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Abstract

Seasonality is an im portant part of many real time series. While issues of 
seasonal heteroscedasticity and aggregation have been a cause of concern for 
data  users, there has not been a great deal of theoretical research in this 
area. This thesis concentrates on these two issues.

We consider seasonal time series with single season heteroscedasticity. We 
show tha t when only one month has different variability from others there 
are constraints on the seasonal models th a t can be used. We show th a t both 
the dummy and the trigonometric models are not effective in modelling sea
sonal series with this type of variability. We suggest two models th a t perm it 
single season heteroscedasticity as a special case. We show th a t seasonal het
eroscedasticity gives rise to periodic autocorrelation function. We propose a 
new class, called periodic structural time series models (PSTSM) to  deal with 
such periodicities. We show th a t PSTSM have correlation structure equiva
lent to th a t of a periodic integrated moving average (PIMA) process. In a 
comparison of forecast performance for a set of quarterly macroeconomic se
ries, PSTSM outperform periodic autoregressive (PAR) models both  within 
and out of sample.

We also consider the problem of contemporaneous aggregation of time series 
using the structural time series framework. We consider the conditions of 
identifiability for the aggregate series. We show th a t the identifiability of the 
models for the component series is not sufficient for the identifiability of the 
model for the aggregate series. We also consider the case where there is no 
estimation error as well as the case of modeling an unknown process. For 
the case of the unknown process we provide recursions based on the Kalman 
filter tha t give the asymptotic variance of the estim ated parameters.
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Ithaca

W hen you set out on your journey to Ithaca,
pray th a t the road is long,
full of adventure, full of knowledge.
The Lestrygonians and the Cyclops, 
the angry Poseidon -  do not fear them:
You will never find such as these on your path, 
if your thoughts remain lofty, if a fine 
emotion touches your spirit and your body.
The Lestrygonians and the Cyclops, 
the fierce Poseidon you will never encounter, 
if you do not carry them within your soul, 
if your soul does not set them up before you.

Pray th a t the road is long.
T hat the summer mornings are many, when,
with such pleasure, with such joy you will enter ports seen for the first time;
stop at Phoenician markets,
and purchase fine merchandise,
mother-of-pearl and coral, amber and ebony,
and sensual perfumes of all kinds,
as many sensual perfumes as you can;
visit many Egyptian cities,
to learn and learn from scholars.

Always keep Ithaca in your mind.
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To arrive there is your ultim ate goal.
But do not hurry the voyage at all.
It is better to  let it last for many years; 
and to anchor at the island when you are old, 
rich with all you have gained on the way, 
not expecting th a t Ithaca will offer you riches.

Ithaca has given you the beautiful voyage.
W ithout her you would have never set out on the road. 
She has nothing more to  give you.

And if you find her poor, Ithaca has not deceived you. 
Wise as you have become, with so much experience, 
you must already have understood what Ithacas mean.

Constantine P. Cavafy (1911)
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Chapter 1

Introduction and summary

Seasonality is an im portant part of many real time series. Prom births and 

deaths to the Gross Domestic Product of any country, seasonal effects are 

prominent. Analysts attem pt to understand and estimate seasonal effects in 

order to either remove them through seasonal adjustm ent or forecast them. 

In the last 10 years, there has been considerable progress in research on sea

sonal time series. This is partly a result of growing interest from national 

statistical institutes tha t publish most series in a seasonally adjusted form. 

The US Bureau of Census has developed X-12-ARIMA (Findley, Monsell, 

Otto, Bell, and Pugh 1998) based on the well known X -ll  method. On the 

other hand, Eurostat has concentrated research on TRAMO-SEATS (Gomez 

and Maravall 1996), which is based on an ARIMA model decomposition. Re

cently the two methods have been brought together within the same platform 

called X-13A-S (Findley 2005). Both these lines of research concentrate on 

identifying a relatively stable seasonal component and finding the best way 

to  remove it. While issues of seasonal heteroscedasticity and aggregation
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have been a cause of concern for practitioners in these institutes as well as 

d a ta  users, there has not been a great deal of theoretical research in this 

area. This thesis concentrates on these two issues.

Seasonal heteroscedasticity is evident in many economic tim e series. The ex

istence of seasonal heteroscedasticity can be a ttribu ted  to  a combination of 

economic behaviour and administrative practices. For example, the Average 

Earning Index for United Kingdom shows a higher volatility in the months 

of March and December. This is a result of the so-called “bonus effect” ; the 

big financial corporations of the City of London give large bonuses to some 

of their employees at the end of the financial year and to a lesser extent at 

the end of the calendar year. This brings up the to ta l index for the average 

earnings for the whole of UK in these two months. The size of the bonuses 

are directly linked with the state of the economy since a be tter economic out

look will bring higher profits and therefore higher bonuses. In this example, 

the seasonal component is linked with the business cycle, creating seasonal 

heteroscedasticity.

The second issue we consider is th a t of aggregated tim e series. This is an 

im portant issue in many practical applications of national statistics. For 

example, motor vehicle production index in the UK is broken down into 

production for home and export markets. Until recently, all three series have 

been seasonally adjusted separately, bu t following a methodological review 

(Tripodis 2005) the export series is derived from the to ta l series and the home 

market series. The problem is related to  whether it is be tter to  forecast the 

components of a dataset and add up the forecasts (indirect m ethod), or to
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forecast the aggregate series separately (direct method).

Chapter 2 provides the reader with the necessary background on S tructural 

Time Series Models (STSM). Popularised by Harvey (1989), this family of 

models provides clear advantages over the autoregressive integrated moving 

averages (ARIMA) class of models, particularly in the analysis of economic 

time series. We use STSM as the main tool for analysing time series. STSM 

allow us to model directly the salient features of a dataset as simple stochastic 

processes. This chapter introduces the state space form, in which structural 

time series models are generally written. Once w ritten in a state space form, 

estimation of the structural models is straight-forward. The Kalman filter 

provides one-step ahead prediction errors along with their associated vari

ances which can then be plugged into the prediction error decomposition of 

the likelihood function. The likelihood function is then maximised with any 

of the widely used maximisation methods, such as Newton’s method.

Chapter 3 introduces the problem of seasonal heteroscedasticity. We begin 

by looking at the simple case where a single season has different volatility 

compared to all other seasons. This behaviour is a feature of many economic 

time series. For example in monthly production series, the variability is 

higher for the month with the lowest level of production. We show th a t 

modeling of this single seasonal heteroscedasticity is more complicated than  

originally thought and only few seasonal models can be used to  model this 

behaviour. We look at the power of a likelihood ratio  test for identifying 

single season heteroscedasticity. We also look at some real life seasonal time 

series, showing the relative merits of some seasonal models with seasonal
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heteroscedasticity for different applications.

C hapter 4 generalises the concept of seasonal heteroscedasticity to  many 

periods and to different components. We show th a t seasonal heteroscedas

ticity can be identified by periodicity in the autocorrelation function. We 

define the periodic structural time series models which can be used to model 

periodic autocorrelation. We show th a t the periodic structural time series 

models are equivalent to  periodic moving average models. The advantage of 

the structural approach is the ease of identifying the appropriate model. We 

compare the periodic structural models with periodic autoregressive models 

which have been used extensively in economic time series (Franses 1996). 

We show th a t in most cases, the periodic structural models provide better 

forecasts than  the periodic autoregressions for a set of macroeconomic time 

series.

Chapter 5 looks at the problem of contemporaneous aggregation of tim e se

ries. Extensive work has been done in this area for ARIMA models. In this 

thesis, we consider the structural time series framework. We show different 

ways of aggregating time series models and consider the conditions of iden

tifiability for the aggregate series. We show th a t the identifiability of the 

models for the component series is not sufficient for the identifiability of the 

model for the aggregate series. We also consider the case where there is no 

estimation error as well as the case of modeling an unknown process. For 

the case of the unknown process we provide recursions based on the Kalman 

filter th a t give the asymptotic variance of the estim ated parameters.
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Finally chapter 6 provides the conclusions and some ideas for further research. 

The Appendix includes some subroutines w ritten in Ox (Doornik 1998) th a t 

were used in the estimation of the models described in this thesis.
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Chapter 2 

Basic Concepts

2.1 Introduction

In this chapter we provide theoretical background to the thesis. Our focus is 

on unobserved component models and in particular on structural time series 

models (STSMs). Popularized by Harvey (1989), STSM provides clear ad

vantages over the autoregressive integrated moving averages (ARIMA) class 

of models, particularly in the analysis of economic time series. STSMs are 

readily identified and their parameters provide information about salient fea

tures such as trend and seasonality. In §2.3, the structural time series models 

used in the applications of this thesis are defined. The state  space form is 

defined in §2.2 where some examples are also given. Since this thesis con

centrates on the seasonal behaviour of a time series, we define and sketch in 

§2.3.1 to §2.3.3 the main characteristics of widely used seasonal models. The 

Kalman filter provides the basis for inference in any model th a t is cast in
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state-space form. Filtering and smoothing algorithms are introduced in §2.4; 

filtering provides the best linear estimates of a system given the previous ob

servations, while smoothing provides the best linear estimates of the system 

given the entire sample. Rounding errors and matrices close to  singularity 

may cause the Kalman filter to break down. Under these circumstances a 

transformed version, known as the square root filter ensures th a t the state  

covariance m atrix is always positive definite; details are given in §2.5 and in 

the appendix we provide a set of subroutines w ritten in Ox (Doornik 1998) 

used in conjunction with Ssfpack (Koopman, Shephard, and Doornik 1998) 

implementing the square root filter. Ssfpack is a suite of C routines used for 

the statistical analysis of univariate and multivariate models which are cast 

in the state-space form. §2.6 discusses how the Kalman filter is initialised 

when the starting values for the state  are unknown. §2.7 discusses how the 

structural models are estimated via the prediction error decomposition of the 

likelihood function. Param eter estimation requires numerical maximisation 

algorithms which are presented in §2.7.1. The final section presents the main 

diagnostic tools used for checking and model selection throughout this thesis.

2.2 S tate  space m ethods

A structural time series model can be estim ated once it is represented in state  

space form. Applying the Kalman filter and smoother to  the state  space form 

gives minimum mean square linear estimators of the components. Assume we 

have p  time series, we denote by yijt the observation of the i th series at time t.
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Then let Y ijt =  [yit

A convenient representation of the linear state  space model is (Durbin and 

Koopman 2001):

where et ~  NID(0, H t), r]t ~  NID(0 , Q t), and NID denotes normally and 

independently distributed. Furthermore, y t is a p  x 1 vector of observations 

and ctt is an unobserved m  x 1 vector called the state  vector. The first 

equation can be seen as linear regression with time varying coefficients. The 

second equation assumes th a t the time-varying coefficients follow a Markov 

process. For the purpose of this thesis, we assume th a t {et}, and {rjt} are 

uncorrelated. This assumption can be relaxed for general models. The ma

trices Zt, Tt, Qt, R t, and H t are deterministic and depend on elements of an 

unknown param eter vector t/>, estimated by maximum likelihood. The state 

space form can be used to represent a wide range of tim e series models.

2.3 Structural tim e series m odels

In an unobserved component model all components are modelled explicitly 

as stochastic processes. A key distinction for the structural tim e series model 

is th a t all components represent salient features of the data, such as trend. 

A detailed discussion of the structural time series models is found in Harvey 

(1989). In the structural model paradigm, a time series can be decomposed 

into its salient features such as trend, seasonal and business cycle component.

Yt
&t+i

Z ta t -F et observation equation
T  t OLt +  RtT7* measurement equation

(2 .2 .1)
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This decomposition can also be seen within the framework of factor analy

sis. Standard factor analysis, tries to determine m  uncorrelated unobservable 

common factors which are linear combinations of the of n  (m < n) observable 

correlated variables and explain the m utual correlation of the system. The 

aim of a univariate structural time series model is to determine m  unobserved 

components of an observed time series {yt : t  =  1, . . .  n}  w ith correlated ob

servations. The components are associated with the salient features of the 

time series and each observation of {yt } is the sum of the m  unobserved 

components measured at time t. Each component at time t  is a linear com

bination of future and past observations. In general we may assume th a t 

the components are mutually uncorrelated. Nevertheless, as in standard fac

tor analysis, this can be extended to the case where some components are 

mutually correlated.

The simplest structural time series model is the local level model (LLM) in 

which the level of the series follows a random walk.

yt = y t +  et {et} ~  NID(0, a 2)
fjk+1 =  \H +  rjt {Vt} ~  NID(0, a 2)

where {et}, and {r]t} are mutually uncorrelated. By adding a slope term  {fit}, 

which also follows a random walk, we obtain the local linear trend model:

yt = nt + et {et} ~  NID(0, of)
fjLt+i =  fM + Pt + m {rjt} ~  NID(0,cr2)
A+i =  A  +  Ct {Ct} ~  NID(0, of)

where {//*} is the trend. The matrices of the state-space form are:

ott — {jj'tjPtY =  ( i ,  o)
H  t =  o\ R t = I2

22



T,

Qt

We are particularly interested in seasonal series. A standard decomposition 

th a t we will use in this chapter is:

where {7*} is the seasonal component. The model given by (2.3.1) is re

used models for seasonality are given below.

2.3 .1  D um m y seasonality  m od el (D S)

A simple way to guarantee a deterministic seasonal pa ttern  is to  assume
s —1

th a t the seasonal effects sum to zero, th a t is, 71 = — Y l ' l t - j -  We allow
3 =1

seasonality to evolve over time by adding a white noise term  {cut}. This 

gives the relationship (Harvey 1989):

V t =  I h  +  7( +  El {ft} ~  NID(0,7 ) (2.3.1)

ferred to as the basic structural model (BSM). Descriptions of commonly

s - l

or equivalently:
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s— 1
where S(L)  is the seasonal summation operator, S(L)  =  ZA

Subtracting 7 t_s from both sides of (2.3.2), we get:

s

T1 I t —s ^   ̂Kt—j T  '' ^sl f t  ~  ^ t —1
3 = 1

(2.3.3)

since <S(L)7 i_i =  Thus {74} follows a seasonal ARIMA (0,0 ,1) x

(0 , 1, 0) s .

For the case of a local level and a dummy seasonal component, we have:

yt = fit +  7 t +  et 

1 +  Vt

(2.3.4)

{7J  follows (2.3.2), while { e j  ~  NID(of), {u;J ~  NID(0, cr£), {r]t} ~  

NID(0, crjj) and {et}, {77̂ }, {07} are mutually uncorrelated. The stationary 

form of (2.3.4) is:

A syt = S(L)r}t +  A sj t +  A set

Let a m atrix with subscript [7 ] denote the part of the state-space system 

matrices (2.2.1), which corresponds to  the seasonal component. Then for the 

dummy seasonality model Z[7] =  [1, 0 , . . . ,  0] is an 1 x (s — 1) vector and,

t H =

- 1  - 1  . . .  - 1
0 1 . . .  0

is an(s — 1) x (s — 1) matrix.
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2 .3 .2  T rigonom etric seasonal m od el (T S)

In the trigonometric case, the seasonal effect is the combination of [s/2] cycles
[s/2]

(Harvey 1989; Priestley 1981) th a t is 7 1 = 7 ^  where:
j = 1

\ _  ( cosXj sin Xj Tm-i | _j_ / M,* 1 (2 3 5)

, % t /  \  ~  sin Xj cos Xj )  /  \ ^ j , t

where j  = 1, . . . ,  [s/2], t = 1 , . . . , n  and Xj =  27x j js  is the frequency, in

radians. The component 7 *̂  appear as a m atter of construction. The noise

terms {07,*} ~  NID(0, cr|) and {a;*t} ~  NID(0, <r|) are mutually uncorrelated 

and [s/2] denotes the integer part of s /2

For illustration consider the quarterly case where we have 2 seasonal frequen

cies 7r/2 and 1r. Then (2.3.5) becomes:

7 m  — 7 i , t - i  +  M , t  ( 2 . 3 . 6 )

7i% =  - 7 i , t - i + ^ i V i  (2-3-7)

72,t = —72,£-1 +  M,t = >  72,t +  72,t-l =  M,i (2.3.8)

From the first two equations we get:

7i,* — —7i,t-2 +  Mm +  u i,t-i ==^ 7i,t +  7m—2 — M,t +  wm -i (2.3.9) 

From (2.3.8) and (2.3.9) we get:

S{L)~/i,t — M,t +  M .t-i +  Mm-i +  wm-2 (2.3.10)

S (L )^ 2,t — M,t +  M,t- 2 (2.3.11)
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Thus,

2

S {L )^ t — — <*h,t +  ^ i,t- i  + ^ i , t - i  +^1,4-2 +  w2,t +  ^2,t-2 (2.3.12)

From (2.3.12) we can see th a t {5(L)7t} follows and MA(2) process in the 

quarterly case. Harvey (1989, Ch.2) says th a t the trigonometric seasonal 

model is a MA(s-2) process, without giving a proof. In the next theorem we 

give a complete proof.

T h e o re m  2 .3 .1 . { S (L ) j t }  with *yt following a trigonometric seasonal model 

defined in (2.3.16) follows a MA(s-2) process.

Proof From (2.3.5) we have:

/ \
7i,t

where

(2.3.13)
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is the trigonometric operator (Harvey 1989, p.21). We put the right hand 

side of (2.3.13) in MA(1) form by re-writing the error terms and we get:

=  (! -  ei L )zj,t>  f o , t }  ~  NID(0, (7?) (2.3.14)

Using (2.3.14) we can easily see that:

»/2]

S (L )Jt = J 2  § § ( 1  -
7=i n  )

For j  = 1 , . . . ,  [s/2] —1 the nom inator in the right hand side has a lag operator 

polynomial of order s, while the denominator is of order 2. For j  =  [s/2] the 

nominator is of order s — 1 and the denominator is of order 1. Thus, the right 

hand side is a sum of [s/2] independent MA(s-2) processes and consequently 

5 (L )7t is itself an MA(s-2) process. □

Following the same notation as in §2.3.1, the relevant parts of the system 

matrices for the trigonometric seasonality model are: Z[7] =  [1 ,1 , . . . ,  1] is an 

1 x (5 — 1) vector and,

t m =

cos Ai sin Ai . . .  0
— sin Ax cosAi . . .  0

0 - 1

is an(s — 1) x (s — 1) matrix.

Alternatively we can formulate the seasonal model in term s of 5 — 1 effects 

associated with the amplitude of deterministic sine and cosine waves defined 

in the seasonal frequencies A j =  2irj/s  for j  = 1,..., [5/ 2] (Hannan, Terrell,
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and Tuckwell 1970). If these effects are collected in the (5 — 1) x 1 vector T t , 

we write (Proietti 2000):

where K  is a diagonal matrix, such th a t the diagonal elements vary with the 

frequency. In the common variance case K

2.3 .3  H arrison and S teven s season a l m o d e l (H S)

sonal model. This representation has a time-varying observation equation, in 

which the seasonal factors are explicitly modelled as a multivariate random 

walk. For the Harrison-Stevens model, Z[7] is time-varying and ensures th a t 

the correct seasonal factor is related to time t and T[7j =  I s. The state space 

model for the seasonal factors is :

I t  =  Z  t T t (2.3.15)

z't =  [cos Ait, sin Ai t , . . . ,  cos Ap/2]t] 

r t = Tt_i +  Kt , Kt ~  NID(Os_ i,K )

An alternative seasonal specification is the Harrison and Stevens (1976) sea-

I t  = x'tSt

St - ^ t  ~  NID(0, Q,)

(2.3.16)

1 1 1
s s s

1 1
s s s (2.3.17)

1 — A /
S  /
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where 8 t is an s x 1 vector containing the seasonal effects, x't = [D\t , . . . ,  D st], 

with Djt — 1 in season j  and 0 otherwise, and is =  [1, 1 , . . . ,  1]' is an s x 1 

vector. Prom (2.3.16) and (2.3.17) we get:

since i'V ar(u;t) =  0 and E(u;*) =  0 by construction of u j t . Then from (2.3.16) 

we have that E(irs8 t) =  E (i's5t_i), which for is<5o =  0 gives is8 t = 0. Hence 

seasonal components sum to zero over seasonal periods.

Following Proietti (1998), we get by repeated substitution in (2.3.16):

7 1 =  X f S t - s + l  +  x t ^ t - s + 2  +  • • • +  XtUJt- 1 +  x t ^ t

l t - l  — x t - \ 8 t ~ s + l  +  X t - l O J t - s + 2  +  • • •  +  x t - l ^ t - l

l t - s + 2  =  ® * - s + 2 ^ t - s + l  +  x t-s+2<*>t-s+2

l t - s + 1  — * t - s + l ^ t - s + l

Then:

We then prove the following:

T h e o re m  2.3.2. { S ( L ) j t} with 7 1 following a Harrison and Stevens seasonal 

model defined in (2.3.16) follows a M A (s-2 )  process.

Var ( i 'w t )  =  i'sV ar(u;t ) i s =  0 

E (i'au>t) =  i's E (u ;t ) =  0

s— 1

(2.3.18)

X t ^ t  +  ( x t +  x t - \ ) ' <- ^ t - l  +  • • • +  ( X t  +  . . . +  X t - s + 2 ) ' o J t - s + 2

since i 's<$
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Proof. Prom (2.3.18), we see that:

V ar(S(L)7 t) =  x'tV&r(ujt) x t +  . . .  +  ( x t +  . . .  +  a5t_s+2)'Var(ii;t)(2ct +  . . .  +  a?t_s+2)
s —2 k k

=  Y P P Y l x ' t - P x *->-
k = 0 j= 0  £=0

In general the autocovariance function of S (L )^ t is:

2.4 K alm an filter and sm oother

This section gives the Kalman filter (Kalman 1960) and sm oother equations 

for the case where the initial state a i  ~  N ( a i , P i )  where a \  and P i  are

some of the elements of a\  and P i  are unknown. Filtering updates the system 

each tim e a new observation comes in. There are several way to  derive 

the Kalman filter, see Anderson and Moore (1979) and references therein;

The two following simple lemmas from multivariate normal regression theory

which shows th a t S ( L ) j t ~  M A (s  — 2). □

known. The Kalman filter and smoother can be modified for the case where

we derive it for the Gaussian case following Durbin and Koopman (2001).

provide the basis for the treatm ent of the Kalman filter and sm oother in this 

thesis.
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L em m a 2 .4 .1 . Let (x, y)' ~  where:

Px
and £  =

v  y^ x x  ^ x y
p

Py V V^ y x  ^ y y

then the distribution of  x  conditional on y  is also multivariate normal with 

mean:

Px\y Px ^ xV ^yy  &  P’v)

and covariance matrix:

v  , — v  _ y  v —1 v^xx]y ^ x x  ^ x y ^ y y  -^yx

Proof. A proof can be found in Anderson (1984) □

Replacing y  with ^ ^ J  in Lemma 2.4.1 we get the following result.

L em m a  2.4 .2 . Let x, y , and z be jointly multivariate normal with = 0

and £ yz =  0, then the distribution of x  conditional on y  and z is also 

multivariate normal with mean

Px\y,z Px\y ^ x z ^ zz z

and covariance matrix

^ x x \ y , z  x x \ y  ^ x z

Proof A proof can be found in Durbin and Koopman (2001) □
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2.4 .1  D erivation  o f  K alm an  filter

The Kalman filter obtains the conditional distribution of ctt+\ given Y t for 

t = 1 , . . .  ,n . Assuming all observations are normally distributed, conditional 

distributions of any subset are also normal and are completely defined by the 

first two moments. We use the notation E ( a t |Y f_!) = at and V a r(a t |Y t_i) =  

P t . The following derivation is based on Durbin and Koopman (2001):

The one-step ahead prediction error of y t given Y t_i is:

v t = y t -  E (y t |Y t_i)

— y  t — E(Z tOLt +  et |Y f_i)

— Yt -  Zfa*

W hen Y t is fixed, Y t_i and y t are fixed, so Y t_i and v t are fixed. Conse

quently:

a t+i — E(o:t+i |Y t)

=  E (T to:t +  H trjt \Y t) 

-  T tE (a* |Y t) (2.4.1)

and:

Pt+ i — V ar(a i+i |Y f)

=  Var(T*a* +  K trjt \Y t)

=  T tV ar(a* |Y t)T ; +  R*Q*R; (2.4.2)

E ( a t |Y t) =  E(ott\Y t- i j V t) 

V ar(a* |Y f) =  V ax(at |Y t_1, v t)
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Using Lemma 2.4.1 and 2.4.2 and the fact th a t E(u) =  0 and E (v t|Y t_ i) =  

E (Z ta t +  et -  Z iat |Y t_i) =  0 we have:

E ( a t |Y t) -  E ( a t |Y t_1} v t)

=  E ( a t |Y t_i) +  C o v (a t , Vt)Vax(vt)_1v t 

=  a t +  Co v ( a t , v t)V ar(vt)-1t;t (2.4.3)

We have:

C o v (a t , v t) =  E { E ( a iVf|Yf_1)}

=  E[E {(XtCZitCXt +  et ~  Z ta t)f\Yf_i}]

=  E l E ^ a ' j Y ^ O l Z ;  -  E f E f a t l Y ^ O J a j z ;

=  (P* +  a ta't)Z't — a ta!t Zj

=  (2.4.4)

since E (a ta J |Y t_i) =  P* +  a ta[ and E(cttet) = 0. We also have:

F t =  Var(i7t |Y 4_i) =  Var(Z*a* +  et -  Zta t\Yt-i)

=  Z tP tZ[ +  H t (2.4.5)

Substituting (2.4.3), (2.4.4), and (2.4.5), in (2.4.1) gives:

a t+i — T ta t +  T t P t ^ t ^ t  l v t

— (2.4.6)

where:

K( =  T jP jZ jF f1 (2.4.7)
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We also have:

V a r(a t |Y t) =  V ar(a*|Y  t_ l t v t)

=  V ar(a t |Y t_i) -  C o v (a t , v t)V ar(vt |Y t_i)Cov(a*, v t)'

=  P t -  P t Z j F - ^ P ;  (2.4.8)

Substituting (2.4.8) in (2.4.2) we get:

p m  =  t *p *t ; - t *p *z ;k ; +  r *q , r ;

— T ^ P (2. 4. 9)

where:

L* =  T t - K fZ* (2.4.10)

Collecting equations (2.4.7)-(2.4.10) we have the Kalman filter equations:

v t =  y t -  Zt a t  

F t =  Z tp * z ;  +  H f 

K* -  T .P .Z J F -1

L t = T t - K tZ t (2.4.11)

d t + i  — T t a t +  K - t v t  

P m  — T tP fL  ̂+  R tQ tRj

for t =  1 , . . . ,  n. v t with variance F t is the one-step forecast error of y t given

Y t- i  •

The Kalman filter is said to be in a steady state if the recursion for P t+1 is 

time invariant (Harvey 1989), th a t is, if:

Pm  = Pt = P
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The Kalman filter has a steady state if there exists a time-invariant error 

covariance m atrix P  which is the solution to  the m atrix equation, known 

also as the Ricatti equations:

P  -  T P T '  +  T P Z  (Z P Z ' +  H ) _ 1 Z P T '  -  R Q R  =  0

The solution is referred as the steady state solution of the Kalman filter. Use 

of the steady sta te1 after convergence leads to considerable computational 

savings since the inversion of F t at each point in time is no longer required.

2.4 .2  F ixed  interval sm ooth er

The estimation of cxt given all the available observations y i , . . . ,  y n is done 

through smoothing. Using a similar argument as in the filtering, the vector 

Y n is fixed when Y t- \  and V t , . . . ,  v n are fixed. The following derivation is 

based on de Jong (1989) and Durbin and Koopman (2001). Using lemma

2.4.2 and since v t , . . . , v n are mutually uncorrelated we have:

&£ =  E ( a t |Y n) =  E ( a t |Y t_i, i7t, . . . ,  v n)
n

= a t +  ^  C ov(at , V j)F ~ lVj (2.4.12)
j = t
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Since E(t>2|Y3_i) =  0 then C ov(a t, Vj) = E{E(a(o '|Y t_1)} and as before 

E (a(aJ) =  P t +  OjO't. We then have:

E{E(att/i |Yt_1)} =  Ptz;

E{E(ati>'t+i|Y ,_i)} =  E[E{(Q((Zj+1a (+i +  et+i — Zt+i<xt+i)')|Y(_i}] 

= E[E{(a((Z(+iT (a ( +  Zt+iRiT7( + et+i 

- Z t+1Ttat - Z (+1Ktwt)')|Yt_1}]

= P tT;z' j +  ata’tt ; z 1+1 -  ata’tT ’tZt+l -  P.ZJKJZ;

4+1

=  PtL'tZ't+1 (2.4.13)

=  P ((T e — ZiK()'Zj

E {E (ati;J+2|Y(_i)} =  p (l ;l ;+1z ;+2

E{E(att/„|Y,_i)} =  P ^ - .-L ^ ^ Z ;

Substituting (2.4.13) in (2.4.12) we have:

^■n — o ?( 4- P „ Z nF n — QIt +■ P n r n — 1

1 =  ® n —1 “I-  P n —l Z n _ j F n _2't>n _ i  +  P n _ i L n _ j Z n F n U n

® n —1 “I-  P n —l^Vi—2

d t =  a t +  PfZjFt ^  + P tLjZj+1Ft^ji;t+i 

+  . . .  +  P tL j . . .L ; _ 1z ; F - 1t;n 

— o t +  P tr t_ i (2.4.14)
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where:

U z —1 =  Z n F n V n

r n - 2 — Z n_ 1F n_ 1i ; n_ i  +  L n_ 1Z nF n v n  

=  Z n_ i F n_ i i ; n- i  +  L n_ 1r n_ i

r t- 1 =  ZjFj +  LjZj+1F t+1v (+i

H h LJ • * -LJj. j ZJjF " 1^

=  Z j F r 1^  +  L {rt

The variance of the smoothed estimates is (de Jong 1991):

V t =  V ar(a* |Y n) -  V a r(a t |Y t_i, v u  . . . ,  v n )
n

=  Pt  ~  Cov(a t, ^j)F"1Cov(at, Vj)'
3=t

Using (2.4.13) we have:

V„ =  P „  -  P X F n- % P l  =  P „  -  p „n „_!p ;

V„-1 = Pn-i — T’n-\7Jn_iFnLl7,n-.iY>'n_l

= Pn-1 — Pn-lN„_2P^_i

v ,  =  P t -  P t Z j F - '^ p :  -  p tL ;z ;+1F-+\ z (+1Ltp ;  

 P (L; . . . L ; _ 1z ; F ; 1z„L „_ 1---L ep ;

=

(2.4.15)

(2.4.16)
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where:

N b_, = Z'n¥~lZn

N„-2 =  Ẑ l_1Fnl 1Zn_i +  L^_1Z^Fn1ZnLn_i 

~  Zn_iFn_iZn_i +  Ln_1N n_iLn_i

N t-i -  ZjF^Zt +  L j Z ^ F ^ Z ^

H +  Lj • • • Ljl_ 1ZjlF n 1Z nL n_ 1 • • • L f 

= Z jF r^ t +  LjNtLt (2.4.17)

Collecting (2.4.14), (2.4.15), (2.4.16), and (2.4.17) we have the smoothing 

recursions which represent the fixed interval smoother as proposed by de Jong 

(1988), de Jong (1989), and Kohn and Ansley (1989):

<*-t =  a t +  P  trt- 1

r f-i =  Z jF t lv t +  L'trt

V t =  P t - P t N ^ P t  

N t_j -  Z J F '^ . +  L J N ^  (2.4.18)

for t =  n , . . . ,  1. r t_! is a weighted sum of innovations Uj occurring after 

time t  — 1.

The algorithm proposed above provides an alternative to  the classical fixed 

interval smoother (Anderson and Moore 1979) . This is:

OLt — a t\t +  P t |tT jP t+1(a 't — a t)

a t \t  =  E (at|Yt) =  a t +  P tZ'tF ~ l v t (2.4.19)

P t,t =  V ar(a t |YO =  P t - P tZ ;F - 1ZtP ,
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for t =  n , . . . ,  1. As pointed by Koopman (1993), (2.4.19) requires the inver

sion of Pf, while (2.4.18) requires only the inversion of F t. The advantages 

are:

1. F t has usually smaller dimension than  P t and;

2. F t has already been inverted during the filtering process

2.4 .3  D istu rb a n ce  sm ooth er

We also derive recursions for computing the smoothed estimates et =  E (et|Y n) 

and f]t = E(r/t |Y n). Following the same approach as before we have:

n

et = . . . , v n) =  ^ E { E ( e ^ ' |Y « _ 1)} F 7 1t;;, (2.4.20)
j=t

We have (Koopman 1993):

E{E(et^;|Yt_!)} =  E{et(Ztat +  €t -  Ztat)'|Yt_i} = Ht

E{E(ett;^+1|Y t_i)}  =  E [E {et(Z t+ iat+ i +  €t+i — Z t+ iat+ i)/ |Y t_ i}]

=  E[E{€t(Zt+iTtQ:t +  Z t+iRfT7t +  ct+i 

—Zt+i T ttttZ t+ iK t^ t)/ |Y t_i}]

=  - H tK'tZ 't+ 1
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E { E (e ^ J+2|Y f_i)} =  E [E {et (7it+2CXt+2 +  £t+ 2 ~  Zt+2Q't+2 )/ \Y t - i } \

=  E [E{et(Zt+2Ti+iQ:t+i +  T i t ^ ^ t + i V t + i  +  e t + 2

— Zit+ 2 rEt+lCLt+l  — ^ t + 2 ^ - t + l v t + l ) ' [ ^ t - l } ]

=  E [E {et(Zf+2Tt+i a t+i +  Zit + 2 ^ t + i rf t+ i  +  e t + 2

— Zt+2Ti+iT id t — Z t+2rEt+iKtVt — 

Zt+aK t+iV t+O 'lY t-i}]

=  - H t K j T t + i Z t + a - H t ^ Z j ^ K ^ Z ; ^

=  - h , k ;l ;+1z ;+2

E j E ^ t ^ Y ^ ) }  = - H t K ^ - . - L ^ z ;  (2.4.21)

As in de Jong (1988) and Kohn and Ansley (1989), substituting (2.4.21) into

(2.4.20) we get

et =  -  K ;z ;+1F (: > (+1 -  K'tL't+1Z t+2F ^ 2v l+ 2  -■■■

K i ^ - L ' ^ Z K 1̂ )

=  H ^ v ,  -  K {r t)

=  H(U( (2.4.22)

The smoothed estimate of rjt is:

n

f,t =  Et o | Yt_1)t , (, l Y t - O j F j S  (2.4.23)
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We have:

E{E(r7̂ ; |Y t_1)} =  E{rjt (ZtOLt + et — Z ta t) ' \Y t_ i}

=  Fi[E{r)t (ZtTt-iQLt- i  +  Z tH t- iV t- i  +  et ~  ZtQ'tYlYt-i}]

= 0

E{E(r7ti;J+i |Y t_ i) }  =  E [ E { r ) t ( Z t + iOit + i +  € t + i  — Zt+ia t+ i);|Y t_ i} ]

=  E [E{rjt (Zt+i T tOLt +  Z t+iH trft +  et+i — Zi+i a i+i) / |Y t_ i |]

—

E{E(r7t-i;J+2|Yf_i)} =  E[E{rjt (Zt+2a t+ 2 +  et+ 2 — Zf+2a <+2)/ |Y t_i}]

— E [E{?7f(Zi+2Tt+iT ta i + Z ^ T ^ R ^

+ Z f+2Rf+i?7i+1 +  ei+i — Zi+2Tta t+i) /|Y f_ i}]

=  ZH2Kt# w )' (2.4.24)

— QtF^Tf+1Zt+2 — QtRtZt+1K i+iZ f+2

=  Q tR jL j+1Z j+2

E{E(f|t< |Y t_i)} =  Q t R iL ^ - . - L U z ;  (2.4.25)

As in Koopman (1993), substituting (2.4.24) into (2.4.23) we get

V t =  +  Ĵt+ l'^ lt+ 2 ^ t+ 2 'V t+2  —  • • •

Lt+1 * • • LJj. j ZJjF n 1̂ n)

=  QiRjrt (2.4.26)

We also derive the variances of the smoothed disturbances. Using lemmas 

(2.4.1) and (2.4.2) and equations (2.4.21) we get (de Jong 1988; Kohn and
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Ansley 1989)

Var(e*|Yn) =  Var(et|Yt_i, v u
n

=  Var(et|Yf_i -  ^  Cov(et, t;J)Var(t;J|Y:?_1)~1Cov(6f, Vj)'

j = t
n

=  H, -  ^ E { E ( e t̂ |Y t_1) } F - 1E{E(e1̂ |Y t_1)}'
j = t

=  H t -  H((F,_1 +  K ’t Z t + ^ Z t + i K t

^ tF t+ iZ j+2F ;+12Zt+2L(+iK( — • • •

- K ; l ;+1 • • • L ' ^ F - ' Z n U . ,  ■ ■ ■ L t+1K t)H j

=  h ( -  H t( F - ‘ +  k ;n , k , ) h ;

=  H, -  H(D (H; (2.4.27)

In a similar way, using equations (2.4.24) we get: (Koopman 1993) 

Var(jj,|Y„) =  Var(»j(|Y(_ i,t;l,
n

=  Var(r7t|Yt_i -  Cov(r/t, v j )Var(vJ|YJ_i)"1Cov(?7̂ , vj)'
j = t

n

= H t -  ^ E { E ( e l^ |Y t_ 1)}F J 1E {E (£t^ )}'
j = t

— Qt — Q(Ri(Z(+iFt+11Zt+i +  Lj+1Zj+2Ft^2Zt+2Lt+i +  • • • 

+ l ;+1 ■ • • L U Z ^ Z n L , , - !  • • • L(+i)R (Q't

=  Qt -  Q,RJN(R,Q; (2.4.28)

42



Collecting (2.4.22), (2.4.26), (2.4.27), and (2.4.28) we have the disturbance 

smoothing recursions (de Jong 1988; Koopman 1993):

et =  H tu t

u ( =  F , '•»! -  K jr ,

Var(e(|Y„) =  H tH tD (Hj

d ( =  f - 1 +  k ;n (k (

= QtRjrt
Vax(»/t|Y n) =  Qt -  Q ,R ;N tR ,Q ; (2.4.29)

where r t and N t are derived from recursions (2.4.18)

2.5 Square root filter

In this section, we present the equations for the square root filter (Morf 

and K ailath 1975). Seasonal models are particularly susceptible to round-off 

errors th a t may result in a negative definite value for the conditional state  

covariance m atrix Pt. The problem is avoided by using the square root filter. 

This filter is based on orthogonal lower triangular transform ations for which 

we use Givens rotation techniques (Golum and van Loan 1996).
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2.5 .1  G ivens rotations

Let U be a m  x n  matrix with m  > n. We would like to  transform U to  an 

upper triangular m atrix U* using orthogonal m atrix G, such th a t GG' =  Im. 

We define the Givens m atrix G(z — 1, i, 9) as the identity m atrix Im with four 

elements replaced by:

Gi,i = =  c

G{-l,i =  5

G ij-1 =  — s

where c = cos(6 ) and s =  sin(0) for some 0. Premultiplication of U  by

G(z — 1 ,i ,0 )  is the same as a counterclockwise rotation of 0 radians in the

(i — 1, z) plane. The element of U* in the k th row and Ith column is then:

{cUi—l,k sUi^k  ̂ f
T  sUi^k k %

Ujik k 7̂  i — 1, i

It is clear we can force U*t to be zero by setting:

-  Xl 
y /x l  + x l  

-  X 2  

y /x l  + x l

where:

xi  =  Ui—ij

x 2 =  Uiti

for which c2 +  s2 =  1 and sx\  +  sx 2 =  0. Since GG7 =  I m, Givens rotations 

can be applied repeatedly to create zero blocks in a m atrix with the overall
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transform ation being orthogonal. It follows th a t, if m  <  n, U  can be trans

formed to  a lower triangular m atrix by applying the previous transformations 

to  the transpose U '. In §A.l we provide a code w ritten in Ox (Doornik 1998) 

th a t applies repeated Givens rotation to create a lower triangular m atrix

2.5 .2  Square root form

Following the notation of (Durbin and Koopman 2001), we define the parti

tioned m atrix Ut by:

/  Z tP t H t 0 \
‘ “  (  T (P t 0 R ,Q t )

where P t , and Qt are lower triangular matrices so th a t :

Pt = PtP't

h , -  h *h ;

Q t — QtQ[

In Harrison and Stevens seasonal model 2.3.16 Qt is not of full rank and 

the Choleski decomposition cannot be used. Since Qt is square, it can be 

decomposed as:

Qt = c tAtc '

where C* is a m atrix of eigenvectors and At is a diagonal m atrix with the 

eigenvalues in the diagonal. Then we apply the Givens rotations to the m atrix 

Qi/2 =  C A (1/2 to get Q f . It follows that:

F t Z tP tT t \
T tP tZ't T tP tT't +  r , q * r ;  ;
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Applying Givens rotations to XJt to get a lower triangular m atrix U*

TI. =  ( u ; , t o o
‘ ' U 2,( UJrf o

It follows th a t (Morf and K ailath 1975):

‘ f 1 u 2,tu ; , t i ^ u ^  +  U 3 .«u^ 
F t ZtP (T t

T tPtZ '( T tP tT 't +  r , q (r ; ,

so that:

u ;,, =  f ,

U ;<( =  T (P (Z'(F - '  =  K ,F , 

u ; , ( =  P«+1

Pt+i is then used to give an update for U t. The update for the state  vector 

a t is (Durbin and Koopman 2001):

0*1+1 — T  to t +  K  tVt

= T ta , +  T tP tZ 'tF j-1̂  

=  T t a t U ^ U ; - ^ ,

where v t =  y t -  Z ta t.

2.6 In itia lisation

In order to start the filtering and smoothing operations, we need to  make 

certain assumption for the distribution of o l\ .  The variance m atrix P i  of
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the initial vector Qj contains diffuse elements when some components of the 

state are non-stationary, see Ansley and Kohn (1985), de Jong (1991), and 

Koopman (1997):

P i  — P*,l +  ft P  00,1

This formulation implies th a t some Kalman filter quantities are also diffuse. 

The exact initial Kalman filter is then (Koopman 1997):

O't+l — T ,a ,  +

p  *,i+l — T ,P  *,,Tj — C*,, +  R ,Q ,R^

Poo.t+l — T ,P  oo^Tj — C qq,,

K ,|t — M*>tF*>t +  M ^ F ^

F*,t — z ,p * ,,z ; +  H ,

Poo ,t — z,Poo,,z;

M*,, =  T(P*,tz ;

Moo,, — T,Poo,,Z^

C*,t — +  M 00>tF 00jt(M*jt

-̂'00, t — M qq̂ F qq

(2 .6 .1)

F* t and F ^ ,  are calculated by the diagonalising F*,, and F ^  in the following 

way:

(Jl,tj *̂ 2,t) Fqo5f ( J l ,,, J 2,t)
I r 0 
0 0 (Jl.tj ^ 2,t) —

v*,, 0
0 I N-T

where J ,  =  (Ji,,, J 2,t) is a nonsingular matrix, r =■ rank(Foo,,) and rank(V* , t ) <  

r. Then F ^ t =  J i , t J i ,  and F~t = J 2,tJ2 1- The exact initial Kalman filter 

starts off with a \ = 0, P*,i =  0 and Poo,i 13 Im
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2.7 E stim ation

We use Gaussian maximum likelihood for estim ation and inference. W hen 

the initial conditions are known, so th a t ol\ has density N ( o i , P i )  where a\ 

and P i  are known then the log-likelihood is (Harvey 1993):

n

logL(V>; Y„) =  ^ l o g / f y e l Y , ^ )  (2.7.1)
t= 1

where xp is the vector of parameters, / ( y t |Y t_!) is the conditional density 

function of y t and / ( y i |Y 0) =  / (y i ) .  For the structural models, xp is usu

ally a vector of the variance param eters th a t need to  be estimated. Since 

E (y t |Y t_i) =  Z ta u v t =  y t -  Z ta t and F t =  Var(yt |Y t_1), equation (2.7.1) 

becomes:

log L(ip', Y„) =  - ^ l o g 27T -  i  y y io g  IF,I +  t/ tF r 'w ,)  (2.7.2)
t = 1

Given the param eter values, the likelihood can be evaluated using a single 

run of the Kalman filter. The representation in (2.7.2) is often referred to  as 

the prediction error decomposition of the likelihood function (Harvey 1989).

2.7 .1  N um erica l op tim isa tion  a lgorith m s

As we saw in, the likelihood function (2.7.2) is a function of a vector xp of 

unknown parameters. We estimate xp by maximising the likelihood function 

by iterative numerical procedures. The most widely used numerical proce

dure for optimising a function is Newton’s method. The basis for Newton’s
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m ethod is a linear Taylor series approximation. It solves the following equa

tion (Durbin and Koopman 2001):

(2.7.3)

Using the first-order Taylor series around an arbitrary  point 0  yields:

di(i>) = -  i>) (2.7.4)

where:

Using (2.7.3) and (2.7.4) and then equating 0  to 0 i+1 and 0  to 0 4 we obtain 

the following iteration:

’/’i+i = tp i~  92(V’i)“ 19i(V’i ) (2-7.5)

The iteration is repeated until it converges or until a switch is made to 

another optimisation method. Newton’s m ethod will converge very rapidly 

in many situations. If the Hessian m atrix 02(0) is negative definite for all 0  

then a unique maximum exists for the likelihood function. The first derivative 

d\ (0 )  gives the direction of the step taken to the optimum and ^2(0 ) modifies 

the size of the step. We can modify (2.7.5):

VVn =  Vh +  ^ ( 0 i ) _1^ i(0 i)  (2-7.6)

by including a line search within the optimisation process for s. The optimal 

value for s is usually found to be between 0 and 1.

In practice it is often difficult to compute <9i(0) and ^ ( 0 )  analytically. 

The programming language Ox (Doornik 1998) implements the quasi-Newton

49



m ethod developed by Broyden, Fletcher, Golfarb, and Shanno (BFGS) (Fletcher 

1987). This m ethod uses supplied analytical or numerical first derivatives. If 

analytical derivatives are not provided, then at each iteration for -0, a value 

for 8 2 (0 ) -1 is obtained by the following recursion:

» » , > - + ( > + M - X

where:

9i =  <91W’i ) - '9 iW ’i- 1)

9'  =

For details and derivations of the Newton’s m ethod and the BFGS methods 

see Fletcher (1987).

2.7 .2  T h e score vector

The procedures described in §2.7.1 usually update the param eters at each 

run by using the gradient or score vector:

(91ogL (0;Y n) 
dip

Following Koopman and Shephard (1992) we derive a general expression for 

the score vectors of structural time series models. We assume th a t the system 

matrices Zt and T t have no unknown param eters and only and Q* have 

unknown parameters. This is the case for all the applications we use in 

this thesis. Let / ( a ,  Y n;ip) be the joint density of a  and Y n where a  =
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( a i , . . . ,  acn), and ip is the vector of unknown parameters. Let / ( a |Y n; ip) 

be the conditional density of a  given Y n, / ( Y n; -0) be the marginal density 

of Y n, and f(c t;ip)  be the marginal density of a .  Using know results for 

conditional densities, we have:

l ° g / ( Y n; ip) =  lo g /(Y n, a ;  xp) -  log f  (c t \Yn; ip)

=  lo g /( Y n |a ;  xp) +  log / ( a ;  xp) -  l o g / ( a |Y n; xp)
n

= ^ 2  [ loS/(2/*la t - i ; ^ )  +  l o g / ( a t | a t_ i ;^ ) ]
t=i
+  log / ( a 0; -  log / ( a |Y nV>)

=  - i  £  (log |H(t/>)| +  tr[H tW 1(»  -  Z 'C tX n  -  Zta t)'])
i=l

\  i t s  ( log IQ W I +  t r [Q*W0 1(<*t -  T ta t_ i ) ( a t -  T ta t_i)'])2 t=i

- i  log |P 0| -  i ( a 0 -  a 0)'Po ^ a o  -  «o) -  log / ( a |Y n ; t/>)

In order to  derive the score at a point i/>*, we first integrate both  sides with 

respect to  / ( a |Y n;^ * ) and then differentiate w ith respect to  xp:

d \ o g f ( Y n\ip)
dip ip=ip ^ dip

log |H t | +  log |Q*

tr[(e4e(' +  Var(£t |Y „ ))H f1]

+  Var(»;( |Y n))Q t- 1]
lp=lp

Using simple rules of m atrix calculus (for more details see Magnus and 

Neudecker (1988)) and the results from the disturbance smother (2.4.29)
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we have, 

d \ o g f ( Y n;ip)
difr ip=ip t= 1

dip

-trtQ^Q .QT1̂ ]

i A l  r/ . „ Nd H n r
=  ” E  H ‘~ ^ - t r [(u «u « - A ) ^ ; ]  - t r [

5  log |H |

t = 1
dtp dip

a io g |Q |

= ^ E tr{(UtUi - D‘^ }

U - n . 0 ^ } (2.7.7)

The quantities w*, D t, rt_i, and N t_i are calculated during a run of the 

Kalman filter and smoother. The quantities ^ J -, and <9R̂ R't are usually 

easily calculated. In §3.2.4, we derive these quantities for periodic models we 

use in this thesis. We see then th a t calculating the score vector in state-space 

models is a straightforward process.

2.8 D iagn ostic  checking and m odel selection

If our model is well specified then, given the param eter values are known, the 

residuals are normally distributed and serially independent. Our main diag
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nostic tool is the one-step ahead prediction error which is obtained by a run

is preferred to  perform the following tests for each series separately, using the 

standardised residual sequence of each series. Thus, w ithout loss of generality 

we take et to  be a single element of e t. We then test the norm ality assumption 

by using tests defined by Bowman and Shenton (1975). We first define the 

sample moments of the standardised prediction error:

Then under the null hypothesis of normality S  ~  N(0,  | )  and K  ~  Af(3, ^ ) .  

We can also combine S  and K  in one statistic:

which has a x 2 distribution with 2 degrees of freedom.

The main tool to check the assumption of uncorrelated residuals is the sample 

autocorrelation function. The sample autocorrelation function at lag j , ry,

of the Kalman filter. We define the standardised one-step ahead prediction

error:

e t = Ft2v t

which will follow a standard normal distribution. In the m ultivariate case it

We also define the measures for skewness and kurtosis as:

S

K
m 4
m l



is defined as:
1 n

Tj = -----  (et -  mi)(et-j -  mi)
nrri2 ' 

t = j + 1

Under the null hypothesis tha t et is a white noise process, the  approximate 

standard error for rj is A standard test statistic for serial correlation 

developed by (Ljung and Box 1978) is:

k 2

Q(k)  =  n(n  +  2) ^  — 3—
j = i n ~ J

W hen dealing with competing models, we may want to measure the fit of the 

model under consideration. Goodness of fit measures for tim e series models 

are associated with the log-likelihood, logL(Yn; ip). The larger the number 

of parameters tha t a model contains the larger the log-likelihood. The Akaike 

Information Criterion (AIC) (Akaike 1974) gives a fair comparison between 

models with different number of param eters by including a penalty for model 

order:

A I C =  i[-21ogZW>;Y„) +  2(9 +  ™)]
n

where q is the dimension of the state vector a t , and w  is the number of 

estimated hyper-parameters. For a structural time series it is often the case 

th a t w = dim Q +  dim H. In general, a model with a smaller value of AIC is 

preferred.
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Chapter 3

Periodic variance in one season

3.1 Introduction

Series with autocovariance structure th a t varies with season arise in hydrol

ogy, see for example, Hipel and McLeod (1994), Troutm an (1979), Pagano 

(1978) and Jones and Brelsford (1967). The fact th a t many economic times 

series have one season tha t exhibits a higher volatility than other seasons 

is often overlooked (Osborn and Smith 1989). This behaviour is found in 

monthly production series; the variability of the index of production is higher 

for the month with the lowest level of production. For example, the seasonal 

component for August in most European countries has the lowest level within 

a year due to summer holiday factory shut-downs. August also shows higher 

variability than  other months. Miron (2001) shows th a t this is consistent 

with backward L-shaped marginal cost curves. Modelling this type of be

haviour correctly is of importance for forecasting and seasonal adjustm ent.
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We show that, when one month only has different variability from others 

there are constraints on the seasonal models we can use.

The two most common methods for seasonal adjustm ent, X-12-ARIMA (Find

ley, Monsell, O tto, Bell, and Pugh 1998) and TRAMO-SEATS (Gomez and 

Maravall 1996), have substantial restrictions in modelling periodic variances. 

In the case of X-12-ARIMA, periodic variance is dealt by applying different 

seasonal moving averages to each season. This ad-hoc method has proved 

flexible in fitting models but provides little help in detecting seasonal het- 

eroscedasticity. There is no attem pt to understand the structure and the 

relationship between different seasons, a common criticism for the overall 

philosophy of the Census X -ll  and X-12 methods. TRAMO-SEATS uses an 

ARIMA model based decomposition of the tim e series and does not include 

modelling periodic variances.

In this chapter we develop structural models for time series in which the 

variance of one season differs from the others. Burridge and Wallis (1988) 

include periodic variances in a structural model using dummy seasonality, 

as in (2.3.1). However, as we show in §3.2, neither dummy seasonality nor 

trigonometric seasonality (Harvey 1989) are effective in modelling seasonal 

series with single season heteroscedasticity. We suggest two models th a t 

perm it single season heteroscedasticity as a special case. In §3.2.4 and §3.2.5, 

some estimation and initialisation issues for these heteroscedastic models are 

discussed. A likelihood ratio test for seasonal heteroscedasticity is given 

in §3.3, while section §3.4 provides real data  examples. The final section 

presents conclusions. Parts of this chapter are based on Tripodis and Penzer
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(2006).

3.2 M odels for single season heterosced astic

ity

Consider a univariate seasonal time series {yt : t = 1, . . .  ,n} with seasonal 

period s. A structural model for {yt} consists of a sum of components each 

representing a salient feature of the series (Harvey 1989). For example, the 

basic structural model is:

Vt — Ht +  7t +  et

where jit is the trend, is the seasonal component and et is the irregular

(white noise) component. In the non-periodic variance case, the seasonal

difference, {As7 t} =  — 7f_s}, is a stationary process. Periodic variances

can be represented by allowing Var(As7 t) to  depend on season. Another

approach is to allow the variance of the irregular term  to be periodic. The

autocorrelation structure of periodic seasonal variance and periodic irregular

variance models differ considerably. Below we compare the autocorrelation

functions and consider the implications for single season heteroscedasticity.

Throughout we use rt to denote the season of the t th observation,

r = f s t =  s ,2 s , . . .
1 [ t (mod s) otherwise

We use nt to  denote the seasonal difference of the seasonal component, Kt =

A s7 t . For notational simplicity we drop the t  index on rt and K,t when this

can be done without ambiguity.
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3.2 .1  P er iod ic  variance in th e  seasonal com p on en t

Proietti (1998) proposes a general class of models for seasonal heteroscedas

ticity based on the Harrison and Stevens (1976) framework described in

§2.3.3. Proietti replaces the homoscedastic variance-covariance m atrix of 

(2.3.17) with the following:

where D  = diag{crj, . . . ,  cr̂ } and i s = ( 1 , 1 , . . . ,  1)' is an s x 1 vector. The 

multivariate variance-covariance m atrix enforces the constraint th a t S (L )7* 

is stationary. (3.2.1) implies th a t Co\(ujt ,ujt-i)  = 0 for i > s. Note also, 

tha t Oy is not the variance of the seasonal difference for season r. In fact 

(Tripodis and Penzer 2006),

Var(u>t ) =  V  =  [D

s
1

(3.2.1)S

s

Var(«t) - Var(As7 t) =  sVrr = s
k^r

(3.2.2)S

k—1

where Vrr is the r th diagonal element of V.

We now consider single season heteroscedasticity. Suppose, without loss of 

generality, th a t the first season has a different variance from all the others.
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From (3.2.2) it is clear tha t single season heteroscedasticity is introduced by 

taking D  =  diag-fof, o f , . . . ,  erf}; setting u\  ^  o \  and a\ — • • • =  yields:

An interesting relationship between the variances of the seasonal differences 

arises in this case. Comparing the first with any of the other seasons gives 

us (Tripodis and Penzer 2006):

function with respect to q with a maximum of s — 1 when q goes to  zero. We 

conclude that, for the model defined by (2.3.16) and (3.2.1), the variance of 

the seasonal difference in season 1 (the distinct season) is always less than  

s — 1 times higher than tha t of the other seasons.

The introduction of seasonal heteroscedasticity results in periodic autocor

relation in the seasonal differences. By definition, x t = x t_s, so:

where we define crr-h = ar+s-h when h >  r. For h > s, we have cK(r, h) — 0, 

for all r. Thus, in the homoscedastic case, {As7 f} is a moving average 

of order s — 1. In the single season heteroscedastic case, the nature of

Vax(«t) =
sVii =  s(s -  +  (s -  1 )al) rt =  1
SV22 — +  (5 — ^)or2) / ( cri +  (s — I)0"!) otherwise 

Vn ^  { s -  1)
V22 (5 — 2)q +  1

(3.2.3)

where q = o \ j a \  > 0. It is clear th a t the ratio  of variances is a decreasing

s

From (3.2.1), and for h = 1 , . . . ,  s, we get:

cre(r, h) =  Cov(av£, Kt_h) = - ( s  -  h ) ° r° r- h for h = 1 , . . . ,  s -  1
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the periodicity in the relationship between seasons is of interest. Defining 

pK(r, h) — Corr(Kt, fy-h) we have, for the season with the variance th a t differs 

from the others,

pK{ 1, h) =  — y — for h =  1, . . . ,  s -  1 
s ( s -  1)

and p( l , h )  =  0 for h > s. Here u = V u / V rr, the ratio  of variances defined 

by (3.2.3). For the remaining seasons, th a t is for r  =  2 , . . . ,  s,

p ( r h )  = f p ^ h )  if ft =  i 1 
 ̂ \  qy/u pK( l ,h )  otherwise

Thus, the lag h correlation between two standard seasons (r ^  1) is a con

stant multiple of lag h correlation w ith the first season; the value of the 

multiplicative factor is determined by the ratios o \ ! o \  and V a r f /^ /V a r ^ ) -

3.2 .2  A  com parison  o f p eriod ic  seasonal and p eriod ic  

irregular m odels

An alternative approach to model seasonal heteroscedasticity is to  superim

pose periodic heteroscedastic measurement noise on homoscedastic season

ality. This is similar to the deseasonalised model (Hipel and McLeod 1994) 

used in hydrological time series where the seasonal component 7* is deter

ministic and the irregular component et has variance of r th a t depends on 

the season r. In our model, 7* is allowed to be stochastic with the seasonal 

differences having constant variance.

In order to  illustrate the differences between the periodic seasonal variance
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model of §3.2.1 and the periodic irregular variance model, consider a struc-

with cz(r, h) = 0 for h > s. For the periodic seasonal variance model, of =  

of for all r, so the autocovariance function is different for each season at lags 

h = 0 , . . . ,  s — 1. For the periodic irregular variance model, cK(r, h) =  cK(l,  h) 

for all h, so periodicity is restricted to the variance and the lag s covariance.

The periodic behaviour of the autocovariance function indicates th a t the 

relation between the unusual season and all other seasons in the periodic 

irregular variance model differs from th a t for the periodic seasonal variance 

model. In the periodic irregular variance model the relation between seasons 

is the same within each year.

In the periodic seasonal variance model, the relation between the unusual 

season and all other seasons differs from the relation between any two other 

seasons. If increased variability in a particular season is superimposed on 

the series, the periodic irregular model is more appropriate. This is common 

in hydrological series where high variability in a particular month is usually 

caused by extreme weather conditions; for example, floods usually occur in

tu ral model with seasonal and irregular components. Define the seasonal 

differences as,

z t = A syt = nt +  A set

The autocovariance function of the seasonal differences is (Tripodis and Pen-

zer 2006):
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the same m onth bu t do not necessarily happen every year. On the other hand, 

in many economic time series high variability in one season is endogenous to 

the seasonal process; for example, factory owners react to lower production 

in one m onth by adapting the production in subsequent months to  bring the 

overall output to the desired level.

By comparing the fit of the periodic irregular variance model and the pe

riodic seasonal variance models for a given data  set, we can infer whether 

heteroscedasticity is endogenous or superimposed on the seasonal process. In 

theory it is possible to identify the appropriate model for a particular series 

by comparing the periodicity of the sample autocovariance with the theoret

ical autocovariance. There are several, methods for testing for periodicities 

in the autocorrelation function, see for example (Vecchia and Ballerini 1991) 

and (Hurd and Gerr 1991). However, the power of these tests is very small 

for samples less than  30 years so they are impractical for many economic 

tim e series. Rather than  attem pt to differentiate between seasonal models 

using the periodicities in autocovariance, we recommend post-fit diagnostics 

as a means of choosing an appropriate model; see practical illustrations of 

§3.4.

Now consider the case where the model for our series contains a trend \it . In 

this instance, the seasonal difference is given by:

Zt = A sVt — A sfit +  K't +  A.s€t 

Suppose th a t fit follows a local level model,

IH+i = fit +  T}t , {r]t} ~  NID(0, o*)
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then, using (3.2.4), we get the autocovariance function of the seasonal differ

ences is:
( sa 2 +  cK(r, 0) +  2a2er h = 0

cz (r,h) = Cov(zt, z t -h) =  < (s - / i)a2 +  c«(r, h) /i =  l , . . . , s - l
I _(Je,r /l =  S

with cz (r,h) = 0 for h > s. The difference in the two models is th a t the

autocovariance function of the periodic seasonal variance model is periodic 

in all lags up to  s — 1 while the periodic irregular has periodic autocovariance 

at lags 0 and s only.

If fjbt follows a local linear trend  model,

/Xt+1 =  Ht +  P t +  Vu M  ~  NID(0,<7^)

A + i =  A  +  Ct, { C t } ~ N I D ( 0 ,< #

then, using (3.2.4), we get the autocovariance function of the stationary form 

A z t :

sal  +  2 ( T v  +  2c«(r ’ °) ~  2ck(^5 1) +  4air h = 0

CAz(r,h) =  <

(s -  1 )a% -  cK(r, 0 ) +  2cK(r, 1) -  cK(r, 2 ) -  2a \ r h =  1
(s — h)cr^ -  cK(r, h -  1) +  2 c«(r, /i) -  c«(r, h +  1) h = 2 , . . . , s  — 2
a\ -  cK(r, s -  2) +  2c«(r, s— 1) -  a e2r h = s -  1
- c K(r,s  -  1) +  <72r h =  s
—cr2 h =  s +  1

with cz(r, h) =  0 for h > s +  1. The difference in the two models is th a t the 

autocovariance function of the periodic seasonal variance model is periodic 

in all lags up to s while the periodic irregular has periodic autocovariance at 

lags 0,1, s — 1, s, and s +  1 only. In Table (3.1) we show the lags for which 

the autocovariance function of the stationary form for the local level and the 

local linear trend is periodic for the periodic seasonal model and the periodic 

irregular model.

63



Table 3.1: Lags with periodic autocorrelation in stationary form

Model for trend Local trend Local linear trend
Stationary form A  8yt A A  syt
Per. seasonal variance 0 , l , . . . , s -  1 0 , 1 , . . . ,  s
Per. irregular variance 0 , s 0 , 1 , s — 1 , s, s +  1

3 .2 .3  O ther seasonal m od els

We show th a t dummy and trigonometric seasonal representations are not 

appropriate for modelling single seasonal heteroscedasticity. Consider first 

the dummy seasonal case. The dummy seasonality model was used by Bur- 

ridge and Wallis (1988) to account for periodic variances. They propose this 

framework to model cases where the final estimates of the seasonal com

ponent exhibit seasonal variation. For a deterministic seasonal model, we 

impose the constraint tha t the seasonal effects sum to zero over the seasonal 

period. By adding a noise term  }, we allow seasonality to evolve over 

time; the resulting model is referred to as the dummy seasonal representa

tion, which was introduced in §2.3.1,

s—1

5(L)7t =  ^ 7t-j  = - ut (3.2.5)
j=o

The seasonal difference is:

As7t =  AS(L)7t =  ut -  ut-i  (3.2.6)

Thus 7 t follows a seasonal ARIMA (0,0 ,1) x (0 ,1 ,0)s, where the moving 

average part is non-invertible.
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In order to model seasonal heteroscedasticity we take ujt N ID (0 ,a2). Using

where, as before, ctq =  of. Now consider attem pting to  represent single 

season heteroscedasticity. Suppose, w ithout loss of generality, th a t Var(Kq) =  

V\ and Var(«2) =  • * • =  Var(«s) : V2 . From (3.2.7), v<i =  cr2 +  o\  =  erf +  erf =  

• • • =  erf+ crf_x implying th a t erf =  cr2_j and so v\ = +  crf — o’f - i  +  o'f — ^2-

In summary, if 5 — 1 seasons have the same variance, then all seasons have the 

same variance. We conclude th a t the dummy seasonal representation cannot 

be used to model single season heteroscedasticity.

In the trigonometric case, introduced in §2.3.2, the seasonal effect is the
[s/2]

combination of [s/2] cycles th a t is 7* =  lj,t where [s/2] is the integer part
j=1

of s/2. The j th cycle has frequency Aj =  2irj/s  and is generated by:

where {uij,t} and {u*t} are m utually independent NID(0, a 2) processes. The 

component 7 *t appear as a m atter of construction.

Consider the j th cycle. If we denote (3.2.8) by 7  - t =  + ^ 7 , then the

matrix has the properties TJ =  I and T*(T*); =  I where A; is a positive 

integer. To model seasonal heteroscedasticity we allow cr2 to vary with season, 

tha t is, take V a r^ ^ t) =  Var(tu*t) =  cr2r . The seasonal differences are given

(3.2.6)

cr2 +  cr2_x for h =  0
—cr2_! for h =  1
0 otherwise

(3.2.7)

(3.2.8)
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by:
s—1

_k=0

where [... ]i denotes the first element. The variance of the seasonal difference 

is then,

Var(ujtt) depends on season, the variance of the seasonal differences is con

stant for the j ih cycle. The overall seasonal difference, A st t , as a sum of 

[s/2] homoscedastic seasonal differences, is also homoscedastic.

Using the trigonometric model, we can assign different variances to different 

frequencies. Modelling this type of heteroscedasticity is more appropriate in 

business cycle analysis rather than  in seasonal analysis. Our interests in this 

thesis lies on whether a particular month has a different variance rather than  

whether a cycle with a certain periodicity has different variance to  cycles in 

other frequencies.

We show th a t there is a linear relationship between the trigonometric sea

sonality formulated in (2.3.15), and the periodic seasonal variance model. 

We first show th a t there is a linear relationship between this trigonometric 

model (2.3.15) and the Harrison and Stevens model (2.3.16). As a reminder,

s— 1 s —1

_k—0 J i i k~0

where [.. .]i,i denotes the first diagonal element. Thus despite the fact th a t
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we rewrite these seasonal models. The trigonometric model is:

I t  = z 'tT t (3.2.9)

z't =  [cos Ait, sin Ai t , . . . ,  cos X[s/2\t] 

r t =  Tt_ 1 + K t, Kt ~  NID(0S_1,K )

and the Harrison and Stevens (2.3.16) seasonal model is:

It  = x't6t (3.2.10)

St =  ^ t  ~  N I D ( 0 , Cl)

We note tha t there is a linear relationship between z t in (3.2.9) and x t in 

(3.2.10) so that,

Zt = H ' x t (3.2.11)

where H 7 =  [zi, z2, . . . ,  zs] is an (s — 1) x s matrix. Using (3.2.11) we can 

rewrite (3.2.9) as:

71 = z'tTt =  x'tH T t

which implies th a t we can rewrite the seasonal effects in (3.2.10) as St =  H r t

which are generated as a multivariate random  walk with innovation covari

ance,

n  =  H K H '  (3.2.12)
s - l

We can verify using trigonometric identities th a t ^  z t-j  — 0  which means
j= o

th a t i7sH  =  0s_i so th a t i^ V a r ^ )  =  0 is enforced. In the case of the 

periodic seasonal model, the relationship between V  (3.2.1) and K  (3.2.12) 

is established by replacing O with V  and pre and post-multiplying both  sides
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of (3.2.12) by H ' and H  respectively and solving for K  :

K  =  ( H ' H ) - 1 H ' V H ( H ' H ) -1

=  ( H 'H ) ~ 1( H ' .D H — — ^ H ' D i ^ D H X H ' H ) " 1
t s U % s

We can then model single season heteroscedasticity using the trigonometric 

seasonality formulated in(2.3.15). In this case the trigonometric seasonality 

is equivalent to Harrison and Stevens seasonal model and therefore we will 

ignore it from the following analysis.

3 .2 .4  Score vectors for seasonal m od els

In this section we derive analytic derivatives for seasonal models with het

eroscedasticity, which, as we saw in §2.7, are used in the estimation process. 

W ithout loss of generality we consider the following transform ation of the 

parameters:

V>j =  \  log of

The purpose of the transform ation is to ensure tha t of >  0. We first consider 

the case of the periodic irregular variance model. As before, variances of the 

measurement equation error differ with season. Using the same notation as 

in §2.7.1 we have:

=  <rl(uEru ' - * e ' r)

where u and are 1 x n  vectors containing ui , . . . ,  un and D  1}. . . ,  D n 

calculated by (2.4.29) while er is a 1 x n  vector with 1 in elements r, r  +
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s, r +  2 s , . . .  and 0 otherwise, and E r is a n  x n  diagonal m atrix with e r in 

its diagonal.

For the periodic seasonal variance model, we need to  estimate the m atrix of 

partial derivatives,

d V
da2

9V.i
doi

dai

dV- \JJL
d<n

d V ,
dai

(3.2.13)

/
where V  =  [D — j-^T7-Disi'D ] is the variance-covariance m atrix of the peri

odic seasonal model (3.2.1). Let the function a 2(i) equal the i th element of 

the diagonal of D, tha t is a 2(i) =  D^. Let D  have j  different elements on 

the diagonal. Each of is repeated 77 times, th a t is if all elements of D  are 

equal except for rows k and k- 1 where a 2{k) =  a 2(k — 1) =  a \ , then rk = 2 . 

W ithout loss of generality we assume tha t a 2(k) =  of. From (3.2.1) we get:

{rk -  \ )a l  + r t f
i^k

E  r t f
i= 1

V  km
07

"V  km

E  n a f
2 =1

E  r t f
2 = 1

if a 2(k) =  a 2(m)

if a 2(k) a 2(m)

for k, m  =  1 , . . . ,  s.

Using this representation and applying simple calculus we get the following
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partial derivatives:

„ ,  rk(rk ~  l K  +  E  n ^ [ ( r k -  2)<j\ +  E  nv?}
_  _____________ ' t t ________________ ^ ____  (3 2 1 4 )

d ^ k ) '  2«  ( }
z=1

dVkk rtal

d( j2^  , 4 " 2X2( E u < r ) 2
i=l

for a 2(l) 7̂  a2(k) (3.2.15)

j r2

d ° 2(k ) 2X2
z=l

rha4k +  2cr| E  n<f|
for a 2(k) = a 2(m)  (3.2.16)9Vkm r 2 / / x 2

dVkm
E  ri ° \
i^k

da 2(k)
( E
Z=1

1S•4£
>

n ° t
d a 2(l)

( E  n a f f
i=l

dVkm
d a 2(l)

( E n » ,2)2

for a 2(k) 7  ̂ <r2(m) (3.2.17)

for a 2(k) = a 2(m) ^  a 2(l) (3.2.18)

for a 2(k) 7̂  cr2(m), I ^  k or m (3.2.19)

Z = 1

for k, I, m  =  1 , . . . ,  5.

Using (3.2.15-3.2.19), we can calculate the set of analytic derivatives in 

(3.2.13). This is a sub-matrix of > which is used to calculate the

score vector in (2.7.7), as shown in §2.7.2.
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For the case of single season heteroscedasticity we have

V  =
a \  +  (s -  \ ) a \

(s -  1 )o \o \ —CTi cr 2_2
1 2 —crTcr,1^2

~ <7i <72 (5 — 2)cr| +  0'icr2^2 
2 -CTr

\  -01*2 ~Or { s - 2 ) o l  +  o l o l J

We use (3.2.14) to calculate and for k > 2, (3.2.15) to  calculate 

and for k > 2 ,  (3.2.16) to  calculate for k, m  > 2, (3.2.17) to  

calculate and for m > 2, (3.2.18) to  calculate for k, m  > 2. 

We then have

<9V _  ^24
<9^1 (cr2 + ( 5 - l ) c r 2)2

(5 -  I )2 

- ( 5 - 1 )

- ( 5 - 1 )

1

- ( 5 - 1 )

1

\

1 /

and

d V
do\ (o\ +  (5 -  1 )ol)2

[ s - l ) q - l -q  1
av22
d<j2 - ( s  -  l)g -  2

V . - 1 (5 — l)tf  — 2 . . . av22
<9cr2

with ^ 2̂  =  (5 — l)(s  — 2)q +  2(5 — 2) +  q 1 and q =  o \ j o \
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3.2 .5  In itia lisa tion  o f H S

For HS seasonality we need to  ensure th a t the block in Poo,i> from (2.6.1), 

th a t relates to  the seasonal component, which we denote -P[7], is a symmetric 

m atrix of the form (2.3.17). For example:

P[l\ ~  —

1 - i  - I
1 \

V -1 . . . . . . . .  l - V\  s s /

This ensures th a t the state variance P[7] of the multivariate random walk in 

the seasonal component is not of full rank, as required by (3.2.1).

3.3 Test for seasonal h eterosced asticity

Despite the fact th a t seasonal heteroscedasticity is relatively common, there 

are few methods to test for its presence. Existing tests are based on the 

likelihood ratio, Wald or Lagrange multiplier principles (Engle 1984). In 

practice, some version of Goldfeld and Quandt (1965) or W hite (1980) test 

for heteroscedasticity, adjusted for seasonal series is used; these are mispec- 

ification tests rather than  tests of a specific hypothesis. Useful information 

about seasonal heteroscedasticity can also be obtained graphically from in

spection of time series plots, correlograms, periodograms of the squared da ta  

and seasonal sub-plots. In figure (3.1), we show all different types of graphs
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for the index of production for Italy. We see from the periodogram of the 

squared data  th a t there is a significant peak at the seasonal frequency which 

indicates seasonal heteroscedasticity. From the plot of the original series and 

the seasonal subplot, we see th a t this is concentrated in the month of Au

gust for reasons we examine in the next section. In this section we suggest 

a likelihood ratio test for testing the hypothesis tha t one m onth exhibits a 

different variance than  the others, under the null hypothesis th a t all seasons 

have the same variance. W ith a param eter vector 0 ,  we denote the likeli

hood function of the null model as L0 while the likelihood function of the 

alternative model th a t one month has a different variance we denote as L\.  

The likelihood ratio test statistics is then (Hamilton 1994, p. 144):

LR  =  2(log L\  -  log L q)

which is asymptotically distributed as x l  under the null hypothesis. We use 

a Monte Carlo experiment to find the approximate power of our test. In 

each experiment 10000 replications of a basic structural model with local 

level trend component and quarterly Harrison and Stevens (3.2.10) seasonal 

component are simulated (Tripodis and Penzer 2006). We also did some 

simulations for monthly data, but since the results were not affected by the 

periodicity, we only present the results for the quarterly data. For a given 

simulation, the null is rejected if the test statistic exceeds the 9bth percentile 

of a x i  distribution. We evaluate the rejection frequency for each combination 

of sample size and parameter value. Table 3.2 shows the results for the 

periodic irregular model in which the irregular component has variance in 

season 1 and of 2 otherwise. Table 3.3 refers to the periodic seasonal variance
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Figure 3.1: Graphic diagnostics for seasonal heteroscedasticity (index of pro

duction for Italy)
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Table 3.2: Rejection frequency (%) for periodic irreg

ular variance model

ah 2 II o

oOOII N=120 N—240

oOOII£

0.1 9.67 23.3 38.6 69.9 95.0
0.5 5.14 9.41 13.3 22.2 39.0
1 4.03 5.03 4.68 4.49 5.00
2 6.54 9.17 12.7 40.9 68.8
5 44.9 74.4 89.2 99.5 100
10 79.5 97.5 99.8 100 100
100 99.8 100 100 100 100

10000 replications of a local level model (2.3.1)+ Harrison 

and Stevens (3.2.10) seasonality with periodic irregular 

variance, a f  =  0.1, o f 2 =  1 and =  1

case with the seasonal variance in the first season, o \ , different from the other 

season’s variance, cr|. Note th a t, in the periodic seasonal variance case, we 

take a\  2 f°  be the variance of the irregular term  and, in the periodic irregular 

variance case, we take erf to be the variance of the noise term  associated with 

the seasonal component.

The rejection frequency when the null hypothesis is true indicates th a t x l  

provides a reasonable approximation to the distribution of the test statistic. 

The power of the test appears reasonable except in two instances. In the 

periodic irregular variance case the test does not perform well when the 

variance of the unusual season is smaller than  the other variances. For the 

periodic seasonal variance model, the power is low for sample sizes less than  

200 .
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Table 3.3: Rejection frequency (%) for periodic sea

sonal variance model

A II o

oO
OII N=120 N=240 2 II 0

0 o

0.1 29.1 64.4 83.9 99.3 100
0.5 9.06 14.7 18.2 29.6 54.1
1 6.2 6.9 5.8 5.6 5.05
2 8.61 14.1 17.4 28.7 50.9
5 18.3 37.1 51.5 80.7 97.9
10 25.1 51.4 69.2 93.8 99.8
100 35.9 68.5 84.7 98.8 100

10000 replications of a local level model (2.3.1)+ Harrison

and Stevens (3.2.10) seasonality with periodic seasonal 

variance. a 2t — 1, — T an<l  — 1

Table 3.4: Rejection frequency (%) for pe

riodic irregular variance model : comparing

across signal to noise ratios

<7i =  1, Q2 =  0.1 qi = 0.1, q2 = 1

ah N=120 2 II to o N=120 N=240

0.1 1.77 2.96 38.7 71.2
0.5 22.9 81.5 86.9 99.7
1 63.6 87.2 96.1 99.9
5 81.4 97.1 98.7 100

10000 replications of a local level model (2.3.1)+ 

Harrison and Stevens (3.2.10) seasonality with 

periodic irregular variance and — 1
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Table 3.5: Rejection frequency (%) for pe

riodic seasonal variance model : comparing 

across signal to noise ratios

Qi = 1, 92 =  0.1 Ql =  0 .1., Q2 = 1

N=120 N=240 N=120 N=240

0.1 53.4 86.4 2.63 5.66
0.5 89.4 99.7 4.71 18.6
1 99.9 100 10.5 28.8
5 99.9 100 31.9 59.7

10000 replications of a local level model (2.3.1)+

Harrison and Stevens (3.2.10) seasonality with 

periodic seasonal variance and of =  1

The results depend in part on the contribution of the seasonal variation to  the 

to tal variation. In order to illustrate sensitivity to changes in the signal-to- 

noise ratios, we run two further experiments. Define the following signal-to- 

noise ratios: q\ =  o \ j a \ x and q2 =  cr2 / cre2 f°r the periodic irregular variance 

model; q\ =  of/of2 and q2 =  c f /*7?2 for the periodic seasonal variance model. 

We consider two pairings of the signal-to-noise ratio: qi =  1 , q2 — 0.1 and 

qi =  0.1, q2 =  1. In the periodic irregular case, varying of x allows us to 

investigate the effect of altering the values of the other param eter value since 

o f =  #iof j and o f 2 =  q \o \xlq2. In the periodic seasonal variance case we 

vary of and use the relationships o f2 =  of/<?i and of =  q^XIqi-  Tables 

3.4 and 3.5 show the rejection frequency (%) across signal-to-noise ratios in 

10000 replications of a model with local level (2.3.1) and quarterly Harrison

77



and Stevens seasonality (3.2.10). The variance of the level component is held 

fixed. All tables in this section are from Tripodis and Penzer (2006).

Table 3.4 shows th a t the rejection frequency for the periodic irregular vari

ance case is generally high irrespective of the values of the hyperparam eters. 

There are two exceptions. When a \ 1 is small the test tends to perform badly. 

Also in the case where the sample size is relatively small and qi is large rela

tive to  (fc, so the variance of the unusual season is smaller than  the variance 

of the other seasons, the rejection frequency is strongly dependent on the 

value of a ^v  Table 3.5 shows th a t similar results hold for the periodic sea

sonal variance model. In this case, when q2 is larger than  qi the variance 

associated with the unusual season is small relative to the variance of the 

other seasons.

3.4 A pplications

To illustrate our approach to single season heteroscedasticity we consider the 

monthly index of production for Italy, Prance and Spain. Figure 3.2 shows 

the monthly Index of Production for Italy from January 1960 to  December 

1997 and for France and Spain from January 1960 to January 2003. As 

mentioned before, economic theory predicts th a t the lowest season will ex

hibit higher variability. In all three countries production is lowest in August 

which coincides with the holiday season. We also showed in §3.3 th a t we can 

use graphs to identify the season which has a different variance for all other
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periods. Prom figure (3.1), we saw th a t August is the month with a differ

ent variance for the monthly Index of Production for Italy. We get similar 

graphs for all the other countries’ indices. We fit a basic structural model 

with local linear trend (2.3.1) and Harrison and Stevens seasonality (3.2.10). 

Three cases are considered, homoscedastic, periodic irregular variance and 

periodic seasonal variance. Signal extraction is performed using the Kalman 

filter and is implemented in Ox (Doornik 1998). Maximum likelihood esti

mates of the parameters for Italy, Prance are presented in Tables 3.6, 3.7 

and 3.8 respectively. In these tables, a \ 1 and o \  are respectively the irregu

lar variance and the seasonal variance for August. The likelihood ratio  test 

for both heteroscedastic models is significant for Italy and France while for 

Spain only the periodic seasonal variance model is significant. We note th a t 

the critical value for a  = 0.05 is x l  — 3.84. According to the AIC criterion, 

periodic seasonal variance is preferred for all three series. Even though the 

ratio of the seasonal variances is very high, it does not create a problem for 

distinguishing heteroscedastic from homoscedastic cases in the HS model. 

Figures (3.3)-(3.5) show some residual diagnostic graphs for the series con

sidered using the model with the best fit (in the case, the periodic seasonal 

model). We see th a t there is no residual pa ttern  in the correlogram or the 

periodogram of the residuals, while the histogram show th a t the residuals 

are roughly normal. All these diagnostic graphs indicate th a t the model is 

satisfactory. The better fit of the periodic seasonal variance model indicates 

tha t high variability in August is a feature of the seasonal component which 

is balanced across all seasons.
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Table 3.6: Italian Index of Production: parameter estimates and di

agnostic statistics

Homoscedastic Periodic irregular Periodic seasonal

ah
°e,2 3.0xl0~5

4.7xl0~5
4.9xl0~9

6 .2x l0~6

0.007
3.7xl0 -5
5.0xl0 -5
l.OxlO-10

6 .1x l 0 -7

2 .1x l0 -5
4.6xl0 -5
2.7xl0-13
4.3xl0 -5
1.6x l 0 " 6

LR 75 114
7*1° -0.002 0.007 0.026

0.03 0.08 0.02
Q(12)c 15.3 21**9 15
Sd -0.8 0.0 -0.4
Ke 1.7** 4.2** 5.1**
w 450** 25** 97**
AIC -13.9 -14.3 -14.9

a Residual autocorrelation at lag 1 (see §2.8)

b Residual autocorrelation at lag 12 (see §2.8)

0 Ljung-Box statistic based on 12 residual autocorrelations. It is 

asymptotically x 2 with degrees of freedom given by 12 — n *  where n* is the 

number of hyperparameters excluding of;2 (Harvey 1989, p.259)

d Test for residual skewness (see §2.8)

e Test for residual kurtosis (see §2.8)

■f Bowman-Shenton test for non-normality (see §2.8)

9 Significant for a  =  0.05
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Table 3.7: French Index of Production: parameter estimates and

diagnostic statistics

Homoscedastic Periodic irregular Periodic seasonal

ah

i

2̂

0.0001
7.9xl0 -5
3.4xl0 -8

2.3xl0 -5

0.001
0.0002

7.2xl0 -5
3.8xl0 -8

1.6x l0 -5

0.0002
6 .8x l 0-5
4.1xl0" 8

0.0001
6 .1x l 0-6

LR 17 49
n -0 .10** -0.08 -0.08
7*12 0.06 0 .10** 0.15**
Q(12) 104** 118** 143**
s -0.3** -0.2 -0.2
K 4.3** 3.6** 3.6**
N 42.3** 11.5** 10.4**
AIC -11.9 -12 -12.1

A correction for outliers in 1968.5, 1968.6 and a level shift in 1974.11 are

included
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Table 3.8: Spanish Index of Production: parameter estimates and di

agnostic statistics

Homoscedastic Periodic irregular Periodic seasonal

0.016
0.0002 0.0002 0.0002
0.0001 0.0001 0.0001

I
1.6x l0 -7 1.5xl0~7 1.6x l 0~7

0.0002

A 3.0xl0~5 1.3xl0 ' 5 l .lx lO -6

LR 0 77
T\ -0.05 -0.04 -0.02

r\2 0.004 0.06 0.03
Q(12) 15.7 6.7 7.7
S -0 .6** -0.1 -0.3**
K 6 .2** 3.9** 4.7**
N 240** 18** 64**
AIC -11.1 -11.1 -11.4
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Table 3.9: River flow in Whiterocks river: parameter estimates and

diagnostic statistics

Homoscedastic Periodic irregular Periodic seasonal

ah 0.22

2 0.05 0.03 0.15
0.03 0.03 0.03

0.05
°2 3.3xl0-5 3.0xl0 -5 2.5xl0 -5

LR 74.1 1.13
ri 0.17** 0.17** 0.18**
r n -0.14**

**or-Ho
1 -0.14**

Q(12) 96.3** 107.0** 101**
S 0 .6** 0 .6** 0.5**
K 5.9 5.1 5.7
N 298** 168** 234**
AIC -2.2 -2.4 -2.2
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Figure 3.2: Time series used in applications section : index of production for 

Italy, France and Spain, and Whiterocks river flow
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Figure 3.3: Residuals diagnostics for index of production for Italy
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Figure 3.5: Residuals diagnostics for index of production for Spain
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Figure 3.6: Residuals diagnostics for Whiterocks river flow
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We now tu rn  to  a case where the periodic irregular variance model is more 

appropriate. Figure 3.2 displays the monthly river flow in feet in logarithms 

for the W hiterocks river (Utah). The peak in river flow occurs in June. A 

local level provides the best model for the trend in this example. Param eter 

estim ates from fitting homoscedastic, periodic irregular variance and periodic 

seasonal variance models are given in table 3.9. The null hypothesis of ho- 

moscedasticity is rejected when the alternative is a periodic irregular variance 

model but not when the alternative is a periodic seasonal variance model. 

This indicates th a t the higher variability in one m onth is superimposed in the 

series. The periodic irregular variance also has better fit, although in this 

instance neither model fits particularly well. Figure (3.6 show diagnostic 

graphs similar to the ones examined before. Closer inspection of the cor- 

relogram and the periodogram of the residuals, show th a t there is probably 

a cyclical (non-seasonal) component in the series. Cyclical (non-seasonal) 

components are beyond the scope of this thesis and they were not examined 

but the inclusion of such a component would probably improve considerably 

the diagnostics of this series.

3.5 C onclusions

Economic time series often have one season with different variance from the 

others. Reasonable models of seasonal variability yield useful descriptive 

information and provide a basis for season dependent prediction interval es

tim ation. Single season heteroscedasticity can be represented using peri

89



odic seasonal variance or periodic irregular variance; these approaches differ 

markedly in their periodic covariance structure. We suggest th a t periodic 

seasonal variance is more appropriate for modelling economic time series. 

In economic series, higher variability in one season is usually a feature of 

the seasonal component; economic agents have knowledge of seasonality and 

are able to counteract higher variability in one season by adjusting their be

haviour in all other seasons. For example, factory owners may compensate for 

low production in one month by increased production in subsequent months. 

Higher variability in a single season may also result from an exogenous ef

fect. In the case of river flow, the exogenous effect is rainfall which is not 

balanced across the year. For series where there is no mechanism to balance 

higher variability in one season across the other seasons, a periodic irregular 

model may be more appropriate. We show th a t a likelihood ratio test is 

effective in detecting single season heteroscedasticity. Our test also allows 

us to distinguish between cases with periodic variance in the irregular com

ponent and those where periodic seasonal variance provides a better model. 

For practical purposes, we suggest th a t both  the periodic seasonal and the 

periodic irregular models are fit in the data  and an information criterion, 

such as AIC, is used to determine the appropriate model. If the season with 

the different variance is not known beforehand, then graphical techniques, 

such as seasonal sub-plots and periodograms can be used to determine the 

nature of the seasonal heteroscedasticity.
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Chapter 4

Structural tim e series m odels 
for periodic processes

4.1 Introduction

Economists traditionally view seasonality as a redundant feature of a time 

series tha t needs to be removed before economic analysis (Osborn and Smith 

1988). In recent years there has been increased interest in modelling season

ality and an understanding th a t economic analysis could be flawed if season

ality is ignored, (Hylleberg 1992; Ghysels and Osborn 2001) and references 

therein. Seasonality is usually viewed as an unobserved component with 

constant variance and zero sum over the seasonal period (Bell and Hillmer 

1984). Our interest lies in seasonal time series w ith periodicity in the second 

moments, th a t is in the autocovariance function. This gives rise to models for 

which the confidence interval of the forecasts is season dependent. Models 

with a periodic autocovariance function have been investigated within the
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autoregressive moving average (ARMA) framework (Pagano 1978; Parzen 

and Pagano 1979). Periodic ARM A are specified in a similar way to  non

periodic ARMA models but the former have param eters which change with 

season. Most applications exclude the MA part for ease of estimation. Peri

odic AR models (PAR) have been used successfully in economic tim e series. 

Novales and de Frutto (1997), Franses (1996), Osborn and Smith (1989) show 

th a t a large proportion of macroeconomic tim e series have periodic second 

moments.

An alternative class of time series models are the structural time series m od

els (Harvey 1989). Following this methodology, the salient features of the 

d a ta  such as trend, seasonal and irregular are modelled directly as stochastic 

processes. The model is cast in state-space form, and the Kalman filter is 

used for estimation. Structural time series models (STSM) can be extended 

to incorporate seasonality in the second moments. We propose a new class 

of periodic structural time series models (PSTSM) and show th a t PSTSM 

are observationally equivalent to periodic integrated moving average (PIMA) 

models.

Periodic models are efficiently represented in a vector form with the tim e 

index measured in years and estim ated using multivariate analysis (Glady

shev 1961). PAR models and their vector representation are described in 

§4.2 along with PMA models. §4.3 describes the extensions of STSM to the 

periodic case and the relation between PSTSM and PARMA models. §4.4 

looks at the forecasting accuracy of PAR and PSTSM. We compare PAR 

and PSTSM on a data set of eleven quarterly macroeconomic variables from

92



USA, Canada, Germany, and UK. PSTSM produce better forecasts, bo th  

within and out of sample, for the majority of the series concerned. The final 

section presents conclusions.

4.2 Periodic A R  and M A  m odels

Consider an observed time series y s>n, where s  =  1, . . . , S  denotes the season 

and n  =  1, . . . ,  N  the year. A simple periodic A R (1), or PA R (l), has the 

form:

2/s,ti 01,s2/s— l,n H“ ^s,n ^  NID(0, (J ) (4.2.1)

where y^n =  ys+ i,n -i  when i <  0, and NID denotes normal and independently 

distributed. The variance and the autocovariance function of this process are 

periodic. The vector form of PAR is used in many studies, see for example 

Ghysels and Osborn (2001), Franses (1996), or Troutm an (1979). For the 

case S  =  4, equation (4.2.1) becomes:

0 \  (  3/1,„ \/  1 0 0
01,2 1 0 0
0 — 01,3 1 0

\  0  0  - 0 M  1 J

2/2,n 
2/3,n 

\  2/4,n J

^ 0 0 0 0 M \
0 0 0 0
0 0 0 0

V o o o o J

(  2 /l,n —1 \  (  ^ l,n

2/2, n —1

2/3,71 — 1 
V, 2/4,71 — 1 )

+ 2̂,71 
^3 ,n 

\  C4,ti

or

^o Y n — +  E n

=>• Y ti — $0 1 $ lY n-l +  ^ 0 ' E 7 (4.2.2)

From equations (4.2.2), we see th a t a PA R (l) process can be given a VAR(l) 

representation. In general, a PAR(p) process results in a VAR(P) represen-
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tation, where P  — [p+| - --] and [ ] denotes the integer part. For example, for

S  — 4, a PAR(4) will still have a VAR(l) representation with:

/ I  0 0 0 \

$ n =  ^ 1 ,2  1 0 0
~ 4 ’2,3 ~ 4 > 1 ,3  1  0

\  “ 03,4 —02,4 —01,4 1 /

^  0 4 , 1  0 3 , 1  0 1 , 2  0 1 , 1  ^

t f j  _  0  0 4 , 2  0 3 , 2  0 2 , 2

1 0  0  0 4 , 3  0 3 , 3

\  0  0  0  0 4 , 4  /

The general VAR(P) representation is:

Yn =  $o‘ ^ l Y „ - l  +  . . . +  $ o " ^ p Y n-P  +  ^ " 'E n  

=  A iY n_i A pY n_p +  U n

where A* =  1̂ *> for (z =  1, . . . ,  P ), and U n =  <J>q 1E«-

A VAR(P) process has a causal stationary representation if the roots of 

|<Fo — — . . .  — <&pzp | are greater than one in absolute value (Hamilton

1994). For a stationary VAR process, the m atrix of autocovariances at lag 

A , r (K ) = E (Y nY ;_ * ), satisfies the vector Yule-Walker equations

T ( K )  =  A xr  ( K  -  1) +  .. .  +  A PT ( K  -  P )  K > P

For a stationary VAR process, estimation is relatively straightforward (W hit

tle 1963; Jones and Brelsford 1967) and the standard t and F  tests are 

asymptotically valid.

We define periodic MA models (PMA) in a similar way. A periodic M A(1) 

process is (Ghysels and Osborn 2001):

ys,n = £s,n +  0i,ses_i,n {es,n} ~  NID(0, a 2) (4.2.3)

9 4



where e^n = es+i,n-i when i < 0. As in the PAR case, we can write PMA 

models in the vector form. For S  =  4, (4.2.3) becomes:

(  2/1,n \  1 o 0 0 \  /  t hn \  0 0 0 0U \
1/2, n 
1/3, n

V 1/4,n J

eh2 i  o o
0 0ii3 1 o

V o  o’ 01>4 i  j

,rt 
t2,n 
£3,n

\  4̂ ,n J
+ 0 0 0 0

0 0 0 0
V 0 0 0 0 J

or

(  € l , n - l  ^  

^ 2 , n —1 

e3,n-l 
\  ^ 4 , n —1 /

(4.2.4)Y n — 0 i E n +  © 2E n_ 1

As in the PAR case, a PMA(g) process will result in a VMA(Q) representa

tion, where Q = [ - §--]• The autocovariance function for the model defined 

by (4.2.4) is:

r (o )  =  <t2( © 1©'1 +  © 2©^) 

r ( i )  =  ^ © a © ;

r(fc) =  0 for k >  2

As in the univariate case, we can standardise the autocovariance m atrix to get 

the autocorrelation m atrix P (k) =  Dq 1T(fc)Do 1 where Dg =  d iag{r 11 (0 ) , . . . ,  r s s ( 0 )} 

and r a(k) is the i th diagonal element of T(k). The autocorrelation matrices 

for (4.2.3) in the quarterly case are:

P ( 0 )

( 1

#1,2

#1,2

1

0

# 1 ,3

# 1 ,3

P ( l )  =

V 0
( 0 0 0

0 0 0  
0 0 0

V 0 0 0

> / l + # l !2 \ / 1+ # l,

0

0

0

# 1 ,4

\

# 1 ,4

#1,1

\ / 1+ 1,1 
0 
0 
0

\
(4.2.5)
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Shao and Lund (2004) have developed efficient algorithms to compute auto

correlations of PARMA models. The identification of a PAR(p) or a PMA(q) 

model is not straightforward. In practice, a model selection criterion such as 

AIC or BIC is used to  choose the appropriate order of the model (Franses 

1996). Estimation is achieved by computing the exact Gaussian likelihood 

of PARMA models (Anderson, Meerschaert, and Vecchia 1999; Lund and 

Basawa 2000; Basawa and Lund 2001)

4.3  P eriod ic structural tim es series m odels

A structural time series model represents the observed series as a sum of un

observed components. Each component is represented explicitly as a stochas

tic process. We propose a new class of periodic structural time series models. 

By examining the reduced form we show th a t PSTSM are observationally 

equivalent to PIMA models.

4 .3 .1  P er iod ic  loca l level m od el

Consider a time series {yt : t =  1 , . . . ,  S N }  with S  and N  defined in §4.2. A 

standard decomposition into a trend \xt and an irregular component et is the 

local level model:

yt = /i* +  et {et} ~  NID(0, a 2) , .
IH = / i t - i+ r / t  {Vt} ~  NID(0, cr2)
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where {e*} and {77*} are mutually independent. The stationary form of (4.3.1) 

is:

A  yt = r}t +  Ae*

Allowing the variances in (4.3.1) to be season dependent gives the following 

model:
l/s,n =  f^s,n T €s,n ~  NID(0, CFe s) ^ 2\
Ms,n =  fJ>s-l,n T Vs,n { V s,n }  ~  NID(0, &r],s)

where (i^n = fis+i,n-i  for z <  0. The stationary from of model (4.3.2) is the 

same at the local level model (4.3.1) but its autocovariance function cs(r) 

varies w ith season s.

cs(0)

c * ( l )

cs{r)

=  — a e,s—1

0 for r  >  2

(4.3.3)

(4.3.4)

(4.3.5)

for 5 =  1 , . . . ,  S.

The relationship between PMA and our representation for periodic structural 

models is established using the vector representation. We rewrite (4.3.2) 

using the notation of §4.2:

Y n =  n n +  en (4.3.6)

where Var(en) =  £ e is restricted to  be diagonal; in the non-periodic case

Xe =  o f ls. The vector representation for the trend is:

(  I 0 ............. 0 \

- 1  1

0

V o
0

 ̂ 1̂ 1,n ^ /
1̂ 2,n
1̂ 3,n

V VS'ti j V

0 0 0

V Vs,n-1 /

+

Vl,n

12 ,n

\  VS,r
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or

=  $ M „ - i  +  »7n  

A»n =  D _1^M n-i +  D -1 »Jn (4.3.7)

Rearranging (4.3.7) yields

0  0  . . .  1 \ ^ M l ,n —1 ^ /  1 0  . . .  0  \

M2 ,n 0  0  . . .  1 M2,71-1 1 1 : V2 ,n
r= +

: : : : : : 0

\  V S s i  / \  o  o  • • •  v ^ M S ,n - l  ) V  1 1 - - - 1 / \  ^lS,n /

or

/ * n  =  T M n - 1 +  R r 7 n

with ?7n ~  N I D ( 0 , S^) where 5 ^  is restricted to be diagonal.

T  has one eigenvalue equal to one so {/xn} is non-stationary (Hamilton 1994). 

Applying the difference operator to  all elements of fj,n and noting th a t T  is 

idempotent (T 2 =  T ) we have:

A Mn =  Mn-Mn-1

=  T/xn_! +  Rrjn -  T n n_2 -  R rjn_1

=  T V n - 2  +  T R ? ? n - l  +  K r Jn ~  T / i n _ 2 -  R ^ n - l  

=  R y 7 n  +  ( T R  -  R > 7 n - 1  

=  R ^7n+W77n-1

where W  =  T R  —R. We can then write the vector stationary form of (4.3.6)

as

AYn -  Rrjn +  Wr7n_! + Aen 
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Thus {AYn} is a vector MA(1) with autocovariance function at lag k , de

noted T(k),

T(0) =  RE^R' +  W S jjW ' +  2E e

T(l) =  W E 77R ' - E e (4.3.8)

T(k)  =  0 for k  >  2

The non-zero off diagonal elements of the autocorrelation matrices in the 

quarterly case are:

Pl2(0) =  -
+  a l  +  +  a l  +  °-

<
\/a'i + *1 +  <  V  +  <*

P 23(0) = -  - , V ,  . .  (4.3.9)

P34 (0 ) =  -  a '3
V a l  + a l  + <  + a l  + a

Pu(l) = -
»?4\A ^, +  <  +  K

By construction Pn ( 0 )  =  P22(0) =  P33(0) — P44(0) =  1. Equating the 

autocorrelations matrices in equations (4.2.5) and (4.3.9) gives expressions 

for #i)S for s =  1 , . . . ,  S. Similar to the non-periodic case (Harvey 1989), the 

admissible region for #i)S in the PSTSM (4.3.2)is (-1,0) for s = 1 , . . . ,  S.

The issue of identifiability is of particular importance in the context of struc

tu ra l models; it is easy to set up models th a t are not identifiable. We assume 

normality so the identifiability of the model depends on the form of the 

autocovariance matrix. Hotta (1989) shows th a t a sufficient condition for 

identifiability of an unobserved components ARIMA model is th a t all the 

M  components have pm +  dm > qm + 1 where pm, and qm is the order of
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the AR and MA polynomials and dm is the order of difference for each un

observed component. It is possible to check identifiability for PSTSM s by 

applying H otta’s result to the reduced form of the components. Alternatively 

following Harvey (1989, p.207), we can check the identifiability of a periodic 

structural time series model without invoking the general result. In (4.3.8), 

we calculated the autocovariance function of the periodic local level model 

(4.3.2). (4.3.8) provide 2S  linearly independent equations which give unique 

solutions for the 2S  quantities <r2 , . . . ,  cr2s and cr^ , . . . ,  cr2s . This indicates 

th a t the model is identifiable. A similar argument establishes identifiability 

of other periodic structural time series models.

4 .3 .2  P er io d ic  loca l linear tren d  m odel

We may add a slope component to give the periodic local linear trend model.

es,n K n} ~ N I D ( 0 , a e2s)
+  rfs,n { V s ,n }  ~  NID(0,(J2S) (4.3.10)

Cs,n {Cs,n}~N ID (0,ac2’s)

where (3̂ n = (3 s + i ,n - i  for « <  0. The vector representation is then,

Vn =  T / l * . !  +  R / 3 n +  Rffn

P n  =  T / ^ n - 1 +  R C  n

(4.3.11)

with Cn ~  NID(0, 51^). We have:

— RC n +  W (n_i
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so th a t

A/xn = T /in_j -  T /in_2 + R2( n + RWCn_j + R t?„ -  R ^ _ !

= T/xn_2 + TR/3n_! + TR77n_1 — T /xn_2 +

R 2Cn +  R W Cn-l +  R *7„ -  R ^?n—1 

= TR/3n_j +  R77n + W?7n_1 + R2Cn +  RWCn_i

It follows that:

A V „ = t R2C - i +  TRWC„_J +  Rl)„ -  +  W V l  -

Wr,n_2 + r 2c„ -  R2C„-1 + RWC„_, -  RWC„_2

= R»?n + (W -  RJt/n-! -  Wjyn_2 +

R2<„ + (TR2 -  R2 + RW)C„_! + (TRW -  RW)<„_2 

= R*7n + (W -  R)j7„_! -  W n„-2 +

R2c„ + (WR +  RW)C„_i +  W 2C„_2

The stationary form is then:

A Yn — A /xn T en 2en_i T en _ 2

101



A 2y n is a vector MA(2) with autocovariance function at lag k , denoted as

T(k) :

r (0 )  =  2 R E 77R ' +  2 W E T|W ' -  W S ^ R ' -  R E ^ W ' +

R 2E cR 2 +  W R E CR W ' +  W R E ^ W 'R ' +

R W E CR 'W ' +  R W E CW 'R ' +  W 2E CW 2' +  6 E e 

T( l )  =  2 W E 7?R ' - R S 7?R ' - W E rJW , +

W R E CR 2' +  R W E CR 2' +  W 2E CR ,W / +  W 2E CW ,R / -  4 E e 

r (2 )  =  -  W E ^ R ' +  W 2E CR 2' +  E e 

r(A:) =  0 for k > 3

T(2) is an upper triangular m atrix which corresponds to { A |yt} being a 

PMA(2S).

4 .3 .3  P er io d ic  basic stru ctu ra l m od el

Adding a seasonal component /y n to  the periodic local level model (4.3.2), or 

in the periodic local linear trend model (4.3.10) results in a periodic version of 

the basic structural model (BSM), (Harvey 1989). The vector representation 

is:

Y n =  ^ n + 7 n  +  en (4.3.12)

We examine two possible representations of the seasonal component below.
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H arrison-Stevens seasonality m odel

For the seasonal component, it is natural to  use the Harrison and Stevens 

(1976) seasonal model. We re-write (2.3.16) by stacking all the seasons in a 

vector form:

7 „  =  7 „ - i  + ‘•'n (4 .3 .13 )

where is a zero-mean process with variance (?):

Var(u>„) =  f t  =  D  -  D isi'sD (4.3.14)

where D  =  d i a g j a ^ j , . . . ,  cr^5} and is =  [ 1 ,1 , . . . ,  1]; is an S  x 1. The 

variance-covariance matrix f t  enforces the constraint th a t i 'sVar(u;t) =  0. As 

we saw in §2.3.3 the model enforces the constraint th a t seasonality adds up 

to zero within a year. {A 7 n } is a vector M A(1) process with autocovariance:

r ( o )  =  f t

r ( i )  =  v

T(k)  =  0  for k > 2

The elements of V  are defined as follows:

v . /  V-ij if i  < 3 
M y 0 if i > j

A  HS seasonal component in the BSM (4.3.12), results in {A 2Y n} being a

stationary vector MA(2) as is the case of model (4.3.10). Similarly, adding a

HS seasonal component in the periodic local level model (4.3.2) still results 

in a vector MA(1) process. However there are fewer non-zero elements in
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the autocorrelation matrices than  in the non-seasonal case. In fact the auto

correlation matrices of the local level model w ith HS seasonality correspond 

to A syt being a PMA(S). Equating the two autocorrelation matrices we get 

exact expressions for the S  x S  unknown 0it8.

Dum m y seasonality

An alternative model for /y n is the dummy seasonality model we introduced 

in §2.3.1. In this case, stacking up the equations (2.3.2) for all the seasons

gives:

( I  0 . . .  0 \  (  ^ n \

1 1 • - 0

: : 0 
\  1 1 . . .  1 /  V 7S,n /

7 1 , n

7 2 ,  n

(  ^  ^ 1 ^  !  7 l , n —1 \  /  Cdi „  \

0 0 ' - . :

: : A  1
V o o . . .  o )

7 2 , n - l

\  75,77-1 J

+

^1,7 
^ 2  , n

\  ^S,n )

or in vector notation:

R 7 n  =  - W 7 n _ i  +  w n  

7  n  =  - R - ^ V i  +  R - ^ (4.3.15)

with c*jn ~  N I D ( 0, XA) where is restricted to  be diagonal. In the tim e 

invariant case =  crjl. (4.3.15) becomes:

f  7 l ,n  ^ ( 0  1 1 . . .  1 \ ^ 7 l  ,77— 1 ^

72, n 0 - 1 0  . . .  0 72,77-1

73,77 =  — o •. •. : 73,77-1 +

: . . .  0
\  75,77 /

i—
i

oo

^ 75,77-1 J

1 0 . . . . . . . .  0 \  ̂ 1̂,77 ^
- i  i  : 2̂,77
o : 3̂,77
: . . .  •*. o
0 . . . . . . . .  - 1  1 )  ̂ 4̂,77 J

or

I n  =  -  J 7 n - 1  +  
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Since J  has 5 —1 eigenvalues equal to - 1, 7 n is not stationary. Applying the 

difference operator to all elements of 7 n and noting th a t J 2 =  — J  we have:

A7 n =  7 n - 7 n —1

= ~ J7n-l + D^n + J7n-2 ~ D^n -1

— J 27 n - 2  — J D ^ n - 1  +  +  J 7 n - 2  — D c J n _ i

— — (J +  I s)Du;n_i

= D (Jjn -  $ U n - 1

since (J -F I S)D  =  3> where $  is defined in (4.3.7). Thus, {A 7 n} is a vector 

M A(1) process with auto covariance function

T(0) -  D S U)D / +  $ S W$ '

r ( i )  =

T(k) = 0  for k > 2

As in the case of Harrison-Stevens, adding a dummy seasonal component in 

the local level model (4.3.1), still gives a vector M A(1) process.

4.4 A pplications

We propose a strategy to determine the appropriate periodic structural time 

series model. Franses (1996) suggests the use of model selection criteria such 

as AIC or BIC for determining the order of a PAR model. We adopt a 

similar approach for PSTSM. As a first step we select the appropriate time- 

invariant STSM by using diagnostic tests suggested by Harvey (1989). We
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use the standardized one-step ahead prediction errors et = ^ = ,  where v t is 

the one-step ahead prediction error and Ft is its variance. If the model is 

correctly specified and all the parameters known, then {et } ~  N ID (0,1). We 

use common tests for normality and serial correlation such as those suggested 

by Bowman and Shenton (1975) and Ljung and Box (1978). The exact like

lihood for periodic structural time series is calculated using the m ultivariate 

Kalman filter (Harvey 1989). The efficiency of the Kalman filter makes like

lihood ratio tests a convenient tool for inference. The algorithm used for 

estimation and signal extraction is implemented in Ox (Doornik 1998) using 

SsfPack (Koopman, Shephard, and Doornik 1998). We test for seasonal het- 

eroscedasticity in every season separately using a likelihood ratio test and 

then use the AIC to choose the appropriate combination of periodic vari

ances to formulate a PSTSM. Finally the chosen PSTSM model is checked 

for normality and independence of the residuals using the tests discussed in 

§2 .8 .

We compare the performance of PAR models with the PSTSM on a d a ta  set 

of quarterly macroeconomic variables used by Franses (1996). They include 

several macroeconomic indicators from UK, USA, Canada, and Germany, 

which are plotted in figures (4.1)-(4.1). We use a logarithmic transform ation 

to all the series except for the Canadian unemployment. In th a t monograph, 

the series are scrutinized for periodicity in the AR parameters using a b a t

tery of tests. The author arrived at an optimal order of periodic AR using 

the Schwarz information criterion and an F -tes t for the significance of </>p+i,s 

parameters. Alternatively, the Akaike information criterion can be used.
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Figure 4.1: Time series used in the application of periodic models (1)
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Figure 4.2: Time series used in the application of periodic models (2)
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We use the same p as Franses (1996) who also considered PAR models th a t 

include deterministic seasonal trends. PAR models for all series were cast 

in state-space form and estimated using Ox (Doornik 1998) by maximum 

likelihood using the Kalman filter. We give results for the chosen PAR mod

els with and without trend. Novales and de Frutto  (1997) report th a t the 

forecasting performance of PAR models improves considerably by imposing 

non-periodic coefficients across some seasons so we included the results of a 

constrained version not considered by Franses (1996). Column C  in Table 

4.1 shows the seasons that have varying coefficients in the constrained PAR 

model. We used the AIC to select the constrained model. We fitted all dif

ferent combinations of constraints and chose the model th a t best fitted the 

data  according to AIC. For all the series except the unemployment series for 

Canada, the constrained PAR has lower AIC than  the unconstrained version. 

For the PSTSM, we first selected between a local level model (4.3.2) and a lo

cal linear trend model (4.3.10) using the AIC. We then select which quarters 

have different variance by fitting all the different combinations of seasonal 

heteroscedastic models and select the model th a t minimises the AIC. As ex

plained in §2.8, the AIC is comparable across the different models and gives a 

fair comparison between PAR and PSTSM models. For all the series, except 

the Candian unemployment series, PSTSM fitted the data  better than  the 

best PAR, in terms of AIC

The best model from Table 4.1 is fitted w ithout the final year of da ta  and 

forecasts generated for the deleted observations. This experiment is repeated 

removing the last two and then the last three years of data. Table 4.2 shows
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Table 4.1: Comparison of PAR and PSTSM (log is applied to  all the series except CAI

Unemployment)

Variable pa C b Sc AICpARd AIC p a r 6 A lC p ^ i/ AIC P S T S M

USA Ind. production 2 2,4 4 -6.73 -6.71 -6.73d -9.89h
CAN Unemployment* 4 3 j 9.57 9.65 9.64d 17.335
DEU GNP, 2 2,4 2 -6.69 -6.68 -6.73e -12.235
UK GDP 2 2,3 3 -6.35 -6.34 -6.47d -8.86h
UK consumption 1 2 3 -6.82 -6.80 -6.95d -9.36h
UK cons, nondur. 1 2 3,4 -7.47 -7.43 -7.61d -10.475
UK Exports 2 2 3 -4.88 -4.86 -4.99e -7.36/l
UK Imports 1 2,4 3 -4.95 -4.98 -5.086 -9.305
UK pub. investment 2 1 2 -2.53 -2.62 -2.73e -4.94 h
UK workforce 2 1 1,2 ,3,4 -9.43 -9.4 -9.61d -9.62h

a Order of PAR model

b Seasons with varying coefficients in the PAR model 

c Seasons with different variance in the PSTSM model 

d Model without trend 

e Model with Trend 

f  Constrained PAR 

9 Fixed Level+Stochastic Slope 

h Stochastic Level+ Fixed Slope 

1 log-trasformation is not applied in this series 

3 N o  heteroscedasticity
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Table 4.2: Out of Sample Comparison of PAR and STSM (RMSE)

Variable 1 Year 
PAR PSTSM

2 Years 
PAR PSTSM

3 Years 
PAR PSTSM

USA, Industrial production 0.31 0.06 0.35 0.09 0.02 0.09
CAN Unemployment0 4.34 61.18 3.5 129.39 59.1 344.3
DEU, Real GNP 0.02 0.02 0.02 0.02 0.02 0.04
UK GDP 0.16 0.02 0.22 0.01 0.03 0.01
UK total consumption 0.099 0.008 0.02 0.01 0.01 0.02
UK consumer nondurables 0.10 0.009 0.10 0.01 0.01 0.02
UK Exports 0.03 0.05 0.03 0.08 0.03 0.03
UK Imports 0.04 0.02 0.05 0.03 0.05 0.19
UK public investment 0.19 0.10 0.24 0.16 0.24 0.18
UK workforce 0.006 0.008 0.005 0.004 0.005 0.006

a log-trasformation is not applied in this series

the root mean square error for the out-of-sample forecasts. The results sug

gest that, at least for the one and two year ahead forecasts, PSTSM out

performs PAR. This suggests that, in many instances, PIMA may provide 

a better representation than  PAR for the correlation structure of economic 

series. For the longest forecast horizon, PAR models perform marginally bet

ter in terms of out of sample RMSE. Some of the forecasts may be improved 

by including other cyclical components or exogenous variables, bu t for the 

purposes of this thesis we concentrated in showing a fair comparison between 

PSTSM and PAR models. We conclude th a t, for these series, PSTSM pro

duce considerable gains in accuracy over PAR models, at least for short and 

medium term  forecasts.
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4.5 C onclusions

Periodic processes where the coefficients change with the season represent a 

real feature of economic time series. The most widely used framework is the 

periodic autoregression (PAR). We advocate representation of periodic pro

cesses in the structural time series framework. We established th a t periodic 

structural models have a vector integrated moving average representation. 

Although vector moving average and vector integrated moving average mod

els have been investigated as part of VARIMA class of models, they are 

little used in practice. We have shown th a t a class of models with VIMA 

correlation structure provide parsimonious models for univariate series with 

periodic second moments. Moreover, in practical applications, the structural 

framework provides greater insight into the nature of the series than  PAR 

models. PSTSM relate the seasonality in the autocovariance function to spe

cific unobserved components. In comparison, PAR models param eters are 

not readily interpret able. We compare the forecasting accuracy of PSTSM 

with PAR models. PSTSM produced better forecasts both within and out of 

sample for the m ajority of the series concerned. We conclude th a t structural 

time series models are a natural framework for modelling periodic processes 

both in terms of interpretability and forecasting accuracy.
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Chapter 5

Contem poraneous aggregation  
of tim e series

5.1 Introduction

Many economic time series can be broken down into components, such as 

regions or different types of economic activity. For example, European Mon

etary Union (EMU) GDP can be disaggregated into the GDPs of the member 

states. If the individual components are observed, then the aggregate series 

can be constructed by adding up these components, as is the case in the EMU 

GDP. If the aim is to forecast the aggregate series then the question arises 

about forecasting individual series and then aggregating or directly forecast

ing the aggregate series. This can be summarised as whether to  aggregate 

the forecast or forecast the aggregate. In fact, the choice of the aggregate 

series is arbitrary. Each series in a hierarchical dataset with n  time series 

can be seen as linear combination of the n — 1 other time series. H otta and
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Vasconcellos (1999) consider the problem of tem poral aggregation, such as 

turning a monthly series into a quarterly. We concentrate on the problem of 

sectional aggregation; adding up different series observed in the same time 

period. There is an extensive literature on this topic, see Liitkepohl (1987) 

and references therein, but very few practical solutions.

We devise a methodology to take an appropriate decision for each series. 

Using the same methodology, we can also decide what is the best way of 

aggregating a dataset in order to get minumum MSE forecasts. There are 

three forecasting methods th a t we can distinguish:

1. model each individual series separately and then aggregate the forecasts

2 . model all the series with a multivariate time series model and then ag

gregate the forecasts; we use a seemingly unrelated time series equation 

model (SUTSE), see Harvey (1989)

3. model the aggregate series through a univariate model.

Liitkepohl (1987) shows, using ARMA models, th a t 2 is at least as good as 1 

and 3 in term s of MSE. He also shows th a t the gains between the predictors 

vanishes for long-range forecasting since all three prediction MSE matrices 

converge to  the MSE of method 3. Wei and Abraham  (1981) show th a t the 

comparison of 1 and 3 in terms of MSE depends on the structure of the 

component series and the method of aggregation. Giacomini and Granger 

(2004) add a fourth method by adding a spatial element and show th a t it 

is at least as good as 2. In this chapter, we consider only models with a
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time element and we do not borrow information from other related series or 

dimensions, such as space. Related work and special cases results can be 

found in Granger and Morris (1976), Rose (1977) and Tiao and G uttm an 

(1980).

In §5.2 we define the problem of forecasting aggregated time series. We look 

at the conditions under which a structural tim e series model is identifiable. 

We show th a t simple aggregation of identifiable models does not ensure th a t 

the aggregate model will be identifiable. In the following section, we com

pare forecasts under the assumption of no estim ation error. We show th a t we 

can use quantities derived by simple manipulations of the Kalman filter to 

compare the MSEs of the three methodologies. In §5.4 we compare the fore

casts of the aggregated series when the param eters of the model are unknown 

and need to be estimated. We provide the recursions th a t are required to  

derive the asymptotic conditional variance of the one-step ahead prediction 

error. In §5.5, we apply our methodology in the UK motor vehicle production 

dataset. This small dataset includes three series, and we investigate different 

ways of aggregation in order to  get the best forecasts for all series.

5.2 A ggregation  o f tim e series

Let p be the number of time series and let y t = (y\,f,. . .  ,yp,t)' denote the 

observations of p time series at time t. Then the aggregate at time t is 

y f  =  w y t where w  =  ( w \ . . .  wp) is a vector of weights which we assume to
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be constant over time. We also use Y j tt = . . . ,  to denote the vector

of past observations of the j th series , and Y t — ( Y i ^ , . . . ,  Y pj)  the vector 

of past observations of all p  time series. We make the following assumption 

about the formulation of the model.

A ssu m p tio n  5 .2 .1 . All time series y j j  can be written in a state-space form

We also need to  ensure th a t the aggregate series has an identifiable state- 

space representation.

L em m a 5.2 .2 . A sufficient condition for  an aggregate time series y f  to have 

a state space representation is that all p time series yj^ have a state-space 

representation.

Proof A time series has a state-space representation if there exists a state- 

space models for y^t specified by the following equation

Uj,t — +  €jtt Cj,t ~  AT(0, H jj)

°Lj,t+ 1 =  T Vj,t AT(0, Qj,<)

for j  =  1 , . . . , p .  The dimension of each state  is m j.  Then the aggregate
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series has the following form:

Vt  =  w yt =  I W l  . . .  w p

Z1>t 0

0 Z2)t

0 0 0 z p,t J

(  \
a l,t

\ a p,t j

+ W l Wr

v w

which shows tha t y f  has a state-space representation. If are uncorrelated 

in time so th a t E (ejitei^-k) =  0 for A; =  1 , . . . ,  i — 1 then:

a (+1 = T fa t +  R ^ V  ~  JV(0, Q f) (5.2.1)
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where

Zt ~  ( ^ i Z M w2Z2,t . . .  wpZpj

OL+ —t I ^l,t &-2 ,t • • • QLp,t

r p A  __
At ~

T ift 0 

0 T2>t

V 0 0 T p,* /

v p
and 7/ / 1 =  w?Hj,t . The dimension(dim) of Z f  and a't is 1 Y1 rrtj, and of

3 =1 ’ J=1

d i m T j 4 =  m j  x  m 3- 
j=i j= i

We define the three forecasting methods tha t we described in the introduction 

in terms of conditioned estimates of the state.

(E (a i>t |Y 1>t)/ . . .  E((xPyt\Yp^y) = M ethod 1 (univariate)

( E ( a i >t |Yt)/ . . .  E ( a P)<|Y t)/) =  a[2̂  M ethod 2(multivariate)

E ( a t |wYt) = a-  ^(3) M ethod 3(Direct)

For methods 1 and 2, the state-space formulation takes the form of 5.2.1, so 

th a t d im (a ^ )  =  dim (a[2̂ ) =  d im (at). The difference between methods 1 

and 2 for the structural time series models are in the matrices and Q f ,
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which for the univariate case are block diagonal, while for the m ultivariate 

case they have non-zero elements in the off diagonal. This has an effect in the 

filter derived matrices P t and F t which are block diagonal in the univariate 

case, while they are not in the multivariate case.

To illustrate the point, we have two series of which one follows the local 

level model and the other the local linear trend model. For simplicity we use

W\ =  W2 =  1:

C2,t ~  NID(0 , 0£2) are mutually independent. Z f  and T ^  are the same for 

both methods 1 and 2.

The matrices of the hyperparameters P if  and Q f  are different for each

Hi ,t — +  e i, t

1 +  Vi, t

When we aggregate the two series ?/1>t and 2/2,t we get v t

ti,t +  e2 ,t
M i . t - i  +  1^2,t - i  +  P 2 ,t +  Vi  ,t +  V2,t

0 2 , t - i  +  C2 ,t

where e

method
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Method 1

< 0 0
0 0
0 0 4

Method 2

j*  ) Qt =

2
2 .̂ \  /  ^r/i ^Vl2 °VlC2

(Jfit <■» C7\.x 612 u€2 /  \ /T 0 /r2
\  a 7?lC2 ^  <TC2

with R 4̂ =  I3 for both methods. As noted before, Method 2 is equivalent to 

a seemingly unrelated time series equation (SUTSE) model (Harvey 1989).

The state-space form method 3 is:

y? =  Z{a<3)+ 4  4  ~  N(0, H \)

a S+i =  T j a f  +  R j ^  rf\ ~  iV(0 , Q j)

t  O ')The form of Z\ and consequently the dimension of the state vector a{

depends on the form of the model of the original series. In the structural time

series framework, the aggregate model would be the one th a t encompasses all

models of the individual series. This means th a t Zj certainly is not equal to

Z f ,  and does not have to be equal to Zj :t. In the case of two series where one

follows the local level model, and the other has only a seasonal component,

we model the aggregate series using the Basic Structural Model, so Zj ^  Z^ t

for j  = 1, 2 . On the other hand, for our example, with a local level plus a

local linear trend model, the aggregate series is described by a local linear

trend model so th a t Z\ = Z 2i* and T* =  T 2)t so tha t

z i =  ( 1  0 )  T t = ( ; ; )
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and the matrices of the hyperparam eters for method 3 are:

R t =  h

We note tha t ^  t and Q j ^  Q 2 1, even though they have they same

form. The first one contains the hyper-parameters of the aggregate series 

while the second includes the hyperparam eters of series 2 only.

The forecasts from the three methods are:

We assume tha t we have no model identification problem for method 3, but 

in some cases the above models are not identifiable. The identifiability of 

an aggregate structural time series model is not straightforward. Even if we 

have identifiable models for the individual series, we may have an unobserved 

component models which is not identifiable for the aggregate series if we just 

add up the components.

We first look at the identifiability conditions for the component series. In 

the following example we add a non-dentifiable model to an identifiable.

E x a m p le  5.2.1. For illustration purposes we show th a t a simple local level+M A(l)

y ln l  1 =  Method 1

f i£ i  =  Method 2

Vnl\ =  z J,+ia L+i Method 3'n + l  n+1

(5.2.2)
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model is not identifiable. Suppose th a t our model for the j th series is:

V j,t =  A b '.t +  Z jtt +  t j , t  ej,t ~  NID(0, a 2)

fijtt =  +  rjjtt rjjj ~  NID(0, cr2) (5.2.3)

Cj,t ~  NID(0, a 2)

The reduced form of the model (5.2.3) is an IMA(1,2),

A  yt =  rjj, t +  A z jit +  Ae* (5.2.4)

=  Vj,t +  C),t +  (0 — i ) 0 , t -i  — @Cj,t-2  +  ej,t — ej ,t- i

We show the non-identifiability by looking at the autocovariance function of 

the above model. Prom (5.2.4), we can calculate the autocovariance function 

of A  yu

7(0) = + a 2 +  (9 — 1)2(J2 +  9 a* + 2a 2

= + [\ + ( 9 - l f  + 92]a2 + 2 ^ 2

= + 2(92 -  9 +  1 )a2 + 2a e2

7(1) = (9 — 1 )a2 — 9(9 — 1 )a2 — <̂e2

= - ( 9  -  I )2* 2 —

7(2) = —9a2

II o for h > 3

The model is therefore not identifiable since we have three equations bu t four 

unknown parameters, i.e <r2, a 2, <r2, and 9.

H otta (1989) shows th a t for a time series {yt} which has M  unobserved 

components, under very general assumptions, a sufficient condition for iden

tifiability is th a t pi +  di > qi +  1 , where Pi is the order of the AR polynomial,



di is the order of differencing for a non-stationary process, and qi is the order 

of the MA polynomial for zth component. If there are no constraints on any 

of the AR or MA polynomials, then this condition is both  necessary and 

sufficient. For the local level+M A(l) model (5.2.3), the order condition is 

not satisfied for the MA component, since P2 =  0 , c?2 =  0 , and q<i — 1 so 

the model is not identifiable. In general, simple MA process in models for

mulated as in (5.2.3) are not identifiable since the order conditions are not 

satisfied. On the other hand, we can reformulate the structural models in a 

way tha t the MA process have identifiable form. This can be achieved by 

ignoring the observation error et .

In the following example, we show a case where we have two series tha t 

satisfy the order condition for identifiability but the aggregate model may be 

non-identifiable without reformulation.

E x a m p le  5.2.2. Suppose we have the following two series th a t both  have 

A R (l)+ error components.

Vi , t  =  z l, t  +  €\

z i , t  — +  C i ,t C i ,t ~  NID(0 , <7})

2/2, t — z 2,t +  e2 ,t

z 2 ,t — $ 2 z 2 ,t—l  +  C2,Z C2,t ~  NID(0, Cr|)

If we add up the components so th a t the model for the aggregate series is:

y f  = z f  + e?

z t =  Zl , t  +  z 2,t

et  =  e l , t  +  e2 ,t
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Following Granger and Morris (1976) the sum of two A R (1) processes result 

in an ARMA(p,q), where p < 2  and q <  1 . The autocovariance function 7 (h) 

of the aggregate unobserved component z f  as an expression of the param eters 

4>i and <f>2 are (Harvey 1993):

4*\Q*( 1 + $2) + (1 — $2X^1 + a2)7(0) =
(1 -  05){1 -  4*1 4*2[4? + (1 -  41)41]}

_  4i [0*(i + 41) + (1 -  41){(J\ + a2)\ , 
(1 -  <̂ )2{i -  4*i 4*2[4*i + (1 -  4*2)4*2}} 
e \ \ - 4 i ) { i - 4 f 4 l [ 4 * i  +(1-41)4%)  
(1 -  ^ )2{i -  4f4*2[4*i + (1 -  2̂)^2]}

7 (h) = 4 \ l{ h  ~  1) +  4 2l ( h  ~  2 ) for h > 2

where,

4\ — 4i + 42 

4*2 — ~4\42

@* — 42<J1 +  4l&2 

We can easily show th a t if the following conditions are satisfied,

« 7 * ( l )  +  « 7 * ( 0 )  =  0

4*27z? W  = 0

then z f  is a M A(1) process and therefore the model for the aggregate series 

y f  is non-identifiable, unless we ignore the observation error ef.

The above example showed that, in general, it is not sufficient to  have iden

tifiable models for the component series to  ensure th a t the aggregate model 

will be identifiable as well.
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For the simple structural time series models, which have a reduced form tha t 

follows a MA process, as in the local level model, the local linear trend model 

and the basic structural model, the aggregation of components is straight

forward and always results in identifiable models for the aggregate series. 

The aggregation of components is not as straightforward when non-seasonal 

cycles are added in the model which may have reduced forms with AR struc

ture. For the rest of the chapter we deal only with simple structural models 

w ith no AR param eters in their reduced form.

5.3 C om parison o f forecasts

In the following section we assume th a t the underlying processes of the indi

vidual time series are known and there is no estimation error. We define the 

following one-step ahead prediction errors:

i.((1) =  w y t - Z f a (t1} 

=  w y t - Z f o < 2) 

i'(3) =  w yt -  Z]a,3]

The variance of the one-step ahead prediction errors is:

Var(i;J1)) = F,(1) = +wHjV
Var(t)((2>) =  F ((2> =  ZfP<2)Z f + w H | 2)w '

Var(i;((3)) =  F((3) =  z tp + z f  +  H j
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Using the filter derived quantities and F$2\  we can choose the method 

which has the smaller variance for the one step ahead prediction error. For 

all three methods we can evaluate the log-likelihood function using the pre

diction error decomposition via the Kalman filter. We re-write recursions for 

the Kalman filter (2.4.11) adding a sub-index j  to  describe the individual 

time series:

v j , t  =  Vj,t  ~  Z j , t&j, t

Fj,t = Zjtt P  +  Hj^t

K j,t —

=  Tj , t  ~

*U,t+ 1 T

Using the prediction error decomposition (2.7.2), we write the log-likelihood 

function of the three methods as:

log L ( w Y t){k) = -  ™  log 2tt -  i  f > g  Ft(fc) +  v {k) F^k) 1 v {k))
t=i

for k = 1, 2 , 3. Using an information criterion, such as AIC, we compare the 

three different methods. We then select the method which has smaller AIC. 

The use of AIC opens up a simple way which can be used to chose between 

m ethods 1 and 3. As we said at the beginning, the comparison depends on 

the d a ta  generating process, so an obvious choice is to  use an information 

criterion such as AIC.
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5.4 E stim ated  coefficients

Up to now, we assumed th a t the underlying process is known and no coeffi

cients need to  be estimated. In practice, the coefficients need to  be estim ated 

and there is an uncertainty on the value of the estimates. The coefficients 

of all models are assumed to  be estim ated with maximum likelihood using 

realizations from processes independent of these used for forecasting and 

identical stochastic structures. The asymptotic conditional variance of the 

one step ahead prediction error is (Ansley and Kohn 1986),

Var(„<*>|Y.) =  > +  - ^ V a r ( V > ) - ^ r  (5-4.1)

where ijj is the vector of estim ated coefficients and k = 1, 2,3. In the case of 

methods 1 and 2 the asymptotic distribution of the conditional variance of 

the aggregated series is,

=  Z?P *Z  f  +  H* +  - ^ V a r

For large samples, the second term  is well approximated by zero but in small 

samples, the estimation variability can be substantial. The asymptotic dis

tribution will be (Harvey 1989, p .211),

Var(,0 ) =  2 I( '0 )~ 1

where 1(^0 is the information matrix. In the time domain the 27th element 

of the information m atrix is given by (Harvey 1989, p. 142):

2=1
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R (ky d R ( k )

dtp.
+  E E

2=1
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Dropping the expectation from the second term , we have an expression which 

is asymptotically equivalent and in most case it is easier to evaluate.

Alternatively, the information m atrix can be w ritten in the frequency domain 

form as (Harvey 1989, p.196):

n —1
I W , )  =  I y - l % £ k

 ̂ ^  d ip  dip'

where gj depend on the autocovariance generating function of the model. 

The asymptotic variance of hyperparam eters is then directly dependent on 

the model we chose. For example for the basic structural model is,

s —1

gj = 2(1 — cos Ajs )a^  +  [s +  2 ^T^(s — h) cos Xjh]a^
h= 1

(6 — 8 cos Aj  +  2 cos 2Aj )a^  +  4(1 — cosAj)(l — c o s \ j s ) a i 

2(1 — cos Ajs)

dQj
dtp

s - 1

5 +  2 (s ~  h) cos Ajh  
h= 1

6 — 8 cos A j +  2 cos 2A j 
4(1 — cos Aj)(l — cos A js)

The derivatives of Ft and v t may be evaluated numerically or analytically. 

Analytical evaluation requires n  additional sets of recursions to run in parallel 

with the Kalman filter. For simplicity we drop the superindex k. Taking
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partial derivatives we can have the following recursions: 

dvt _  d Z t _  dot
d'ipi d'ipiat 1 d'ipi

d a t+1 d T t d a t d K t dv t
~7T/ =  J i T at +  T t ^ T  +  ̂ T Vt +  K t^ T0'iPi C'yJi

dKt _  8Tt rjt 77—1 , T 9Pl 7 /p - l  . rp p  9Z*'p-l , rp p  rytdFi1
W i  -  W i  W i  + T tP tW i Ft + T t P tZ t^ r

= ® . p 7 '  +  7 ^ 7 '  +  7 p ^ , ^  ( *An
dipt dipt t ‘ * dipt 1 ! 1 dipt dtp,

d F f 1 =  _ p - i ^ p - !
d'ipi t d'ipi t
dU =  dTt _  dK tz  _ K ^ t
dxpi d'ipi d'ipi 1 1 d'ipi

3P«+1 =  ^ P T ' + T ^ T ' + T P ^ 4 R ^ '
d'ipi d'ipi t 1 1 d'ipi 1 1 * d'ipi 1 d'ipi 1

If a 0 and Po are independent of 'ip as in the case of diffuse prior, then =  0 

and =  0. Harvey (1989, p. 143) provides some of the recursions in (5.4.2) 

for a different formulation of the Kalman filter. Here we derive the complete 

set of recursions needed for the calculation of the asymptotic variance (5.4.1) 

using the formulation of the Kalman filter seen in (2.4.11).

In the case of the exact initial Kalman filter (2.6.1), we also derive recursions
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in a similar way,

d a t + 1 d T t d a t d K * t d v t
-jtt = 7rra‘ + T‘7̂ r + ̂ r rvt + K*.‘7rrU'lpi d'ipi (s'lyi (s'lPi

d P * ,m  _  OTtp T, , T dP.'ty, , T p  dTt , T> ^Q*p/
d'ipi d'ipi * ’* * 1 d'ipi t 1 * ’* d'ipi d'ipi 1 d'ipi 1

d P o c m  _  O T,P  ^ t ;  aCqp.t
t y i  d'ipi ^  t +  1 d iP i  t +  *

dK*t 9 M ,t n _ _  dF~t aMoot „_ _  <9F“ t
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Even though and are time dependent, in practice are quite easy 

estimate using simple m atrix calculus. When P o ^  =  0 we can use the fi: 

set of recursion to evaluate the necessary partial derivative.

Having defined all the necessary quantities, using either (5.4.2) or (5.4.3), we

to

the first
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can calculate the variance of the one step ahead prediction error for the case 

of estim ated coefficients, given in (5.4.1). We can follow the same idea we 

introduced in §5.3 and compare the three estimation methods (5.2.2). We 

then choose the one which will give the smallest conditional variance for the 

one step ahead prediction error of the aggregate series.

5.5 A pplication

We apply the methodology for selecting the best forecasting method in the 

UK Motor Vehicle Production dataset (Figure 5.1). The total car manufac

turing is disaggregated into production for the home market and production 

for exports. They belong to  a set of short-term  output indicators used to  de

termine economic policy. All three series have equal importance for different 

reasons. The total production is an indicator for the state of m anufacturing 

in UK, while the production for home can also be used as an indicator for 

the aggregate demand in the British economy. The production for exports is 

used to determine the effect of exchange rates in the competitiveness of the 

UK economy. Given their equal importance, it is interesting to decide what 

is the best way to forecast each of three series. Each one can be forecast 

indirectly using either method 1 or 2, or directly using m ethod 3. For ex

ample, a forecast for the home market production can be estim ated directly 

or as the difference between the to tal and export production forecasts. We 

applied the three methods in each series. The results are shown in Table
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For all three series, method 3, provides the smallest variance of the one-step 

ahead prediction error. We also give the variance adjusted for the uncertainty 

on the value of the estimates. The asymptotic conditional variance when the 

coefficients are unknown is, as expected, larger than if we assume known 

parameters. The largest contribution due to param eter uncertainty is in 

m ethod 1, for home and export production, and in method 2 for the to tal 

production.

We see th a t in terms of AIC, total production is better modeled directly 

while export production is better modeled indirectly. For the home produc

tion, methods 1 and 3 behave similarly. In some cases, analysts are interested 

in having consistency in the aggregation of forecasts, so th a t the forecasts 

for the home and export production add up to the forecast for the to tal 

production. Applying our methodology gives the best way to  provide consis

tently aggregated forecasts. Total and home production would be modeled 

directly, while forecast for the export series would be a linear combination 

of the forecasts of the two other series. The export and the to ta l series are 

very similar, especially in recent years. The results of this analysis show 

th a t for forecasting purposes, there is no significant information loss for the 

export series if we use an indirect method to  forecast it; all the information 

needed is included in the to tal series. The opposite cannot be said for the 

to ta l series; there is information loss if use an indirect method for the to

ta l series. The same methodology can be followed for seasonal adjustm ent 

purposes. ONS published seasonally adjusted series for to tal production by 

adding up the seasonally adjusted estimates for the home and the export
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Table 5.1: Comparison of direct and indirect

methods

Home Export Total

A I C (1) -4.9820 -5.1120 -3.1088
AIC ™ -4.4892 -4.6188 -3.0618
A IC <3> -4.9491 -5.0600 -6.0111
f 11] 0.041919 0.042732 0.052737
f 12) 0.062811 0.062805 0.071530
f 13) 0.027367 0.026484 0.016993
Adj. F i1] 0.042442 0.043645 0.052739
Adj. F i2) 0.062816 0.062814 0.071897
Adj. i 4 3) 0.027368 0.026384 0.017044

series. Following a methodological review in 2004 (Tripodis 2005), to tal and 

home production and seasonally adjusted directly, while the export series is 

derived indirectly.

5.6 C onclusions

In many areas of economic life, we need forecasts of aggregated variables. 

Practitioners have to face the question of whether to  forecast the compo

nents of a dataset and add up the forecasts (indirect method), or to forecast 

the aggregate series separately (direct method). This chapter investigated 

the differences between these methods. We consider the similarities and dif

ferences within the structural time series framework. We point out some
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Figure 5.1: Motor Vehicle Production in the UK

Home
Total
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problems in the identifiability for the model of the aggregate series. We also 

suggest a methodology to take an appropriate decision for each series. We 

start from the case where the underlying process of the series is known and 

we base our comparison of the methods on the variance of the one step ahead 

forecast error. This can be used either directly or through some information 

criterion to  provide the best m ethod for each case. We also look at the more 

common case where the underlying process is unknown and the param eters 

of the model need to  be estimated. In this case, we provide recursion which 

will give the variance of the one-step ahead prediction error and follow the 

same methodology as in the case where the param eters are known. We ap

plied this methodology in the UK motor vehicle production dataset. We 

showed th a t it is better to model directly the to tal and home series, and 

derive the forecasts for the export series by subtracting the home from the 

total production forecasts.
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Chapter 6

Conclusion and further research

This thesis concentrates on two particular aspects of time series: seasonal 

heteroscedasticity and aggregation. Economic time series often have one 

season with different variance from the others. We show th a t single season 

heteroscedasticity can be represented using periodic seasonal variance or pe

riodic irregular variance; these approaches differ markedly in their periodic 

covariance structure. We suggest th a t periodic seasonal variance is more 

appropriate for modelling economic time series. In economic series, higher 

variability in one season is usually a feature of the seasonal component; eco

nomic agents have knowledge of seasonality and are able to  counteract higher 

variability in one season by adjusting their behaviour in all other seasons. For 

example, factory owners may compensate for low production in one m onth 

by increased production in subsequent months. Higher variability in a sin

gle season may also result from an exogenous effect. In the case of natural 

events, such as river flow, the exogenous effect is rainfall which is not bal

anced across the year. For series where there is no mechanism to balance
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higher variability in one season across the other seasons, a periodic irregular 

model may be more appropriate. We show th a t a likelihood ratio test is effec

tive in detecting single season heteroscedasticity. Our test also allows us to 

distinguish between cases with periodic variance in the irregular component 

and those where periodic seasonal variance provides a better model.

We extended the case of single season heteroscedasticity to general periodic 

process, where the coefficients change with the season. The most widely used 

framework is the periodic autoregression (PAR). We advocate representation 

of periodic processes in the structural time series framework. We established 

tha t, periodic structural models have a vector integrated moving average rep

resentation. Although vector moving average and vector integrated moving 

average models have been investigated as part of VARIMA class of mod

els, they are little used in practice. We have shown th a t a class of models 

with VIMA correlation structure provide parsimonious models for univariate 

series with periodic second moments. Moreover, in practical applications, 

the structural framework provides greater insight into the nature of the se

ries than PAR models. PSTSM relate the seasonality in the autocovariance 

function to  specific unobserved components. In comparison, PAR models pa

rameters are not readily interpret able. We compare the forecasting accuracy 

of PSTSM with PAR models. PSTSM produced better forecasts both  within 

and out of sample for the m ajority of the series concerned. We conclude th a t 

structural time series models are a natural framework for modelling periodic 

processes both in terms of interpret ability and forecasting accuracy.

We also consider the question whether to forecast the components of a dataset
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and add up the forecasts, or forecast the aggregate series separately. Many 

economic tim e series can be broken down into components, such as regions or 

different types of economic activity. We investigated the differences between 

the different methods. We suggest a methodology to take an appropriate 

decision for each series. We start from the case where the underlying process 

of the series is known and we base our comparison of the methods on the 

variance of the one step ahead forecast error. This can be used either directly 

or through some information criterion, such as AIC, to  provide the best 

method for each case. We also look at the more common case where the 

underlying process is unknown and the param eters of the model need to  be 

estimated. In this case, we provide recursion which gives the variance of the 

one-step ahead prediction error and follow the same methodology as in the 

case where the parameters are known.

An interesting direction for further research is to combine the issue of sea

sonal heteroscedasticity within a large dataset with different component and 

see the interactions across different time series. We need to investigate fur

ther issues of seasonal co-integration th a t were not discussed in this thesis. 

In many datasets, the seasonal component has common cause and one can 

envisage situations where seasonal components are co-integrated. Extending 

the work by Hylleberg, Engle, Granger, and Yoo (1990), Harvey and Koop- 

man (1997) propose common seasonal models within the structural time 

series framework. Bringing together all these aspects of seasonal time series, 

would provide considerable advantages in terms of forecasting of time series 

and also in term s of identification of seasonal component for the purpose of
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removing it through the process of seasonal adjustment.
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A ppendix A

A .l  G ivens R otation s algorithm

We use the algorithm provide by Golum and van Loan (1996). Given scalars 

a and 6, this functions computes c =  cos($) and 5 =  sin(0) so

1 T r  - | -1

c s a r
—s s 6 0

if 6 =  0

c =  1 ; s  =  0

else

if |6| > |a|

t  =  - §  

s =  ■ 1
V l + r 2

c =  sr

else
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c =  1
\ / l + r 2

s — cr

e n d

en d  The following function w ritten in Ox (Doornik 1998) applies repeated 

Givens rotation to the input m atrix m U  to create a lower triangular matrix.

GivensO

{

decl mG,c,s,xl,x2; 
decl i,j; 
decl cr=rows(mU); 
decl ccol=columns(mU); 

decl k;
decl tau,tl,t2;

for(k=ccol-l;k>0;k— )

{

for(i=0;i<cr;i++)

{

if(i==k)
return -1; 

else 

{

tl=mU[i] [i] ;
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t2=mU[i] [k] ; 
if(t2==0)

{

c=l;

s=0;

>

e lse

{

if(sqrt(t2~2)>sqrt(t1~2)) 

{

tau=-tl/t2; 
s=l/sqrt(l+tau~2) ; 
c=s*tau;

}

e lse

{

tau=-t2/tl; 
c=l/sqrt (l+tau~2) ; 

s=c*tau;

>

>

mU[i][i]=c*tl-s*t2; 
mU[i][k]=s*tl+c*t2;
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}

>

}

}

A .2 Square K alm an F ilter code

The following function written in Ox gives the square root Kalman filter

SqFilterO

{

decl i;
decl mZ=mTZ[cS][]; // system matrix Z
decl mT=mTZ[:cS-1][]; // system matrix T
decl mH,mL,mC;
decl mRQ=mHGHG[0:cS-1][0:cS-1] ; //variance of state noise
decl mState=zeros(cS,cDataLength);
decl mCState=zeros(cS,1);
decl mU2=zeros(cS,1);
decl mU3=zeros(cS,cS);

decl mUl=0;
mState [] [0] =0;
vFinv=zeros(l,cDataLength); //cDataLength: no of observations
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vVlow=zeros(1,cDataLength);
vVlow[0][0]=mData[0][0]; //mData is input matrix with original

// data

if(cSeasType==CMP_SEAS_HS) //Harrison-Stevens seasonality 

{

decl result=eigensym(mRQ,&mL,&mC); 
if(result==l) return -1; 
else

{

for(i=0;i<cS;i++)

{

if(mL[i]<0) mL[i]=0; 
else mL[i]=mL[i] "0.5;

}

mL=setdiagonal(zeros(cS,cS),mL); 

mU=mC*mL;
Givens(); 
mRQ=mU; 
mX=mX’ ;

}

}

else mRQ=choleski(mRQ); 
mU=zeros(cSy,2*cS+l);
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if(cSeasType==CMP_SEAS_HS) mZ[][cS-cSeasPer:cS-l]=mX[0] []; 
mU[0] [:cS-l]=mZ*mP; 

mU[l:cS][0:cS-1]=mT*mP;

if (cSeasType==CMP_SEAS_DUMMY) mU[0] [cS]=mX[0] □ ''0.5; 
else mU[0][cS]=mX[0] [cSeasPer] "0.5; 
mU[l:][cSy:]=mRQ;

Givens();
vFinv [] [0] =mU [0] [0] " (-2);
instate [] [1] =mT*mState [] [0] +mU2*mUl*vVlow[] [0] ; 
for(i=l;i<cDataLength-l;i++)

{

mU=zeros(cSy,2*cS+l);
if(cSeasType==CMP_SEAS_HS) mZ[][cS-cSeasPer:cS-1]=mX[i][]; 

vVlow[] [i]=mData[] [i]-mZ*mState [] [i] ; 
mU [0] [:cS-l]=mZ*mP; 
mU[1:cS][0:cS-1]=mT*mP;

if(cSeasType==CMP_SEAS_DUMMY) mU[0][cS]=mX[i][]"0.5; 
else mU[0] [cS]=mX[i] [cSeasPer] "0.5; 

mU[l:][cSy:]=mRQ;
Givens();
vFinv [] [i]=mU[0] [0] "(-2); 

mUl=l/mU[0][0]; 
mU2=mU[l:] [0] ;
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mU3=mU[l:][1:cS]; 
mU3=setupper(mU3,0); 
mP=mU3;

mState[] [i+1] =mT*mState [] [i]+mU2*mUl*vVlow[] [i] ;

}

if(cSeasType==CMP_SEAS_HS)mZ[][cS-cSeasPer:cS-l]=mX[i][]; 
vVlow[] [cDataLength-1] =mData [] [cDataLength-1] -mZ*mState [] [cDataLength-1] ; 
mU[0] [:cS-l]=mZ*mP; 
mU[l:cS][0:cS-1]=mT*mP;

if (cSeasType==CMP_SEAS_DUMMY) mU[0] [cS]=mX[i] □''0.5; 
else mU[0][cS]=mX[i][cSeasPer]"0.5; 
mU[l:] [cSy: ] =mRC);

Givens();
vFinv [] [cDataLength-1] =mU[0] [0] "(-2); 
mX=mX};
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