
former, but in an interleaved order. Note that this
arrangement also offers the benefit of minimizing
memory usage, which is achieved without causing
any overwriting, as shown in Figure 7. More explic-
itly, the kth memory slot Mk of Figure 4(b) may be
used for passing the kth forward state metrics ᾱ

u/l
k

between the algorithmic blocks uk/lk and uk+1/lk+1,
for example. During the first half iteration, the
upper algorithmic block uk is operated to obtain ᾱu

k,
which is stored in Mk. Then during the second half
iteration, this data stored in Mk will be provided to
the algorithmic block uk+1, before it is overwritten
by the new data ᾱl

k, which is provided by the
algorithmic block lk.

As illustrated in Figure 4(b), there are a total of
seven datasets that must be stored throughout the de-
coding process, namely [b̄a,u

2,k]
N
k=1, [b̄a,l

2,k]
N
k=1, [b̄a,u

3,k]
N
k=1,

[b̄a,l
3,k]

N
k=1, [b̄a

1,k]
N
k=1, [ᾱk]

N
k=1 and [β̄k]

N
k=1, requiring

an overall memory resource of 21N floating-point
numbers. As shown in Figure 4(b), these datasets
are stored in the global memory, since it has a
large capacity and is accessible from the host CPU,
as well as from any thread in the GPGPU device.
However the global memory has a relatively high
access latency and a limited bandwidth. In order
to minimize the impact of this, each algorithmic
block employs local low-latency registers to store
all intermediate variables that are required multiple
times within a half iteration. More specifically, the
kth algorithmic block uses registers to store b̄a

2,k,
(b̄a

1,k + b̄a
3,k), (b̄a

1,k + b̄a
2,k + b̄a

3,k), ᾱk−1 and β̄k,
comprising a total of 19 floating-point numbers, as
shown in Figure 6.

C. Pseudo code

Algorithm 1 describes the operation of the kth

thread dedicated to the computation of the kth algo-
rithmic block, in analogy to the datapath of Figure 6.
Note that the labels of Register (R) and Global
memory (G) shown in Algorithm 1 indicate the type
of the memory used for storing the corresponding
data. Each thread is grouped into four steps as
follows. The first step caches the a priori LLR b̄a

2,k

and the a priori state metrics ᾱk−1 and β̄k from the
global memory to the local registers. Furthermore,
the first step computes b̄a

13 = b̄a,t−1
1,k + b̄a

3,k and
b̄a

123 = b̄a,t−1
1,k + b̄a

2,k + b̄a
3,k, before storing the results

in the local registers. Following this, the second
and third steps compute the extrinsic forward state
metrics ᾱt

k and the extrinsic backward state metrics
β̄tk−1, in analogy to the datapath of Figure 6. The
results of these computations are written directly
into the corresponding memory slot Mk in the
global memory, as shown in Figure 4(b). In the
fourth step, the extrinsic LLR b̄e,t

1,k is computed and
stored in the global memory. Here, interleaving or
deinterleaving is achieved by storing the extrinsic
LLRs into particular global memory slots selected
according to the design of the LTE interleaver. Note
that the intermediate values of δ̄0 and δ̄1 require the
storage of two floating-point numbers in registers,
as shown in Algorithm 1. However, instead of using
two new registers, they can be stored respectively
in the registers that were previously used for storing
the values of b̄a

13 and b̄a
123, since these are not

required in the calculations of the fourth step. As a
result, a total of 19 registers are required per thread,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 12

ᾱu
0

ᾱu
1

ᾱu
Nᾱu

2

ᾱu
3ᾱl

0

ᾱl
1

ᾱl
Nᾱl

2

ᾱl
3

ᾱu
0 ᾱu

2ᾱl
1 ᾱl

3

...

...

u1

...

l2 l4

ᾱu
N

lN

u2 uNl1 l3 u4

1st half
iteration

2nd half
iteration

M0 M1 M2 M3 MN
Global
memory

u3

...

ti
m

e

(a) Forward state metrics ᾱ

...

...

u1

...

l2 l4 lN

u2 uNl1 l3 u4

1st half
iteration

2nd half
iteration

M0 M1 M2 M3 MN
Global
memory

u3

β̄
l
0 β̄

u
1 β̄

l
2 β̄

l
Nβ̄

u
3

β̄
u
0 β̄

l
1 β̄

u
2 β̄

u
Nβ̄

l
3

β̄
l
0 β̄

u
1 β̄

l
2 β̄

l
Nβ̄

u
3

...

ti
m

e

(b) Backward state metrics β̄

Fig. 7: Schematic of using the global memory to store the intermediate data of ᾱ and β̄.

as discussed above.

V. RESULTS

In the following sub-sections, we compare the
performance of the proposed GPGPU implemen-
tation of our SIMD FPTD algorithm with that of
the state-of-the-art GPGPU turbo decoder imple-
mentation in terms of error correction performance,
degree of parallelism, processing throughput and
complexity. Both turbo decoders were implemented
using single-precision floating-point arithmetic and
both were characterized using the Windows 8 64-bit
operating system, an Intel I7-2600@3.4GHz CPU,
16GB RAM and an NVIDIA GTX680 GPGPU.
This GPGPU has eight Multiprocessors (MPs) and
192 CUDA cores per MP, with a GPU clock rate of
1.06 GHz and a memory clock rate of 3 GHz.

The state-of-the-art benchmarker employs the
Log-BCJR algorithm, with PIVI windowing, state-
level parallelism and Radix-2 operation [17], [18].
This specific combination was selected, since it
offers a high throughput and a low complexity, at a
negligible cost in terms of BER degradation. This
algorithm was mapped onto the GPGPU according
to the approach described in [13]. Furthermore, as
recommended in [13] and [18], the longest LTE
frames comprising N = 6144 bits were decom-
posed into P ∈ {192, 128, 96, 64, 32} number of
partitions. This is equivalent to having PIVI window
lengths of W = N/P ∈ {32, 48, 64, 96, 192},
respectively.

A. BER performance

Figure 8 compares the BER performance of both
the PIVI Log-BCJR turbo decoder and the pro-
posed SIMD FPTD algorithm, when employing the

E
b
/N

0
 (dB)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

B
E

R

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

FPTD

BCJR

0.8 0.9 1
10 -5

10 -4

N = 6144

N = 768

I (FPTD)
W (BCJR)

Fig. 8: BER performance for the PIVI Log-BCJR turbo decoder
having window lengths of W ∈{32, 48, 64, 96, 192} and performing
I = 7 iterations, as compared with that of the proposed SIMD
FPTD when performing I ∈{36, 39, 42, 46, 49} iterations. Here,
both decoders use the approximate max* operation.

approximate max* operation of (6). Here, BPSK
modulation was employed for transmission over
an AWGN channel. For both decoders, the BER
performance is provided for a relatively short frame
length of N = 768 bits, as well as for the longest
frame length that is supported by the LTE standard,
namely N = 6144 bits. We have not included
the BER performance of the two decoders when
employing the exact max* operation of (5), but we
found that they obey the same trends as Figure 8.

Figure 8 characterizes the BER performance of
the PIVI Log-BCJR turbo decoder when employing
I = 7 iterations and the window lengths of W ∈
{32, 48, 64, 96, 192}. In addition to this, Figure 8
provides the BER performance of the SIMD FPTD
algorithm when performing I ∈ {36, 39, 42, 46, 49}

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 13

Algorithm 1 A kernel for computing a half-iteration
of the proposed SIMD FPTD algorithm

Step 1: Loading data
for i = 0 to 7 do

(R) ᾱ(i)← (G) ᾱt−1k−1(i)

(R) β̄(i)← (G) β̄t−1k (i)
end for
(R) b̄a13 ← (G) b̄a,t−11,k + (G) b̄a3,k
(R) b̄a2 ← (G) b̄a2,k
(R) b̄a123 ← b̄a2 + b̄a13

Step 2:Computing forward state metrics
(G) ᾱtk(0)← max*(ᾱ(0) , ᾱ(1) + b̄a123)
(G) ᾱtk(1)← max*(ᾱ(2) + b̄a13 , ᾱ(3) + b̄a2)
(G) ᾱtk(2)← max*(ᾱ(4) + b̄a2 , ᾱ(5) + b̄a13)
(G) ᾱtk(3)← max*(ᾱ(6) + b̄a123 , ᾱ(7))
(G) ᾱtk(4)← max*(ᾱ(0) + b̄a13 , ᾱ(1))
(G) ᾱtk(5)← max*(ᾱ(2) + b̄a2 , ᾱ(3) + b̄a13)
(G) ᾱtk(6)← max*(ᾱ(4) + b̄a13 , ᾱ(5) + b̄a2)
(G) ᾱtk(7)← max*(ᾱ(6) , ᾱ(7)) + b̄a123)

Step 3:Computing backward state metrics
(G) β̄tk−1(0)← max*(β̄(0) , β̄(4) + b̄a123)
(G) β̄tk−1(1)← max*(β̄(0) + b̄a123 , β̄(4))
(G) β̄tk−1(2)← max*(β̄(1) + b̄a13 , β̄(5) + b̄a2)
(G) β̄tk−1(3)← max*(β̄(1) + b̄a2 , β̄(5) + b̄a13)
(G) β̄tk−1(4)← max*(β̄(2) + b̄a2 , β̄(6) + b̄a13)
(G) β̄tk−1(5)← max*(β̄(2) + b̄a13 , β̄(6) + b̄a2)
(G) β̄tk−1(6)← max*(β̄(3) + b̄a123 , β̄(7))
(G) β̄tk−1(7)← max*(β̄(3) , β̄(7)) + b̄a123)

Step 4:Computing extrinsic LLR
(R) δ̄0 ← max*(ᾱ(2) + β̄(5) , ᾱ(3) + β̄(1))
δ̄0 ← max*(δ̄0 , ᾱ(4) + β̄(2))
δ̄0 ← max*(δ̄0 , ᾱ(5) + β̄(6))
δ̄0 ← δ̄0 + b̄a2
δ̄0 ← max*(δ̄0 , ᾱ(0) + β̄(0))
δ̄0 ← max*(δ̄0 , ᾱ(1) + β̄(4))
δ̄0 ← max*(δ̄0 , ᾱ(6) + β̄(7))
δ̄0 ← max*(δ̄0 , ᾱ(7) + β̄(3))

(R) δ̄1 ← max*(ᾱ(0) + β̄(4) , ᾱ(1) + β̄(0))
δ̄1 ← max*(δ̄1 , ᾱ(6) + β̄(3))
δ̄1 ← max*(δ̄1 , ᾱ(7) + β̄(7))
δ̄1 ← δ̄1 + b̄a2
δ̄1 ← max*(δ̄1 , ᾱ(2) + β̄(1))
δ̄1 ← max*(δ̄1 , ᾱ(3) + β̄(5))
δ̄1 ← max*(δ̄1 , ᾱ(4) + β̄(6))
δ̄1 ← max*(δ̄1 , ᾱ(5) + β̄(2))

(G) b̄e,t1,π(k) ← δ̄1 − δ̄0

iterations. As may be expected, the BER perfor-
mance of the PIVI Log-BCJR turbo decoder im-
proves when employing longer window lengths W .
Therefore, more iterations I of the SIMD FPTD
algorithm are required in order to achieve the same
BER performance as the PIVI Log-BCJR turbo
decoder, when W is increased. More specifically,
Figure 8 shows that when employing N = 6144-
bit frames, the SIMD FPTD algorithm requires
I ∈ {36, 39, 42, 46, 49} decoding iterations in or-
der to achieve the same BER performance as the
PIVI Log-BCJR turbo decoder performing I =
7 iterations with the window lengths of W ∈
{32, 48, 64, 96, 192}, respectively. Note that in all
cases, the proposed SIMD FPTD algorithm is capa-
ble of achieving the same BER performance as the
PIVI Log-BCJR turbo decoder, albeit at the cost of
requiring a greater number of decoding iterations
I . Note that the necessity for the FPTD to perform
several times more iterations than the Log-BCJR
turbo decoder was discussed extensively in [22].

B. Degree of parallelism
The degree of parallelism for the PIVI Log-BCJR

turbo decoder may be considered to be given by
DLog-BCJR
p = M ·N

W
, where N is the frame length,

W is the window length and M = 8 is the
number of states in the LTE turbo code trellis. Here,
M = 8 threads can be employed for achieving
state parallelism, while decoding each of the N/W
windows simultaneously. By contrast, the degree of
parallelism for the FPTD can be simply defined as
DFPTD
p = N , since all algorithmic blocks can be

processed in parallel threads and because we do
not exploit state parallelism in this case. Table I
compares the parallelism Dp of the proposed SIMD
FPTD with that of the PIVI Log-BCJR turbo de-
coder, when decomposing N = 6144-bit frames
into windows comprising various numbers of bits
W . Depending on the window length W chosen for
the PIVI Log-BCJR turbo decoder, the degree of
parallelism achieved by the proposed SIMD FPTD
can be seen to be between 4 and 24 times higher.

C. Processing latency
Figure 9 compares the processing latency of both

the proposed SIMD FPTD and of the PIVI Log-
BCJR decoder, when decoding frames comprising
N = 6144 bits using both the approximate max*

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 14

TABLE I: Comparison between the PIVI Log-BCJR turbo decoder and the proposed SIMD FPTD in terms of degree of parallelism, overall
latency, pipelined throughput and complexity (IPBPHI and IPB), where N = 6144 for both decoders, I = 7 and W ∈ {32, 48, 64, 96, 192}
for the PIVI Log-BCJR turbo decoder, whilst I ∈ {36, 39, 42, 46, 49} for the FPTD. Results are presented using the format x/y, where x
corresponds to the case where the approximate max* operation of (6) is employed, while y corresponds to the exact max* operation of (5).

Degree of
Parallelism

Overall Latency Pipelined
throughput

Complexity

Dp (µs) (Mbps) IPW IPBPHI IPB

Log-BCJR

W = 32 1536 816.9 / 1041.5 8.2 / 6.3 2511 / 3842 19.6 / 30.0 274 / 420
W = 48 1024 1111.5 / 1415.5 5.9 / 4.6 3720 / 5697 19.4 / 29.7 272 / 416
W = 64 768 1338.9 / 1786.6 4.8 / 3.6 5044 / 7914 19.7 / 30.9 276 / 433
W = 96 512 1945.7 / 2549.3 3.3 / 2.5 7368 / 11.3k 19.2 / 29.4 269 / 412
W = 192 256 3694.6 / 4842.6 1.7 / 1.3 14.7k / 22.6k 19.1 / 29.4 267 / 412

FPTD

I = 36

6144

402.5 / 451.8 18.7 / 16.1

200 / 439 6.3 / 13.8

454 / 994
I = 39 427.4 / 482.1 17.4 / 14.9 491 / 1076
I = 42 454.6 / 516.4 16.2 / 13.9 529 / 1159
I = 46 486.6 / 556.2 14.8 / 12.7 580 / 1270
I = 49 513.4 / 589.6 13.9 / 12 617 / 1352

I (FPTD) / W (Log-BCJR)
36 / 32 39 / 48 42 / 64 46 / 96 49 / 192

L
at
en
cy

(m
s)

0

1

2

3

4

5

F
P

T
D

 a
p
p
ro

x
. m

a
x
*

F
P

T
D

 e
x
a
c
t m

a
x
*

L
o
g
-B

C
J
R

 a
p
p
ro

x
. m

a
x
*

L
o
g
-B

C
J
R

 e
x
a
c
t m

a
x
*

Memory copy Process

Fig. 9: Latency for the proposed SIMD FPTD with I ∈{36, 39, 42,
46, 49}, as compared with that of the PIVI Log-BCJR turbo decoder
with I=7 and W ∈{32, 48, 64, 96, 192}.

operation of (6) and the exact max* operation
of (5). Note that different numbers of iterations
I ∈ {36, 39, 42, 46, 49} are used for the SIMD
FPTD, while I = 7 iterations and different window
lengths W ∈ {32, 48, 64, 96, 192} are employed for
the PIVI Log-BCJR turbo decoder, as discussed in
Section V-A. Here, the overall latency includes two
parts, namely the time used for memory transfer
between the CPU and the GPU, as well as the
time used for the iterative decoding process. More
specifically, the memory transfer includes transfer-
ring the channel LLRs from the CPU to the GPU at
the beginning of the iterative decoding process and
transferring the decoded results from the GPU to the

CPU at the end of that process. Therefore, the time
used for memory transfer depends only on the frame
length N and it is almost independent of the type
of decoder and the values of I and W , as shown
in Figure 9. Note that the latency was quantified
by averaging over the decoding of 5000 frames for
each configuration. By contrast, the time used for
the iterative decoding process differs significantly
between the proposed SIMD FPTD and the Log-
BCJR turbo decoder. More specifically, Table I
shows that the overall latency of the SIMD FPTD
is in the range from 402.5 µs to 513.4 µs, when
the number of iterations is increased from I = 36
to I = 49, provided that the approximate max*
operation of (6) is employed, hence meeting the sub
1ms requirement of the LTE physical layer [53].
By contrast, the overall latency of the PIVI Log-
BCJR decoder ranges from 816.9 µs to 3694.6 µs,
when the window length increases from W = 32 to
W = 192, and when I = 7 iterations are performed,
assuming that the approximate max* operation of
(6) is employed. These extremities of the range
are 2 times and 7.2 times worse than those of the
proposed SIMD FPTD, respectively. Additionally,
when the exact max* operation of (5) is employed,
the overall latency of the SIMD FPTD increases by
12.3% and 14.8% for the case of I = 36 and I = 49,
compared to those obtained when employing the
approximate max* operation of (6). By contrast, the
overall latency increases in this case by 27.5% and
31.1% for the PIVI Log-BCJR decoder associated
with W = 32 and W = 192, hence further widening
the gap to the latency of the proposed SIMD FPTD.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 15

D. Processing throughput

Table I presents the processing throughputs that
were measured on the GPGPU, when employing
the proposed SIMD FPTD and the PIVI Log-
BCJR turbo decoder to decode frames comprising
N = 6144 bits. Here, throughputs are presented
for the case where the approximate max* operation
of (6) is employed, as well as for the case of
employing the exact max* operation of (5). Note
that when the iterative decoding of a particular
frame has been completed, its memory transfer
from the GPU to CPU can be pipelined with the
iterative decoding of the next frame and with the
memory transfer from the CPU to GPU of the frame
after that. Since Figure 9 shows that the iterative
decoding is the slowest of these three processes,
it imposes a bottleneck on the overall processing
throughput. Owing to this, the throughput presented
in Table I was obtained by considering only the
iterative decoding process, based on the assumption
that throughput = N/latency of iterative decoding.
As shown in Table I, the proposed GPGPU imple-
mentation of the SIMD FPTD achieves throughputs
of up to 18.7 Mbps. This exceeds the average
throughput of 7.6 Mbps, which is typical in 100
MHz LTE uplink channels [54], demonstrating the
suitability of the proposed implementation for C-
RAN applications. Furthermore, higher throughputs
can be achieved either by using a more advanced
GPU or by using multiple GPUs in parallel.

Recall from Figure 8 that the proposed SIMD
FPTD performing I = 36 iterations achieves the
same BER performance as the PIVI Log-BCJR
turbo decoder performing I = 7 iterations and
having the window length of W = 32. Here,
W = 32 corresponds to the maximum degree of
parallelism of P = 192 that can be achieved for the
PIVI Log-BCJR turbo decoder, without imposing a
significant BER performance degradation [19]. In
the case of this comparison, Table I reveals that
the processing throughput of the proposed SIMD
FPTD is 2.3 times and 2.5 times higher than that
of the PIVI Log-BCJR turbo decoder, when the
approximate max* operation and the exact max* op-
eration are employed, respectively. An even higher
processing throughput improvement is offered by
the proposed SIMD FPTD, when the parallelism

of the PIVI Log-BCJR turbo decoder is reduced,
for the sake of improving its BER performance.
For example, the proposed SIMD FPTD performing
I = 49 iterations has a processing throughput that
is 8.2 times (approximate max*) and 9.2 times
(exact max*) higher than the PIVI Log-BCJR turbo
decoder having a window length of W = 192,
while offering the same BER performance. Note
that owing to its lower computational complexity,
the approximate max* operation of (6) facilities a
higher processing throughput than the exact max*
operation of (5), in the case of both decoders.

Furthermore, Table II compares the processing
throughput of the proposed SIMD FPTD GPGPU
implementation to that of other GPGPU imple-
mentations of the LTE turbo decoder found in the
literature [13], [17], [18], [38], [43]. Here, the
throughputs of all implementations are quantified
for the case of decoding N = 6144-bit frames,
when using the approximate max* operation of (6).
Note that the throughputs shown in Table II for
the benchmarkers employing the PIVI Log-BCJR
algorithm have been linearly scaled to the case of
performing I = 7 iterations, in order to perform a
fair comparison. However, different GPUs are used
for the different implementations, which compli-
cates their precise performance comparison. In order
to make fairer comparisons, we consider two differ-
ent methods for normalizing the throughputs of the
different implementations, namely throughput×106

clock freq.×mem BW

and throughput×106

clock freq.×mem freq. .
More specifically, the authors of [38] proposed a

loosely synchronized parallel turbo decoding algo-
rithm, in which the iterative operation of the parti-
tions is not guaranteed to operate synchronously. In
their contribution, the normalized throughput was
obtained as throughput×106

clock freq.×mem BW , since the GPGPU’s
global memory bandwidth impose the main bottle-
neck upon the corresponding implementation. Sim-
ilarly, we suggest using the same normalization
method for our proposed FPTD, since its perfor-
mance is also bounded by the global memory band-
width, according to the experimental results from
the Nsight profiler, as discussed in Section IV-A. As
shown in Table II, the benchmarker of [38] achieves
a normalized throughput of 100.6, when performing
I = 12 iterations for decoding N = 6144-bit
frames, divided into P = 768 partitions. However,
this approach results in an Eb/N0 degradation of

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 16

TABLE II: Comparison between the proposed GPGPU implementation of our SIMD FPTD algorithm with other GPGPU implementations
of the turbo decoders found in the literature.

Implementations This work [18] [17] [43] [13] [38]
GPU GTX 680 GeForce

9800 GX2
Tesla
K20c

GTX
Titan

Tesla
C1060

GTX 480

Clock freq. [MHz] 1006 1500 706 836 1296 1401
Memory freq.
[MHz]

1502 1000 1300 1502 800 924

Memory
bandwidth [GB/s]

192.2 128 208 288 102 177.4

Algorithm SIMD
FPTD

Log-
BCJR

Log-
BCJR

Log-
BCJR

Log-
BCJR

Log-
BCJR

Parallel
Log-BCJR

Windowing
mechanism

odd-
even

PIVI PIVI PIVI PIVI PIVI loose
synchro-
nization

Window size W 1 32 32 32 32 32 8
Iteration I 36 (271) 7 7 7 7 7 121

Throughput
[Mbps]

18.7
(24.91)

8.2 1.9 4 3.2 6.8 251

Normalized
throughput2

96.7
(128.81)

42.4 9.9 27.2 13.3 51.4 100.61

Normalized
throughput3

12.4
(16.51)

5.4 1.3 3.0 4.4 6.6 19.31

1 Subject to a cost of 0.2 dB degradation in frame error rate performance.
2 The throughput is normalized by throughput×106

clock freq.×mem BW , which is appropriate for applications where the performance is bounded
by the global memory bandwidth, as used in [38].
3 The throughput is normalized by throughput×106

clock freq.×mem freq. , which is appropriate for applications where the performance is bounded
by the compute latency and the memory latency.

0.2 dB, compared to that of the conventional Log-
BCJR turbo decoding algorithm employing P = 64
partitions and performing I = 6 iterations. When
tolerating this 0.2 dB degradation, our proposed
SIMD FPTD algorithm requires only I = 27 itera-
tions, rather than I = 36, as shown in Table II. In
this case, the normalized throughput of our proposed
SIMD FPTD algorithm is 128.8, which is 28%
higher than that of the loosely synchronized parallel
turbo decoding algorithm of [38]. Furthermore, our
approach has the advantage of being able to main-
tain a constant BER performance, while the loosely
synchronized parallel turbo decoding algorithm of
[38] suffers from a BER performance that varies
from frame to frame, owing to its asynchronous
decoding process.

By contrast, using the normalization of
throughput×106

clock freq.×mem freq. is more appropriate for the

other implementations listed in Table II, since
according to our experimental results, the
computational latency and the global memory
access latency constitute the main bottlenecks of
these implementations of the Log-BCJR algorithm.
This may be attributed to the low degree of
parallelism of the decoder compared to the
capability of the GPGPU, particularly when only
a single frame is decoded at a time. Note that
the normalized throughputs obtained using the
different normalization methods are not comparable
to each other. As shown in Table II, the normalized
throughput of 5.4 achieved by our PIVI Log-BCJR
benchmarker is significantly better than those of
[18], [17] and [43]. Although the benchmarker
of [13] achieves a better normalized throughput
of 6.6, this is achieved by decoding a batch of
100 frames at a time, which can readily achieve

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 17

a higher degree of parallelism than decoding only
a single frame at a time, like all of the other
schemes, as discussed in [18]. Owing to this, the
computing latency and memory latency maybe no
longer a limiter for the throughput performance,
implying that the normalized throughput for [13]
may be inappropriate. Additionally, this throughput
can only be achieved, when there are 100 frames
available for simultaneous decoding, which may
not occur frequently in practice, hence resulting in
an unfair comparison with the other benchmarkers.
Furthermore, while decoding several frames in
parallel improves the overall processing throughput,
it does not improve the processing latency of each
frame.

E. Complexity

The complexity of the proposed GPGPU imple-
mentation of our SIMD FPTD algorithm may be
compared with that of the PIVI Log-BCJR turbo
decoder by considering the number of GPGPU
instructions that are issued per bit of the message
frame. This is motivated, since all GPGPU thread
operations are commanded by instructions. More
specifically, while performing one half iteration
and one interleaving operation for each turbo de-
coder, the average number Instructions Per Warp
(IPW) was measured using the NVIDIA analysis
tool, Nsight [52]. Using this, the average number
of Instructions Per Bit (IPB) may be obtained as

IPB = 2I · IPBPHI =
2I · IPW ·Dp

32N
, where

IPBPHI is the average number of Instructions Per
Bit Per Half Iteration, N is the frame length and
Dp is the corresponding degree of parallelism. Here,
Dp

32
represents the total number of warps, since each

warp includes 32 of the Dp threads employed by the
decoder.

Table I quantifies IPBPHI and IPB for both the
proposed SIMD FPTD and the PIVI Log-BCJR
turbo decoder, when employing both the approx-
imate and exact max* operations of (6) and (5),
respectively. As shown in Table I, the IPBPHI of
the proposed SIMD FPTD is around one third that
of the PIVI Log-BCJR turbo decoder, when employ-
ing the approximate max* operation, although this
ratio grows to one half, when employing the exact
max* operation. Note however that the proposed
SIMD FPTD algorithm requires more decoding

iterations than the PIVI Log-BCJR turbo decoder
for achieving a particular BER performance, as
quantified in Section V-A. Therefore, the overall
IPB complexity of the proposed SIMD FPTD is
1.7 to 3.3 times higher than that of the PIVI Log-
BCJR turbo decoder, depending on the number of
iterations I , window length W and type of max*
operation performed, as shown in Table I. Note that
this trend broadly agrees with that of our previous
work [22], which showed that the FPTD algorithm
has a complexity that is 2.9 times higher than that
of the state-of-the-art LTE turbo decoder employing
the Log-BCJR algorithm, which was obtained by
comparing the number of additions/subtractions and
max* operations employed by the different algo-
rithms. Note that the increased complexity of the
FPTD represents the price that must be paid for
increasing the decoding throughput by a factor up
to 9.1.

VI. CONCLUSIONS

In this paper, we have proposed a SIMD FPTD
algorithm and demonstrated its implementation on
a GPGPU. We have also characterized its perfor-
mance in terms of BER performance, degree of par-
allelism, GPGPU processing throughput and com-
plexity. Furthermore, these characteristics have been
compared with those of the state-of-the-art PIVI
Log-BCJR turbo decoder. This comparison shows
that owing to its increased degree of parallelism, the
proposed SIMD FPTD offers a processing through-
put that is between 2.3 and 9.2 times higher and a
processing latency that is between 2 and 8.2 times
better than that of the benchmarker. However, this is
achieved at the cost of requiring a greater number of
iterations than the benchmarker in order to achieve
a particular BER performance, which may result in
a 1.7 to 3.3 times increase in overall complexity.
In our future work we will conceive techniques
for disabling particular algorithmic blocks in the
FPTD, once they have confidently decoded their
corresponding bits. With this approach, we expect
to significantly reduce the complexity of the FPTD,
such that it approaches that of the Log-BCJR turbo
decoder, without compromising the BER perfor-
mance.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 18

REFERENCES

[1] J. Woodard and L. Hanzo, “Comparative Study Of Turbo
Decoding Techniques: An Overview,” IEEE Transactions on
Vehicular Technology, vol. 49, pp. 2208–2233, Nov 2000.

[2] S. Chaabouni, N. Sellami, and M. Siala, “Mapping Optimiza-
tion for a MAP Turbo Detector Over a Frequency-Selective
Channel,” IEEE Transactions on Vehicular Technology, vol. 63,
pp. 617–627, Feb 2014.

[3] M. Brejza, L. Li, R. Maunder, B. Al-Hashimi, C. Berrou, and
L. Hanzo, “20 Years of Turbo Coding and Energy-Aware De-
sign Guidelines for Energy-Constrained Wireless Applications,”
IEEE Communications Surveys & Tutorials, vol. PP, pp. 1–1,
Jun 2015.

[4] IEEE, “IEEE Standard for Local and Metropolitan Area Net-
works Part 16: Air Interface for Broadband Wireless Access
Systems,” 2012.

[5] ETSI, “LTE; Evolved Universal Terrestrial Radio Access (E-
UTRA); Multiplexing and channel coding,” Feb 2013.

[6] A. A. Abidi, “The Path to the Software-Defined Radio Re-
ceiver,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 954–
966, May 2007.

[7] P. Demestichas, A. Georgakopoulos, D. Karvounas,
K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao,
“5G on the Horizon: Key Challenges for the Radio-Access
Network,” IEEE Vehicular Technology Magazine, vol. 8,
pp. 47–53, Sep 2013.

[8] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin,
M. Gorgoglione, A. Dekorsy, and G. Fettweis, “Benefits and
Impact of Cloud Computing on 5G Signal Processing: Flexible
centralization through cloud-RAN,” IEEE Signal Processing
Magazine, vol. 31, pp. 35–44, Nov 2014.

[9] W. Chen, Y. Chang, S.g Lin, L. Ding, and L. Chen, “Efficient
Depth Image Based Rendering with Edge Dependent Depth Fil-
ter and Interpolation,” in 2005 IEEE International Conference
on Multimedia and Expo, (Amsterdam), pp. 1314–1317, IEEE,
Jul 2005.

[10] R. Li, Y. Dou, J. Zhou, L. Deng, and S. Wang, “CuSora: Real-
time Software Radio using Multi-core Graphics Processing
Unit,” Journal of Systems Architecture, vol. 60, pp. 280–292,
Mar 2014.

[11] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M. Vi-
dal, “Fully Parallel GPU Implementation of a Fixed-Complexity
Soft-Output MIMO Detector,” IEEE Transactions on Vehicular
Technology, vol. 61, pp. 3796–3800, Oct 2012.

[12] Q. Zheng, Y. Chen, H. Lee, R. Dreslinski, C. Chakrabarti,
A. Anastasopoulos, S. Mahlke, and T. Mudge, “Using Graphics
Processing Units in an LTE Base Station,” Journal of Signal
Processing Systems, vol. 78, pp. 35–47, Jan 2015.

[13] M. Wu, Y. Sun, and J. R. Cavallaro, “Implementation of a 3GPP
LTE turbo decoder accelerator on GPU,” in IEEE Workshop on
Signal Processing Systems, SiPS: Design and Implementation,
(San Francisco, CA), pp. 192–197, IEEE, Oct 2010.

[14] D. Lee, M. Wolf, and H. Kim, “Design Space Exploration of
the Turbo Decoding Algorithm on GPUs,” in Proceedings of
the international conference on Compilers, architectures and
synthesis for embedded systems, CASES ’10, (Scottsdale, AZ,
USA), pp. 217–226, ACM Press, Oct 2010.

[15] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding
of Linear Codes for Minimizing Symbol Error Rate (Corresp.),”
IEEE Transactions on Information Theory, vol. 20, pp. 284–
287, Mar 1974.

[16] P. Robertson, E. Villebrun, and P. Hoeher, “A Comparison of
Optimal and Sub-optimal MAP Decoding Algorithms Operat-
ing in the Log Domain,” in Proceedings IEEE International

Conference on Communications ICC ’95, vol. 2, (Seattle, WA,
USA), pp. 1009–1013, IEEE, Jun 1995.

[17] Y. Zhang, Z. Xing, L. Yuan, C. Liu, and Q. Wang, “The
Acceleration of Turbo Decoder on the Newest GPGPU of
Kepler Architecture,” in 14th International Symposium on Com-
munications and Information Technologies (ISCIT), (Incheon),
pp. 199–203, IEEE, Sep 2014.

[18] D. R. N. Yoge and N. Chandrachoodan, “GPU Implementation
of a Programmable Turbo Decoder for Software Defined Radio
Applications,” in 2012 25th International Conference on VLSI
Design, (Hyderabad), pp. 149–154, IEEE, Jan 2012.

[19] A. Nimbalker, T. Blankenship, B. Classon, T. Fuja, and
D. Costello, “Contention-Free Interleavers for High-Throughput
Turbo Decoding,” IEEE Transactions on Communications,
vol. 56, pp. 1258–1267, Aug 2008.

[20] NVIDIA, CUDA C PROGRAMMING GUIDE, v6.5 ed., Mar
2015.

[21] M. Wu, Y. Sun, G. Wang, and J. R. Cavallaro, “Implementation
of a High Throughput 3GPP Turbo Decoder on GPU,” Journal
of Signal Processing Systems, vol. 65, pp. 171–183, Nov 2011.

[22] R. G. Maunder, “A Fully-Parallel Turbo Decoding Algorithm,”
IEEE Transactions on Communications, vol. 63, pp. 2762–
2775, Aug 2015.

[23] L. Sousa, S. Momcilovic, V. Silva, and G. Falcao, “Multi-core
Platforms for Signal Processing: Source and Channel Coding,”
in 2009 IEEE International Conference on Multimedia and
Expo, (New York, NY), pp. 1809–1812, IEEE, Jun 2009.

[24] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, Multi-
GPU and Multi-CPU Parallelization for Interactive Physics
Simulations, vol. 6272 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2010.

[25] S. Cook, CUDA Programming: A Developer’s Guide to Parallel
Computing with GPUs. Applications of GPU Computing Series,
Elsevier Science, 2012.

[26] H. Berg, C. Brunelli, and U. Lucking, “Analyzing Models
of Computation for Software Defined Radio Applications,” in
International Symposium on System-on-Chip, (Tampere), pp. 1–
4, IEEE, Nov 2008.

[27] G. Falcão, L. Sousa, and V. Silva, “Massive Parallel LDPC
Decoding on GPU,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming
- PPoPP ’08, (New York, New York, USA), p. 83, ACM Press,
2008.

[28] S. Wang, S. Cheng, and Q. Wu, “A Parallel Decoding Algo-
rithm of LDPC codes using CUDA,” in 2008 42nd Asilomar
Conference on Signals, Systems and Computers, pp. 171–175,
IEEE, Oct 2008.

[29] G. Falcão, S. Yamagiwa, V. Silva, and L. Sousa, “Parallel LDPC
Decoding on GPUs Using a Stream-Based Computing Ap-
proach,” Journal of Computer Science and Technology, vol. 24,
pp. 913–924, Sep 2009.

[30] G. Falcão, V. Silva, and L. Sousa, “How GPUs Can Outperform
ASICs for Fast LDPC Decoding,” in Proceedings of the 23rd
international conference on Conference on Supercomputing -
ICS ’09, (New York, New York, USA), p. 390, ACM Press,
2009.

[31] J. Kim, S. Hyeon, and S. Choi, “Implementation of an SDR
System using Graphics Processing Unit,” IEEE Communica-
tions Magazine, vol. 48, pp. 156–162, Mar 2010.

[32] C. Ahn, J. Kim, J. Ju, J. Choi, B. Choi, and S. Choi, “Imple-
mentation of an SDR Platform using GPU and Its Application
to a 2 x 2 MIMO WiMAX System,” Analog Integrated Circuits
and Signal Processing, vol. 69, pp. 107–117, Dec 2011.

[33] P.-H. Horrein, C. Hennebert, and F. Pétrot, “Integration of

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 19

GPU Computing in a Software Radio Environment,” Journal
of Signal Processing Systems, vol. 69, pp. 55–65, Oct 2012.

[34] S. Grönroos, K. Nybom, and J. Björkqvist, “Complexity Anal-
ysis of Software Defined DVB-T2 Physical Layer,” Analog
Integrated Circuits and Signal Processing, vol. 69, pp. 131–
142, Dec 2011.

[35] M. Wu, Y. Sun, S. Gupta, and J. R. Cavallaro, “Implementation
of a High Throughput Soft MIMO Detector on GPU,” Journal
of Signal Processing Systems, vol. 64, pp. 123–136, Jul 2011.

[36] G. Falcao, J. Andrade, V. Silva, and L. Sousa, “Real-time DVB-
S2 LDPC Decoding on Many-core GPU Accelerators,” in 2011
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 1685–1688, IEEE, May 2011.

[37] M. Dardaillon, K. Marquet, T. Risset, and A. Scherrer,
“Software Defined Radio Architecture Survey for Cognitive
Testbeds,” in 2012 8th International Wireless Communica-
tions and Mobile Computing Conference (IWCMC), (Limassol),
pp. 189–194, IEEE, Aug 2012.

[38] X. Jiao, C. Chen, P. Jaaskelainen, V. Guzma, and H. Berg, “A
122Mb/s Turbo Decoder using a Mid-range GPU,” in 2013 9th
International Wireless Communications and Mobile Computing
Conference (IWCMC), (Sardinia), pp. 1090–1094, IEEE, Jul
2013.

[39] M. Wu, G. Wang, B. Yin, C. Studer, and J. R. Cavallaro,
“HSPA;/LTE-A Turbo Decoder on GPU and Multi-
core CPU,” in 2013 Asilomar Conference on Signals, Systems
and Computers, no. i, (Pacific Grove, CA), pp. 824–828, IEEE,
Nov 2013.

[40] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro, “High Through-
put Low Latency LDPC Decoding on GPU for SDR Systems,”
in 2013 IEEE Global Conference on Signal and Information
Processing, no. 3, pp. 1258–1261, IEEE, Dec 2013.

[41] V. Adhinarayanan, T. Koehn, K. Kepa, W.-c. Feng, and
P. Athanas, “On the Performance and Energy Efficiency of
FPGAs and GPUs for Polyphase Channelization,” in Interna-
tional Conference on ReConFigurable Computing and FPGAs
(ReConFig14), (Cancun), pp. 1–7, IEEE, Dec 2014.

[42] S. Bang, C. Ahn, Y. Jin, S. Choi, J. Glossner, and S. Ahn,
“Implementation of LTE System on an SDR Platform using
CUDA and UHD,” Analog Integrated Circuits and Signal
Processing, vol. 78, pp. 599–610, Mar 2014.

[43] H. Ahn, Y. Jin, S. Han, S. Choi, and S. Ahn, “Design and
Implementation of GPU-based Turbo Decoder with a Minimal
Latency,” in The 18th IEEE International Symposium on Con-
sumer Electronics (ISCE 2014), (JeJu Island), pp. 1–2, IEEE,
Jun 2014.

[44] J. a. Briffa, “A GPU Implementation of a MAP Decoder for
Synchronization Error Correcting Codes,” IEEE Communica-
tions Letters, vol. 17, pp. 996–999, May 2013.

[45] J. a. Briffa, “Graphics Processing Unit Implementation and
Optimisation of a Flexible Maximum A-posteriori Decoder
for Synchronisation Correction,” The Journal of Engineering,
pp. 1–13, Jan 2014.

[46] Z. Yue and F. C. M. Lau, “Implementation of Decoders for
LDPC Block Codes and LDPC Convolutional Codes Based on
GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, pp. 663–672, Mar 2014.

[47] J.-H. Hong and K.-s. Chung, “Parallel LDPC Decoding on a
GPU using OpenCL and Global memory for Accelerators,” in
2015 IEEE International Conference on Networking, Architec-
ture and Storage (NAS), pp. 353–354, IEEE, Aug 2015.

[48] F. Ge, H. Lin, A. Khajeh, C. J. Chiang, M. E. Ahmed, W. B.
Charles, W.-c. Feng, and R. Chadha, “Cognitive Radio Rides
on the Cloud,” in Military Communications Conference, (San
Jose, CA), pp. 1448–1453, IEEE, Oct 2010.

[49] C. Berrou and A. Glavieux, “Near Optimum Error Correcting
Coding and Decoding: Turbo-codes,” IEEE Transactions on
Communications, vol. 44, pp. 1261–1271, Oct 1996.

[50] J. Erfanian, S. Pasupathy, and G. Gulak, “Reduced Complexity
Symbol Detectors with Parallel Structure for ISI Channels,”
IEEE Transactions on Communications, vol. 42, pp. 1661–
1671, Feb 1994.

[51] S. Xiao and W.-c. Feng, “Inter-block GPU Communication
via Fast Barrier Synchronization,” in 2010 IEEE International
Symposium on Parallel & Distributed Processing (IPDPS),
pp. 1–12, IEEE, Apr 2010.

[52] NVIDIA, NVIDIA Nsight Visual Studio Edition 4.6 User Guide,
4.6 ed., 2015.

[53] ETSI, “ETSI TS 1 136 213,” Etsi, vol. V12.7.0, 2015.
[54] MOTOROLA, “Real-World Lte Performance for Public Safety,”

White paper, Sep, 2010.

An Li received his first class honors BEng
degree in Electronic Engineering from the Uni-
versity of Southampton in 2011 and his MPhil
degree from the University of Cambridge in
2012. He is currently a PhD student in Wire-
less Communication research group in the Uni-
versity of Southampton. His research interests
include parallel turbo decoding algorithms and
their implementations upon VLSI, FPGA and

GPGPU.

Robert G. Maunder has studied with Elec-
tronics and Computer Science, University of
Southampton, UK, since October 2000. He
was awarded a first class honors BEng in
Electronic Engineering in July 2003, as well
as a PhD in Wireless Communications in De-
cember 2007. He became a lecturer in 2007
and an Associated Professor in 2013. Rob’s
research interests include joint source/channel

coding, iterative decoding, irregular coding and modulation tech-
niques. For further information on this research, please refer to
http://users.ecs.soton.ac.uk/rm.

Bashir M. Al-Hashimi (M99-SM01-F09) is a
Professor of Computer Engineering and Dean
of the Faculty of Physical Sciences and Engi-
neering at University of Southampton, UK. He
is ARM Professor of Computer Engineering
and Co-Director of the ARM-ECS research
centre. His research interests include methods,
algorithms and design automation tools for en-
ergy efficient of embedded computing systems.

He has published over 300 technical papers, authored or co-authored
5 books and has graduated 31 PhD students.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2016.2586309, IEEE Access

SUBMIT TO IEEE ACCESS 20

Lajos Hanzo (FREng, FIEEE, FIET,
Eurasip Fellow, RS Wolfson Fellow, www-
mobile.ecs.soton.ac.uk) holds the Chair
of Telecommunications at Southampton
University, UK. He co-authored 1577 IEEE
Xplore entries, 20 IEEE Press & Wiley books,
graduated 100+ PhD students and has 24
000+ citations.

