An adaptive 3D bipedal locomotion model
Stability and efficiency analysis of an entrained motion primitive

Paramtap Mewada, Richard Southern & Jian J Zhang
National Centre for Computer Animation
Bournemouth University
[pmeewada,rsouthern,jzhang]@bournemouth.ac.uk

Introduction

• We present an adaptive 3D bipedal model for adaptive locomotion.
• The uncontrolled manifold hypothesis asserts that neural control applies only to high level, spatio-temporal aspects of task performance — e.g. keeping the head steady while running — while the mechanics of the body and Central Nervous System resolve the remaining degrees of freedom through activation patterns, called motion primitives.
• The equilibrium point hypothesis states that the body completes the task with limited input from neural system, provided the specified motion is stable and completes the objectives.
• These principles are implemented via two adaptive controllers: a neural oscillator coupled with the mechanical system to achieve entrainment, and symmetry controllers which adapt phase space to changes in the environment [3].
• We analyse the efficiency and and stability of entrainment as a control strategy for this model.

Objectives

1. Motion synthesis through integrating the current state of knowledge from diverse fields such as motor control, robotics and bio-mechanics.
2. Extend these principles to the 3D bipedal model of [1].
3. Develop tools to evaluate the influence of entrainment by numerical analysis to find the relationship between stability, cost of transport and changes in slope.

Methods

Mechanical Model

• Ames and Gregg [1] describe the continuous phase manipulator equation and hybrid dynamics as the instantaneous equation of the dynamics.
• They decoupled frontal-plane and sagittal-plane dynamics.
• This 3D compass gait has a stable limit cycle walking on flat surface in R^3.

Environment Adaptation using Control Symmetry

• The Lie Group Symmetry Control offset action has been used in [2, 3, 4]. This control strategy shapes the potential energy of bipedal walker to stable walking on a flat surface.
• We adopt this method to satisfy new environmental constraints. Given a transformation $m' = g(m)$ a controller is found which satisfies the motor invariant I, i.e.

$$I(g(m)) = I(m), \quad g \in G, m \in M$$

where G and M represent the action and motion spaces, respectively, and I is a desired motion invariant.

• Applied to [1], this provides the local controller

$$u = K^{eq}_d(\theta) = B_d \frac{\partial}{\partial \theta}(V_d - V_d(\Psi_d(\theta))) - \frac{1}{2m_d}(\dot{\theta})^2$$

• The new control scheme implicitly utilizes the Lie group control symmetry

$$u = K^{eq}_d(q) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \dot{q}$$

A standard nonlinear SISO control system is used to drive the walker’s frontal plane dynamic response to 0 as seen in Fig 1.

Global Control with Entrainment

• Entrainment between the mechanical system and a neural oscillator have been shown to enhance structural stability [3].
• We combine controller from previous local Control Law resulting into our final system

$$\dot{x} = F(x, h_m(x, c)) + B_m u_m(x)$$

$$\dot{c} = S(x, h_n(x))$$

• We couple the Matsuoko oscillator as in [3].

• Perturbations (see Fig. 3) are handled by the entrainment with the neural oscillators providing the necessary structural stability to adapt to a new limit cycle.
• The neural oscillator input is given by the angle between two legs.

Results

• State stability improved by combination of local and global controllers.

![Phase Portrait: Leg 1](image1.png)

Figure 1: Local Control Law based adaptation at 5 different slopes in range $\gamma = [0, 0.0625]$ radian. This demonstrates the ability of this model to walk on uneven terrain.

• The global controller enables the adaptation to perturbations at rate of -0.015 per 10 steps. The strength of coupling between the systems correlates with the rate of convergence towards a stable periodic orbit.

![Phase Portrait: Leg 1](image2.png)

Figure 2: Convergence of the stance phase after a perturbation. The states regain periodic limit cycle after the perturbation at 10th step on coupled oscillator.

• In Fig.3 we propose a method to choose the optimal coupling coefficient to minimise the cost of transport with stable control.

Future Work

In the future we intend to

• develop an on-line method to identify optimal control parameters for uneven terrain;
• derive a motion planning method which accounts for adaptation costs;
• develop smooth and effective switching between motion primitives, such as of between running, walking and balancing in R^3; and
• leverage underpinning biological principles of locomotion in the development of robotic models which are stable and energy efficient.

References

Acknowledgements

This research was partially funded by the Centre for Digital Entertainment, EPSRC grant EP/L016540/1.