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Abstract: The topographical features of fractured tensile, flexural, K1C, and impact specimens of  
0.5 wt% multi-layer graphene (MLG)/nanoclay-epoxy (EP) nanocomposites have been investigated. 
The topographical features studied include maximum roughness height (Rmax or Rz), root mean 
square value (Rq), roughness average (Ra), and waviness (Wa). Due to the deflection and bifurcation 
of cracks by nano-fillers, specific fracture patterns are observed. Although these fracture patterns 
seem aesthetically appealing, however, if delved deeper, they can further be used to estimate the 
influence of nano-filler on the mechanical properties. By a meticulous examination of topographical 
features of fractured patterns, various important aspects related to fillers can be approximated such as 
dispersion state, interfacial interactions, presence of agglomerates, and overall influence of the 
incorporation of filler on the mechanical properties of nanocomposites. In addition, treating the 
nanocomposites with surfaces of specific topography can help improve the mechanical properties of 
nanocomposites. 
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1. Introduction 

The polymer matrix composites (PMCs) are commonly used in construction, automotive, and 
aerospace mainly because of high strength to weight ratio [1]. In PMCs, thermosetting epoxy is the 
most commonly used matrix [2]. The damage tolerance and fracture toughness of epoxy can be 
enhanced with the incorporation of (nano-) fillers such as metallic oxides [3,4,5], clays [6,7,8], 
carbon nanotubes (CNTs) [9,10,11], and other carbonaceous materials [12–16]. Various theoretical 
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and computational approaches have been employed to explore the effect of graphene as 
reinforcement on the performance of polymer nanocomposites including but not limited to, quantum 
mechanical-based methods [17], Continuum Mechanics (CM) [18], Molecular Mechanics (MM) [19], 
Molecular Dynamics (MD) [20], atomistic modeling [21], Density Functional Theory (DFT) [22], 
and multiscale modeling [23]. The mechanical, thermal, and electrical properties of graphene based 
polymer nanocomposites have widely been studied. Cao [24] has reviewed the atomistic studies on 
the mechanical properties of graphene and Allegra et al. [25] have reviewed the modeling of polymer 
nanocomposites reinforced with spherical nanoparticles or statistically isotropic aggregates. The high 
strength and stiffness of graphene significantly improve the mechanical properties of polymer 
nanocomposites. Cho et al. studied the mechanical properties of graphene-epoxy nanocomposites 
with a combination of MM and Mori-Tanaka Method (MTM) [26]. Hamdia et al. [27] used five 
different sensitivity analysis (SA) methods to study the influence of uncertainty input parameters on 
the fracture toughness of polymer clay nanocomposites (PNCs). The SA methods include, (1) PAWN, 
(2) EFAST, (3) Sobol, (4) Regionalized Sensitivity Analysis, and (5) Standardized Regression 
Coefficient methods. They reported that all methods showed that stiffness of clay, radius of curvature, 
and aspect ratio have marginal influence on the output with different ranking position. The stiffness 
of matrix was the most influential parameter, followed by concentration of clay and fracture energy 
of the polymer matrix. 

When nano-fillers are introduced in polymers, the fracture pattern significantly changes due to 
the deflection of advancing cracks with strong nano-fillers. The topography of fractured surfaces can 
provide information about the dispersion state of nano-fillers and interfacial interactions. There are 
two main classifications of topography measurement methods: non-contact techniques, such as 
focus-follow method, and contact techniques, such as stylus method [28]. Non-contact techniques 
have found more applications than contact techniques. In case of fragile surfaces, non-contact 
techniques are especially preferred as damage to surface may occur if contacted. In both the 
classifications, the parameter definitions remain the same. The results obtained by two techniques are 
also alike. The non-contact techniques do not only keep the surface under examination intact, but 
also the topography can be measured easily and quickly. However, these techniques have certain 
limitations. For example, those regions of surface which are not in the line of sight may not be 
detected by some non-contact techniques resulting in artefacts. In addition, due to the non-uniform 
intensity of light, the focus lens may follow the surface inaccurately resulting in the erroneous results. 
Furthermore, as there is no external agency to interact with the surface, the topography results will be 
exactly the replica of the surface under examination. At one side, it is an advantage. On the other 
hand, it may produce artifacts in the results. For example, if the surface contains contaminations, 
such as dirt, the contaminations will appear in topography profile. This effect may be well 
pronounced at nano-scale. Therefore, the samples should be prepared meticulously for non-contact 
techniques. 

The influence of topographical features is momentous both at micro and macro levels [29,30]. 
For example, Karger-Kocsis et al. [31] have rightly reported that hierarchical and hairy fillers have 
high surface area and capillary wetting by the polymers that can significantly improve the interfacial 
interactions and result in a concomitant enhancement in the mechanical properties. In addition, 
various attributes of the polymers can be studied from the fractography analysis of the samples [32]. 
The topography also becomes very important when the polymers are applied in tribological 
applications [33]. It is because the cracks in most of the cases originate from the surfaces [34]. The 
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topography plays a crucial part especially in the presence of surface notches as they generate triaxial 
state of stress in the presence of which the polymers show a marked degradation in mechanical 
properties, especially when the polymers are thermosetting such as epoxy. Although micro- and 
nano-scale topography of polymers and polymer nanocomposites have been discussed in detail, 
however, the influence of macro-topography on mechanical properties of polymers has been 
overlooked, especially to correlate the fracture patterns with the topography of samples before 
fracture takes place. 

In current work, multi-layered graphene (MLG)/nanoclay-epoxy nanocomposites of three 
different types were produced: (1) 0.5 wt% MLG-EP, (2) 0.5 wt% nanoclay-EP, and (3) 0.25 wt% 
MLG-0.25 wt% nanoclay-EP. The maximum enhancement in mechanical properties was recorded in 
0.25 wt% MLG-0.25 wt% nanoclay-EP nanocomposites, especially when treated with 1200P 
abrasive paper. The second highest improvement in mechanical properties was observed in case of 
0.5 wt% MLG-EP nanocomposites. However, in case of 0.5 wt% nanoclay-EP, least improvement in 
mechanical properties was observed. It can be attributed to the interfacial interactions and presence 
of agglomerates that cause stress concentration and concomitant degradation of mechanical 
properties [35]. The fractography analysis of the samples revealed that nano-fillers significantly 
influence the fracture patterns. In addition, a careful examination of the topographical features of the 
fractured surfaces suggests that the dispersion state of the fillers, interfacial interactions, and 
presence of any agglomerates of filler can be estimated based on the surface parameters such as 
maximum surface roughness (Rz or Rmax), surface roughness average (Ra), and root mean square 
parameter of roughness (Rq). For example, a high value of Rz (with low Ra value) with deep crater 
and/or trenches indicates the presence of filler agglomerates and concomitant poor mechanical 
properties of polymer nanocomposites. Similarly, a relatively high surface roughness average with 
low Rz value indicates uniform dispersion of the filler and simultaneously improved mechanical 
properties. However, it was observed that waviness average parameter (Wa) does not have any 
relation with the weight fraction, dispersion state, or agglomeration of the filler. 

2. Materials and Method 

2.1. Materials 

MLG (99.2% purity, 80 m2/g specific surface area, 4.5 µm average lateral size, 12 nm average 
thickness) used was purchased from Graphene Supermarket, USA. Halloysite nanoclay was used as 
second filler and purchased from Sigma-Aldrich. The diameter of nanoclay is between 30–70 nm 
with length 1–4 µm and has a tube-like morphology. The density of halloysite nanoclay is 2.53 g/cm3 
and surface area is 64 m2/g. The epoxy and hardeners used were based on bisphenol 
A-epichlorohydrin and dimethylbenzylamine isophorone diamine, respectively. The resin was 
purchased from Polyfibre, UK. The densities of liquid epoxy and hardener were ~1.3 g/cm3 and  
~1.1 g/cm3, respectively. 

2.2. Production of Samples 

The nano-filler was dispersed in the hardener using tip sonicator (Model VC 750, Vibra-cell, 
USA, 750 W, 250 kHz). Although the sonication was carried out at room temperature, however, 
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temperature of the system rose due to high energy vibration produced by tip sonicator. The resins 
were vacuum degassed in separate beakers for 30 min. Then, the resins were mixed manually for  
10 min. The mixing ratio (by weight) of hardener:epoxy was 1:2. The mixture was again degassed 
for 15 min. The samples were cast in silicone molds. Two-step curing was carried out: room 
temperature for 6 h and post-curing at 80 °C for 6 h. The top and bottom surfaces of each sample 
were treated with abrasive papers for 1 min on rotating wheels at rotational speed of 150 rpm. 

2.3. Characterization 

An Infinite focus Alicona G4 optical microscope was employed to measure topography. The 
working principle of the microscope is focus-follow method which is a non-contact method. ASTM 
Standard D792 (Equations 1 and 2) was used to measure densification. The densities of water, 
hardener, and epoxy were 0.9975, 1.1, and 1.3 g/cm3, respectively. Vickers microhardness was 
measured using Buehler Micromet II hardness tester (200 g, 10 s). Universal Testing Machine 
(Instron Model 3382) was used to conduct tensile test (ASTM D638, 4 mm thickness, Type-V 
geometry, 0.5 mm/min), three-point bending test (ASTM D790, 3 × 12.7 × 48 mm, 1.0 mm/min), 
and mode-I fracture toughness test (ASTM D5045, 36 × 6 × 3 mm, crack length 3 mm, 0.5 mm/min, 
Equations 3–5). ASTM standard D 6110 was used to measure Charpy impact toughness (specimen 
dimensions 64 × 12.7 × 3.2 mm with V-notch of 45°, 2.5 mm depth and 0.25 mm tip of radius) using 
Equation 6. The weight of impactor head was 400 g and length of impactor arm was 0.4 m.  
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3. Results and Discussion 

The mechanical properties have been summarized in Table 1. The values indicate that from the 
three compositions made with five surface conditions for each composition, the best combination of 
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mechanical performance can be achieved in case of 0.25 wt% MLG-0.25 wt% nanoclay-EP 
nanocomposites processed with 1200P abrasive paper.  

Table 1. Mechanical properties of 0.5 wt% MLG/nanoclay-EP nanocomposites. 

Sr. Properties As-cast Velvet cloth 1200P 320P 60P 

1 Densification 
(%) 

99.4 ± 0.31 99.4 ± 0.32 99.3 ± 0.35 99.3 ± 0.38 99.1 ± 0.4 

99.3 ± 0.4 99.4 ± 0.30 99.5 ± 0.33 99.2 ± 0.31 99.4 ± 0.33 

99.4 ± 0.25 99.4 ± 0.42 99.3 ± 0.45 99.3 ± 0.36 99.1 ± 0.28 

2 Microhardness 
(HV) 

359 ± 15.2 372.1 ± 10.2 395.4 ± 11.8 335 ± 18.6 298 ± 21.7 

330.3 ± 21.6 362.9 ± 18.3 383.8 ± 9.0 328.5 ± 18.1 312.2 ± 31.4

364.9 ± 21.2 378 ± 19.2 401.3 ± 18.8 340.9 ± 18.6 303.9 ± 21.7

3 Young’s 
modulus (MPa) 

828.5 ± 29.5 839.8 ± 24.5 864.1 ± 28.5 792 ± 35.9 784.9 ± 42.6

747.1 ± 22.1 780.3 ± 17.6 799.6 ± 23.6 741.1 ± 28.9 710.2 ± 33.8

852.5 ± 18.9 863.8 ± 16.8 888 ± 19.5 816 ± 23.4 808.9 ± 28.6

4 UTS (MPa) 64.1 ± 1.5 66.5 ± 2.1 72.6 ± 1.6 59.6 ± 1.8 55.2 ± 2.5 

52.8 ± 1.1 56.6 ± 1.2 62.9 ± 1.3 52.3 ± 2.1 50.3 ± 3.6 

68 ± 1.2 70.3 ± 1.7 76.5 ± 1.9 63.5 ± 2.9 59.1 ± 3.1 

5 Tensile strain 
(%) 

7.9 ± 1.1 7.1 ± 0.9 7.2 ± 1.6 8.8 ± 1.2 9 ± 2.1 

10 ± 0.9 10.1 ± 0.8 11.1 ± 0.8 11.5 ± 1.1 14.7 ± 1.8 

7.7 ± 0.8 6.9 ± 0.9 7 ± 0.7 8.6 ± 1.3 8.8 ± 1.8 

6 Flex. Modulus 
(MPa) 

799 ± 38.3 887.1 ± 25.3 897.3 ± 30.5 862.9 ± 33.5 652.9 ± 42.6

734.4 ± 32.7 833.8 ± 22.5 860.1 ± 33.4 816.4 ± 34.4 624.7 ± 43.4

832 ± 31.4 920.1 ± 26.2 930.3 ± 31.4 895.8 ± 37.5 685.9 ± 32.6

7 Flex. Strength 
(MPa) 

78.7 ± 6.9 81.5 ± 3.8 89.9 ± 2.9 75.6 ± 4.6 73.6 ± 8.3 

66.8 ± 5.3 73.9 ± 4.5 85.1 ± 4.4 71.9 ± 6.6 62.9 ± 8.7 

81.7 ± 3.5 84.5 ± 3.1 92.9 ± 2.6 80.1 ± 8.5 79.7 ± 10.7 

8 Flex. Strain (%) 5.8 ± 0.06 5.8 ± 0.29 5.9 ± 0.31 6.2 ± 0.49 6.9 ± 0.4 

6.7 ± 0.08 6.6 ± 0.12 6.3 ± 0.13 6.9 ± 0.21 7.7 ± 0.29 

5.5 ± 0.05 5.5 ± 0.08 5.6 ± 0.09 5.9 ± 0.12 6.6 ± 0.19 

9 K1C (MPa·m1/2) 1.12 ± 0.1 1.14 ± 0.15 1.14 ± 0.05 1.13 ± 0.1 1.12 ± 0.1 

0.88 ± 0.08 0.78 ± 0.09 0.92 ± 0.11 0.84 ± 0.13 0.83 ± 0.17 

1.14 ± 0.07 1.16 ± 0.08 1.17 ± 0.09 1.16 ± 0.11 1.15 ± 0.13 

10 G1C (J/m2) 341.5 ± 51.5 546.6 ± 42.3 620.5 ± 47.9 684.7 ± 62.8 759.6 ± 69.8

311.2 ± 31.6 521.3 ± 26.3 589.2 ± 22.3 637.1 ± 41.5 744.3 ± 48.6

365.4 ± 29.3 570.6 ± 28.6 644.5 ± 22.6 708.6 ± 38.9 783.6 ± 43.4

11 Charpy (kJ/m2) 1.31 ± 0.15 1.45 ± 0.1 1.57 ± 0.09 1.24 ± 0.12 1.21 ± 0.2 

1.22 ± 0.11 1.42 ± 0.09 1.33 ± 0.09 1.15 ± 0.11 1.15 ± 0.17 

1.35 ± 0.09 1.49 ± 0.08 1.61 ± 0.1 1.28 ± 0.13 1.25 ± 0.19 
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The fractography surfaces of 0.5 wt% MLG-EP nanocomposites are shown in Figure 1.  

 

Figure 1. Fractured surfaces of (a) 3PBT, (b) K1C, and (c) Charpy impact test specimens 
of 0.5 wt% MLG-EP samples. From top to bottom: (i) as-cast, treated with (ii) velvet 
cloth, (iii) 1200P, (iv) 320P, and (v) 60P. The length of bottom edge of each image is  
800 nm. 

The monolithic epoxy shows straight bamboo-like fracture pattern indicating the occurrence of 
typical epoxy brittle fracture. However, with the incorporation of carbonaceous reinforcements, the 
cracks are rebounded resulting in non-linear and parabolic fracture patterns [36]. This was the reason 
that no specific orientation of crack propagation was observed in 3PBT specimens reinforced with 
MLG. The fracture became coarser when the samples were treated with 1200P abrasive paper and 
velvet cloth while trenches and straight and flat fracture patterns were observed when the samples 
were treated with 60P and 320P abrasive papers. The fracture patterns of K1C specimens differ from 
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those of 3PBT specimens in a way that fracture was originated from the notch tip as the tip generated 
high levels of stress concentration. As the displacement rate is relatively low in K1C testing, the 
surface notches showed a significant impact on the topography of fracture surfaces. However, the 
influence of surface notches and topographical features on fracture patterns was marginalized in case 
of Charpy impact testing where the samples were suddenly impacted at the back of the notch by a 
heavy and pointed hammer. Sheer and straight fracture patterns were observed in Charpy impact 
specimens and fracture took place right from the tip of notch.  

The fractography surfaces of 0.5 wt% nanoclay-EP nanocomposites are shown in Figure 2.  

 

Figure 2. Fractured surfaces of (a) 3PBT, (b) K1C, and (c) Charpy impact test specimens 
of 0.5 wt% nanoclay-EP samples. From top to bottom: (i) as-cast, treated with (ii) velvet 
cloth, (iii) 1200P, (iv) 320P, and (v) 60P. The length of bottom edge of each image is  
800 nm. 
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Figure 3. Fractured surfaces of (a) 3PBT, (b) K1C, and (c) Charpy impact test specimens 
of 0.25 wt% MLG-0.25 wt% nanoclay-EP samples. From top to bottom: (i) as-cast, 
treated with (ii) velvet cloth, (iii) 1200P, (iv) 320P, and (v) 60P. The length of bottom 
edge of each image is 800 nm. 

Overall, a coarser topography of fractured surfaces was observed in 0.5 wt% MLG-EP samples 
than in 0.5 wt% nanoclay-EP samples. No specific orientation of crack propagation was recorded in 
3PBT specimens reinforced with nanoclay. As in case of 0.5 wt% MLG-EP samples, the fracture 
patterns of K1C specimens of 0.5 wt% nanoclay-EP samples differ from those of 3PBT specimens in 
a way that fracture was originated from the notch tip as the tip generated high levels of stress 
concentration. As the displacement rate is relatively low in K1C testing, nanoclay also showed a 
significant impact on the topography of fracture surfaces. However, the influence of nanoclay on 
fracture patterns was marginalized in case of Charpy impact testing where the samples were 
suddenly impacted at the back of the notch by a heavy and pointed hammer. Sheer and straight 
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fracture patterns were observed in Charpy impact specimens and fracture took place right from the 
tip of notch. The fractography surfaces of 0.25 wt% MLG-0.25 wt% nanoclay-EP nanocomposites 
are shown in Figure 3. Overall, the coarsest topography of fractured surfaces was observed in case of 
0.25 wt% MLG-0.25 wt% nanoclay-EP nanocomposites. The details of topographical features are 
further discussed below. 

The topographical features of fracture surfaces of tensile specimen of 0.5 wt% 
MLG/nanoclay-EP nanocomposites are shown in Figure 4–6. The surface waviness (Figure 4–6ii) 
and Gaussian distribution (Figure 4–6iv) did not show a specific trend of change with the abrasive 
papers. It can be attributed to the multiple factors affecting the fracture pattern such as surface 
notches, MLG/nanoclay distribution, orientation, and interfacial interactions. Usually a specific 
pattern is observed in waviness due to wobbling of machining tool. On the contrary to Wa, a specific 
variation in surface roughness (Figure 4–6iii) was observed. The surface roughness of as-cast     
0.5 wt% MLG/nanoclay-EP nanocomposites varied between ±6 µm with the presence of deep crests 
and troughs. With the treatment with the velvet cloth, the surface roughness changed slightly which 
became pronounced in samples treated with 1200P abrasive paper. However, in case of samples 
treated with 60P and 320P abrasive papers, deep trenches can be observed in roughness patterns 
(Figure 4–6diii and Figure 4–6eiii) that may be attributed to the presence of large notches. The 
trenches can also be observed in the surface profiles (Figure 4–6dv and Figure 4–6ev). 

 

Figure 4. Topographical features of 0.5 wt% MLG-EP fractured tensile samples:      
(a) as-cast, treated with (b) velvet cloth, (c) 1200P, (d) 320P, and (e) 60P. From top to 
bottom: (i) tensile images, (ii) waviness, (iii) surface roughness, (iv) Gaussian 
distribution, and (v) surface profile. 
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Figure 5. Topographical features of 0.5 wt% nanoclay-EP fractured tensile samples:   
(a) as-cast, treated with (b) velvet cloth, (c) 1200P, (d) 320P, and (e) 60P. From top to 
bottom: (i) tensile images, (ii) waviness, (iii) surface roughness, (iv) Gaussian 
distribution, and (v) surface profile. 

 

Figure 6. Topographical features of 0.25 wt% MLG-0.25 wt% nanoclay-EP fractured 
tensile samples: (a) as-cast, treated with: (b) velvet cloth, (c) 1200P, (d) 320P, and (e) 60P. 
From top to bottom: (i) tensile images (ii) waviness, (iii) surface roughness,         
(iv) Gaussian distribution, and (v) surface profile. 
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The topographical features are summarized in Figure 7. This Rz comes from the ravines formed 
due to brittle fracture in the thermoset. The Rz values were significantly decreased by the 
incorporation of nano-fillers. As ravines present in monolithic epoxy are removed with the 
incorporation of nano-fillers due to the diversion of advancing cracks, therefore, a decrease in Rz 
indicates a uniform dispersion of fillers and deflection of the cracks. In addition, an increase in 
mechanical properties with the incorporation of nano-fillers further corroborates the uniform 
dispersion of nano-fillers and energy dissipation at deflection of cracks. The variation in Rz value is 
in accord with the change in the mechanical properties. Therefore, Rz can be an indicator of the 
dispersion state of filler. 

 

Figure 7. Topographical features of tensile specimens of 0.5 wt% MLG/nanoclay-EP 
samples. 

Apart from Rz, Ra is another important parameter to consider. The decrease in Ra with 
increasing Rz may seem contradicting however can be explained on the basis of observed fractured 
patterns and surface roughness charts. When treated with 1200P abrasive paper and velvet cloth, no 
crater was formed due to which lower Rz value was observed. In addition, cracks were deflected 
quite sharply resulting in sudden variation in surface roughness thereby increasing the Ra value. On 
the contrary, when treated with 60P and 320P abrasive papers, deep notches were present that caused 
fracture and increased Rz due to crater formation. However, once cracks formed, it could not deflect 
much and rest of the fractured surface remained flat thereby decreasing the Ra value. Therefore, a 
high value of Ra (with low Rz value) can be on indicator of smoother samples surfaces, absence of 
agglomerates and uniform dispersion of nano-fillers. On the other hand, a low value of Ra (with high 
Rz value) indicates the presence of deep surface notches, agglomerates, and non-uniform dispersion 
of nano-fillers. A similar trend was observed in Rq values as in Ra values. However, no specific trend 
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was observed in surface waviness and may not be indicative of dispersion state of nano-fillers and 
topographical features. 

The relationship between dispersion state and nature of crack advancement is schematically 
shown in Figure 8.  

 

Figure 8. Influence of graphene dispersion on crack propagation method: (a) poorly 
dispersed graphene, (b) ideally uniformly dispersed graphene.  

Figure 8(a) is a schematic of poorly dispersed agglomerated graphene in epoxy matrix. As 
graphene sheets have stress concentration factor associated with them, (micro-) cracks are generated 
around the graphene agglomerates. These (micro-) cracks may propagate under the application of 
external load and may lead to fracture. If there is a pre-existing crack in the matrix, it will propagate 
when load is applied. If the crack faces the agglomerate, it will either be restrained by the 
agglomerate or detour/bifurcate to circumvent the agglomerate in case of higher loads. However, as 
graphene is present in the form of agglomerates, a major portion of the epoxy matrix is not 
reinforced at all. Therefore, crack can easily propagate through the brittle epoxy until fracture occurs. 
This is possibly the reason why poorly dispersed graphene was not found efficient in improving the 
fracture toughness of epoxy [37]. This poor dispersion does not only degrade the mechanical 
properties but also the influence can be observed in case of fractured surfaces. The advancing cracks 
do not deflect frequently and follow a linear path. Therefore, relatively lower Ra values were 
observed in case of nanoclay where low mechanical properties were recorded. On the contrary, if 
graphene is uniformly dispersed, it would be difficult for the crack to move. Figure 8(b) shows a 
schematic diagram for an ideal situation in which graphene of nearly same dimensions is 
homogeneously dispersed into epoxy matrix. In this case, as sheet size is relatively smaller than that 
of graphene agglomerate, the stress concentration factor associated with them is benign and there is 
almost no (micro-) cracking around individual graphene sheets. If there is a pre-existing crack in the 
matrix and it starts propagating under the influence of external load, it has to come across graphene 
sheets at each step. If the external load is high enough, each crack will split into multiple sub-cracks. 
There is required energy at each division and sub-division of crack to generate new surfaces. 
Therefore, extensive energy will be dissipated before the crack covers long displacement from its 
initial position to cause fracture. This will significantly improve the fracture toughness of the epoxy. 
Therefore, uniformly dispersed graphene is preferred to improve the fracture toughness of the 
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epoxy-graphene nanocomposites. This uniform dispersion does not only improve the mechanical 
properties but also the influence can be observed in case of fractured surfaces. The advancing cracks 
is deflected frequently and follow a tortuous path. Therefore, a relatively higher Ra values were 
observed in case of MLG and MLG-nanoclay nanocomposites where improved mechanical 
properties were recorded. 

4. Conclusion 

In conclusion, the topographical features of fractured patterns of polymer nanocomposites can 
be used to approximate the dispersion state, interfacial interactions, and presence of agglomerates, 
and overall influence of the incorporation of fillers on the mechanical properties of produced 
nanocomposites. The highest mechanical properties were recorded in case of MLG-nanoclay-EP 
nanocomposites. A high value of Ra (with low Rz value) can be on indicator of smoother samples 
surfaces, absence of agglomerates and uniform dispersion of nano-fillers. On the other hand, a low 
value of Ra (with high Rz value) indicates the presence of deep surface notches, agglomerates, and 
non-uniform dispersion of nano-fillers. A similar trend was observed in Rq values as in Ra values. 
However, no specific trend was observed in surface waviness and may not be indicative of dispersion 
state of nano-fillers and topographical features. 
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