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Abstract: Developmental dental pathologies provide insight into health of primates during
ontogeny, and are particularly useful for elucidating the environment in which extant
and extinct primates matured. Our aim is to evaluate whether prevalence of an unusual
dental defect on the mesio-labial enamel of the upper lateral incisor, thought to reflect
dental crowding during maturation, is lesser in female orangutans, with their smaller
teeth, than males, and Sumatran orangutans, from more optimal developmental
habitats, than those from Borneo. Our sample includes 49 Pongo pygmaeus  (87
teeth), 21 P. abelii (38 teeth), Late Pleistocene paleo-orangutans from Sumatra and
Vietnam (67 teeth), Late Miocene catarrhines Lufengpithecus lufengensis (2 teeth) and
Anapithecus hernyaki (7 teeth). Methods include micro-CT scans, radiography and
dental metrics of anterior teeth. We observed fenestration between incisor crypts and
marked crowding of unerupted crowns, which could allow tooth-to-tooth contact. Tooth
size does not differ significantly in animals with or without the defect, implicating
undergrowth of the jaw as the proximate cause of dental crowding and defect
presence.  Male orangutans from both islands show more defects than females. The
defect is significantly more common in Bornean orangutans (71%) compared to
Sumatran (29%).  Prevalence among fossil forms falls between these extremes, except
that all five individual Anapithecus show one or both incisors with the defect.  We
conclude that maxillary lateral incisor defect is a common developmental pathology of
apes that is minimized in optimal habitats and that such evidence can be used to infer
habitat quality in extant and fossil apes.
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Response to Reviewer:  

Firstly, I have made the changes requested by the Editor (just to be clear, no chimpanzees 

were examined for MLID in this study, only radiographed to get an idea of incisor crown 

formation in apes).  

 

Secondly, I have simplified and enlarged Figure 3 (which relates to the topic just 

mentioned) and which the reviewer found difficult to read (as are all radiographs which 

are being replaced instrumentally by CT scans (our Figure 4)).  

 

As recommended I have added into the Results section a small component to the 

micro-morphological observations; viz., The purpose of Figure 6 is to show close-up 
morphological details of the outer enamel surface in: normal enamel; an area affected 
by MLID; as well as linear enamel hypoplasia. MLIDs show exposed Tomes’ process 
pits in the floor of a plane form defect. In addition, I have added, as recommended 
symbols to Figure 6 to try to make the observations in the dense prose from the 
Figure caption a bit more understandable.   

 
Then, as recommended, I have added a larger section to the Discussion as follows:  
 
Our micro-morphological analysis, which is limited to only the outer enamel surface of 
a cast (Fig. 6), found exposed Tomes’ process pits in the floor of the defect. It can be 
concluded that there occurred an abrupt cessation of matrix secretion without 
recovery of function, at least centrally within the defect. At the time, the affected 
ameloblasts still possessed the distal portion of their Tomes’ processes (Witzel, 
Kierdorf, Schulz, & Kierdorf, 2008). It can be inferred that, in terms of etiology, the 
proximate causative agent was a short-term event affecting a localized group of cells. 
This scenario is compatible with a sudden breaching of the inter-crypt septum creating 
a fenestration.  Rather than invoking a gradual compression of a tooth crown within 
an unyielding crypt-a physical process that would have been detectable as a graduated 
secretory response from the ameloblast-it seems more likely, given the ledge-like 
appearance of many of the MLIDs (Fig. 5), that there was relatively abrupt abnormal 
contact of the developing crown with the sharp edge of a crypt fenestration. 
Histological thin sections of original teeth with MLID will be required to resolve these 
speculations.  

 
Lastly, regarding Island differences and the reviewers concern about over-stressing 

habitat quality as an explanation, I have added the following caveat:  

 

Rather than arguing for differences in habitat quality, it may be germane that 
lactation, which presumably provides a reasonably assured component of the infant’s 
food requirements, is prolonged significantly longer in Sumatran than Bornean 
orangutans (van Noordwijk et al., 2013).  
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Abstract 38 

Developmental dental pathologies provide insight into health of primates during ontogeny, 39 

and are particularly useful for elucidating the environment in which extant and extinct 40 

primates matured. Our aim is to evaluate whether prevalence of an unusual dental defect 41 

on the mesio-labial enamel of the upper lateral incisor, thought to reflect dental crowding 42 

during maturation, is lesser in female orangutans, with their smaller teeth, than males; and 43 

Sumatran orangutans, from more optimal developmental habitats, than those from Borneo. 44 

Our sample includes 49 Pongo pygmaeus  (87 teeth), 21 P. abelii (38 teeth), Late Pleistocene 45 

paleo-orangutans from Sumatra and Vietnam (67 teeth), Late Miocene catarrhines 46 

Lufengpithecus lufengensis (2 teeth) and Anapithecus hernyaki (7 teeth). Methods include 47 

micro-CT scans, radiography and dental metrics of anterior teeth. We observed 48 

fenestration between incisor crypts and marked crowding of unerupted crowns, which 49 

could allow tooth-to-tooth contact. Tooth size does not differ significantly in animals with 50 

or without the defect, implicating undergrowth of the jaw as the proximate cause of dental 51 

crowding and defect presence.  Male orangutans from both islands show more defects than 52 

females. The defect is significantly more common in Bornean orangutans (71%) compared 53 

to Sumatran (29%).  Prevalence among fossil forms falls between these extremes, except 54 

that all five individual Anapithecus show one or both incisors with the defect.  We conclude 55 

that maxillary lateral incisor defect is a common developmental pathology of apes that is 56 

minimized in optimal habitats and that such evidence can be used to infer habitat quality in 57 

extant and fossil apes. 58 

 59 

Key words: infancy; dentition; growth; paleohealth; Lufengpithecus; Anapithecus 60 
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Introduction 61 

Primate growth is a reflection of metabolic function as influenced by nutritional and 62 

disease factors within particular habitats (Altmann 1998). As large, slow-growing 63 

mammals, whose tooth formation may span several years of nutritional and disease 64 

seasonal cycles, the dental maturation of apes in the wild is sensitive to developmental 65 

conditions (Zihlman et al. 2007).  Teeth form within bone. Where cranio-facial bone growth 66 

has been insufficient, erupted teeth in the adult mammal may be crowded and mal-67 

occluded (DiOrio et al. 1973; Luke et al. 1979; Thomaz et al. 2010; Tonge and McCance 68 

1973). A mild relationship in humans was found between growth deficit (height for age) 69 

and malnutrition and crowding of permanent teeth (2010). Severely undernourished pigs 70 

show third molar impaction due to undergrowth of jaws in length (McCance and Ford 71 

1961) and severe dental crowding with direct contact between adjacent teeth (Tonge and 72 

McCance 1973). Calorie deficiency has a greater negative impact on jaw growth than does 73 

protein deficiency (Luke et al. 1979). Experimental protein under-nutrition in rats induces 74 

catabolism of muscle (including chewing muscles), reduced jaw size and dental crowding 75 

(Garat et al. 2007). Non-human primates are no exception. A low protein diet in squirrel 76 

monkeys delayed growth and shape changes, particularly in the masticatory region 77 

(Dressino and Pucciarelli 1997).  78 

 79 

Prior to eruption, dental crowns are normally sequestered in their own crypts during 80 

formation; consequently there is almost no consideration of pre-eruptive dental crowding. 81 

Indeed it has been remarked that “future studies of primate tooth development should 82 

include data on times of crypt initiation and rates of crypt enlargement, without which 83 
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analyses of dental development are incomplete” (Boughner and Dean 2004) (P. 274). 84 

Although these authors emphasize genetic control of taxonomic variation in normal 85 

available space for successive crown mineralization, they also note that physiological or 86 

physicochemical factors may establish baseline minimum distance maintained between 87 

teeth from their inception. On occasion, alveolar bone (the inter-dental septum) that 88 

normally separates crypts, may not be maintained, such that inter-crypt fenestration 89 

occurs. Good evidence for crypt fenestration, labially or buccally, has been shown in the 90 

case of localized hypoplasia of the primary canine (LHPC) in humans and apes (Skinner 91 

1986, 2000; Skinner and Hung 1989; Skinner and Newell 2003) and a comparable defect of 92 

the maxillary molars of pigs (Skinner et al. 2014). In terms of ultimate causation of crypt 93 

fenestration defects, evidence suggests that vitamin A deficiency or reduced bioavailability 94 

explains instances of LHPC in humans and other apes (Skinner et al. 1994; Skinner and 95 

Newell 2003); and the combined effects of sickness and malnutrition in pigs (Skinner et al. 96 

2014). 97 

   98 

Ephemeral fenestration between adjacent crypts can allow contact in primary human teeth 99 

(Lukacs 1999). For example, Lukacs describes areas of missing enamel on mesial and distal 100 

surfaces of primary canines and on the mesial surface of molar teeth in archaeological 101 

samples, terming these interproximal contact hypoplasias (IPCH). He suggests that in such 102 

cases (about 15%) there was abnormally slow longitudinal growth of the jaws in infancy. 103 

Enamel defects in IPCH range from single or confluent circular pits (ca. 0.5mm in diameter) 104 

to “basins” several mm in length and breadth. Usually they are plane-form defects 105 



 5 

“characterized by a broad area of deficient enamel…near the area of maximal mesial or 106 

distal curvature of the crown” (Lukacs 1999) (P. 723). He writes:  107 

The proximate etiology of IPCH is tooth-tooth contact through fenestrae in the inter-108 
dental septum due to anterior/posterior compaction of the developing dentition. 109 
Developmental disruptions in bone growth due to nutritional or pathological insult, 110 
combined with underuse and consequent reduction of the jaws, are possible factors 111 
involved in the etiology of IPCH (ibid, p. 732).  112 

 113 

Thus, it is reasonable to expect that compromised nutrition in infant apes will affect jaw 114 

growth and possibly produce dental crowding, crypt fenestration, and contact hypoplasias.  115 

 116 

Orangutans (Pongo species) were at one time broadly distributed from Southern China to 117 

Java. Despite their clear success throughout a huge latitudinal range, orangutans are 118 

described as having strict habitat requirements (i.e., evergreen wet forest) (Nater et al. 119 

2011). During glacial periods of the Pleistocene, the climate in Sumatra was cooler, drier 120 

and more seasonal (Harrison et al. 2006; Meijaard 2003). A review of the ecological 121 

correlates of fossil orangutan find spots indicates that orangutans likely retreated to forest 122 

refugia during the Pleistocene dessication which affected parts of the Sundaic region 123 

(Ibrahim et al. 2013). Late Pleistocene environments of Sumatra are reconstructed on 124 

ecological grounds to have been warm and wet, similar to today (Louys and Meijaard 125 

2010). West Sumatra remained forested (Meijaard 2003). Nevertheless, land temperatures 126 

during cold phases of the Pleistocene may have decreased by as much as 3-5oC (Harrison et 127 

al. 2006).  128 

 129 

At the end of the last ice age, a rapid rise in sea level isolated orangutans on the islands of 130 

Borneo and Sumatra (Harrison et al. 2006), creating contrasting habitats to which they 131 
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have been adapting for some 14,000 years (Hanebuth et al. 2000). Bornean mammals, in 132 

general, tend to be smaller than conspecifics in other locations, attributable to lower 133 

primary productivity on relatively less fertile soils on Borneo (Meiri  et al. 2008; Wich et al. 134 

2011).  There are several lines of evidence which suggest that Sumatra may currently 135 

provide a superior habitat for orangutans due, fundamentally, to volcanically-derived soils 136 

(Wich et al. 2011). Sumatran forests show higher soft-pulp fruit production, generally, and 137 

throughout the seasons (Delgado and van Schaik 2000). Unlike Bornean orangutans (Pongo 138 

pygmaeus), Sumatran orangutans (Pongo abelii) spend more time eating high-quality foods 139 

such as fruit and insects and less time eating bark and vegetation (Russon et al. 2009). 140 

Moreover, Sumatran orangutans seem less reliant on fallback foods than are Bornean 141 

orangutans, being able to find figs and fruit year round (Russon et al. 2009). In Borneo, 142 

there are months when fruit is a minor part of the diet whereas, in Sumatra, fruit is always 143 

a major part of the diet (Morrogh-Bernard et al. 2009). Not surprisingly, orangutan 144 

population density is higher in Sumatra than in Borneo (van Schaik et al. 2009). However, 145 

our assessment of the Sumatran habitat for orangutans may be skewed by the high 146 

densities of animals inhabiting the Kluet, Singkil and Tripa swamps in the northern corner 147 

of the island whose peat soils are regularly inundated by rivers and run-off from adjacent 148 

hills that bring minerals from the Leuser mountains, creating an optimum habitat for 149 

growth and development that is judged to be exceedingly rare in Borneo (Husson et al. 150 

2009).  151 

 152 

In this study, we investigate an unusual dental defect that may be a marker of under-153 

developed cranio-facial growth in great apes. Maxillary lateral incisor defects (MLIDs) are 154 



 7 

abnormalities of the mesio-labial enamel contour on the upper lateral incisor (Hannibal 155 

2003) visible as pit, plane-form and/or notch defects, varying from a tiny dimple to a major 156 

cleft occasionally affecting crown/root orientation (Fig. 1). MLIDs have been tentatively 157 

attributed to a combination of systemic stress and local anatomical factors leading to pre-158 

eruptive, developmental crowding; to date, their presence is restricted to apes, especially 159 

orangutans among whom they were reported to occur in about one-third of animals 160 

(Hannibal 2003). Intriguingly, there are no human examples of MLID, although the more 161 

severe examples of the defect reported below may have a parallel in the so-called J-shaped, 162 

Etruscan Upper Lateral Incisor; however, the latter condition is located more mesio-163 

lingually (Pinto-Cisternas et al. 1995). 164 

       165 

   166 

Our aims are to: 1) elucidate the proximate cause of MLID; and 2) determine whether 167 

orangutan samples from different spatio-temporal contexts exhibit different frequencies of 168 

MLIDs. To accomplish the first aim we examine radiographic and microtomographic scans 169 

of developing dentitions of chimpanzees (Pan troglodytes troglodytes) and orangutans, 170 

respectively. We then characterize variation in anatomical location and type of defect in a 171 

range of catarrhine primates and test for correlations between MLID frequency and 172 

anterior tooth size and sex since mild to marked sex differences in anterior tooth size, 173 

especially for the canine, could potentially affect the degree of anterior tooth crowding and 174 

the likelihood of MLID occurring. To accomplish the second aim we compare MLID 175 

frequency between extant orangutans from Borneo and Sumatra and between each extant 176 

sample and samples of Vietnamese and Sumatran paleo-orangutans. We predict that, were 177 
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the growth of an infant ape to falter, the physical relationships of the upper anterior teeth 178 

will predispose them to MLID; specifically that the formation of the crown of the upper 179 

lateral incisor should overlap that of the forming upper central crown, but will be later in 180 

time and physically behind it; and that inter-crypt fenestration can occur. Moreover, MLID 181 

should take the form of pits and plane-form depressions in the outer enamel surface and 182 

resemble those described for inter-proximal contact hypoplasias in primary teeth (Lukacs 183 

1999).  184 

 185 

Fossil assemblages are likely to be composed of those individuals who died before their 186 

time; i.e., they form a biased subset selected out of the living assemblage-a mortality cohort 187 

(Wood et al. 1992). We predict that MLID will be more common in mortality cohorts 188 

reflective of attritional deaths (most fossil assemblages) rather than catastrophic mortality 189 

(hunted assemblages) (DeWitte and Stojanowski 2015; Wood et al. 1992). Additionally, we 190 

predict that MLID will be more frequent among Bornean orangutans with relatively 191 

impoverished soils (Meiri  et al. 2008) than among Sumatran orangutans from more 192 

optimal habitats  (Husson et al. 2009). Furthermore, MLID will be more common in 193 

Sumatran paleo-orangutans than extant orangutans, due to amelioration of habitats in the 194 

Holocene (Meijaard 2003).  195 

 196 

 197 

Methods 198 

Given the comparative and epidemiological nature of this study including, potentially, 199 

innate, ontogenetic and nutritional factors, we cannot determine the etiology of MLID with 200 
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certainty. This would require a specimen with demonstrably compromised development in 201 

which an unerupted central incisor is creating a divot in a lateral incisor. To evaluate the 202 

inference that a defect of formation on the mesio-labial surface of the permanent upper 203 

lateral incisor (MLID) may be attributable to physical contact between forming incisor 204 

crowns while still in their crypts, we compared radiographs of two immature chimpanzees, 205 

from the region between Batouri and Lomie, Cameroon whose crania are curated in the 206 

Powell-Cotton Museum, Quex Park, U.K.. We also imaged an immature recent orangutan 207 

maxilla, probably Sumatran in origin (Thomas Koppe pers. comm.), borrowed from the 208 

Institut für Anatomie und Zellbiologie Universitätsmedizin Greifswald, using a BIR ACTIS 209 

225/300 high-resolution micro-CT scanner (130 kV, 100 μA, 0.25 brass filter, 1250 210 

projections, 2 frame averaging, resultant isometric voxel size was 30 μm) housed at the 211 

Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology 212 

(Leipzig, Germany). We segmented the tooth crypts and associated alveolar bone manually 213 

in Avizo 6.3® (Visualization Sciences Group, SAS) and created surface models of tissues 214 

using the surface generation module. 215 

 216 

Study sample 217 

Our sample included 70 recent orangutans (Table 1). Most of these were taken from the 218 

wild in the early 1900s with locations documented by collectors (Table 1). All recent 219 

Sumatran animals in this study derive from the northern province of Aceh (especially the 220 

Medan area (Drawhorn 1994)) while the Bornean animals sample all three subspecies of P. 221 

pygmaeus (Wich et al. 2008) (Fig. 2).  222 

 223 
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 224 

We examined 76 fossil hominoid incisors for MLID (Table 2). We selected fossils either 225 

because they are thought to be related to modern orangutans, or because the collection 226 

contains a comparatively large number of upper lateral incisors. Our sample includes five 227 

individual Anapithecus hernyaki represented by seven upper lateral incisors (Kordos and 228 

Begun 2001; Nargolwalla et al. 2005) from the site of Rudabanya, Hungary, which is Late 229 

Miocene (MN 9, 11.2 – 9.7 Ma) in age (Andrews and Cameron 2010; Begun et al. 2006). 230 

Anapithecus is considered to be a small-bodied catarrhine, probably a pliopithecoid 231 

(Kordos and Begun 2002). The site is located in a valley on what was once a peninsula, 1-2 232 

km wide, projecting into the Central Paratethys sea (Kordos and Begun 2002). The 233 

relatively large number of individuals and their immaturity suggest that the locality may 234 

have provided an optimum habitat for the primate close to the core area of the home range 235 

where most juveniles would be concentrated (Andrews and Cameron 2010).  236 

 237 

We included two Lufengpithecus, which is thought to be a close relative of orangutans 238 

(Harrison 2010). These fossils are from the site of Shi-Hui-Ba in Yunnan Province, China, 239 

which consists of lignite deposits, judged to be Late Miocene (6.9－5.8 Ma) in age (Qi et al. 240 

2006; Zhao et al. 2008), formed in beaver ponds into which the arboreal ape 241 

Lufengpithecus fell (Badgley et al. 1988). 242 

 243 

Fossil orangutans from Mainland Asia and Sumatra have larger teeth (ca. 15-20%) than 244 

recent orangutans (Smith et al. 2011) which may predispose them to MLID.   The paleo-245 

Sumatran orangutans in our sample are from several poorly dated cave sites in the Padang 246 
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Highlands, all of which can be considered Late Pleistocene (Table II, but see Harrison et al. 247 

(2006)). The sample is made up, overwhelmingly, of teeth thought to derive from 248 

porcupine nests which census a mortality cohort rather than a catastrophic-type 249 

assemblage (Drawhorn 1994). There are 56 teeth from a minimum of 38 individuals. There 250 

are currently no orangutans in southern Sumatra from where the fossil orangutans used in 251 

this study are drawn. The Padang Highlands are south of the putative ecological Mt. Toba 252 

volcano barrier (Wilting et al. 2012), suggesting that the paleo-Sumatran orangutans may 253 

be genetically closer to extant Bornean than to north Sumatran orangutans.  254 

 255 

The fossil orangutans from Vietnam in our study come from five cave sites ranging in age 256 

from Late Middle to Late Pleistocene (Table II). The paleo-environment of the Late 257 

Pleistocene orangutan sites of Hang Hum in Vietnam may have been more open/mixed 258 

than observed at lower latitudes (Louys and Meijaard 2010). There are 11 teeth from a 259 

minimum of 10 individuals.  260 

 261 
 262 

Imaging and measurement 263 

We made observations on original teeth for simple presence/absence of a defect in the 264 

labial enamel contour (we ignored evidence of linear enamel hypoplasia) and then made 265 

casts of more salient examples in araldite for examination at higher magnifications and for 266 

illustrative purposes. Acknowledging that customary dental metrics on fully-formed 267 

anterior tooth crowns may not have much relevance for transitory size during ontogeny of 268 

tightly packed, differentially-formed, incomplete crowns prior to eruption, we, 269 

nevertheless, collected traditional measures of incisor crowns (Hillson 1996) with Moore-270 
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Wright electronic calipers (+/- 0.01 mm) on European collections, and on teeth from 271 

American museums using sliding calipers, calibrated to the nearest 0.01 mm. We measured 272 

mesio-distal length at the incisal edge, labio-lingual breadth at midpoint of the cervical-273 

incisal axis, and labial height from incisal edge to cervical margin on the labial aspect 274 

(Pilbrow 2006). Our observations of MLID were incidental to other studies. Consequently, 275 

we did not collect metrics on affected and unaffected teeth, except for those taken on paleo-276 

orangutans. Nevertheless, we could combine separate studies that fortuitously include the 277 

same specimens.  278 

 279 

We conducted macro-photography with a Keyence digital microscope VHX-100 and used a 280 

Fisher Portable 200 x-ray machine (preset at 65 peak kilovoltage) to radiograph the 281 

immature chimpanzee maxillae. We measured depth of defects on casts with a μsurf mobile 282 

scanner, manufactured by NanoFocus AG, Oberhausen. We took measurements from a 283 

single profile which traversed the deepest point of the defect parallel to the longitudinal 284 

axis of the crown (so-called N-S axis), even though some defects are angled (Fig. 1, 5). We 285 

took scanning electron micrographs of a cast with MLID in the imaging facility at the 286 

University of York with a JEOL JSM-6490LV instrument.  287 

 288 

Statistical analysis 289 

In that observation of a defect was often not purposive, but incidental to other studies, the 290 

prevalence statistics reported below are probably conservative. Because fossil assemblages 291 

are typically comprised of isolated teeth that cannot be reliably assigned to individual 292 

animals, it is rarely possible to match right and left teeth from an individual or to identify 293 
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sex. Hence, statistical analysis is performed in terms of only lefts, and only rights, compared 294 

to the same in recent orangutans. We used Chi Square and Fisher’s Exact Test (when any 295 

cell frequency is <6) to examine differences in prevalence of the defect between islands and 296 

sexes; and Student’s ‘t’ test for the effect of tooth size, performed with SPSS 22 (IBM 2013). 297 

We set alpha at 0.05. 298 

 299 

Results 300 

Aim 1: the proximate cause of MLID 301 

Radiographs of the upper jaw of infant chimpanzees (Fig. 3) show that central incisor 302 

crown mineralization is advanced slightly over the lateral incisor but that the crypt for the 303 

lateral incisor is situated further occlusally in some specimens (e.g., M475). Micro-CT scans 304 

of an orangutan infant upper jaw show that, prior to eruption, the lateral incisor is located 305 

behind the central and that fenestration can occur between incisor crypts (Fig. 4).  306 

 307 

 308 

These variable anatomic relationships show that the precise points of contact between 309 

incisor crowns vary. Defect locations, shape and size are also variable (Fig. 5). Most are 310 

found on the mesio-labial contour of the lateral incisor crown in the cervical half and 311 

occasionally encroaching onto the root. Size varies from a small dimple on the cingulum, 312 

through a 1 to 2 mm length notch angling mesio-incisally, to a large wedge-shaped defect 313 

with distorted alignment of crown and root. The full range of defect severity goes beyond 314 

enamel hypoplasia to include effects on dentin formation. They resemble the pits and 315 

plane-form depressions described for inter-proximal contact hypoplasias in human 316 
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primary teeth (Lukacs 1999) (Fig 5 A and E) but also include the very distinctive diagonal 317 

ledges first noted by Hannibal (2003) (Fig 5 B and C); as well as gross distortion of crown 318 

and root alignment (Fig 5 D).    319 

 320 

 321 

Scanning electron microscopy of a large defect (Fig. 6) shows close-up morphological 322 

details of three varieties of outer enamel surface: normal enamel (Fig 6H), an area affected 323 

by MLID (Fig 6D), and linear enamel hypoplasia (Fig 6A).  324 

 325 

 326 

Effects of sex and tooth size 327 

MLID is significantly more common in males than females for Borneo, but not for Sumatra, 328 

at both the tooth and the individual level (Table III). 329 

 330 
 331 

We found no significant size differences between teeth from individuals with or without 332 

MLID (Table IV). However, in 11 out of 13 comparisons, individuals with MLID had, on 333 

average, bigger teeth (higher z-scores) than those without.  334 

 335 
 336 
 337 

We found no significant differences between teeth with or without MLID in any dental 338 

measure for both the paleo-Sumatran and Bornean orangutan samples (Table V).  339 

 340 
 341 
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Overall, MLID in recent animals occurs in 57% of upper lateral incisors and 59% of 342 

individuals taken from the wild. Bilateral symmetry of the presence of MLID is the norm 343 

(91%).  There are no side differences in the occurrence of MLID in the combined orangutan 344 

sample (Chi Square =0.111, df=1, P=0.740), nor in Bornean or Sumatran orangutans 345 

considered separately (Chi Square=0.843, df=1, P=0.358; Chi Square=0.038, df=1, P=0.846, 346 

respectively) (Table VI). 347 

 348 

Aim 2: Do orangutan samples from different spatio-temporal contexts exhibit 349 

different frequencies of MLIDs? 350 

 351 

Cohort source 352 

The prevalence of MLID is significantly higher in the paleo-Sumatran orangutans than in 353 

recent Sumatran orangutans (Table VI, Left side - Pearson Chi Square=6.222, P=0.013; 354 

Fisher’s Exact Test P=0.028; Right side - Pearson Chi Square=8.125, P=0.004; Fisher’s Exact 355 

Test P=0.009), but does not differ significantly from recent Bornean orangutans (Left side - 356 

Pearson Chi Square=0.004, P=0.952; Fisher’s Exact Test P=1.000; Right side - Pearson Chi 357 

Square=0.756, P=0.384; Fisher’s Exact Test P=0.440). 358 

 359 

Sample sizes for other fossil forms are too small for statistical analysis. The prediction, that 360 

MLID would be more common in fossil forms than in recent ones, is not supported. Recent 361 

Bornean orangutans are more affected than any fossil taxon (except Anapithecus hernyaki 362 

from Hungary where all seven teeth from five individuals are affected).  363 

 364 
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Island source 365 

There is a major difference in the occurrence of MLID between islands  with Bornean 366 

orangutans being significantly more affected than Sumatra (Table VII). Recent Sumatran 367 

orangutans show much less MLID than do the fossil orangutans from the same island. 368 

Indeed, extremes of prevalence are found between the two recent samples from Borneo 369 

and Sumatra.  370 

 371 

 372 

Discussion 373 

In terms of proximate causation, MLID is more likely due to dental crowding in infancy, 374 

rather than genetics, based on the following observations: a) the common occurrence of 375 

MLID within and among ape taxa; b) its physical appearance corresponding to the form of 376 

the central incisor with which it is so closely located; c) its clear difference in shape from 377 

linear enamel hypoplasia; d) prior work which links compromised somatic/skeletal 378 

development to crypt fenestration enamel defects (Lukacs 1999; Skinner et al. 2014); and, 379 

finally, e) the dissimilarity of MLID to examples of genetic defects such as amelogenesis 380 

imperfecta (Hart et al. 2003; Lygidakis and Lindenbaum 1987). We found that: a) MLID is 381 

more common in males; b) tooth size has only a mild, statistically non-significant effect on 382 

MLID; c) MLID is significantly more common in Bornean orangutans and least common in 383 

those from Sumatra, with most fossil assemblages showing intermediate prevalence 384 

between these two extremes.  385 

 386 
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In our explanatory model, inter-crypt fenestration is a necessary but not sufficient 387 

explanation for MLID. While we have shown that inter-crypt fenestration occurs, we do not 388 

know how common this phenomenon is. Inter-crypt fenestrae have been described 389 

between crowded, unerupted I2, C and P3 in a juvenile gorilla from the Osmond Hill 390 

Collection (Royal College of Surgeons) (Beynon et al. 1991). Nothing is known of the 391 

developmental health or conditions of this animal.  392 

 393 

Our micro-morphological analysis, which is limited to the outer enamel surface, shows 394 

exposed Tomes’ process pits in the floor of the defect. We conclude that matrix secretion 395 

ceased abruptly without recovery of function, at least centrally within the defect. At the 396 

time, the affected ameloblasts still possessed the distal portion of their Tomes’ processes 397 

(Witzel et al. 2008). We infer that, in terms of etiology, the proximate causative agent was a 398 

short-term event affecting a localized group of cells. This scenario is compatible with a 399 

sudden breaching of the inter-crypt septum creating a fenestration.  Rather than invoking a 400 

gradual compression of a tooth crown within an unyielding crypt - a physical process that 401 

would have been detectable as a graduated secretory response from the ameloblast - it 402 

seems more likely, given the ledge-like appearance of many of the MLIDs, that there was 403 

relatively abrupt abnormal contact of the developing crown with the sharp edge of a crypt 404 

fenestration. Histological thin sections of original teeth with MLID will be required to 405 

resolve these speculations.  406 

 407 

It is surprising that MLID, which we consider a crowding defect, is little if at all affected by 408 

tooth size. There is a non-significant tendency for teeth with the defect to be slightly bigger 409 
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in most comparisons (Table IV); larger samples in future studies may confirm this trend. 410 

Another crypt fenestration defect (LHPC) is more severe in bigger primary teeth from 411 

infant apes (Skinner and Newell 2003). On current evidence, the preponderance of MLID in 412 

male orangutans is not due to sexual dimorphism in tooth size. Rather, we think that MLID 413 

is due to undergrowth of the upper jaw in the presence of anterior teeth whose sizes are 414 

more tightly genetically controlled and less susceptible to epigenetic perturbation than is 415 

bone formation in the maxilla and premaxilla (Lukacs 1999).  416 

 417 

We found that fossil orangutans from Sumatra show significantly more MLIDs than do 418 

recent Sumatran orangutans and that they show the same proportion of MLID as do 419 

Bornean orangutans. There are two possible explanations for this observation. Anatomical 420 

factors predisposing to MLID, due to shared genetic heritage between southern Sumatran 421 

and Bornean orangutans (Nater et al. 2011), may over-ride island differences in habitat 422 

quality. Alternatively, the quality of the habitat, in terms of developmental stress leading to 423 

anterior tooth crowding, does not differ between Late Pleistocene Sumatra and recent 424 

Borneo. We are not in a position to speculate on what might have changed in the habitat 425 

between the Pleistocene and recent times in Sumatra beyond noting that the documented 426 

demographic decline of Sumatran orangutans must, all else being equal, reduce 427 

competition for nutritional resources among conspecifics. The high occurrence of MLID in 428 

Late Pleistocene paleo-orangutans from southern Sumatra points to a need for further 429 

research to separate the effects of mortality selection in fossil assemblages from a harsher 430 

Pleistocene environment, both of which factors can be expected to increase the occurrence 431 

of MLID.  432 
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 433 

We observed the highest prevalence of MLID in Anapithecus from Rudabanya, Hungary 434 

among whom all five individual Anapithecus show one or both incisors with the defect. This 435 

is the highest prevalence noted so far in any taxon and raises the possibility of marked 436 

developmental stress related to nutrition and/or disease in some members of this taxon. 437 

Such a conclusion is not incompatible with the inference that Rudabanya is a prime habitat 438 

for Anapithecus (Andrews and Cameron 2010) since this is a mortality cohort possibly 439 

created by predation of more vulnerable individuals in a primate troop (Kordos and Begun 440 

2002). The presence of MLID in a pliopithecoid raises the strong likelihood that this 441 

inferred form of dental crowding will be present in some Old World monkeys as well.  442 

 443 

Recent evidence, based on the periodicity of repetitive linear enamel hypoplasia, suggests 444 

that Bornean orangutans show a preponderance of semi-annual stress episodes, in contrast 445 

to Sumatran orangutans, who showed mostly annual cycles (Skinner 2014). This difference 446 

was interpreted as providing mild support for the notion of better habitat quality in 447 

Sumatra (Skinner 2014). This contrasts with an earlier effort to compare postnatal 448 

developmental stress in orangutans, which found no difference between the islands in the 449 

prevalence of localized hypoplasia of the primary canine (LHPC), thought to be a marker of 450 

bone thinning in infancy (Skinner and Newell 2003). However, LHPC occurs in the first few 451 

months after birth while formation of the upper lateral permanent incisor crown spans 452 

about age two to six years (Beynon et al. 1991). Hence, a crowding defect of enamel 453 

formation (i.e., MLID) that occurs during the developmental life stage from full reliance on 454 

breast milk to growing independent foraging by the infant orangutan (van Noordwijk et al. 455 



 20 

2013) could be a useful marker of comparative developmental stress between island taxa 456 

and more suitable than LHPC to examine ideas about differences in habitat quality.  457 

 458 

MLID is much more common in males, and in recent orangutans from Borneo. These two 459 

observations may be linked. In terms of craniofacial dimensions, male Bornean infant 460 

orangutans may be up to 20% larger than females (Hens 2005).  Extrapolating this 461 

observation to nutritional need suggests that lactation demands from a male infant 462 

orangutan are greater (but see van Noordwijk et al (2013)). Human mothers of male 463 

infants can produce milk that has 25% greater energy content (Powe et al. 2010). Such an 464 

adaptation, to respond to greater nutritional demand from male infants, might indicate that 465 

male infant orangutans are more prone to developmental dental crowding under 466 

conditions of relative food stress (as seems to pertain in Borneo (Knott 1998)). 467 

Alternatively, rather than invoking a sex difference in metabolic requirements, there may 468 

be sex differences in the ontogenetic acquisition of skilled foraging behaviors (Russon 469 

2006). Also, rather than arguing for differences in just habitat quality between the islands, 470 

it may be germane that lactation, which presumably provides a reasonably assured 471 

component of the infant’s food requirements, is significantly longer in Sumatran than 472 

Bornean orangutans (van Noordwijk et al. 2013).  473 

 474 

 475 

Conclusion 476 

We examined the form and prevalence of an unusual defect of dental formation, observable 477 

on the mesio-labial surface of the maxillary lateral incisor (MLID) of apes, that we think has 478 
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the potential to be a marker of compromised infant development and, by inference, habitat 479 

quality. Our micro-CT scans and radiography combined with scanning electron microscopy 480 

of enamel surfaces show inter-crypt fenestration, predisposing the unerupted lateral 481 

incisor to direct ‘tooth-to-tooth’ or ‘tooth-to-fenestrated crypt edge’ contact with the 482 

creation of abnormal enamel surfaces including pits, plane-form and ledge defects. Neither 483 

lateral incisor crown size specifically, nor size of the anterior dentition generally, including 484 

sexually dimorphic canine teeth, links to MLID. We conclude that undergrowth of the jaws, 485 

not tooth size, is the major predisposing cause of the defect. There is more of a difference in 486 

MLID occurrence between islands than between sexes. MLID is significantly more common 487 

in Bornean orangutan individuals than in Sumatra, with males more affected than females.  488 

We conclude that the better nutritional environment for growing apes in Sumatra 489 

promotes more optimal jaw growth protecting them from MLID. Surprisingly, paleo-490 

orangutans from southern Sumatra are significantly more affected by MLID than are recent 491 

(northern) Sumatran orangutans, not differing in this respect from Bornean orangutans. 492 

Finally, given the generally high prevalence of this dental crowding defect in Bornean and 493 

fossil orangutans spread from Vietnam to Sumatra, we conclude that the optimal 494 

developmental environment for recent orangutans, currently prevailing in northern 495 

Sumatra, is not typical of the broad spatio-temporal habitats of orangutans in the past. 496 

Thus, while MLID can be proposed as a proxy for habitat quality among apes, its overall 497 

utility may be limited to the detection of optimal habitats only.   498 

 499 
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Figure Legends 688 
 689 
Fig. 1. Labial view of right maxillary lateral incisor (cast) with defect (MLID). This example 690 

shows a commonly observed form with a diagonal notch (indicated by black line), 691 

encroaching onto the root (Tooth 107-44b, paleo-Sumatran orangutan 11484-L2, Lida Ajer 692 

Cave).  693 

 694 

Fig. 2. Source of museum specimens of orangutans where provenience within islands is 695 

known.  696 

 697 

Fig. 3. Radiographs of the maxillary incisor region of two, younger and older, infant 698 

chimpanzees: A. female M475, m2 root apex open; B. male M173, m2 root apex closed. Note 699 

visual superimposition of the less mineralized/formed lateral incisor crown and incisal 700 

edge and crypt wall of the more mineralized/formed central incisor crown.  701 

 702 

Fig. 4. 3D reconstruction from micro-CT scan of unerupted incisors in orangutan infant 703 

UGAZ 14.5.8 with completed milk dentition showing the relationship of the permanent 704 

maxillary incisors during crown formation and fenestrated inter-crypt septa (top right 705 

panel).  Note superimposition of the incisal edge of the central incisor on the mid-crown 706 

region of the lateral incisor crown (bottom left panel).  707 

 708 

Fig. 5. Variation in size and shape of the developmental dental defect in maxillary lateral 709 

incisors (casts) in a variety of primates.  Specimens are turned so the defect is orthogonal 710 

to the viewer. Most north-south measures (in mm) are single profiles taken through the 711 
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deepest part of a defect (in microns) (except where noted). The rectangular area 712 

demarcated in ‘A’ is reproduced in Figure 6. A. 107-42b: paleo-Sumatran orangutan 11485-713 

L48, Lida Ajer Cave, left; B. 107-43b: paleo-Sumatran orangutan 11484-L11, Lida Ajer Cave, 714 

right; C. 107-44b: paleo-Sumatran orangutan 11484-L2, Lida Ajer Cave, right; D. 107-45b: 715 

paleo-Sumatran orangutan 11488-44, left, mean profile across defect width is shown; E. 716 

165b: siamang 11670-1, left; F. 130: Rud 97 Anapithecus hernyaki A.7, Loc.II 1989, left; G. 717 

314: Lufengpithecus lufengensis YV622, left. 718 

 719 

Fig. 6: Scanning electron microscope images of a cast in araldite of a paleo-orangutan left 720 

upper lateral incisor 11485-L48, Lida Ajer Cave, Sumatra. A. Example of enamel hypoplasia 721 

pit that is not a maxillary lateral incisor defect (MLID); note little worn Tomes’ process pits 722 

(★) within the sequestered surface of defect on left side of panel, indicating premature, 723 

abnormal cessation of secretion by enamel-forming cells. B. Close up of deepest part of an 724 

MLID showing the floor of the defect on the left and shoulder of defect on the right. Faint 725 

ridges on the shoulder on the right side of panel represent normal enamel increments 726 

called perikymata (dashed arrows). MLID contours of floor and shoulder do not conform to 727 

normal enamel internal structure. C. Floor of MLID showing abnormal exposure of 728 

somewhat worn Tomes’ process pits (★) (enamel surface exposed to normal wear). D. Low 729 

power overview of MLID; root to left side of panel, cervical part of enamel crown on right 730 

side of panel. This example is large. Bubble artifacts in the deepest part of the defect can 731 

also be seen in panel B. E. Junction of floor of defect with slope of the shoulder (on right). 732 

On the left side, the floor of the defect is obscured by foreign matter that has been partially 733 

cleaned out (see groove on upper right). F. Junction of root (left) surface with enamel 734 
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(right); both are normal in appearance. G. Floor of defect with faintly visible, worn Tomes’ 735 

process pits on upper left obscured, on lower and right sides, by a layer of foreign matter. 736 

H. Normal, worn labial enamel. 737 

 738 
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Table I. Sample of extant orangutans examined for MLID 

Island Male Female Sex unknown Total 
Borneo 16 30 3 49 
Sumatra 13 7 1 21 

Total 29 37 4 70 
     
 

Table II. Sample of fossil hominoid lateral incisors examined for MLID 
 
Taxon N Minimum 

number of 

individuals 

Source Date 

     

Anapithecus hernyaki 7 5 A MN9, 11.2 – 9.7 Ma 1 

     

Lufengpithecus lufengensis 2 2 B Late Miocene, 7 Ma2 

     

Paleo-orangutan Vietnam total 11  10 C  

Dieu Cave 1   undated Pleistocene 

Hang Hum 1   140-80K3, end Pleistocene4 

Hoa Binh 1   undated Pleistocene5 

Lang Trang 7   150K6, Mid-Pleistocene7,80-60K8 

Tham Om 1   250-140K3, Late Pleistocene4 

Paleo-orangutan Sumatra total 56  38 D  

Djamboe 5   56-85K9, 60-70K11, Early Hol12 

Sibrambang 22   Pleist./Holo.9, 128-118K10,13, 80K13 

Lida Ajer 19   >80K9, 11, IS. 5e7,13, Early Hol12 

Unspecified 10    

Total 76    

Source: A. Geological Museum Budapest; B. Zoological Institute, Kunming; C. Institute 

of Archaeology, Hanoi; D. Naturalis, Leiden 

Dating references: 1. Begun et al. 2006 (MNI also based on this article); 2. Ho 1985; 3. 

Bacon et al. 2006; 4. Harrison 2000; 5. Bacon and Long 2001; 6. Jon de Vos (pers. 

comm.); 7. (Long et al. 1996); 8. Bacon et al. 2004; 9. Drawhorn 1994-Lida Ajer dates 

from 18O Stage 4 >71K; 10. de Vos 1983; 11. van den Bergh et al. 1996; 12.  Harrison 

et al. 2006; 13. Louys 2011 
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Table III. Sex differences in MLID expression in recent orangutan samples 

Sample Sex Comparison N Yes/No  % Yes Chi Square1 P 

Borneo Male Teeth 29 27/2 93.1   

 Female Teeth 53 32/21 60.4 9.947 0.002 

        

 Male Individuals 16 15/1 93.8   

 Female Individuals 30 18/12 60.0 5.863 0.015 

        

Sumatra Male Teeth 23 8/15 34.8   

 Female Teeth 14 2/12 14.3 1.854 0.173 

        

 Male Individuals 13 5/8 38.5   

 Female Individuals 7 1/6 14.3 1.266 0.260 

 

1. Fisher’s Exact Tests were run on all comparisons above (as some groups had less 

than five cases) and yielded identical patterns of significance. 

 
Table IV. Comparison of tooth size1 from extant orangutans with and without MLID. 
  

Tooth Measure With MLID Without MLID Student’s Mann-Whitney 

  N Mean N Mean ‘t’ P Value P 
Central  Mesio-distal 6 0.0874 17 -.0309 0.262 0.796 -0.140 0.889 
incisor Labio-lingual 6 0.0970 16 -0.0364 0.294 0.772 -0.295 0.768 
 Crown height 5 0.4624 13 -0.1778 1.375 0.188 -1.626 0.104 
 Volume 5 0.4288 13 -1.2534 1.956 0.068 -1.922 0.055 
Lateral  Mesio-distal 8 -0.0938 18 0.0417 -0.334 0.741 -0.444 0.657 
incisor Labio-lingual 8 0.1477 18 0.0656 0.434 0.674 -0.444 0.657 
 Crown height 8 0.1412 18 -0.0628 0.504 0.619 -0.722 0.470 
 Volume 8 0.1537 18 -0.0683 0.549 0.588 -0.167 0.868 
Canine Mesio-distal 7 -0.0941 16 0.0411 -0.314 0.756 -0.735 0.462 
 Labio-lingual 7 0.455 16 -0.1993 1.610 0.122 -1.604 0.109 
 Crown height 7 0.0416 15 -0.0194 0.141 0.890 -0.035 0.972 
 Volume 7 0.1836 15 -0.0857 0.626 0.538 -0.458 0.647 
All  Volume 5 0.3398 10 -0.1699 1.054 0.311 -0.980 0.327 

 
1. Size is expressed as z-scores (i.e., deviation of a measure from the ‘sex plus island’ 
mean for that measure) 
  



Table V. Dental measures (mm) of upper lateral incisors with and without MLID in 
Paleo-sumatran, Sumatran and Bornean orangutans  
 
 With MLID  Without MLID Student’s 
Measure N Mean SD  N Mean SD ‘t’ P 
Paleo-
sumatran 

         

Mesio-distal 30 8.99 1.01  11 8.96 0.76 0.097 0.923 
Labio-lingual 27 9.34 1.10  11 9.20 1.03 0.366 0.717 
Crown height 7 12.71 1.52  8 12.38 1.19 0.484 0.637 

Volume 5 1109.07 326.20  3 1271.02 233.24 -0.743 0.486 
Sumatran          

Mesio-distal 0 - -  10 8.27 0.96 N/A  
Labio-lingual 0 - -  10 7.87 0.54 N/A  
Crown height 0 - -  10 10.30 1.54 N/A  

Volume     10 683.17 191.01 N/A  
Bornean          

Mesio-distal 8 8.58 0.62  8 8.40 0.78 0.518 0.613 
Labio-lingual 8 8.66 0.80  8 8.31 0.44 1.118 0.283 
Crown height 8 11.78 1.42  8 11.07 1.67 0.928 0.369 

Volume 8 890.44 227.11  8 775.02 162.44 1.169 0.262 
 

  



Table VI. Frequency of MLID in fossil and recent hominoid upper lateral incisors 

Sample Side N Yes/No Affected (%) 

L. lufengensis Left 2 1/1 50.0 

 Right -  - 

 Combined 2 1/1 50.0 

     

A. hernyaki Left 4 4/0 100 

 Right 3 3/0 100 

 Combined 7 7/0 100 

     

Paleo-orangutan     

Sumatra Left 24 16/8 66.0 

 Right 32 21/11 65.6 

 Combined 56 37/19 66.1 

     

Vietnam Left 8 3/5 37.5 

 Right 3 3/0 100 

 Combined 11 6/5 54.5 

     

All paleo Left 32 19/13 59.4 

 Right 35 24/11 68.6 

 Combined 67 43/24 64.2 

     

Recent Borneo Left 47 31/16 66.0 

 Right 40 30/10 75.0 

 Combined 87 61/26 70.1 

     

Recent Sumatra Left 18 5/13 27.8 

 Right 20 5/15 25.0 

 Combined 38 10/28 26.3 

     

All recent Left 65 36/29 55.3 

 Right 60 35/25 58.3 

 Combined 125 71/54 56.8 

 

  



Table VII. Distribution of MLID between recent orangutans from Borneo and 
Sumatra 

Comparison Sample N Yes/No % Yes Chi Square P 

Teeth Borneo 87 61/26 70.1   

 Sumatra 38 10/28 26.3 20.68 <0.001 

       

Individual Borneo 49 35/14 71.4   

 Sumatra 21 6/15 28.6 11.13 <0.001 
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