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Abstract 

An extracellular esterase gene estK was identified in Pseudomonas putida mt-2, and was 

overexpressed to high levels in Escherichia coli. The recombinant EstK enzyme was purified and 

characterised kinetically against p-nitrophenyl ester and other aryl-alkyl ester substrates, and was 

found to be selective for hydrolysis of acetyl ester substrates, with high activity for p-nitrophenyl 

acetate (kcat 5.5 s-1, KM 285 µM). Recombinant EstK was found to catalyse deacetylation of 

acetylated beech xylan, indicating a possible in vivo function for this enzyme, and partial 

deacetylation of a synthetic polymer, poly(vinylacetate). EstK was found to catalyse 

enantioselective hydrolysis of racemic 1-phenylethyl acetate, generating 1R-phenylethanol with an 

enantiomeric excess of 80.4%. 
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Introduction 

 Bacterial lipase enzymes are widely used as biocatalysts for stereospecific hydrolysis of 

racemic ester substrates (1,2). While there are many examples of bacterial lipase enzymes whose 

optimal substrates are esters of long chain alkanoic acids (2), there are fewer examples of bacterial 

esterases, whose optimal substrates are esters of short chain alkanoic acids (3). Esterase enzymes 

are typically members of the -hydrolase superfamily, containing an active site serine 

nucleophile within a Gly-x-Ser-x-Gly (GxSxG) amino acid sequence motif (4). 

 Soil bacteria that are able to break down the lignocellulose cell wall in plant biomass require 

a range of cellulose and xylanase enzymes to break down the cellulose and xylan polysaccharide 

backbones, but they also require esterases in order to hydrolyse ferulate-arabinose linkages in 

arabinoxylan (5), and to hydrolyse acetyl groups attached to the free hydroxyl groups of xylan (6). 

Feruloyl esterase enzymes have been identified in fungi such as Aspergillus niger (7,8) and 

Sporotrichum thermophile (9), but no homologues have been identified in bacteria to date. Xylan 

acetylesterases have been identified mainly in fungi such as Schizophyllum commune (10), but 

bacterial xylan esterases have been identified and characterised in Thermoanaerobium sp (11), 

Bacillus pumilis (12), Clostridium cellulovorans (13), and Butyrivibrio proteoclasticus (14). 

 We have previously shown that bacterial aromatic degraders Pseudomonas putida mt-2 and 

Rhodococcus jostii RHA1 have activity for breakdown of the lignin component of lignocellulose 

(15). Subsequently we have identified members of the dye-decolorizing peroxidase family with 

activity for lignin oxidation: DypB in Rhodococcus jostii RHA1 (16) and Dyp1B in Pseudomonas 

fluorescens Pf-5 (17) both show activity for oxidation of polymeric lignin in the presence of Mn(II). 

The release of ferulic acid from wheat straw lignocellulose by Rhodococcus jostii RHA1 (18) and 

Pseudomonas putida mt-2 (see Supporting information Figure S1) suggests that an extracellular 

bacterial feruloyl esterase enzyme may be present in these bacteria, which could be an important 

accessory enzyme for lignocellulose breakdown. 

 Of the known bacterial esterase enzyme families, EstA from Streptomyces scabies (19) and 

EstK from Pseudomonas mandelii (20,21) have both been reported to be extracellular enzymes. 

Bioinformatic searches revealed an EstK homologue with 73% sequence identity to P. mandelii 

EstK (21) that is present in the genome of Pseudomonas putida mt-2 and P. putida KT2440 

(accession number Q88GB2). In order to establish the function of this EstK enzyme, we have 

cloned and expressed the P. putida mt-2 estK gene, and have characterised the recombinant EstK 

enzyme. We report here its characterisation as an acetylesterase enzyme with activity as a xylan 

esterase, showing enantioselective deacetylation of a racemic synthetic substrate. 
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Materials and Methods 

Materials 

p-Nitrophenyl ester substrates were purchased from Sigma-Aldrich, with the exception of p-

nitrophenyl ferulate, which was prepared using a literature method (22). Other chemicals and 

biochemicals were purchase from Sigma-Aldrich. 

 

Cloning, expression & purification of recombinant P. putida EstK. 

Genomic DNA was extracted from P. putida KT2440 using the Wizard genomic DNA 

purification kit (Promega), using the manufacturer’s instructions. The gene (accession number 

Q88GB2) was amplified from genomic DNA by polymerase chain reaction using the following 

oligonucleotide primers: forward 5’- ATG AAC ATT GTC CAC AAA GCC CTC-3’; reverse 5’- 

TCA CTG CAG ATG CAC TTT AAG TTC G -3’. The amplified 1020 bp gene was cloned into 

expression vector pET151 using the Champion pET151 Directional TOPO Expression Kit 

(Invitrogen) using manufacturer’s instructions, and transformed into E. coli TOP10 competent cells 

(Invitrogen). The sequence of the cloned gene was confirmed by DNA sequencing, and the 

recombinant plasmid was transformed into E. coli BL21 (Invitrogen) for protein expression. 

2L cultures of E. coli BL21/pET151-EstK were grown in Luria Bertani broth at 37 oC, and 

protein expression induced at A595 = 0.6 by addition of 0.5 mM IPTG, then cultures were grown for 

16 hr at 15 oC and harvested by centrifugation at 5,000 g. Cell pellets were resuspended in 20 ml 

lysis buffer (50 mM sodium phosphate pH 8.0 containing 300 mM sodium chloride), and lysed 

using a Constant Systems cell disruptor, then cell debris removed by centrifugation at 15,000 g.  

The cell extract was applied to a Sepharose Ni-NTA column, washed with 50 mM sodium 

phosphate buffer pH 8 containing 300 mM sodium chloride and 20 mM imidazole at 1 ml/min flow 

rate, then eluted in 50 mM sodium phosphate buffer pH 8.0 containing 300 mM sodium chloride 

and 250 mM imidazole. The purified enzyme was desalted by passage through a PD-10 gel 

filtration column, eluting with 50 mM sodium phosphate buffer pH 8.0 containing 300 mM sodium 

chloride and 20 mM imidazole. 

The purified His6-EstK protein was then incubated with His6-TEV protease (1mg/ml) and 

incubated for 16 hr at 4 oC. The treated sample was applied again to the Ni-NTA column, and the 

cleaved EstK protein was eluted in 50 mM sodium phosphate buffer pH 8 containing 300 mM 

sodium chloride and 20 mM imidazole. The purified enzyme was desalted by passage through a 

PD-10 gel filtration column, eluting with 50 mM sodium phosphate buffer pH 7.0 containing 150 

mM sodium chloride. 
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Assays of recombinant EstK 

 p-Nitrophenyl ester substrates were assayed in duplicate in 50 mM sodium phosphate buffer 

pH 8.0 containing 300 mM sodium chloride, and the appearance of p-nitrophenol monitored at 405 

nm ( 18,000 M-1 cm-1). A range of commercially available esters were tested at 10 mM 

concentration in the above buffer, and ester hydrolysis monitored by silica thin layer 

chromatography, using ethyl acetate/petroleum ether (1:2 v/v) as eluent. 

 

Hydrolysis of acetylated xylan and poly(vinylacetate) 

Beechwood xylan (Sigma Aldrich) was acetylated using a published method (23). 100 mg 

xylan was added to dimethyl acetamide (2 mL) in a round-bottomed flask, and refluxed at 110 oC 

for 2 hr with stirring, then cooled. LiCl (0.175 g) was then added, and the mixture stirred for 16 hr 

at room temperature. The mixture was filtered, then pyridine (0.25 ml) and acetic anhydride (0.3 

ml) were added, and the mixture heated at 50 oC for 6 hr. The mixture was then cooled and poured 

into 50 ml ethanol, giving a precipitate, which was collected by filtration, giving a yield of 30 mg 

acetylated xylan. 1H NMR (CDCl3) H 5.00 (1H, d, J = 8 Hz, H-1), 4.70 (1H, m), 4.45 (1H, m), 3.90 

(1H, m), 3.75 (1H, m), 3.30 (1H, m), 2.00 (6.3H, s) ppm. 

Assays of xylan esterase activity (total volume 3.0 ml) contained acetylated xylan (7.5 mg 

dissolved in 200 µl acetone) in 50 mM sodium phosphate buffer pH 8.0 containing 300 mM sodium 

chloride, to which were added either 100 µl 1M NaOH, or 100 µl EstK (7.5 mg/ml protein). 

Samples were incubated for 30 min at 20 oC, then boiled at 100 oC for 5 min to remove protein, 

then centrifuged (microcentrifuge 10 min) before HPLC analysis. Samples (50 µl) were injected 

onto a BioRad Aminex HPX87H Organic Acids HPLC column, eluted isocratically with 5 mM 

H2SO4 at a flow rate of 0.2 ml/min. Acetic acid eluted at 17.9 min. Assay of poly(vinylacetate) was 

carried out as above, except using a sample of 1.0 mg poly(vinylacetate) dissolved in 200 µl 

acetone. 

 

EstK-catalysed hydrolysis of racemic 1-phenylethylacetate 

Racemic 1-phenylethylacetate was prepared by acetylation of 1-phenylethanol with acetic 

anhydride in pyridine, and was characterised by 1H NMR spectroscopy and mass spectrometry (see 

Supporting Information Figure S7). Samples of 7.5 mg 1-phenylethyl acetate were treated with 1.5 

mg EstK in 50 mM sodium phosphate buffer pH 8.0, and left for 16 hr at 20 oC. Products were 

extracted with ethyl acetate (2 ml) and analysed by chiral GC (Chrompac cyclodextrin--236M-19 

column, 50 m length, carrier gas He, T = 115 oC). Retention times: 1-phenylethylacetate 5.58, 6.24 

min; 1-phenylethanol 8.38, 9.06 min for R and S enantiomers, respectively, as previously 

determined (24). Product yields and enantiomeric excess were calculated from peak areas.  
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Results  

Sequence analysis, expression and purification of recombinant P. putida EstK 

 Analysis of the amino acid sequence of P. putida KT2440 EstK (Q88GB2) using the 

BLAST algorithm (http://blast.ncbi.nlm.nih.gov) showed related EstK sequences in P. fluorescens 

(A0A0P8X2W8, 73% sequence identity) and Burkholderia xenovorans (Q13Q49, 64% sequence 

identity). Analysis using the SSDB motif search on the EMBL European Bioinfomatics Institute 

server (http://www.ebi.ac.uk) identified that P. putida KT2440 EstK is a member of -hydrolase 

fold family 3, which includes Sulfolobus tokadaii carboxylesterase (accession Q976W8, 30% 

sequence identity) (25), Lactobacillus plantarum carboxylesterase (accession F9US10, 12% 

sequence identity) (26), and a thermophilic carboxylesterase from Thermogutta terrifontis 

(accession A0A0M3KKY6, <10% sequence identity) (27), whose crystal structures have each been 

determined. These amino acid sequences were aligned using Clustal Omega software (see Figure 1). 

The sequences contain a GxSxG sequence motif at Ser-182 of P. putida EstK (see Figure 1), 

characteristic of an -hydrolase (4). The alignment indicates that conserved His-309 and Asp-283 

are likely to be the other amino acid residues in the Ser-His-Asp catalytic triad, as verified for 

Lactobacillus plantarum carboxylesterase (26) 

 The estK gene (accession number Q88GB2) was amplified by polymerase chain reaction 

from P. putida mt-2 genomic DNA, and the gene was cloned into a pET151 expression vector. 

Expression in Escherichia coli BL21 as an N-terminal His6 fusion protein with induction by 0.5 

mM IPTG gave a new protein band at 36 kDa (see Supporting Information Figure S2) 

corresponding to the predicted molecular weight for EstK (36.3 kDa). Purification by Ni-NTA 

affinity chromatography, followed by proteolytic cleavage with TEV protease and elution from Ni-

NTA gave purified recombinant EstK enzyme in a yield of 25 mg per litre of bacterial culture. 

 

Figure 1. Amino acid sequence alignment of EstK 

 

Kinetic characterisation of P. putida EstK 

 Recombinant EstK was first assayed against a series of p-nitrophenyl ester substrates. No 

activity was observed using synthetic p-nitrophenyl ferulate, implying that EstK is not a ferulate 

esterase. EstK was very active towards p-nitrophenyl acetate, but showed no activity towards p-

nitrophenyl valerate (C5 acid), p-nitrophenyl caproate (C6 acid), p-nitrophenyl palmitate (C16 acid), 

or p-nitrophenyl benzoate, and no activity towards p-nitrophenyl phosphate. Hence EstK appears to 

act as a selective acetylesterase enzyme. 

http://blast.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/


 6 

 Several other aryl-alkyl esters were tested as substrates for EstK, using thin layer 

chromatography to monitor hydrolysis. Turnover was observed using 4-acetoxybenzoic acid, but 

not with methyl benzoate, methyl 4-hydroxybenzoate, or methyl cyclohexane-1-carboxylate 

(structures shown in Figure 2). Using optimal substrate p-nitrophenyl acetate, steady-state kinetic 

parameters were measured, giving kcat 5.5 ± 0.5 s-1 and KM 285 ± 30 µM (see Figure 3A), 

comparable to data reported for this substrate with P. mandelii EstK (Lee et al, 2013). A pH-rate 

profile was also evaluated with this substrate (see Figure 3B), showing optimal activity at pH 7.5-

8.5, and an inflexion in activity below pH 7.5. P. mandelii EstK was reported to show optimal 

activity at pH 8.5, with reduction in activity at pH <8.5 (21). 

 

Figure 2. Substrate specificity shown by P. putida EstK 

Figure 3. Kinetic characterisation of EstK with p-nitrophenyl acetate 

 

Assay of xylan esterase activity 

In order to test for xylan esterase activity, acetylated xylan was prepared. Commercially 

available beech xylan, found by 1H NMR spectroscopy to contain very low levels of acetyl groups, 

was dissolved in dimethylacetamide/LiCl, and acetylated using acetic anhydride/pyridine (23). The 

acetylated xylan was characterised by 1H NMR spectroscopy, and the two O-acetyl groups observed 

at  2.00 ppm (integration 6.3H relative to ring C-H signals, see Supporting Information Figure S3). 

Release of acetate from the acetylated xylan was monitored using a BioRad HPX87H 

Organic Acids HPLC column. Calibration with acetic acid gave a peak at retention time 17.9 min, 

observed at 208 nm or 230 nm, with a sensitivity of 50 nmol acetic acid (see Supporting 

Information Figure S4). Samples of 7.5 mg acetylated xylan were treated with either 1M NaOH or 

0.75 mg EstK in 50 mM sodium phosphate buffer pH 8.0. Treatment with 1M NaOH gave rise to a 

visible change from cloudy to clear assay solution, and released 5.1 µmol acetate by Organic Acids 

HPLC (see Figure 4). Treatment of acetylated xylan with EstK also generated a smaller amount of 

acetate by Organic Acids HPLC (see Figure 4), and led to partial clearing of the acetylated xylan 

solution after 30 min (see Supporting Information Figure S5). From calibration of the HPLC data, 

treatment with EstK released 0.21 µmol acetate from a 30 min assay, corresponding to a specific 

activity of 9.2 nmol acetate min-1 mg protein-1. Incubation of the acetylated xylan with the reaction 

buffer and no EstK gave no observable acetate release. 

 

Figure 4. Release of acetate from acetylated xylan, monitored by Organic Acids HPLC 
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Deacetylation of synthetic poly(vinylacetate)  

Having observed deacetylation of acetylated xylan, we also examined whether EstK could 

catalyse deacetylation of a synthetic polymer, poly(vinylacetate). Samples of 1.0 mg 

poly(vinylacetate) (gift of Dr. M. Gibson, Department of Chemistry, University of Warwick) were 

treated with either 1M NaOH or 0.75 mg EstK in 50 mM sodium phosphate buffer pH 8.0. 

Treatment with 1M NaOH released 240 nmol acetate by Organic Acids HPLC, and treatment with 

EstK for 30 min also generated a smaller peak corresponding to 84 nmol acetate (see Supporting 

Information Figure S6), giving a specific activity of 3.7 nmol acetate min-1 mg protein-1. No release 

of acetate was observed in a control incubation with the reaction buffer and no EstK. 

 

Figure 5. Polymeric substrates for P. putida EstK 

 

EstK-catalysed hydrolysis of racemic 1-phenylethylacetate 

In order to investigate the enantioselectivity of EstK-catalysed hydrolysis using a model 

substrate, racemic 1-phenylethyl acetate was prepared (see Supporting Information Figure S10 for 

characterisation data). Chiral gas chromatography was used to separate the two enantiomers of 1-

phenylethylacetate (retention times 5.58, 6.24 min) and 1-phenylethanol (retention times 8.38, 9.06 

min for R and S enantiomers, respectively). Samples of 7.5 mg 1-phenylethyl acetate were treated 

with 1.5 mg EstK in 50 mM sodium phosphate buffer pH 8.0, and left for 16 hr at 20 oC. Products 

were extracted with ethyl acetate and analysed by chiral GC. Peaks for 1R-phenylethanol (33.1% 

peak area) and 1S-phenylethanol (3.6% peak area) were observed, with a 10-fold preference for 1R-

phenylethanol (see Figure 6, and Supporting Information Figure S8). The calculated enantiomeric 

excess is 80.4%, with an overall yield of 33% of 1R-phenylethanol.  

 

 Figure 6. EstK-catalysed hydrolysis of racemic 1-phenylethylacetate 

 

Discussion 

 Our investigation of P. putida EstK was initially based on the hypothesis that this enzyme 

might be an extracellular feruloyl esterase enzyme. After expression and purification of the 

recombinant enzyme, assay against p-nitrophenyl ferulate revealed that EstK is not a feruloyl 

esterase, however, the enzyme appeared to be a selective acetylesterase enzyme that could have 

applications for biotechnology. EstK is highly active against p-nitrophenyl acetate, but showed no 

activity against p-nitrophenyl valerate or caproate, indicating a high selectivity for hydrolysis of 

acetyl esters. P. putida EstK shows some enantioselectivity for hydrolysis of 1-phenylethyl acetate, 
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and therefore could be a useful biocatalyst for resolution of racemic alcohols via their acetate esters 

(3).  

 The catalytic properties of P. putida EstK are similar to those of a cold-adapted EstK 

enzyme from Pseudomonas mandelii (20), which also has specificity towards p-nitrophenyl acetate 

(21). A further esterase from Pseudomonas putida ECU1011 was reported during the completion of 

this work, which is sequence-related to P. putida mt-2 EstK, which catalyses the stereoselective 

hydrolysis of aromatic -acetoxycarboxylates (28). P. putida EstK is a member of the -

hydrolase family 3, which includes a carboxylesterase from Lactobacillus plantarum (26), a 

carboxylesterase from the thermoacidophilic archaeon Sulfolobus tokodaii (25), and a thermophilic 

carboxylesterase from Thermogutta terrifontis (27), whose crystal structures have been determined. 

Other esterase enzymes present in pseudomonads are intracellular enzymes that are from different 

-hydrolase families: a 332 amino acid EstF esterase has been characterised from P. fluorescens 

DSM 50106 that has high activity towards lactone substrates (29); and a 218 amino acid a broad 

specificity carboxylesterase from P. fluorescens with optimum activity towards methyl esters of 

short to medium chain (C2 to C10) fatty acids, whose structure has been determined (30).  

 In order to explore the biological function of EstK, we have prepared acetylated xylan, and 

have shown that EstK can catalyse the partial deacetylation of acetylated xylan, removing 4% of the 

acetyl groups hydrolysed by NaOH over 30 min, but sufficient to cause solubilisation of the xylan 

sample in aqueous buffer. Deacetylation of xylan could therefore be a possible in vivo function for 

EstK, and is a further member of the group of bacterial xylan esterases (11,12,13,14). EstK also 

catalyses the partial deacetylation of poly(vinylacetate) to polyvinyl alcohol, a polymer with a 

number of biomedical applications such as cartilage replacement and orthopaedics (31). Enzymatic 

methods for poly(vinylacetate) deacetylation could therefore be of interest for biotechnology. The 

only reported enzymatic deacetylation method for poly(vinylacetate) involves cutinase, reported to 

show activities of 0.7-10 µmol nmol enz-1 hr-1 (32). The activity shown by EstK corresponds to 6.2 

nmol nmol enz-1 hr-1, so is less efficient than the cutinase-catalysed deacetylation, but could 

potentially be optimised via protein engineering. 
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Figure Legends 

 

Figure 1. Amino acid sequence alignment of P. putida KT2440 EstK (accession Q88GB2) with P. 

mandelii EstK (accession H6VXL7, 96% sequence identity), Burkholderia xenovorans EstK 

(accession Q13Q49, 64% sequence identity), Sulfolobus tokadaii carboxylesterase (accession 

Q976W8, 30% sequence identity), and Lactobacillus plantarum carboxylesterase (accession 

F9US10, 12% sequence identity), using Clustal Omega software. GxSxG sequence motif at Ser-182 

is highlighted in red, putative catalytic His-309 and Asp-283 residues highlighted in cyan. 

 

Figure 2. Substrate specificity shown by P. putida EstK 

 

Figure 3.  Kinetic characterisation of P. putida EstK with p-nitrophenyl acetate. A, Michaelis-

Menten kinetic plot for p-nitrophenyl acetate; B, pH-rate profile with p-nitrophenyl acetate. 

 

Figure 4. Release of acetate (17.9 min peak) from acetylated xylan by treatment with 1M NaOH 

(green line) or EstK in 50 mM sodium phosphate buffer pH 8.0 after 30 min (red line), monitored 

by Organic acids HPLC analysis (absorbance at 208 nm). 

 

Figure 5. Polymeric substrates for P. putida EstK 

 

Figure 6. Enantioselective hydrolysis of racemic 1-phenylethyl acetate by P. putida EstK in 50 mM 

sodium phosphate buffer pH 8.0 for 16 hr at 20 oC, showing the peaks for 1R-phenylethanol (33.1% 

peak area) and 1S-phenylethanol (3.6% peak area) obtained by chiral GC analysis. The calculated 

enantiomeric excess is 80.4%, enantioselectivity E = 15 (extent of conversion 36.7%, overall yield 

of 1R-phenylethanol 33%). 
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Figure 1.  

 
F9US10_LACPL      - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
Q976W8_SULTO      MI DPKI - KKLLESTI QLPI - - - - - - - - - GKASVEEI RSLFK- - - - - - - - - QFSSLTPREE 
Q13Q49_BURXL      - MKI KFVPVLLAS- - ALAFGSAFAASPASQPTPDRVTSGFLKALNSGKGPAI NTLPPAQA 
Q88GB2_PSEPK      - MNI - VHKALTTSLLALSVSSAFA- - - AGSPGVEQHTQAFLEALEKGGGKPLEQLTPNDA 
H6VXL7_9PSED      - MNT- FSKVLTGTLLAMSI SNAFA- - - - - GDGVEHNTQAFLDVLNAGTGKPMEQLTPI EA 
                                                                                         
 
F9US10_LACPL      - - - - - - - - - - - - - - - - - MQVEQRTLNTAAHPFQI TAYWLDQI SDFETAVDYPI MI I CPGG 
Q976W8_SULTO      VG- - - - - - - - - - - - - - - - KI EDI TI PGSETNI KARVY- - - - - - YPKTQGPYGVLVYYHGG 
Q13Q49_BURXL      RQVLVDAQNGVKVDLSGI DVSNRTI EQDGVSVPLTI V- - - - - RPHGASGTPPVFMFFHGG 
Q88GB2_PSEPK      RAVLTGAQASVKVDLSGVEVKERTI QANGQSI KLQVV- - - - - RPTNVKGDLPVFMFFHGG 
H6VXL7_9PSED      RAVLVGAQASVKLTLPKADVSEKTI QVDGQPLSLTI V- - - - - RPAGVKGELPVFMFFHGG 
                                    . : . :  * :       .               .      : : :    * *  
 
F9US10_LACPL      GFTYHSGREEAPI ATR- MMAAGMHTVVLNYQLI VGDQSVYPWALQQLGATI DWI TTQASA 
Q976W8_SULTO      GFVLGDI ESYDPLCRAI TNSCQCVTI SVDYR- - LAPENKFPAAVVDSFDALKWVYNNSEK 
Q13Q49_BURXL      GWI LGDFPTHERLVRDLVVQSGAVAVFVNYT- - PSPEARYPVAI NQAYAATKWVAAHGDE 
Q88GB2_PSEPK      GWVLGDFPTHQRLI RDLVVGSGAVAVYVDYT- - PSPEAHYPTAI NQAYAATRWVAEHGKE 
H6VXL7_9PSED      GWVLGDFPTHERLVRDLVTGSGAAAVFVNYT- - PSPEAHYPVAI NQAYAATKWVAEHGKE 
                  * :    .       :        .    : :  : : *     .  :   : *  * :  :    :   * :   . . .   
 
F9US10_LACPL      HHVDCQRI I LAGFSAGGHVVATYNGVATQPE- LRTRYHLDHYQGQHAAI I LGYPVI DLTA 
Q976W8_SULTO      FNG- KYGI AVGGDSAGGNLAAVTAI LSKK- ENI KLKYQ- - - - - - - - - - - VLI YPAVSFD-  
Q13Q49_BURXL      I GVDGSRLAVVGNSVGGNMAAVVSLMAKDRQGPAI RFQ- - - - - - - - - - - GLMWPVTDNN-  
Q88GB2_PSEPK      I GVDGKRLAVAGNSVGGNMAAVVALKAKEAGTPALRFQ- - - - - - - - - - - LLLWPVTDAS-  
H6VXL7_9PSED      I NVDGKRLAVAGNSVGGNMAAVVALMAKDKGTPAI KFQ- - - - - - - - - - - VLLWPVTDAS-  
                         :  :  *  * . * * . : . * .     : . .       : : :             *  : * .  .     
 
F9US10_LACPL      GFPTTSA- - - - ARNQI TTDARLWAAQRLVTPASKPAFVW- - - - - - - - - - - - - - - - - - - - -  
Q976W8_SULTO      - LI TKSLYDNGEGFFLTREHI DWFGQQYLRSFADLLDFRFSPI - - - LADLNDLPPALI I T 
Q13Q49_BURXL      - FNDGSYNQFQEGHFLTRPMMKWFWDAYTKDPKQRNEI YASPLRATTEQLKGLPPALI QV 
Q88GB2_PSEPK      - FETASYKQFAEGHFLTTGMMKWFWNNYTVDAKARAQI YASPLRASAEQLKGLPPALVQT 
H6VXL7_9PSED      - FETASYNQFAEGHFLTKNMMKWFWDNYTTDAKQRNEI YASPLRATTAQLKGLPPALVQT 
                             :    *          : *      *   :            .   
 
F9US10_LACPL      - - - QTATDESVPPI NSLKYVQAMLQHQVATAYHLFGSGI HGLALANHVTQKPGKDKYLND 
Q976W8_SULTO      AEHDPLRDQGE- - - - - - AYANKLLQSGVQVTSVRFNNVI HGFVSFFPFI EQGRD- - AI GL 
Q13Q49_BURXL      AGSDVLRDEGE- - - - - - AYGRKLDAAGDEVATVRYDGTI HDFGLLNALAEDAPTKAATRQ 
Q88GB2_PSEPK      AEFDVLRDEGE- - - - - - AYARKLNAAGVTVTSVRYNGMI HDYGLLNPLSQVPAVKAALRQ 
H6VXL7_9PSED      AGADVLRDEGE- - - - - - AYARKLDEAGVPVTSVRYNGMI HDYGLLNVVSQVPAVRSAMLQ 
                     :    * : .         *  .  :       . :    :    * *        .  :                

 
F9US10_LACPL      QAAI WPQLALRWLQEQGLLAGNY 
Q976W8_SULTO      I GYVLRKVFYGK 
Q13Q49_BURXL      LANEL- KQRLQ 
Q88GB2_PSEPK      AGNEL- KVHLQ 
H6VXL7_9PSED      ASEEL- KQHLK 
                      :   
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Figure 2.  

 

 
 

 
Figure 3.   
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Figure 4.  

 

 

 

Figure 5.  
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Figure 6 

 

 


