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Abstract

This thesis contains three essays on mathematical finance. The first discusses 
approximation methods for pricing swaptions based on moment expansions with 
multi-factor affine jump-diffusion models in Chapter 2. Two methods axe ex­
amined. One is based on a Gram-Charlier expansion and the other is based on 
a generalized Edgeworth expansion. The density function of the forward swap 
is replaced with more tractable functions and their moments. Numerical simu­
lations are conducted to confirm their accuracy. Models with a Gaussian-type 
or CIR-type volatility with an exponentially, normally or truncated normally 
distributed jump size are employed.

The second essay proposes a framework to study the spot and forward rela­
tionship in carbon allowances markets and the third deals with the same problem 
in a different setting. The framework is based on the no-arbitrage principle. The 
value of the spot price depends on two underlying variables: the forward price 
and the net position of the zone defined as the difference between allocated car­
bon allowances and emissions. In Chapter 3, the net position of the market is 
modelled as a Markov chain and in Chapter 4, as a linear diffusion. Two kinds 
of filtration used in pricing are considered: complete information where market 
participants observe both processes continuously and incomplete information 
where they observe the forward price continuously and the net position of the 
zone periodically. Pricing problems occur in an incomplete market, since the 
net position of the zone is not tradable. A locally risk-minimization approach 
is used to fix the martingale measure. Under the complete information setting, 
The analytical spot price is obtained. Under the incomplete information setting, 
a filtered process is used for pricing, leading to the use of filtering theory. The 
spot price is computed numerically. Chapter 5 concludes.
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Chapter 1

Introduction

The purpose of this introductory chapter is to provide a brief introduction and 
motivation for each article. The main part of this dissertation consists of three 
chapters, Chapters 2-4.

Approximating Swaption Prices with M oment Expansions

In Chapter 2 on Approximating Swaption Prices with Moment Expansions, 
the validity of two approximation methods based upon moment expansions are 
investigated with the framework of multi-factor affine jump-diffusion models. 
From a practical point of view there axe several requirements, such as analytical 
tractability and multi-factors, for modeling interest rates in order to price and 
hedge derivatives contracts and measure their risks. One of these is consistency. 
To handle a portfolio including several types of interest rate and bond deriva­
tives contracts, pricing them, computing hedge parameters and measuring their 
risks with one fixed model leads to consistency. If each derivatives contract is 
evaluated with a different model, then this results in inconsistency, meaning that 
their risks are measured by relying on different assumptions. For this reason, 
pricing several types of derivatives contracts with one model is preferable. Some 
derivatives contracts, however, do not have analytical solutions for a model which 
does give analytical solutions for other types of derivatives contracts. A simu­
lation approach is applicable for evaluating such derivatives contracts, albeit a 
time-consuming procedure. If an approximation method returns accurate prices 
and works efficiently, it is useful to practitioners. This is the main motivation 
for this research. To price interest rate and bond derivatives, several models are 
available and the multi-factor affine term structure model is one of the dominant
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1. Introduction

frameworks for modeling short rates. Generally speaking, it gives an analyti­
cally tractable approach for cap, floor and options on zero-coupon bonds, but 
not for options on swaps or on coupon-bearing bonds. In this light, we consider 
approximation methods for pricing swaptions with affine jump-diffusion models.

The moment expansion approaches are characterised by replacing the density 
function of a target with a more tractable density and adjusting their differences 
using cumulants. One of these is referred to as a Gram-Charlier expansion. 
In this expansion, a target density is approximated with the density of normal 
distributions in additive form and coefficients are written with the cumulants of 
the target random variable. Consequently, calculating swaption prices is reduced 
to calculating the cumulants of the underlying swap value.

Normal distributions are frequently used when approximating a density func­
tion. If the density of a target deviates from normality, which is the case when 
jump terms are included in a model, the accuracy of the Gram-Charlier ex­
pansion would deteriorate even if deterioration can be corrected by including 
higher-order cumulants. In a generalized Edgeworth expansion, any distribu­
tion can be used to approximate a target density. The idea behind using this 
expansion is that an approximation adopting a similar distribution to that of 
the underlying swap value would be expected to generate better results with a 
lower-order expansion. By focusing attention on swap cash-flows, we propose 
using the zero-coupon bond at swap maturity as a candidate for approximation 
since it has the largest cash-flow. By employing this, the swaption prices can be 
decomposed into options on the zero-coupon bond and adjustment terms. Due 
to the multi-factor underlying process, each term in the decomposition does not 
have an analytical solution, hence the options on the zero-coupon bond and ad­
justment terms are computed with the Gram-Charlier expansion. As a result, 
calculating the swaption prices is reduced to calculating the cumulants of the 
underlying swap value in both approaches.

While assuming the existence of cumulants, these two methods are model- 
free approaches. Analysis of historical data suggests the existence of jumps and 
shows that models containing jumps produce more accurate estimates of the 
interest rate curves. Affine jump-diffusion models are therefore employed to
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1. Introduction

confirm accuracy and computational burden of these approaches.

Since the moments of swap values are the product of zero-coupon bonds, as 
long as the models which have analytical solutions for zero-coupon bond prices 
are implemented, they yield the moments of swap values analytically as well. 
Calculating the moments of swap values is reduced to solving ordinary differen­
tial equations called Riccati equations. For example, the multi-factor model with 
Gaussian-type volatility, exponentially distributed jump sizes and constant jump 
intensity and that with CIR-type volatility, exponentially distributed jump sizes 
and constant jump intensity provide analytical solutions for both zero-coupon 
bonds and moments of swap values. We implement both analytical and nu­
merical solvable models and compare their computational burdens with that of 
Monte Carlo simulation.

Five numerical examples are presented: Gaussian-type volatility and CIR- 
type volatility combined with an exponentially, normally or truncated normally 
distributed jump size. In each example, we compute the prices with Monte Carlo 
simulation, the Gram-Charlier and generalized Edgeworth expansions and com­
pare their respective prices across various strike rates. Although the model with 
Gaussian-type volatility or CIR-type volatility and an exponentially distributed 
jump size leads to analytical solutions for Riccati equations, others do not have 
closed-form solutions. The Runge-Kutta method is employed to solve Riccati 
equations numerically. We compare their validity based on accuracy and com­
putational time.

Forward and Spot Relationship in Carbon Emissions Markets

In Chapters 3 and 4, the spot and forward relationship in the EU Emission 
Trading Scheme (ETS) is investigated. We propose a framework to study it. 
Due to regulations and market design, the spot and forward relationship in this 
market is different from that of other markets such as zero-coupon bonds or 
stocks. The framework is based on the no-arbitrage argument. The EU ETS 
is one of the commodities markets and is relatively new. Free carbon emission 
allowances are allocated to carbon-intensive companies and these companies can 
emit carbon dioxide up to their allocation. There are spot and futures markets
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1. Introduction

in which companies can trade allowances to offset their excess or shortage of 
allowances. Trading periods in EU ETS can be split into several phases. We 
consider the spot and forward relationship in Phase II by extending the preceding 
paper by Qetin and Verschuere (2009) in which the spot and forward relationship 
in Phase I is investigated. Phase II prices differ from Phase I prices in the 
availability of banking. Banking allows companies to carry forward their unused 
allowances into the next year.

The pricing formula is derived by assuming an exogenous price process for 
the forward contract. The proportional changes in the forward price are driven 
by a Brownian motion and its drift term is modelled to include an unobservable 
variable. An insight of our setting is that the net position of the zone which 
is unobservable plays a crucial role in determining the spot and forward rela­
tionship. It is defined as the difference between total allocations and emissions. 
Depending on the market condition expressed by the net position of the zone, 
the reltionship varies, indicating the spot price is considered an option on both 
the forward price and net positon of the zone. In Chapter 3, the net position 
of the market is assumed to follow a continuous-time and finite-state Markov 
chain. In Chapter 4, it is assumed to follow a linear diffusion. We focus on dif­
ferences in the information set that market participants observe. In each chapter 
two filtrations used in pricing are considered, complete information where mar­
ket participants can observe both the forward process and net position of the 
zone continuously and incomplete information where market participants can 
observe the forward price continuously and the net position of the zone only at 
announcement times.

First we consider pricing under the complete information setting. This pric­
ing considered as being in an incomplete market, since the net position of the 
zone is not tradable. A locally risk-minimization approach is used to derive a 
martingale measure referred to as the minimal martingale measure. With this 
approach, the martingale parts which are orthogonal to tradable instruments 
remain unchanged and the spot price is obtained analytically.

Next, pricing under the incomplete information setting is investigated. The 
spot and forward relationship is derived with the help of filtering theory. Since
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1. Introduction

market participants do not always observe the net position of the zone, the pric­
ing is done under the filtration generated by forward prices which are observed 
at any time and the net position of the zone which is observed periodically. Prom 
our modeling that has the drift term of the forward price as a function of the 
net position of the zone, the net position of the zone is observed through the 
fluctuations of the forward price. The distributions of underlying processes pro­
jected onto the new filtration are taken into consideration in a pricing equation. 
In Chapter 3 the framework that assumes the net position of the zone follows a 
Markov chain leads to the use of the Wonham filter. In Chapter 4 the framework 
leads to the use of the Kalman-Bucy filter. Since the net position of the zone is 
not tradable, this pricing is again that in an incomplete market. The minimal 
martingale measure is found and the distributions of the underlying processes 
under this measure are calculated. The spot price is computed with Monte Carlo 
simulation. The price differences between the complete and incomplete informa­
tion settings axe highlighted in numerical examples. Of interest axe the jump of 
the net position of the zone at the announcement times and changes in prices.

Estimation is carried out in both chapters with historical data. Though 
our aim is to estimate parameters by maximizing the log-likelihood function 
of the data, it is not straightforward due to the existence of an unobservable 
variable. To avoid numerical routines, we employ the expectation-maximization 
(EM) algorithm for finding the parameters. In the EM algorithm, instead of 
maximizing the log-likelihood function including only observable variables, the 
complete data log-likelihood function including both observable and unobserv­
able variables is maximized. The underlying processes are reformulated for an 
associated discrete-time version. In Chapter 3, since the unobservable process 
is modelled as a Markov chain and the observable process follows a diffusion 
process whose drift term is linked to the Markov chain, this system is called a 
hidden Markov model. In Chapter 4, since the unobservable process is modelled 
as a lineax diffusion and the observable process follows a linear diffusion whose 
drift term is linked to the unobservable process, this system is called a Kalman 
filter.
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Chapter 2

Approximating Swaption Prices with  
M oment Expansions

2.1 Introduction

In interest rate and bond markets, various kinds of derivatives are traded to cover 
possible risk exposures. Swaptions are among the most liquid derivatives traded 
and therefore the efficient calculation of their theoretical prices is important. 
The theoretical prices of these derivatives depend on the term structure model 
used. Prom a practical perspective, evaluating various kinds of derivatives with 
the same model leads to consistent risk management, for example, measuring 
the possible future loss on a portfolio or computing portfolio sensitivities to 
various risk factors. When using the same model to price different kinds of 
derivatives, there axe some which do not have analytical solutions. In such cases, 
numerical methods are used although they are generally time-consuming. If an 
approximation method returns an accurate price and works fast, it is helpful to 
practitioners.

Affine term structure models were originally introduced by Duffie and Kan 
(1996) and this framework was extended to include jumps by Duffie, Pan and 
Singleton (2000) and Chacko and Das (2002). They are called affine jump- 
diffusion (hereafter AJD) models. AJD models comprise a widely-used class of 
asset pricing models which have both tractability and flexibility. As demon­
strated by Duffie, Pan and Singleton (2000) and Chacko and Das (2002), prices 
of zero-coupon bonds and some options are given by solving the system of ordi­
nary differential equations under AJD models. Some empirical studies support 
the assumption of jump components in the term structure of interest rates.
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2.1 Introduction

For instance, Das (2002) incorporated jump terms into the Vasicek model and 
showed the jump models produce more accurate estimates of the interest rate 
curves than pure-diffusion models using the daily Federal Funds rate. Johannes 
(2004) concluded that the surprise arrival of news about the macroeconomy 
causes jumps. Piazzesi (2005) proposed the interest rate model in which jump 
components represent macroeconomic announcements by the Federal Reserve.

European swaption prices can be obtained for one-factor models, since in 
this case the exercising boundary can be determined. Using it, swaption prices 
can be decomposed into a portfolio of options on zero-coupon bonds. Due to 
the difficulty of identifying the exercising boundary, a closed-form solution for 
swaptions has not been obtained for multi-factor models. Papers considering 
European swaption pricing in multi-factor affine term structure models include 
Munk (1999), Singleton and Umantsev (2002) and Collin-Dufresne and Gold­
stein (2002). Munk (1999) approximated swaption prices with an option on 
a zero-coupon bond whose maturity is equal to the stochastic duration. The 
paper by Singleton and Umantsev (2002) approximated the exercise region by 
linearization and simplified the pricing of swaptions to pricing several caplets. In 
their approach, exercising probabilities are computed with the Fourier inversion.

Collin-Dufresne and Goldstein (2002) proposed an approximation method for 
pricing European swaptions based on an Edgeworth expansion and Tanaka, Ya- 
mada and Watanabe (2010) applied a Gram-Charlier expansion and derived an 
alternative expression for swaption prices for multi-factor affine diffusion models. 
Both the Edgeworth and Gram-Charlier expansions use the density function of 
the normal distribution to approximate the density of swap values and require 
the calculation of higher-order moments of swap values, which are available in 
an exponential-affine form under the affine term structure models. This kind of 
approximation method, which replaces the density of the target variable with 
a more tractable density, can be used for pricing options in different settings 
such as pricing a European stock option. For example, Jarrow and Rudd (1982) 
proposed a generalized Edgeworth expansion to incorporate the effect of the 
skewness and kurtosis of an underlying stock into pricing an option on it. In 
their approach, a density function of an underlying variable is approximated 
with an arbitrary distribution. Turnbull and Wakeman (1991) applied the gen-
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2.2 Approximating Swaption Prices with Moment Expansions

eralized Edgeworth expansion to evaluate a European average option. All these 
methods are referred to as moment expansions in the sense that the density of 
the target is approximated with a more tractable density and its higher-order 
moments.

The objective of this article is to investigate the validity of two methods 
based on the moment expansions for pricing European swaptions in multi-factor 
AJD models. The first method is to apply the Gram-Charlier expansion and 
it is, therefore, an extension of Tanaka, Yamada and Watanabe (2010) from 
affine diffusions to AJDs. The second one is to apply the generalized Edgeworth 
expansion. In the latter approach, European swaption values are decomposed 
into European options on a zero-coupon bond and adjustment terms. This 
decomposition indicates a swaption can be partially hedged with options on 
zero-coupon bonds.

The outline of the chapter is as follows. After this introductory section, we 
present the mathematical structure and no-arbitrage pricing used for evaluating 
swaptions. Two approximation methods, the Gram-Charlier and generalized 
Edgeworth expansion methods, are explained and the associated approximations 
for swaption prices are derived in Section 2.2. In Section 2.3, we review the AJD 
models. Section 2.4 tests the approximations numerically under Gaussian-type 
or CIR-type volatility with exponential, normal or truncated normal jump size 
settings. Section 2.5 concludes.

2.2 Approxim ating Swaption Prices w ith M oment 
Expansions

2.2.1 T h e V aluation  o f  In terest R a te  D erivatives

We will examine the mathematical structure of interest rate and bond markets. 
In this and the next subsection, we introduce some concepts of interest rates 
and derivative pricing used in the chapter. The approach is similar to that in 
Bingham and Kiesel (2004) and Musiela and Rutkowski (2005). For more details 
see them and references therein. Let (Q,F, P) be a probability triple with a 
filtration F =  (Jrt)t<T* ? where T* is a fixed terminal time horizon. Absence
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2.2 Approximating Swaption Prices with Moment Expansions

of arbitrage is guaranteed by the existence of an equivalent martingale measure 
under which the process of relative price with respect to a numeraire of the basic 
security has to be a martingale.

D efinition 2.1 (Risk-free short rate and money market account) Let rt denote 
the risk-free short rate at time t over the infinitesimal time interval [t, t +  dt] 
and rt is assumed to be an adapted process. We may then introduce an adapted 
process, Dt, referred to as a money-market account which satisfies the following 
ordinary differential equation (ODE),

dDt = rtDt dt, Dq =  1.

Consequently, it is given by

Dt = exp(^J rs ds'j, V £ g [ 0 ,T*].

Fundamental instruments in interest rate and bond markets are zero-coupon 
bonds.

D efinition 2.2 (Zero-coupon bonds) Zero-coupon bonds are the financial con­
tracts which guarantee the holder the payment of one unit of cash at prescribed 
maturity T  <T*.

We denote by P{t,T )  the time-t price of a zero-coupon bond maturing at T. 
By definition, P (T ,T ) =  1. We assume that zero-coupon bonds with various 
maturities and a money-market account are tradable.

D efinition 2.3 (No-arbitrage zero-coupon bond price) Zero-coupon bonds with 
several maturities, P(t, T), t < T  < T* are called an arbitrage-free bond family 
if the following conditions hold:

• P{T, T) = 1, VT.

• There exists a probability measure <Q> such that V t € [0, T] the relative price 
of a zero-coupon bond,

P (t,T )
Dt ’

is a martingale under Q.
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2.2 Approximating Swaption Prices with Moment Expansions

To ensure no-arbitrage between zero-coupon bonds of different maturities, we 
assume there exists the risk-neutral measure Q under which the relative price of 
a zero-coupon bond is a martingale. The price of an measurable contingent 
claim is evaluated as an expectation under Q.

P ro p o sitio n  2.1 (No-arbitrage price of a contingent claim) The no-arbitrage 
price of an Ft -measurable contingent claim, H, is given by

x, := DtEq [ D ^ H  I Ft] =  Eq [e“ £ r‘ dsH  \ F t 

where E q[*] is the expectation operator under measure Q.

vt<r.

With the assumption of no-arbitrage among zero-coupon bonds, the zero-coupon 
bond price can be written (noting P (T ,T ) =  1) as follows:

P(t, T) =  A E q  [Dt 1 | F t] , V t < T.

This leads to the expression which zero-coupon bonds satisfy:

P (t,T )  =  Eq \ e ~ r‘*  | Ft] , Vt < T.

For evaluating a contingent claim, any strictly positive process can be used 
as a numeraire. Under the risk-neutral measure, the money-market account is 
used as the numeraire. Changing the pricing measure is permitted and is called 
the change of measure technique. In particular, the approach in which the 
zero-coupon bond price P (t,T ) is used as the numeraire is called the T-forward 
measure approach since under the measure, denoted by P r, the forward prices 
P (t,U )/P (t,T ), for any U < T , are martingales.

P ro p o sitio n  2.2 (No-arbitrage price of a contingent claim under Pt ) Under 
the T-forward measure, an Ft -measurable contingent claim H  is evaluated as

7rt := P (t,T )E ¥T[H \F t], V t < T.

The Radon-Nikodym derivative is given by

dpr  P{t,T )
dQ DtP (0 ,T )'
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2.2 Approximating Swaption Prices with Moment Expansions

The forward measure approach is convenient for computing the expectation in 
the case where H  is correlated with the money-market account. Under P t  we 
only need to know the distribution of the underlying process under the measure, 
while under Q, the correlation between the money-market account and the payoff 
must be taken into consideration.

2.2 .2  T h e V aluation  o f  Sw aptions

A swaption is an option which gives the option holder the right to enter into a 
swap contract in the future. The most common form of an interest-rate swap 
consists of exchanges of interest payments between two different institutions. For 
instance, one side pays a fixed interest rate on a notional amount semi-annually 
and the other side pays a floating rate on the same notional amount at the same 
time. The reference rate on the floating side is generally the LIBOR rate.

D efinition 2.4 (LIBOR rate) LIBOR rate, denoted by L (t,T ), is the constant 
rate at which an investment has to be made to produce one unit of cash at T  
starting at t, and is given by

1 - P ( t ,T )L (t,T ) =

Consider the swap contract which has a unit notional amount, starting at 
To and exchanging cash-flow at dates Ti, T2, . . . , X/v, which are set at regularly 
spaced time intervals, with 6 = T{ — Ti- 1 for all i. At time T*, i =  1 ,2 ,. . . ,  iV, 
the fixed side pays the amount 6k, where k is a fixed rate, and the floating side 
pays the amount 8L(Ti-i,Ti), where L(Tj_i,Ti) is the LIBOR rate reset at the 
previous instant Tj_i. The discounted total payoff at time t < Tq of the fixed 
side is expressed as

N

Y ,SK P (t,T i),
i=1
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2.2 Approximating Swaption Prices with Moment Expansions

whereas the discounted total payoff of the floating side is expressed as 

N  N

E  Ti) = E 1 PrT(Ti" r f ) p ( t ’Ti
i= 1 i = l  W  1’ */

N

= Y ,P ( t ,T i- 1) - P ( t , T i)
i= 1

= P (t,T 0) -  P (t,T„).

Definition 2.5 (Cash-flows of swap) The swap contract which receives a fixed 
amount and pays a floating amount is termed a receiver swap, and the one which 
receives a floating amount and pays a fixed amount is a payer swap. The value 
S V (t ) of the swap contract at time t is therefore given by

SV(t) — I  ^K i ^i) '̂N)’ f or ^ e receiver's swap,
|  P(t, To) -  6k S iL i ?{*•> Ti) ~ Tn ), for the payer's swap,

N

= -.J2a iP (t,T i). (2 .1)
i= 0

The swap contract which starts at some future time is called a forward start 
swap. Note that the swap rate which makes the forward start swap value zero 
is called an at-the-money forward (ATMF), and is defined as

A T M F  = ~  P{t,To) ^ . 2)
* E i= i P(t,Ti)

We consider a swaption with option expiry at To which coincides with the 
first reset date on the floating rate.

Definition 2.6 (Swaption pricing) Swaptions are exercised only when the un­
derlying swap value has positive value. Assuming absence of no-arbitrage, the 
swaption value, SO V(t), at time t is evaluated under the risk-neutral measure 
Q. By setting H  = SV(t) from Definition 2.5, and applying Proposition 2.1, we 
get:

SO V(t) = Eq [e-  ̂ ,T° r,ds max(SV(To), 0) | / j

By applying the change of measure technique, the swaption value is converted 
to the expected value of exercising, from Proposition 2.2, under the To-forward
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2.2 Approximating Swaption Prices with Moment Expansions

measure, EY0, as follows:

SO V(t) = P(t, To)EPro [ l{Sv(T„)>0}SV(r0) | Tt] (2.3)
poo

= P (t , To) /  x f(x )d x , (2.4)
Jo

where f  is the density function of the swap value S V  at the option expiry date 
To under the To-forward measure, conditioned on Ft-

Although the swap value has a multiple cash-flow, an analytical solution
is available under one-factor models since the exercising boundary is identified
numerically (see, for example, Jamshidian (1989)). Under multi-factor models, 
there is no analytical solution since the exercising boundary cannot be identi­
fied. We tackle this problem by adopting a moment expansion approach under 
the multi-factor AJD setting. Two expansion methods, a Gram-Charlier and 
generalized Edgeworth expansions, are proposed to approximate /  and swaption 
prices are derived accordingly based on these methods.

2 .2 .3  T h e G ram —C harlier E xpansion

As shown below, the Gram-Charlier expansion is obtained by using the inverse 
Fourier transform of the characteristic function and reordered as an orthogo- 
nalized series in additive form. We define the Chebyshev-Hermite polynomial 
as

H ” ( x > := ^ T T =  1 '(p{x)

H x )  : = ^ exp ( - y ) ’

where D = 4 - .  By definition, the Chebyshev-Hermite polynomial is the follow-dx
ing series:

Ho(x) = 1, H i(x) =  x, H 2 (x) = x 2 — 1, H 3 (x) = x 3 — 3x,

H±(x) = x* — 6x2 +  3, H${x) =  x5 — Hkc3 +  15a:,

H q ( x ) = x6 — 15a:4 -1- 45a:2 — 15, H j(x) = x 7 — 21a:5 +  105a:3 — 105a:.
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2.2 Approximating Swaption Prices with Moment Expansions

The Chebyshev-Hermite polynomials have the orthogonal property with respect 
to the Gaussian measure.

L
Hm{x)Hn{x)(!>{x)dx =

where Smn is a Kronecker’s symbol that returns 1 provided that m = n, 0 
otherwise. As shown in equation (2.5) below, by using the properties of the 
Chebyshev-Hermite polynomials, the Gram-Charlier expansion is an orthogonal 
decomposition with {Hn(f)}n of a density function that has coefficients qn, each 
of which depends on a given set of cumulants.

T heorem  2 .1  (Tanaka, Yamada and Watanabe (2010)) Assume that a random 
variable Y  has density function f  and cumulants Ck (k > 1), all of which are 
finite and known. Then the following hold:
(i) f  can be expanded with the Gram-Charlier expansion as

k=0 
where

y/CQ,
1, i f k  = 0 ,
0 , i f  k = 1,2,

v[fc/3]
2 ^ m =  1 2 ^ k i + - + k m = k m \k 1\ - k m '. \y /c ^ J  ’ ”  K —

ki>  3

(ii) for any a G K,

E[i {y>a}]= * ( ^ ) +

E[1 {y>tt>y] = Cl* ( £ ^ )  +  ^ ( ^ )

where 4>(d) is the standard cumulative normal distribution evaluated at d.

P ro o f (The proof of (i)) The characteristic function 4>y of a random variable 
Y  is defined by the Fourier transform of /  as

/oo roo
eitxf(x )d x  =  eitCl /  +  ^ x ) d x .  (2.6)

-oo J —OO
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2.2 Approximating Swaption Prices with Moment Expansions

On the other hand, by the definition of the cumulants, this can be expressed as
, OO \

<j)Y { t )  =  e x p ^ ^ ( i t ) fcJ

^ j y ^ exp( £ ^ ^ y y x)dx, (2.7)
»oo   /  00 ( _ t \ k  /

'k=3
This is because, for any sequence {an}, it follows that

OO \ ,nn / OO
exp ( - ^ t 2 +  y ^ a n( - i y ^ t ) n)  =  J  el^ tx exp Qn-Pn^

We further expand the integral of equation (2.7) by using the Taylor expansion 
and then reorder the terms as follows:

-  ( ‘ + S ‘ A ' i ' . ' . ^ u ( ^ ) * h - < , > )  # ( i ) '

where E * meansE £L 3 Em =i Efc1+...+fcm=n,fci>3- We use the following relation­
ship

Hn(x)<Kx) = ( - \ ) nDn<f>(x), 

in the last equality. Then, equation (2.7) can be written as

/oo

-OO
+  eitel £ (2.8) 

By using the inverse Fourier transforms of both equations (2.6) and (2.8), and by 
changing the relevant variable, we obtain the following Gram-Charlier expansion 
around the mean

t f  \ -  1 j. ( x ~ ci \  ■ 1 ck i '” ckm (  1 Y u  ( x ~ ci \ x ( x - c^\
/ (  J y /c i  )  v / 5 5 ^  m i f e i l - . - f e n l l ^ )  "V ^  M  ^

The proof of (ii) is straightforward by using (i) and the properties of Chebyshev- 
Hermite polynomials. □
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2.2 Approximating Swaption Prices with Moment Expansions

The advantage of the Gram-Charlier expansion is that it is written in additive 
form and hence the coefficients qn are easily expressed by the given cumulants 
as follows 1

i  n  C3 C4Qo =  1, qi = q2  = o, <?3 =  — 777, q\ =
3  ! c f ’ ”  4 ! ^ ’

C5 C6 +  1 0 c |  C7 +  3 5 c3C4 ,  .

9 5 = i i ^ ’ ^  = ^ ! ^ ’ m  =  ^

The cumulants, Cj, can be calculated from the moments, around zero.2

Suppose that we know the j- th  cumulant, Cj, of the underlying swap value at 
expiry To under the To-forward measure that is associated with the option expiry 
with conditioned on Tt. Then, the swaption value is obtained from equation (2.4) 
as

SO V(t) = P (t,T 0)EPTo [1{sv(t„)>0}5V(T0) | T t]

OO 1

and therefore the truncated sum yields an approximation of the swaption value.

1In this context, it is well-known that 3 !< /3  represents skewness and 4 !<j4  represents excess 
kurtosis.

2See Stuart and Ord (1994). For example,

Ci=a*i ,  c2 = / x 2 - ^ 1 , c3  =  fj,3 -  3 /ii/i2  +  2 /tf,

C4 =  /X4 -  4/X1/Z3 -  3/if +  12/if/i2 -  6 /if,

C5 =  H 5  -  5/ii/i4 -  IO/X2 /X3 +  20/if/t3 +  30/ii/if -  60/if/i2 +  24/if,

C6  =  /i6  -  6/ii/i5 -  15/i2/i4 +  30/i?/i4 -  10/if -I- 120/ii/i2 /i3 — 120/if/i3

-I- 30/i2 — 270/ii/i2 -I- 360/i!/i2 — 120/i!,

C7  =  ( i j  -  7 /ti/i6  -  21/i2 /i5 — 35/i3/i4 +  140/ii/i3 -  630/ii/if +  210/ii/i2 /i4

— 1260/if/i2/i3 ■+■ 42/if/is +  2520/if/i2 — 210/if/i4 -I- 210/t2/i3  +  840/if/i3

— 2520/if/i2 -f 720/if.
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2.2 Approximating Swaption Prices with Moment Expansions

P ro p o sitio n  2.3 ( Tanaka, Yamada and Watanabe (2010)) The swaption value 
is approximated as

SOV(t) *  P (t,T 0) « * ( ■ % )yjoi'
L

We refer to this expression as the L-th order approximated price, GC{L).

. (2 .10)

From above, the calculation of the swaption is reduced to that of cumulants Cj 
of the underlying swap. Since there exists a one-to-one correspondence between 
cumulants and moments, it is sufficient to calculate moments as given by,

\ f  N 
EpTo (SV(To))m I =  EPT0 ( £  OiPiTo, Ti)

^  > ah ‘ ’ * (ft To, {Ti 1, . . . ,  Tim}),

where To is the expiry date of the swaption, T ^ ,. . . ,  Tjm are the coupon payment 
dates, and

{Ti , . . .  ,Tm}) := EPt
r m

[ r j p p b , Ti) Tt (2.11)

which are called the bond moments by Collin-Dufresne and Goldstein (2002). 
As shown subsequently, PT0(t, To, {T i,. . . ,  Tm}) can be calculated analytically 
for particular classes of interest rate models. In Section 2.4, numerical examples 
are presented with multi-factor interest rate models for which the bond moments 
are solvable either analytically or numerically.

It is worth clarifying the difference between the Gram-Charlier and Edge- 
worth expansions and their applications for swaption pricing. The seventh order 
Edgeworth expansion is equivalent to the seventh order Gram-Charlier expan-
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sion, after an appropriate calculation.

« + g !4 ^  * H g m ' -

=  ~^= (1 +  Q3 H3  +  +  q5 H 5  +  q§H§ +  ^7^ 7) ^ ^ 1) ’

where =  i7*.(^=i). A swaption is equivalent to an option on a coupon- 
bearing bond. In existing studies, the option on a coupon-bearing bond is de­
composed into weighted cash-flows based on the exercise probabilities under the 
forward measures associated with the cash-flow timing,

SOV(t) =  Eq [e“ ■̂r° r“ du(CB(To) -  K ) 1{Cb (,t0)>k } I Pt
N

= J2C iP (t ,T i)¥ FTi (CB(T0) > K \ ? t)
i = 1

-  KP(t, 7b)PPTo (CB(To) > K \ T t), (2.12)
N

CB(T0) : = ^ C i P ( T ,b,T4),
1=1

where C% is the cash-flow at and K  is the strike price. When calculating 
the probability of ending up in-the-money under the forward measure, Collin- 
Dufresne and Goldstein (2002) used a seventh-order Edgeworth expansion. In 
their approach, the probability of ending up in-the-money under each forward 
measure can be approximated with proper functions A(ci, C2) and 7 (01, . . . , 0 7 ).

7

PPt. (CB(To) > K  | Ai7j i  = 0 , l , . . . , N .
3=1

See Collin-Dufresne and Goldstein (2002) for more details. On the other hand, 
Tanaka, Yamada and Watanabe (2010) applied the Gram-Charlier expansion 
and derived equation (2.10). Since each probability is expanded in Collin- 
Dufresne and Goldstein (2002) as in equation (2.12), and a swaption price is 
expressed with the sum of probabilities, cumulative truncation error would be 
bigger than the truncation error in equation (2.10) where a swaption price is 
expressed with one expectation.
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2 .2 .4  T h e G eneralized  E dgew orth  E xpansion

In this subsection, another approximation formula is proposed using a gener­
alized Edgeworth expansion. Standard normal distributions are used in the 
Gram-Charlier expansion and its key strength, roughly speaking, lies in the 
ease of computing higher-order derivatives of normal distributions. If the den­
sity of a target deviates from normality, which is the case where jump terms 
are included in a model, the accuracy of the Gram-Charlier expansion dete­
riorates. An arbitrary distribution can be used in the generalized Edgeworth 
expansion. In the generalized Edgeworth expansion, a target density is approxi­
mated with an arbitrary density and their cumulants, and accordingly an option 
on an underlying variable is expressed in terms of options on another variable 
and adjustment terms. We propose a method to approximate swaption prices 
based on this expansion. Since the expansion has additive form, we arrive at 
a decomposition for swaption prices. By adopting the tradable instrument as 
an approximation variable, the decomposition is indicative of a new hedging 
strategy using a tradable instrument. The coefficients in the decomposition are 
simple functions of the cumulants of the target and approximation variables.

The generalized Edgeworth expansion was used to approximate stock option 
prices in Jarrow and Rudd (1982). It approximates the distribution of the stock 
price at option expiry driven by a jump diffusion, or a constant elasticity of 
variance diffusion, with the Black-Scholes type lognormal distribution. Turnbull 
and Wakeman (1991) used a lognormal distribution to approximate the sum of 
lognormally distributed variables and derive an approximation for the price of 
an Asian option on a stock.

T heorem  2.2 Assume that random variables F  and G have density functions 
f  and g respectively and have cumulants Ck(f) and Ck(g) (k > 1) respectively, 
all of which are finite and known. Then the following hold:
(i) (Jarrow and Rudd (1982)) f  can be expanded with the generalized Edgeworth 
expansion as
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where I0 =  1, I\ = c i(/)  -  ci(g), I2 = c2(f)  -  0 2 (g) +  (c i(/) -  ci(g))2, h  = 
0 3 (f)  ~  c3(g) +  3(ci(/) -  ci(y))(c2(/)  -  c2(flf)) +  (c i(/) -  ci(p))2, . . . ,  and D is 
the differential operator, d/dx.
(ii) Assume lim ^oo xD kg(x) = 0, for any non-negative integer k. Then, for 
any a € R,

E[l{F>a}^] — E[l{G>a}£] _  h  (~ 0 >g(a) -  E [l{G>a}] ) +  7^(- a 0 (a) +  &(a))

k=3

2 !

+ E  t - J T 1 (-°-Dk- lg(a) + Dk- 2g(a) ) . (2.13)

P ro o f  (The proof of (i)) By the definition of cumulants, the characteristic 
function ^  of a random variable F  is expressed with the k-th order cumulants 

CkU) ^
oo

<t>F{t) = exp E ^ W ) .
fc=i ' '

The analogous expression holds for a random variable G with c\.{g). Moreover, 

Expand both sides and use the Taylor expansion:

</>F{t)

=  e x p ( £ ^ ^ ^ M  (« )» )* ,(* )

' n= 1 ^fc=l

= ( i + ( c i i f )  -  c l{9m + C2(/)- C2(g)+2Scl(/)- cl(g)}2( ^ +• • ■)**)
OO J

= E
k=0

where I0 = 1, h  =  c \ ( f )  -  c i ( g ) ,  I2 =  c 2( f )  -  0 2 (g) +  (c i(/) -  c i ( g ) ) 2 , I3 = 
0 3 ( f )  ~ c 3( g )  +  3 (c i(/) -  c i ( g ) )  ( 0 2 ( f )  -  0 2 ( g ) )  +  (ci( /)  -  c i ( g ))2 , . . Using the
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inverse Fourier expansion on both sides, we obtain

00 t  1 roc

k= 0  ' 00

f c = 0

(The proof of (n)) The truncated expectation with respect to F  can be computed 
with a random variable G as

roo roc  00 f __ 1 \k  t

E[l{F>a}F| =  /  x f{x )d x  = /  x ^ 2 — Tj—
Ja Ja k=Q K-

Apply the integration by parts formula to give

roc . roo
E[l{F>a}^] =  I xg{x) dx -  Ii  (atf(a:)|“  -  I g{x) dx

+ £  ir - r  D*_ls(x) d x )  ■
k= 2  ' , / a

Assume lim^-nxi xD kg(x) =  0 for any non-negative integer fc,

E [l{F>a}^] = E [l{G>a}<^] ~  h  {~a9(a) ~  E [l{G>a}])

+  £  («) +  D k~2g(a)) .
k= 2

□

The target density is expanded with a linear combination of g(x) and its
derivatives. Higher-order terms adjust the gap between f (x )  and g(x). In fact,
the Gram-Charlier and generalized Edgeworth expansions are not always dis­
tinct. The generalized Edgeworth expansion is the same as the Gram-Charlier 
expansion provided that g{x) follows the standard normal density, 
g{x) = (j){{x -  c i(/)) /y /c 2(f)).

The choice of G plays a decisive role in determining the accuracy and tractabil- 
ity of the approximation method. We explain how to choose G in the case of 
a receiver’s swaption. Let F  be a receiver’s swap value at option expiry To, 
and accordingly let /  be the density function of it under the To-forward measure 
conditioned on Ft. Considering the right-hand-side of equation (2.13), a random
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variable G that is tractable for calculations is preferable. Based on the obser­
vation that the swap value largely depends on the random variable P(To,Tn) 
because its coefficient is the biggest in equation (2.1), i.e. 8 k  <C 1, we define G 
as containing only one random variable, P(Tb, T/v), and as being a linear func­
tion of it, that is to say, G =  N\P(To, T/v) — 7V2 where N\ and AT2 are assumed 
constant. N\ and iV2 are determined to equate the first and second order mo­
ments of G to those of F, respectively. In other words, I\ = 0 and / 2 =  0 in 
equation (2.13). As a result, G is defined as

where ci(P(To, T)v)) and c2(P(To, T jv ) )  are the first and second order cumulants 
of P(Tq, Tn ) under Ft0 conditioned on Tt, respectively.

By substituting G into equation (2.13), the receiver’s swaption price is ob­
tained as

equation (2.17) corresponds to N\ contracts of the call option on P(Tq, Tjv), and

we consider, we approximate them with the Gram-Charlier expansion. To apply 
the Gram-Charlier expansion to evaluate them, we need the cumulants of G and

G := N i P(T0,Tn ) -  N2, (2.14)

(2.15)

(2.16)

SOV(t) =  P(t,To)EPTo[l{sv, (To)>o}S V (r0) | Ft]

=  [l{w1p(ro,TN)-A'2>0}M .P(?o,7V ) _  N 2) I Ft]

= P(t,T0) M E ,.  1

where g is the density function of G under Pt0< Note that the first term in

its strike price is N 2 /N 1 . Since neither the call option value nor the higher-order 
derivatives of the density have closed-form solutions for the multi-factor models
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they are calculated from the moments of G , where the ra-th moment is

e Pto [g h  Ft] =  e Pto [(ATjP^o, t n ) -  jv2)ro| &]  

=  E  (™  ) [p (r°>TV)™' I Ft].
m i + m . 2 = m  '  
mi,m2>0

Since the moments of G are expressed with the bond moments, (2.11), calculating 
the call option price and higher-order derivatives is reduced to calculating the 
bond moments.

The truncated sum in equation (2.17) yields an approximation of the swap­
tion value and we have the following Proposition.

P ro p o sitio n  2.4 The receiver’s swaption value is approximated by

SOV(t) »  C(A) + P(t, To) V '  D k~2g(0). (2.18)
t i  k '

where

C(A) := P ( l , r 0)lV1EpTo [i{JWJW)>$ }(p (ro ,3 M  -  $ ) K

C{A) represents the N\ contracts of the call options evaluated at t whose under­
lying variable is P (T o,T jv) and strike price is N 2 /N 1 . D lg(0) is the i-th order 
derivative of the density function of G evaluated at 0 under Pr0.

h> i > 3, are expressed with cumulants;

h  = c3(f)  ~ c3(g), h  = C4(/)  -  d{g) +  3(c2(/)  -  c3(g))2,

where Cm{f) is the m-th order cumulant of the swap value which is a function 
of up to the m-th order moments of it, i.e.

N

EPj,o[Fm| Ft] = EPto [ ( - 1  + S * Y p (r°>T‘) +  P (T°’t n ) ) | Ft\ ,
i = l
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2.2 Approximating Swaption Prices with Moment Expansions

and cm(g) is the m-th order cumulants of G which is a function of up to the 
m-th order moments of it:

Epr0[G™l^] =  EPto[(Ni P(Tq,Tn ) -  N2)m\T t].

Finally set qk = qk{ c i { g ) , c k(g)).

R em ark  2.1 For a payer’s swaption, G is defined as N 2  — NiP(To,Tn). The 
payer’s swaption value is, consequently, decomposed into the put options on the 
zero-coupon bond and higher-order derivatives of G.

We refer to this expression in which a swaption price is expanded up to 
the L-th order, the call option up to the Lo-th order and i-th order derivative 
up to the Lj-th order as the (L, L q, L \ . . . ,  2)-th order approximation price,
GEW(L, Lq, L i , • • • , 2). While calculation of the swaption price with the
Gram-Charlier expansion is reduced to that of the cumulants of the underlying 
swap value, with the generalized Edgeworth expansion it is reduced to that of 
the cumulants of the underlying swap value and that of the cumulants of the 
approximating variable.

Proposition 2.4 represents that the receiver’s swaption is decomposed into 
the call options on the zero-coupon bond and the higher-order derivatives of G. 
Hence, it turns out a swaption is partially hedged with call options and this 
decomposition is model-free. Moreover, the ATMF swaption is decomposed into 
the ATM call options and the higher-order derivatives since in this case, from 
equations (2.15) and (2.16), the strike price of the call coincides with the forward 
price of the underlying zero-coupon bond;

Similarly, the ITM and OTM swaptions are expressed with the ITM and OTM 
calls respectively. We carry out Monte Carlo studies later, and examine the 
proximity between a swaption price and a call option price for some specific 
models.

n £ ™ f2 = d(P(To,7V)) = EPTo[P(T0,7V) I F t] =pjATMF

Several ways have been suggested to compute a call option price for multi­
factor models. One of them is to make use of the Fourier inversion theorem with
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2.3 Affine Jump-Diffusion Models

characteristic functions. Studies of computing probabilities from characteristic 
functions include Heston (1993), Scott (1997) and Pan (2002). Carr and Madan 
(1999) found an alternative representation for the European call option price 
with Fourier inversion. Lee (2004) conducted an in-depth discussion of Carr 
and Madan’s approach and proposed an algorithm to minimize truncation and 
discretization errors in computing Fourier inversions numerically. A drawback 
of this approach is, however, that the optimal discretization step and integration 
interval depend not only on a model and a payoff function but also moneyness for 
high-precision numerical integration. Implementation is therefore difficult. An­
other approach to price an option is using saddlepoint approximations proposed 
by Glasserman and Kim (2009). They applied the saddlepoint approximation 
method and proposed its improvement in pricing options.

2.3 Affine Jump-Diffusion M odels

Our methods for approximating swaptions are independent of any model if bond 
moments can be obtained. In this section, we review the basics of the multi- 
factor AJD process and its term structure. Multi-factor models are increasingly 
popular with practitioners as they can describe various types of yield curve shifts. 
We assume the short rate is of the form

rt — Po +  p jX t ,  po E R, pi E Rn,

where X  is assumed to be an n x 1 vector Markov process under Q satisfying a 
stochastic differential equation,

where

dXt = K(6 -  X t) dt +  ED (X t) dW?  +  dZtQ, (2.19)

K  e  Rn , 6 E R , P i E  R, q i e W 1, i = 1 ,2 ,. . . ,  n,

D (x ) =  diag yjpi + q jx ,  • • • , y/pn + qn'- x  E

and E E Rnxn is a matrix such that EET is positive definite. is an 71-  

dimensional standard Brownian motion and Z® is a pure jump process whose 
jumps have a fixed probability distribution v on Rn and time-t arrival intensity
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2.3 Affine Jump-Diffusion Models

A(Xt). We assume the successive jumps of Z® are non-negative, independent 
and identically distributed. Note that the stochastic integral with respect to the 
pure jump process is a finite sum and equation (2.19) is equivalent to

i\rQ
f t  f t

X t = Xo + /  K ( 0 - X s)ds + /  £D (A s)dWsQ + Y ^ j f ,
Jo Jo i=1

where N® is a counting process expressing the number of jumps having occurred 
up to time t and has arrival intensity A(Aj). follows the distribution v. The 
functional form of A(JQ) is affine with coefficients:

X ( x )  =  lo +  l J x ,  l 0 e Mn , h e R n x n .

To apply the moment expansions methods to pricing swaptions, Fourier-type 
transforms need to be calculated and is given in Propositon 1 in Duffie, Pan and 
Singleton (2000).

P ro p o sitio n  2.5 (Propositon 1 in Duffie, Pan and Singleton (2000)) Suppose 
(K, 6,1,0(c), p) in X  are well-behaved, then

E X T ? t
_  e a ( t ,T)+p ( t ,T)TX t/

 1
r(X s)ds'jeul 

a ( t ,T ) and /3(t,T) satisfy the following ODEs:

=  — ( K t ) ) T f 3 ( t ,  T )  - l f ( £ T / 3 ( t , T ) ) j2pj - I o ( e ( « t , T ) )  -  l )  + / > „ ,

j = 1
(2 .20)

f j ( t ,  T )  =  K T f 3 ( t ,  T )  -  i  ~  h  ( t K 0 ( t , T ) )  - l ) + p i ,
j = 1

(2 .21)

where 0(c) is the jump transform defined as:

0(c) = [  eczdv(z).
Jrn

The terminal conditions are a(T ,T)  =  0 and (3(T,T) = u.

See Duffie, Pan and Singleton (2000) for the proof. Proposition 2.5 holds under 
the following technical conditions,
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2.3 Affine Jump-Diffusion Models

D efinition 2.7 A characteristic (K , 0,1,6(c), p) well-behaved if equations (2.20)
and (2.21) are solved uniquely by a and /3 and if

1. e [ / 0T|7*| dt < oo, where 7* =  V t {0((3(t,T)) -  l ) \ ( X t),

2. E [( /0T 01 • Vt dt)1/2 < oo, where rjt = 'btpft, T )T'ED(Xt), and

3. E [|*r|] < oo.

where ^ t  = exp ( — Jo r (X s) ds'Sj e a t̂,T +̂̂ t,T)TXt.

The time-t price of a zero-coupon bond maturing at T  is expressed in the 
form of an exponentially affine function,

P(t,T) = exp(A(t,T) + B ( t ,T )r X t),

of a vector of state variables. Proposition 2.5 yields the following system of 
ODEs with respect to A ( t ,T ) and B ( t ,T ):

T ) =  - ( K 0 ) TB(t, T) -  \  Y j J ? B { t ,  T ) ) f c  -  h  (0(B(t, T)) - l ) + p o ,
3= 1

(2.22)

=  K TB (t,T )  -  i ^ ( E TB (i ,r ) )32g,  -  h  (0(B(t,T)) +
3=1

(2.23)

The terminal conditions are
A (T,T)  =  0

and
B (T ,T ) = 0. (2.24)

This system can be solved in closed-form for special cases such as the model 
with Gaussian-type volatility, an exponentially distributed jump size and con­
stant jump intensity or the model with CIR-type volatility, an exponentially 
distributed jump size and constant jump intensity, while it can be solved numer­
ically in many other cases.
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Similar to a zero-coupon bond price, the bond moments are expressed in 
exponentially affine form by applying Proposition 2.5:

VT{t,To, {T i,. . .  ,Tm})
m

=  EpT [ n p ( r 0, r i) | r (
i= 1

P (t,T )

1
P ( t , T ) '

1

e -  / tT ru du ijP C T o .T i)!^
i= 1

-  / tT° ru du

t=l

e -  f tT° ru due i4(r0,r<)+i4(T0>T )+(i:^ i B(T0>T4)+iJ(To,T))T* 7b I j :
P ( t,T )‘ 
exp(A(t) +  S ( t)TXt)

_  P ^ T )  ’

where A{t) := T, T0, {Ti,. . . ,  Tm}) and B(t) := B(t, T, T0, {T i,. . . ,  Tm}) 
satisfy the same system of ODEs as (2.22) and (2.23), but with different terminal 
conditions,

m
A{T0) = ^ 2  A(Tg, Ti) + A(T0,T)

i= 1

and

B(T0) =  J 2  B (T«, Ti) +  B(T0, T ). (2.25)
i = l

These equations are derived by Collin-Dufresne and Goldstein (2002) in the case 
of the affine diffusion model with the Feynman-Kac formula.

2.4 Num erical Examples

In this section, we carry out numerical studies using AJDs. AJDs governed 
either by three-factor Gaussian- or two-factor CIR-type volatilities are consid­
ered with exponential, normal or log-normal jumps. We compute the receiver’s 
swaption prices for various strikes by using the Gram-Charlier and generalized 
Edgeworth expansions and compare them with prices calculated by Monte Carlo 
simulation with respect to accuracy and computational burden. Two approx­
imation methods based on the Gram-Charlier expansion are considered; the
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first three moments, GC(3), and the first seven moments, GC(7). In addition, 
two approximation methods based on the generalized Edgeworth expansion are 
considered; the first two moments, GEW(2,7), and the first three moments, 
GEW(3,7,7). With the GEW(2,7) method, the swaption price is approximated 
only with the call options and the call option is approximated with the Gram- 
Charlier expansion up to the seventh moment. With the GEW (3,7,7) method, 
the swaption price is approximated with the call options and the first order 
derivative of G and both are approximated with the Gram-Charlier expansion 
up to the seventh moment.

We use the one-into-ten swaption, the swaption expiring one year later and 
the underlying swap maturity is ten years, as the target. Strike rates are set from 
ATMF—2.0% to ATMF+2.0% in steps of 0.01% and ATMF is defined in equa­
tion (2.2). The payment frequency is set semi-annual (8 = 1/2). Throughout 
these examples, the jump intensity is assumed constant.

2.4 .1  M on te  C arlo S im ulation

To confirm the accuracy of the proposed methods, we compare the swaption 
prices calculated by the moment expansion methods with those computed by 
Monte Carlo simulation. We explain how to apply Monte Carlo simulation for 
pricing swaptions in this subsection. In problems such as pricing zero-coupon 
bonds, expectations under the risk-neutral measure are easy to compute. In 
other cases the calculation under the risk-neutral measure might be complex 
and calculation under a forward measure might make problems easier. This 
is the case for pricing swaptions. Pricing swaptions under a forward measure 
needs the underlying process changed to the process under the measure. The 
Radon-Nikodym derivative, when restricted to T), satisfies, for every t E [0, To],

dFTp _  T) 
dQ r t ~  DtP(0 ,T)'

The change of measure to Pt0 from Q associates a Brownian motion and pure
jump process with

d\VtTo = dWtQ -  ((B(t,T0)TZ D (X t))T dt, 

dNj° = d N f  -  0(B(t,To))Adt.
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2.4 Numerical Examples

Thus the dynamics of X  under the To-forward measure are given by

X t = X 0 + r  (K0 -  K X S + T,D{Xs)D (Xa)Tt yB{s, T0)) ds 
Jo

N r °

+ [ ‘ ED (Xa) dWj° + ^ 2  J ? ■
i=i

where the jump intensity and jump transform under the To-forward measure are 
given, respectively, by

AT° =  \8{B (t ,T 0)), (2.26)

*■*«> -  ‘- w i m p -  (127)

Hence although constant intensity and independent jump-size are assumed un­
der the risk-neutral measure, they are time-dependent under the To-forward 
measure. For the change of measure technique of a jump diffusion process, see 
Appendix C in Duffie, Pan and Singleton (2000).

For the negative jumps, the new jump term — dZt is added to equation (2.19). 
The corresponding jump intensity and its transform under the forward measure 
are respectively written as

a t « =  x e ( -B ( t ,T 0)),

aTor \ _  9 (c ~  B j t ’ T o))
(c>-  e ( - B ( t ,T 0)) ■

A Monte Carlo algorithm to price swaptions using the forward measure tech­
nique is now summarized.

Step 1: Generate the underlying process at option expiry, X t 0 -

Step 1.1: Simulate jump times, j - t h  jump time of z-th factor, r y ,  j  >  1, 
i =  l , 2 , . . . , n i s  simulated with an exponentially distributed random 
variable £ whose mean is one.

Tij+i =  inf j s  > 0 : J  \J°{u) du = £ j, j  > 0, r i)0 =  t. (2.28)

Ti,l > T0 indicates the i-th factor has no jump until option expiry. 
The integral f  \J° (u) du can be solved analytically for some models.
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S tep  1.2 : Between each jump, — r y ,  j  > 0, and between the last 
jump and option maturity, the underlying process follows diffusion,

XriJ+1_ =  X TiJ+ r 1 (K 0 - K X s+ ED (Xs)D (Xs)TETB(s,To))ds
Ti,j

+ /  £  D (X a)dW j°.
J Ti,j

For Gaussian- and CIR-type volatilities, the process between r* j  and 
r i j +i can be simulated without discretizing the time step. The for­
mer follows the normal distribution and the latter the non-central 
chi-squared distribution. See for example, Sections 2.3 and 3.4 in 
Glasserman (2004).

S tep  1.3: At jump time T i j ,  the i-th factor jumps additively.

X TiJ = X TiJ.  + AZ,

where AZ  follows the jump size distribution changed into the one 
under the To-forward measure, (x).

S tep  2 : Calculate the swap value at option expiry with simulated value X t 0 ,

N

SK(T0) =  - 1  +  6k £  P { n ,  Ti) + P(T0, Tn ),
1=1

where P(T0, Ti) = exp(A(T0, Ti) +  B(T0, Tj)TX t 0), i =  1 ,2 ,. . . ,  iV. The 
components A (To, Ti) and B(To, Ti) are the solutions of the ODE system
(2.22), (2.23) and (2.24).

S tep  3: Repeat Steps 1 and 2 independently M  times so that independent sam­
ples S'Vi, i = 1 ,2 ,. . . ,  M  are obtained. The swaption price is calculated by 
the experimental average with discount,

S 0 V M C =  E M U  £  l m (T o )>0}^ ( T o ) .  
i = 1

2.4 .2  Jum p Sp ecifications for A ffine Jum p-D iffusion  m od els

We consider three types of jump size distribution: exponential, normal and 
truncated normal. Obtaining closed-form solutions or numerical solutions for
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the systems of ODEs depends on the assumption regarding the volatility and 
distributional characteristics of the jump size.

An exponentially distributed jump size is widely used in jump-diffusion mod­
els to express skewness in interest rates. For example, Das and Foresi (1996) 
derived the zero-coupon bond price for the one-factor Gaussian model enhanced 
with jump term. In their model, the jump size follows an exponential distribu­
tion and the jump sign is determined from a Bernoulli distribution. Chacko and 
Das (2002) combined the exponentially distributed jump size in the Gaussian 
short rate model and derived option prices for several types of payoff functions; 
an option on the interest rate, an option on a zero-coupon bond and an Asian 
option on the interest rate. The density function and the jump transform are 
defined, respectively, as

”(x ) = ^ e_7?I1{x>0}5

6(c) =  [  e0* dv(x) = — -— , (2.29)
Jo 1 ~ VC

where 77 is the mean of an exponential distribution. Since exponential distribu­
tions take only positive values, they represent asymmetric jumps. In order to 
express negative jumps, we introduce another jump process which has a negative 
sign.

The second example is a normal distribution. While a jump transform has 
a closed-form solution, the system of ODEs does not. Numerical approaches 
are applied to solve the ODEs. Baz and Das (1996) and Durham (2006) used 
the Taylor expansion to approximate the jump transform and derived the ODEs 
which can be calculated without numerical integration. The density and jump 
transform of a normally distributed jump size are defined, respectively, as

" (x) =  r S ( — )  =  ^ ^ 7 exp( — 2^3— ) ’

6(c) = J  e0* dv(x) =  expycfij H— ^ J ,  (2.30)

where fij  and Oj are the mean and variance respectively. Since negative jumps 
would cause negative interest rates, we do not implement this jump setting in 
the case of CIR-type volatilities. The process with Gaussian-type volatility and 
normally distributed jump size is considered.
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The third example is a normal distribution truncated to take only positive 
values. The jump transform has a closed-form solution, containing the cumula­
tive normal density, which can be computed numerically. The density function 
of the truncated normal distribution is given by

„(*) =  *

where 1/(1 — $ ( —p j /o j ) )  is the normalizing constant, which adjusts the total 
probability to one. The jump transform can be written as

0(c) = Jo eCX dv(x) =  exp(cp j  +  - ^ - j . (2.31)

The mean and variance are respectively given as 

E[x\ x  > 0] =  fij  +  j —

2.4 .3  P aram eters

The coefficients of an n-factor model are given by 

Gaussian-type volatility:

pi = l n, K  = d ia g [if i ,.. . ,X n], 0 = {d i , . . . ,e n)T,

E =  diag[cri,. . . ,  on]V, where V V T = (pij)ij,

D (X t) = In, A(Xt) =  diag[/!,...,Zn].

CIR-type volatility:

pi = l n, K  = diag[ATi, • • •, K n], 0 =  (0 i,. . . ,  0n)T, (0j > 0),

E =  diag[<7i,. . . ,  on], D (X t) =  diag[y/X^ , . . . ,  y /X t,n\ ,

A(Xt) =  d ia g [ / i , . . . ,y .

The selected parameters are shown in Tables 2.1 and 2.2 . The drift and diffu­
sion parameters are the same as those in Collin-Dufresne and Goldstein Collin- 
Dufresne and Goldstein (2002).
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Table 2.1: Drift and diffusion parameters

Gaussian CIR
Po 0.06 0.02
pi [111] [1 1]
K [1 0.2 0.5] [0.02 0.02]
0 [0.0 0.0 0.0] [0.03 0.01]
E diag[0.01 0.005 0.002] V  

/  1 -0 .2  -0 .1  \
diag[0.04 0.02]F

V V T -0 .2  1 0.3 
\  -0 .1  0.3 1 J ( i ° )

X 0 [0.01 0.005 -0.02] [0.04 0.02]

Table 2.2: Jump parameters

Gaussian CIR
lu, positive jump [0 2 3] [2 3]
ld, negative jump [0 2 3]
Exponential, positive rju [0.00 0.0025 0.0005] [0.0025 0.001]

negative r f [0.00 0.0025 0.0005]
Normal, hj [0 0.0025 -0.001]

VJ [0 0.004 0.001]
Truncated normal, \xj [0 0.0025 -0.001] [0.00125 -0.001]

crj [0 0.004 0.001] [0.004 0.001]

2 .4 .4  G aussian-type V ola tility  M odels

We consider the Gaussian-type volatility and jump. According to equation (2.23), 
the solutions of B (t,T )  and B(t) for the models containing the constant jump 
intensity are the same as those for the models without jumps. The solutions of 
A(t, T ) and A(t) can be split into two parts; the part containing the characteris­
tics of the Gaussian diffusion, and the part containing the characteristics of the 
jump. A (t , T ) and A(t) are therefore written as

A(t,T) = A a (t,T) + A J (t,T),

A(t) =  Aa (t) + AJ(t),
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where the superscripts G and J  represent the part of the Gaussian diffusion and 
that of the jump respectively.

In the case of Gaussian-type volatility without jump, the zero-coupon bond 
price and the bond moments have closed-form solutions. The solutions of equa­
tions (2.22), (2.23) and (2.24) are given by

A a (t,T) = -  p0(T - t) -  £ ( ( T  -  t )   -------)6 i

n 1 _  e~Ki (T - t )

ij= l -"‘“ J ' Ki
1 _  e - ( K < + K , ) ( T - t )

,a ,.

Kj  +  Kf +  Kj )•

B ? (t ,T )  = ----------—------- , i = l , 2 , . . . , n .  (2.32)

For bond moments, the solutions of equations (2.22), (2.23) and (2.25) are also 
given analytically by

A°(t) =Aa (t, To) +F 0 +  J 2  W 1 -  e~KiT)
i = 1

1 _  ^(Ki+K^r1 
+  2 5 3  (^iFjJ Ki + Kji,3=1 J

Fi / I  -  e~(Ki+K^ T 1 -  e~KiT\  
+ K~A Ki +  Ki Ki JKi + Kj

Fj /1 — e-(Ki+KAT 1 -  e~K^ \ \
+ Ki +  Kj K j  J J ’

B?(t) T0) + Fi exp ( - K i t ) ,  i = 1 ,2 , . . . ,  n, (2.33)

where r  =  T0 -  t, F0 =  i T*) and F* =  2 (T0, Tj).

E xponentia lly  D is trib u ted  Ju m p  Size

We assume the Gaussian-type volatility and exponentially distributed jump size, 
combined with the constant jump intensity. Two jumps in each factor are con­
sidered; one is positive with intensity denoted by lu and the mean of jump size 
denoted by rju, the other is negative with properties ld and r f  respectively.
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M om ent expansions Because of the constant jump intensity, the solutions 
for B (t,T )  and B(t) are given in equations (2.32) and (2.33) respectively and 
they are the same as for the case of the Gaussian-type volatility without jump. 
As stated above, the solutions for A(t, T) and A(t) are split into two parts; the 
volatility parts are given above and jump parts are given by

(K i+ v V e K iP -Q -r ,?
A J (t, r )  =  -  E  If ( (T  - 1) -  J  log

1
2 = 1
n

Ki

2= 1
n

( K i  -  r)f)eK i (T  +  rjf
Ki

)

)•

^ W  =  - E * ? ( r - ^ r l o g
2=1  *

(Ki + T,f)eK^  - v f i K F i  + l)
m - r , m

^ , d ( T 1 . (Kt -  r,t)eK^  +r,KKFi + i ) \

2 = 1

where Fo and F{ being contained in A(t) and B(t) are respectively given by 
F0 = i A (To, T i)  and Fi = £™=1 B i ( T 0 , T j ) .

M onte C arlo  sim ulation  The integrated jump intensity for positive jump 
used in simulating jump times has a closed-form solution and is given from 
equations (2.26) and (2.29) by,

pt pt ill
I X f ° ( u ) d u =  I  - ----------------— 7 - — — —  du

K i  Jn j l - v f B i ( u , T 0)

~ l? _ lQg (Ki + r,r)eKdTb_t) -  n't
Ki + rji

i =  1, 2, . . .  ,72.
(Ki +  r)f)eKi(T° Ti’j) — rjf

The jump transform for positive jumps under Pr0 determines the jump size 
distribution under the measure and it is given from equations (2.27) and (2.29) 

by

e[°(c) = --------------  , * =  l , 2 , . . . , n .
1  “  Cl-^ J 5 i (t,T0)

Hence, the jump size under the To-forward measure follows an exponential with 
mean rji/( 1 — r]iBi(t, To)). Since the underlying process follows a Gaussian be­
tween jumps, simulating a sample path between jumps does not entail a dis­
cretization error. For a negative jump, the jump intensity and jump transform
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under the forward measure are defined respectively as

Af0W =
If

1 + To) ’
1

i = 1,2, . . .  ,n.
1 - c I+^BdOb)

R esults The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7), and that of the corresponding call options used in 
the generalized Edgeworth expansion are shown in Figure 2.1. All results point to 
a good match. While each jump makes the distribution of X  asymmetric, density 
functions show symmetry. This is caused by the assumption of two asymmetric 
jumps; one is positive and the other negative. The price differences, defined as

Figure 2.1: The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and that of the call option used in the generalized 
Edgeworth expansion. Three-factor Gaussian-type volatility with exponentially 
distributed jump size.

Density

—  MC
-  GC(3)
- GC(7) 

Call

14

12

10

0.1
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- 0.05 0.05

Monte Carlo price —approximation price, are presented in Figure 2.2 and prices 
are shown in Table 2.3. Monte Carlo results are obtained with four million 
simulations. GC(3) has the worst performance on average. This is because 
GC(3) captures only the first three moments of the swap value. The higher the
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moment order, the greater the accuracy of the Gram-Charlier expansion, though 
the accuracy differs across the strike rates. In contrast to GC(3), GEW(2,7) and 
GEW(3,7,7) perform well although they capture only the first two and three 
moments of the swap value respectively. This is because in the generalized 
Edgeworth expansion, P(To,T/v) is used as an approximating function which 
partially captures the influence of higher-order moments.

Figure 2.2: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Three-factor Gaussian-type volatility with 
exponentially distributed jump size.
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In the generalized Edgeworth expansion, the ITM swaption requires a greater 
number of call options than OTM does as shown in the N\ row in Table 2.3. 
N 2 /N 1 represents the strike price of a call option and from Table 2.3, it shows 
that ITM, ATMF and OTM swaptions are decomposed into ITM, ATM and 
OTM call options and adjustment terms respectively. The call option prices 
come close to the true swaption prices. These results support the idea that a 
swaption price can be mainly hedged only with options on a zero-coupon bond. 
Overall these approximation methods work well, but comparing the results with 
those under the diffusion process, approximated prices under the AJD perform 
worse by one digit as shown in Collin-Dufresne and Goldstein (2002, Exhibit 2)
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and Tanaka, Yamada and Watanabe (2010, Figure 1).

Table 2.3: One-into-ten swaption prices by Monte Carlo simulation, GC(3), 
GC(7), corresponding call option price and GEW(3,3,7) over strike rate. ATM 
forward rate is 6.00%. Three-factor Gaussian-type volatility with exponentially 
distributed jump size.

Strike rate, 
ATMF+/c% -0.015 -0.01 -0.005 0.0 0.005 0.01 0.015

MC 0.04 0.93 13.54 107.33 366.79 706.50 1058.17
GC(3) 0.00 0.42 13.04 110.03 365.90 705.85 1058.13
GC(7) 0.04 1.07 13.06 108.03 366.31 706.71 1058.17

GEW(2,7) 0.04 1.11 13.12 108.03 366.17 706.71 1058.17
GEW(3,7,7) 0.04 1.10 13.02 108.00 366.35 706.73 1058.17

Ni 1.39 1.43 1.48 1.52 1.57 1.61 1.65
n 2/ n 1 0.63 0.60 0.58 0.55 0.53 0.51 0.49

Table 2.4: Running time by Monte Carlo simulation with 200,000 sample paths, 
GC(3), GC(7), and GEW(3,7,7). Three-factor Gaussian-type volatility with 
exponentially distributed jump size.

Monte Carlo GC(3) GC(7) GEW(3,7,7)
seconds 179.654 0.015 3.328 0.031

Table 2.4 illustrates the CPU time in seconds to calculate one swaption price 
by Monte Carlo simulation, GC(3), GC(7) and GEW(3,7,7). All computations 
were performed on a PC with Intel(R) Core 2 CPU 2.40 GHz with 3 GB RAM. 
Since an iterative calculation is required to calculate the moments of swaps, the 
higher the moment order, the greater the CPU time. All approximation methods 
run much faster than Monte Carlo simulation.

N orm ally  D is trib u ted  J u m p  Size

The model for the Gaussian-type volatility with normally distributed jump size 
is now considered.
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M oment expansions Due to the constant jump intensity, the solutions of 
B ( t ,T ) and B(t) are the same as those for the model without jumps and are 
given in equations (2.32) and (2.33) respectively. The ODEs for A(t, T ) and A(t) 
do not have closed-form solutions since the ODE satisfied by A(t, T ) becomes

j t A{t,T) = - { K 0 )r B (t ,T )  -  i  £ ( E TB(i,T))?
i = 1

-  y :  h  ( e l l J ’i B i ( t , T ^ +<TJ ’i B i ( t ' T ^ 2 / 2  -  l )  +  po.
i = l

The terminal condition is A(T, T) = 0. A(t) satisfies the same ODE in which 
B (t) is used instead of B(t, T ) and the terminal condition is A{Tq) =  Y^= l ^(^o> Ti). 
These ODEs are solvable with numerical methods such as the Runge-Kutta 
method and solutions contain discretization errors accordingly.

M onte Carlo simulation The jump intensity under the To-forward measure 
is given from equations (2.26) and (2.30) by

t  /  a ^ B ^ T o ) 2,
X f° =  li exp [fijjBiit, To) + 2  ) '  i =  1.2, ••• ," .  (2-34)

Since the integral in equation (2.28) combined with equation (2.34) cannot be 
obtained in closed-form, the trapezium rule with equi-distant time steps is used 
in equation (2.28), hence including discretization error. The jump transform 
under the To-forward measure is from equations (2.27) and (2.30):

2 2

9j°(c) = exp(c fa jj  +  a j4B(t, T0)) +  , « =  1 ,2 , . . . ,  n.

Hence, the jump size distribution under the To-forward measure follows the nor­
mal distribution whose mean and variance are [ij +  a“jB (t,  To) and crj respec­
tively. Monte Carlo simulation under this setting causes discretization error in 
sampling jump times though no discretization error in sampling diffusion parts. 
We discretize option expiry into ten thousand of equal length.

R esults The density of swap value computed by Monte Carlo simulation, 
GC(3) and GC(7) and that of the call option computed by GEW(2,7) axe shown
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Figure 2.3: The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and that of the call option used in the general­
ized Edgeworth expansion. Three-factor Gaussian-type volatility with normally 
distributed jump size.
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Figure 2.4: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Three-factor Gaussian-type volatility with 
normally distributed jump size.
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in Figure 2.3. Due to the assumption that jump size distributions follow a normal 
with non-zero mean, the densities show asymmetry.

Figure 2.4 presents the price differences and prices are shown in Table 2.5. 
For the Monte Carlo simulation, we use four million sample paths. While a 
similar tendency is observed as in the case with exponential jump size, overall 
pricing errors decrease. With the Gram-Charlier expansion, the accuracy im­
proves as the higher-order moments axe used though the accuracy differs across 
the strike rates. GEW(2,7) and GEW(3,7,7) perform almost the same as GC(7). 
This is because in the generalized Edgeworth expansion, P(Tq,Tn ) is used as 
an approximating function which partially captures the influence of higher-order 
moments.

Table 2.5: One-into-ten swaption prices by Monte Carlo simulation, GC(3), 
GC(7), corresponding call option price and GEW(3,3,7) over strike rate. ATM 
forward rate is 7.04%. Three-factor Gaussian-type volatility with normally dis­
tributed jump size.

Strike rate, 
ATMF+k% -0.015 -0.01 -0.005 0.0 0.005 0.01 0.015

MC 0.00 0.10 7.61 101.45 354.70 679.02 1016.29
GC(3) 0.00 -0.11 7.21 102.60 354.45 678.65 1016.21
GC(7) 0.00 0.13 7.52 101.49 354.55 679.05 1016.29

GEW(2,7) 0.00 0.13 7.54 101.48 354.55 679.04 1016.28
GEW(3,7,7) 0.00 0.13 7.51 101.49 354.57 679.04 1016.28

Ni 1.51 1.56 1.60 1.65 1.70 1.74 1.79
N 2 /N 1 0.57 0.54 0.52 0.50 0.47 0.45 0.44

In the generalized Edgeworth expansion, a similar tendency is observed as 
the case with the exponential distribution setting. The ITM swaption requires 
a greater number of call options than OTM does as shown in the N\  row in 
Table 2.5. ITM, ATMF and OTM swaptions are decomposed into ITM, ATM 
and OTM call options and adjustment terms respectively, as shown in the N 2 /N 1 

row in Table 2.5. The call option prices come close to the true swaption prices. 
These results again support the idea that a swaption price can be mainly hedged 
only with an option on a zero-coupon bond.
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Table 2.6: Running time by Monte Carlo simulation with 200,000 sample paths, 
GC(3), GC(7), and GEW(3,7,7). Three-factor Gaussian-type volatility with 
normally distributed jump size.

Monte Carlo GC(3) GC(7) GEW(3,7,7)
seconds 2841.310 0.244 140.077 1.544

Table 2.6 illustrates the CPU time in seconds to calculate one swaption price 
by Monte Carlo simulation, GC(3), GC(7) and GEW(3,7,7) with the same PC 
as in the exponentially distributed jump size case. Approximation methods run 
faster than Monte Carlo simulation. The price by Monte Carlo simulation is 
computed with the equi-spaced time discretization of 10-5 . Due to the time 
discretization, Monte Carlo simulation under the normal jump size is more time 
consuming than that under the exponential jump size. The ODE is computed 
numerically with time discretization of 2 x 10-2 and therefore it makes the CPU 
time increase.

T ru n ca ted  N orm ally  D is trib u ted  J u m p  Size

Gaussian-type volatility with truncated normally distributed jump size is con­
sidered in this example.

M om ent expansion The solutions for B(t, T) and B(t) are the same as those 
for the diffusion case because of the constant intensity and are given in equa­
tions (2.32) and (2.33) respectively. The ODE for A(t, T) is given by

j t A{t,T) = ~{K6)J B{t,T )  -  TS ( t ,T ) ) '
i = 1

n  ,

- £ * (
i = l  V

with the terminal condition A(T, T) = 0. A(t) satisfies the same equation as 
A(t) does in which B(t) is used instead of B(t,T ).  The terminal condition 
is A(Tq) = A(Tq, T{). Like the normal jump setting, these equations are
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solved numerically via the Runge-Kutta method, thereby including discretization 
error.

M onte  C arlo  sim ulation  Jump intensity under the To-forward measure used 
in a jump time simulation is given from equations (2.26) and (2.31) by

1 -  a2 B (tTn)2
ATo -  I ^ j ’ • _  1 2  n

(2.35)

Since the integral in equation (2.28) combined with (2.35) cannot be obtained 
in closed-form, it is performed numerically by adopting the trapezium rule with 
equi-distant time step in equation (2.28), thereby including discretization er­
ror. The jump transform under the To-forward measure takes the form from 
equations (2.27) and (2.31)

ef°(c) = ---------------------------- ' 2 x f  f =  1 ,2 , . . . ,  n.

By comparing this with equation (2.31), this equation indicates that the jump 
size distribution under the To-forward measure follows To), Ojj)
which is truncated at To). Hence, we deduce under the To-forward
measure, the jump size follows, for i =  1, 2, . . . ,  n,

I _  ^  a j i
1 ^) (X ~  +
ji \ a n  J

R esu lts  The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and the density function of the call options used 
in the generalized Edgeworth expansion are shown in Figure 2.5. The density 
functions show asymmetry since only positive jumps are included. Even under 
the asymmetric jumps, approximation methods work well.

Figure 2.6 presents the price differences and prices are shown in Table 2.7. 
For the Monte Carlo simulation, we use four million sample paths. With the
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Figure 2.5: The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and that of the call option used in the general­
ized Edgeworth expansion. Three-factor Gaussian-type volatility with truncated 
normally distributed jump size.
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Gram-Charlier expansion, the accuracy improves as the higher-order moments 
are used, though the accuracy differs across the strike rates. GEW(2, 7) and 
GEW(3, 7, 7) perform almost the same as GC(7). This indicates that GEW(2,7) 
and GEW(3, 7, 7) capture the influence of the higher-order moments though they 
are set to equate up to second and third moments, respectively, to those of the 
swap value. This is because in the generalized Edgeworth expansion, P(To,T/v) 
is used as an approximating function which partially captures the influence of 
higher-order moments.

Table 2.8 illustrates the CPU time in seconds to calculate one swaption price 
by Monte Carlo simulation, GC(3), GC(7) and GEW(3,7,7), again with the same 
PC as in the exponentially distributed jump size case. Approximation methods 
run faster than Monte Carlo simulation. The price by Monte Carlo simulation 
is computed with the equi-spaced time discretization of 10-5 . Like the normal 
jump setting, time discretization makes Monte Carlo simulation time-consuming. 
The ODE is computed numerically with time discretization of 2 x 10-2 , and
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Figure 2.6: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Three-factor Gaussian-type volatility with 
truncated normally distributed jump size.
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Table 2.7: One-into-ten swaption prices by Monte Carlo simulation, GC(3), 
GC(7), corresponding call option price and GEW(3,3, 7) over strike rate. ATM 
forward rate is 8.92%. Three-factor Gaussian-type volatility with truncated 
normally distributed jump size.

Strike rate, 
ATMF+k% -0.015 -0.01 -0.005 0.0 0.005 0.01 0.015

MC 0.00 0.04 8.07 101.29 332.25 628.22 938.78
GC(3) -0.01 -0.29 8.18 102.07 332.46 627.88 938.65
GC(7) 0.00 0.07 8.10 101.45 332.29 628.23 938.81

GEW(2,7) 0.00 0.06 8.12 101.47 332.29 628.20 938.80
GEW(3,7,7) 0.00 0.06 8.08 101.48 332.26 628.21 938.80

Ni 1.75 1.80 1.86 1.91 1.96 2.01 2.06
N2/N i 0.46 0.44 0.43 0.41 0.39 0.37 0.36
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Table 2.8: Running time by Monte Carlo simulation with 200,000 sample paths, 
GC(3), GC(7), and GEW(3,7,7). Three-factor Gaussian-type volatility with 
truncated normally distributed jump size.

Monte Carlo GC(3) GC(7) GEW(3,7,7)
seconds 3812.484 0.468 251.740 3.372

therefore it makes the CPU time increase.

2.4 .5  C IR -typ e V ola tility  M odels

In this subsection, we consider the CIR-type volatility. Well-known properties 
of the CIR process include that it is non-negative and mean-reverting because 
of the drift term. For a strictly positive interest rate, jump size distributions 
taking only positive values are implemented. Like the Gaussian-type volatility 
setting, the solutions of A(t, T ) and A(t) can be split into volatility and jump 
parts. Thus in the case of a jump-diffusion setting, A(t, T ) and A(t) are written 
as

A (t,T )  =  A c (t,T ) + A J(t,T ),

A(t, T) = Ac (t, T ) + AJ(t, T).

In the case of the independent CIR-type volatility without jump terms, the 
system of ODEs has analytical solutions. We denote the solutions of equa­
tions (2.22), (2.23) and (2.24) by Ac (t,T ) and B ° ( t,T )  and those of equa­
tions (2.22), (2.23) and (2.25) by Ac (t) and B c (t). These are given by

A c (t,T )

n

Ac (t) = F0 - p o T - J 2 K iei
i = 1

57

2 , (Ki +  7i - ^ ) ( e 7iT- l )  +  27i
t-2 111

=  - p o p 1 “  t)
n

~ Y . K ^
2 , (K i +  7i)(e7<(T-<) — 1) +  2-yt ,

—  in ----------------   h
i = l

_ 2(e^(T-<) _  x)

(Ki +  ti)(e^(T_t) — 1) +  27i ’

27*

i =  1, 2,. . . ,n ,

Ki 7i
er - t )
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( K i  +  7 t  )Fj  + 2 
K t - ' y t -  a l F t T

B ? (t) =

74
((ifi -  70Fi + 2) (e*T -  1) + 27iFi

(2.37)(K-j + 7i - ^ F j) ( e ^ - l )  + 27i

where F0 =  E ,”  i  ^ C(?b, D), f )  =  E f= i ^ f ( T 0, 2}), 7i =  ^ K f  + 2a? and 
T  = Tq — t.

E xponentia lly  D is trib u ted  Ju m p  Size

The CIR-type volatility with the exponentially distributed jump-size is consid­
ered in this example.

M om ent expansion Due to the constant intensity, the solutions for B(t, T) 
and B (t) are the same as those without jumps and are given in equations (2.36) 
and (2.37) respectively. The jump parts of A (t, T ) and A(t) are respectively 
given by

|7 *(e7 .(T -()_ 1) + 27i
A J(t, T) =  -  £  k f ( T  -  t) +  ^  log|:

4=1 ' ) ■

AJ(t) =
n ,

E '.(
i = 1 v

, 2^ ,  (7f ~ l iF j) ( e ^  -  1) +  27i(l -
7» ° 27 (̂1 — r)iFi)estiT/2rii /

where 7; =  of - 2 K r ji -  2rjf, 7 * =  if* +  7* +  2^ , 7* =  a? -  r)iK i +  77*7*. The 
terminal conditions used in the bond moments are Fo =  ^ (^ 0? Ti) and

F i  =  H ? = l B i ( T o , T j ) -

M onte C arlo  sim ulation  The integral in equation (2.28) used to simulate 
jump times under the To-forward measure is given from equations (2.26) and 
(2.29) by

\ f °  (u) du
L

- L
li du

Ti.i 1 -  V i B i ( u , T 0)
y * ( e 1i(T0- t )  _  1 ) _|_ 2 7 i/27ft

\  7*
= k [ —  log

/y* (e^T° Ti’A — 1) +  271
Ki 7i

K i - j i - h  2r)i
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i = 1,2, and therefore it satisfies the nonlinear equation, which can be
solved by means of the bisection algorithm. Since the underlying process follows 
CIR between jumps, simulating a sample path without time-discretization is pos­
sible. The jump transform under the To-forward measure from equations (2.27) 
and (2.29) is

eJ°(c) = -, .  1 »  > * =  1.2
1 c i - % B ,'(t,T 0 )

Consequently, we deduce at each jump time that an additive jump occurs and 
its jump size follows an exponential with mean

  ^ -----— , * =  1 ,2 , . . .,n .1 TJiBi (7"j j , To)

Figure 2.7: The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and that of the call option used in the general­
ized Edgeworth expansion. Two-factor CIR-type volatility with exponentially 
distributed jump size.
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R esults The densities of swap values computed by Monte Carlo simulation, 
GC(3) and GC(7) and that of the corresponding call option used in GEW(2,7) 
and GEW(3,7,7) are shown in Figure 2.7. It may seem that all methods work 
well. Figure 2.8 presents the price differences and prices are shown in Table 2.9.
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Figure 2.8: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Two-factor CIR-type volatility with expo­
nentially distributed jump size.

bp
1 .5 1 r 1 i 1 r 1---------- 1----------

0.5

-0 .5

- 0502  - 0.01  0 0.01 0.02 

Strike rate—ATMF %

Table 2.9: One-into-ten swaption prices by Monte Carlo simulation, GC(3), 
GC(7), corresponding call option price and GEW(3,3,7) over strike rate. ATM 
forward rate is 11.75%. Two-factor CIR-type volatility with exponentially dis­
tributed jump size.

Strike rate, 
ATMF+/c% -0.015 -0.01 -0.005 0.0 0.005 0.01 0.015

MC 6.30 28.70 88.37 202.72 374.52 592.11 838.80
GC(3) 6.23 28.74 88.48 202.87 374.67 592.20 838.78
GC(7) 6.30 28.70 88.36 202.73 374.53 592.09 838.78

GEW(2,7) 6.84 29.71 89.32 202.91 373.80 590.96 837.76
GEW(3,7,7) 6.25 28.75 88.46 202.81 374.63 592.20 838.82

Ni 1.92 1.96 2.01 2.05 2.10 2.14 2.19
N 2 /N 1 0.35 0.33 0.32 0.30 0.29 0.27 0.26

GC(3)
-  ̂- GC(7)

• GEW(2,7)
—«— GEW(3,7,7)
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Monte Carlo prices are computed with four million sample paths. In contrast 
to the Gaussian-type volatility setting, an approximation only with the call 
option performs less well. This is caused by the possibility that G does not 
capture the majority of the influence on swaption price. Since G contains one 
random variable P(To, T/v) and has the same first and second order cumulants 
as the swap value, it cannot capture all the influence of more than third order 
cumulants of the swap value. In the case of a higher swap rate or higher volatility 
of the underlying interest rates and accordingly larger values of more than third 
order cumulants, G cannot adequately capture the influence of more than third 
order moments, and this is the case for the CIR-type volatility setting (see 
the parameters in Table 3.3). This hypothesis is numerically investigated later. 
Nevertheless, GEW(3,7,7) captures the influence of up to third order moments 
and therefore the results improve. Though the approximation with only call 
price performs worst, its overall mean absolute error is less than 0.5 bp. This 
result supports the idea that a swaption can be hedged with the corresponding 
call option.

Table 2.9 shows also the strike rates and the number of contracts of call 
options used in the generalized Edgeworth expansion. ITM, ATMF and OTM 
swaptions are decomposed into ITM, ATM and OTM call options and adjust­
ment terms respectively.

Table 2.10: Running time by Monte Carlo simulation with 2,000,000 sample 
paths, GC(3), GC(7), and GEW(3,7,7). Two-factor CIR-type volatility with 
exponentially distributed jump size.

Monte Carlo GC(3) GC(7) GEW(3,7,7)
seconds 160.061 0.015 5.124 0.046

Table 2.10 illustrates the CPU time in seconds to calculate one swaption 
price by Monte Carlo simulation, GC(3), GC(7) and GEW(3,7,7). All compu­
tations were performed on a PC with Intel(R) Core 2 CPU 2.40 GHz with 3 GB 
RAM. All approximation methods run much faster than Monte Carlo simula­
tion. It indicates that these approximation methods can be used for practical 
implementation.

61



2.4 Numerical Examples

Table 2.11: New parameters. Others are the same as in Tables 2.1 and 2.2.

Po £
- 0.02 diag [0 .020 .01] F [0 .020 .01]

To investigate the hypothesis, we set parameters so that they have the lower 
swap rate and the lower volatility shown in Table 2.11. The price differences 
are presented in Figure 2.9. As inferred, the patterns of the price differences 
are similar to that under the Gaussian-type volatility settings. These results 
support the hypothesis that in the case of a lower swap rate and a lower volatil­
ity, the lower order approximation with the generalized Edgeworth expansion 
will produce accurate prices. However, the overall approximation errors dete­
riorated compared with Figure 2.8. This is because the jump parameters are 
unchanged and consequently the density of the swap value deviates from the 
normal distribution.

Figure 2.9: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Two-factor CIR-type volatility with expo­
nentially distributed jump size.
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T ru n ca ted  N orm ally  D is trib u ted  Ju m p  Size

In this example, we consider the CIR-type volatility and normally distributed 
jump size truncated to take only positive values.

M om ent expansion Due to the constant intensity, the solutions for B(t, T ) 
and B(t) are the same as those of the CIR-type volatility without jump and they 
are given by equations (2.36) and (2.37). The ODE satisfied by A (t,T ) becomes

j t A (t,T ) = - ( K 6 )r B (t,T )

y  h  i ' 2 -  l)
h  \  /

with the terminal condition A(T, T ) =  0. The ODE for A(t) is the same as that 
for A(t, T ) in which B(t) is used instead of B(t, T ) and its terminal condition 
is A(To) =  YliLi Ti). These equations are solved numerically by means of 
the Runge-Kutta method.

M onte C arlo  sim ulation  The jump intensity under the To-forward measure 
is given from equations (2.26) and (2.31) by

Af°W = k  , i =  1 ,2 ,. . . ,  ».
'  <TJ,i '

(2.38)

Since the integral in equation (2.28) with (2.38) has no analytical solution, we 
adopt the trapezium rule with equidistant time step. The jump transform under 
the To-forward measure is given from equations (2.27) and (2.31) by

0f°(c) = ---------  / „ +BUTW* \  i = 1, 2 , . . . , n,I ^  VJ,i+Bi(t,To)aJA\

and therefore, like the Gaussian-type volatility and truncated normal jump size 
setting, the jump size distribution for z-th factor under P r0 follows N (fij)i +
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(TjtiBi(t,To),(r%ti) being truncated at T0),

VJ°(x)=

1 1

R esults Figure 2.10 shows the density functions of swap values computed in 
Monte Carlo simulation, GC(3), GC(7) and that of the corresponding call op­
tions computed in GEW. All results point to a good match. Figure 2.11 presents

Figure 2.10: The density functions of the swap value computed by Monte Carlo 
simulation, GC(3) and GC(7) and that of the call option used in the generalized 
Edgeworth expansion. Two-factor CIR-type volatility with truncated normally 
distributed jump size.

Density

. MC
-  GC(3) 
_ GC(7) 

Call

-0 .1 5 - 0.1 -0 .0 5 0.05 0.15 0.2
Swap value

0.1

the price differences and prices are shown in Table 2.12. Monte Carlo prices are 
computed with four million sample paths. Similar to the CIR-type volatility and 
exponentially distributed jump-size setting, GEW(2, 7) perform the worst but 
GEW(3,7,7) perform well.

Table 2.13 illustrates the CPU time in seconds to calculate one swaption price 
by Monte Carlo simulation, GC(3), GC(7) and GEW(3,7,7), again with the same
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Figure 2.11: Price differences between approximation methods and Monte Carlo 
simulation for various strike rates. Two-factor CIR-type volatility with the trun­
cated normally distributed jump size.

bp
1.5

— GC(3) 
o GC(7)

— GEW(2,7)
" GEW(3,7,7)

0.5

oo

-0 .5

-1 .5

- 2  —  
- 0.02 - 0.01 0.01 0.02

%Strike rate—ATMF

Table 2.12: One-into-ten swaption prices by Monte Carlo simulation, GC(3), 
GC(7), corresponding call option price and GEW(3,3,7) over strike rate. ATM 
forward rate is 12.17%. Two-factor CIR-type volatility with truncated normally 
distributed jump size.

Strike rate, 
ATMF+k% -0.015 -0.01 -0.005 0.0 0.005 0.01 0.015

MC 7.99 33.32 96.13 211.10 379.50 590.90 830.74
GC(3) 8.01 33.39 95.99 210.67 379.10 590.72 830.70
GC(7) 7.97 33.22 95.88 210.72 379.20 590.73 830.65

GEW(2,7) 8.64 34.38 96.96 210.97 378.44 589.45 829.42
GEW(3,7,7) 7.80 33.18 96.13 211.11 379.43 590.73 830.52

Ni 1.98 2.03 2.07 2.12 2.17 2.21 2.26
n 2/ n 1 0.33 0.32 0.30 0.29 0.27 0.26 0.25
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Table 2.13: Running time by Monte Carlo simulation with 2,000,000 sample 
paths, GC(3), GC(7), and GEW(3,7,7). Two-factor CIR-type volatility with 
truncated normally distributed jump size.

Monte Carlo GC(3) GC(7) GEW(3,7,7)
seconds 3747.446 0.256 142.669 1.620

PC as in the exponentially distributed jump size case. The price by Monte Carlo 
simulation is computed with 2 ,000,000 sample paths and time discretization of 
equal space 10-5 . Due to the time discretization, Monte Carlo simulation is 
time consuming. Since each ODE used in the Gram-Charlier and generalized 
Edgeworth expansions are computed numerically via the Runge-Kutta method 
with time discretization of 2 x 10-2 , it makes the CPU time much longer than 
those of exponentially distributed jump size.

2.5 Concluding Remarks

In this chapter, we investigate the validity of two methods to evaluate swap­
tion prices under the multi-factor affine jump-diffusion process. The density 
function of the underlying swap is approximated with more tractable densities 
and their higher-order cumulants. Two methods based upon moment expan­
sions, the Gram-Charlier expansion and the generalized Edgeworth expansion, 
are examined.

The Gram-Charlier expansion uses normal distributions to approximate the 
swap value. The pricing of a swaption is reduced to calculating higher-order mo­
ments of the swap value. For some models such as the Gaussian-type volatility 
with exponential jump and the CIR-type independent volatility with exponential 
jump, moments of swap value can be calculated analytically. An arbitrary dis­
tribution can be used to approximate the swap value in a generalized Edgeworth 
expansion. We adopt one zero-coupon bond at swap maturity as the approxi­
mating random variable. It turns out that swaption prices can be expressed in 
terms of the options on a zero-coupon bond and adjustment terms. This de­
composition indicates that a swaption can be partially hedged with options on
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zero-coupon bonds. In this method, swaption pricing is reduced to calculating 
higher-order moments of the swap value and the approximating variable.

Based on the numerical examples, the higher-order approximation yields 
more accurate prices on average for both the Gram-Charlier and the generalized 
Edgeworth expansions in any jump setting. For some special cases, such as low 
swap rate and low volatility, the generalized Edgeworth expansion outperforms 
the Gram-Charlier expansion in the sense that it can attain the same level of 
pricing error but requires a lower degree of moments and less CPU time. The 
idea that the options on the zero-coupon bond can be used for hedging swap­
tions is supported numerically. For the normally distributed and the truncated 
normally distributed jump sizes, the ordinary differential equations axe solved 
numerically. Solving the ordinary differential equations numerically works well 
although it is more time-consuming than an analytical approach. Even so, ap­
proximation methods run much faster than Monte Carlo simulation.
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Chapter 3

The Spot and Forward Relationship in 
Carbon Emissions Markets I

3.1 Introduction

The Kyoto Protocol was adopted in December 1997. To achieve its commitment, 
signatory nations committed to reduce carbon dioxide (CO2) emissions. The Eu­
ropean Union (EU) put a new trading program called the EU Emission Trading 
Scheme (EU ETS) into practice in order to achieve this and consequently in 
January 2005, a new market in which European Union CO2 allowances (EUAs) 
are traded was created. The EU ETS operates a cap-and-trade scheme under 
which the total quantity to be allocated to each EU member state is defined in 
the National Allocation Plan (NAP). Companies in specified industrial sectors 
or with combustion facilities, identified by member states under the terms of 
the NAP, have to comply with this requirement. They receive free emission per­
mits or allowances annually, which represent the right to emit a specific amount, 
one allowance is equivalent to one tonne of CO2, enabling them to emit CO2 

up to the assigned tonnage. The total allowance issued is thus set as a cap on 
total permitted emissions, and by setting the cap level tighter over time, total 
emissions are controlled.

In the market, companies assigned emission allowances can bilaterally trade 
these, to offset any excess or shortage. Companies that emit beyond their al­
lowance must purchase allowances to cover their excess emissions. This scheme 
is designed to offer companies incentives for achieving emission reductions. Since 
companies that are able to keep emissions below their assignment are free to sell 
excess quotas, they are incentivised to develop and deploy cleaner technologies.
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Actual trading is organised in several phases. Phase I (2005-2007) is regarded as 
a pilot period, set to run up to the beginning of Phase II (2008-2012), the Kyoto 
commitment period. The details of the trading scheme in Phase III (2013-2020) 
are still under review. In the market the spot contracts, as well as the futures 
contracts, are widely traded and other derivatives such as options have emerged. 
See Capoor and Ambrosi (2008) for recent developments in these markets.

EUA contracts are traded with several maturities. The EUA price of the cur­
rent year can be viewed as the spot price and the EUA price for the next year as 
the forward price. Regulators announce verified emissions data every year and 
unused allowances are to be surrendered at the end of every trading year. Un­
der the EU ETS, companies that are not able to obtain sufficient allowances to 
cover their emissions for the year have to pay a penalty (in Phase I, 40 EUR per 
tonne; in Phase II, 100 EUR per tonne). Moreover, any emissions not covered 
by an allowance have to be made up in the next year. Consequently penalty 
payments still force companies to obtain these allowances. This market regula­
tion provides a direct relationship between spot and forward prices. However, 
only the situation where market participants need allowances, but are unable to 
acquire them, brings about such a direct relationship. In this sense, the factor 
representing the market condition has to be taken into account in expressing the 
spot and forward relationship. We, therefore, introduce the difference between 
the total allocation and emissions (referred to as the net position of the zone), 
for expressing the spot and forward relationship. It plays a crucial role in eval­
uating the relationship. The spot price depends not only on the forward price 
but also the net position of the zone, since only the short position of the zone, 
when the total allocation is below actual emissions, leads the spot price to the 
forward price plus the penalty. The spot and forward relationship in this market 
differs due to these regulations and market design from other markets such as 
zero-coupon bond or stock markets.

Bankability is taken into consideration in our framework. Within Phase I and 
Phase II, excess allowances can be transferred for use during the following year, 
which is called banking. Banking between Phase I and Phase II is forbidden 
by most countries, so that the unused allowances allocated during Phase I are 
useless after Phase I. Considering the lack of bankability, if it were certain that
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the net position would be long, in other words the carbon allowances were in 
a state of excess supply, the spot price at the end of Phase I would be zero. 
When banking is possible, the unused allowances can be used for next year and 
therefore even if the market is long, the spot price at the end of each trading 
year is still greater than zero.

The objective of this article is to extend the framework proposed by Qetin 
and Verschuere (2009) for the spot and forward relationship in Phase I to that 
in Phase II. We make allowances for the possibility of banking in building the 
framework. The possibility of banking is evaluated in the form of an expectation, 
conditioned on the net position of the zone being long. Our approach is based 
upon the no-arbitrage principle. The spot price is considered as a derivative 
contract whose underlying variables are the forward price and the net position 
of the zone. This is pricing in an incomplete market since the net position of 
the zone is not tradable. The locally risk-minimization technique and associated 
minimal martingale measure are implemented. The forward process is assumed 
to be driven by a Brownian motion and its drift term is modelled to be a function 
of the net position of the zone which is assumed to follow a finite-state Markov 
chain.

Two settings with respect to the information levels market participants ob­
serve are considered, as in Qetin and Verschuere (2009): complete information 
in which the forward price and the net position of the zone are observed con­
tinuously; and incomplete information in which the forward price is observed 
continuously and the net position of the zone is observed only at periods of 
emission announcement. The relationship in the complete information setting 
is derived and the analytical arbitrage-free price is obtained. The relationship 
in the incomplete information setting is also investigated, which leads to an ap­
plication of a filtering technique. The net position of the zone is observed only 
through the fluctuations of the forward price and the actual value is periodically 
announced. Thus its projection onto the observable information is implemented. 
The setting where the unobserved process follows a Markov chain leads to the 
use of the Wonham filter. The arbitrage-free price is obtained using Monte Carlo 
simulation. We also consider parameter estimation. The framework is that of 
a hidden Markov model (HMM). A recursive expectation-maximization (EM)
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algorithm is employed to obtain the parameters of the future price and the net 
position of the zone.

Several papers deal with characteristics of prices in carbon emissions markets. 
Carmona, Fehr, Hinz and Porchet (2009) studied cap-and-trade schemes in an 
equilibrium setting and gave several qualitative properties of equilibrium prices. 
Seifert, Uhrig-Homburg and Wagner (2008) assumed every market participant 
is risk-neutral or the existence of a representative agent with a logarithmic util­
ity, thereby reducing the problem to that of a representative agent who aims 
to maximize the total profit of all agents. Chesney and Taschini (2009) con­
structed an endogenous model for describing the emission allowance spot price 
dynamics that accounts for the potential presence of asymmetric information in 
the market. Several papers investigate the price process from econometric view­
points; Daskalakis, Psychoyios and Markellos (2009) studied spot prices and the 
stochastic convenience yield with several jump-diffusion processes. Benz and 
Truck (2009) suggested the use of AR-GARCH and Markov regime-switching 
models for explaining log returns of EUA prices. Goodness-of-fit tests on in- 
sample data and forecasting analysis with out-of-sample data were conducted. 
Paolella and Taschini (2006) undertook an econometric analysis of emission al­
lowance spot market returns and found that the unconditional tails can be well 
represented by a Pareto distribution while the conditional dynamics can be ap­
proximated by a new GARCH-type structure. There is a growing number of 
papers in the area of stochastic filtering in finance. For example, Elliott and 
van der Hoek (1997) applied a filtering technique for the optimal asset alloca­
tion problem. Landen (2000) considered zero-coupon bond pricing in which the 
drift term in the underlying diffusion process is modulated with a Markov chain. 
Several papers use a filtering technique to model the imperfect information in­
vestors can observe. For example, Qetin, Jarrow, Protter and Yildirim (2004), 
Jeanblanc and Valchev (2005) and Duffie, Eckner, Horel and Saita (2009) con­
sidered incomplete information in reduced-form modelling of credit risk. Lakner 
(1998) and Sass and Haussmann (2004) applied filtering theory to portfolio op­
timization problems under partial information.

The outline of this chapter is as follows. After this introductory section, 
Section 3.2 introduces the models used for pricing. We present models for the
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forward price process and the net position of the zone and then derive the spot 
and forward relationship under both complete and incomplete information set­
tings. Estimated parameters are given in Section 3.3, along with the EM al­
gorithm for an HMM. Numerical examples are provided in Section 3.4, where 
the price differences are highlighted in the two information settings with respect 
to each parameter. Of interest are the jumps in the process of the conditional 
expectation coming from the announcement of the actual value and consequent 
changes in the spot price. Concluding remarks and several possible extensions 
are discussed in Section 3.5.

3.2 M odels for EUA Prices

The framework for exploring the spot and forward relationship in the EU ETS 
market is introduced in this section. For simplicity, assume two EUAs are traded 
in the market: an EUA for the current year denoted by EUAO, and an EUA 
for the following year denoted by EUA1. We will first introduce the underlying 
processes and subsequently define the equation which the EUAO price satisfies.

3.2.1 T h e sp o t and forward relationsh ip  in E U  E TS m arkets

Let (Q, T , P) be a stochastic space with a filtration Tt and all stochastic processes 
defined on this space axe assumed to be F-adapted, F =  (T t)o < t< T *  ? where T* 
is a fixed but arbitrary time horizon. We adopt a similar approach to Qetin 
and Verschuere (2009). Let the positive-valued EUA1 price process, S , be a 
continuous-time process satisfying the stochastic differential equation (SDE),

dSt =  (/i +  OL0t)St dt +  aSt dWt, So = so, (3.1)

where /i, a and a are assumed constant, Wt is a one-dimensional standard Brow­
nian motion. 0* is assumed to be a finite-state Markov chain expressing the net 
position of the zone whose details are explained later. The pair, (St, 0*), is a 
vector-valued Markov process. From equation (3.1) it follows that the drift term 
of the EUA1 price has a different expected mean depending on the value of the 
net position of the zone. The choice of the drift coefficient is meant to reflect the 
changing demand for allowances depending on the net position of the market.
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EU ETS provides companies with fixed, free allowances on an annual basis at 
the beginning of each trading year and announces the total allowances submitted 
by the companies at the end of each trading year. Companies which receive 
allowances can emit CO2 up to their allocated allowance and in the market 
companies can trade allowances to offset any excess or shortage, as explained in 
Section 3.1. While total allowances are capped by regulators, the total amount 
of emissions is uncertain so that market conditions are either in excess or in a 
shortage. The net position of the zone models the difference between emissions 
and allocations, thereby are certain to be either long or short. If the total 
allowances were over-allocated, or companies abated CO2 emissions, the net 
position of the zone is long, meaning that the total allowances would be in excess. 
On the other hand, if numerous companies emit more than their allocations, or 
they abate less, the net position of the zone is short, meaning that the total 
allowances would result in a shortage.

The net position of the zone, $t, is assumed to follow a continuous-time 
Markov chain taking values in E  := {—1, 1}. Ot = —1 and 0* =  1 correspond to 
the net position of the zone at t when short and long, respectively. Ot is assumed 
to have the time-homogeneous generator matrix defined by

where Ai and A_i are assumed to be positive constant. This indicates 0* stays in 
each state for an exponentially-distributed amount of time, with the exponential 
distribution which determines the transition from state —1 to state 1, having 
parameter Ai and that from state 1 to state —1, A_i. We assume the Markov 
chain is independent of the Brownian motion.

The spot and forward relationship under the assumption of no banking, which 
was in effect in 2007 during the transition from Phase I to Phase II, was analysed 
in Qetin and Verschuere (2009). Under the assumption of no banking, the EUAO 
price would go to zero as the expiry date approaches, provided that the net 
position of the zone is long. This is because there are companies which have 
allowances that more than cover actual emissions and the excess allowances are 
worthless after expiry, which therefore drives the price to zero. If the net position 
of the zone is short, EUA1 turns to EUAO next year by paying a penalty, denoted
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by K , for every excess tonne of emissions, because of regulations.

Considering the above points, the value of EUAO at the end of Phase I, T, 
denoted by Pt  is assumed to satisfy the following relationship:

D efinition 3.1 (Qetin and Verschuere (2009)). The EUAO price at the end of 
Phase I, T, is defined as

St  +  AT if $t  — — 1,
{Pt  1 0 if 0T = 1.

In this chapter, we discuss the relationship when banking is in effect. Phase I
consists of three years, from 2005-2007, and Phase II consists of five years, from
2008-2012, but for simplicity in what follows, we assume that there are only 
two periods to trade, one being [0, T] and the other [T , 2T], where 2T  < T*, and 
there is no constraint on intra-period banking between [0, T] and [T, 2T], and 2T  
is the maturity of the phase when banking for next year is banned. At 2T, since 
banking is not allowed, the unused permits are worthless provided the market 
is long. We assume that at 2T  the analogous relationship will hold as at T  in 
Qetin and Verschuere (2009).

S 2 T +  AT if O2 T = ~  U
P2T 1 n if 0 2T = 1.

We consider the relationship at T. Now that intra-period banking is in effect, 
unused permits are no longer worthless. Banking is in effect so that unused 
permits can be transferred and used later, provided that the market is long. 
We assume in this case that EUAO is evaluated as the expectation of the future 
value. The price of an EUAO contract, in the case that the market is short, is 
equal to that of EUA1 plus a penalty as the market is short at 2T. The relation 
at T  is therefore

r s t  + k  if eT = - 1,
T \  E[l{02T=_i}(<S2r  +  AT)|St,0t  =  l] if 0t  = 1.

where 1 {et=i} is an indicator function which returns 1 if 0t = i, 0 otherwise 
and E[*] is the expectation operator under a pricing measure explained later. 
Considering the relationship at T, it turns out that EUAO is regarded as an 
option on EUA1 as well as on the net position of the zone. In the next two

74



3.2 Models for EUA Prices

subsections, we discuss the pricing method based on a local risk-minimizing 
approach.

3 .2 .2  P ricin g  under C om p lete  Inform ation

We consider no-arbitrage pricing in the sense that there exist equivalent mar­
tingale measures and the fair price is calculated as an expectation of future 
cash-flows under these measures. In this subsection, pricing is done under the 
complete information setting: market participants can access full information, 
F.

The pricing problem in our setting is considered as that in the incomplete 
market. Incompleteness arises in the presence of the net position of the zone, 
since it is not tradable. The uncertainty in the EUAO price caused by W  and 
9 cannot be hedged perfectly by trading only S. It means that there are cash­
flows that are unable to be replicated by a self-financing trading strategy. The 
no-arbitrage assumption consequently provides infinitely many equivalent mar­
tingale measures, with each measure leading to a different price. Since there is 
no exact replication to provide a unique price and there are several equivalent 
martingale measures, we need to fix one equivalent martingale measure to price 
and hedge derivatives in this incomplete market setting. Currently there is no 
general agreement on how to choose a specific equivalent martingale measure 
towards pricing derivatives and a variety of alternatives are considered in the 
literature.

We adopt a local risk-minimizing strategy first proposed by Follmer and 
Sondermann (1986) for the case where an underlying process is a martingale 
and extended to the case where an underlying process follows a general semi­
martingale by Follmer and Schweizer (1991). Under this approach, the change of 
measure technique renders tradable instruments as martingales and the orthogo­
nal parts to tradable instruments remain unchanged. The associated martingale 
measure is called the minimal martingale measure. A more detailed descrip­
tion of the local risk-minimizing strategy and related topics can be found, for 
instance, in Schweizer (2001) or Follmer and Schied (2004).
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D efinition 3.2 Let X  be a continuous semi-martingale with the canonical de­
composition X  = X q +  M  +  A where M  is a martingale and A is adapted, 
continuous and of finite variation. A probability measure P, which is equivalent 
to P, is called the minimal martingale measure if X  follows a martingale under 
P, P =  P on To and any square integrable martingale orthogonal to M  remains 
a martingale under P.

The minimal martingale measure, P, in our setting, is identified by the following 
Radon-Nikodym derivative,

?  = <3-3>
where

Zt =  e x p ( -  j f  ‘ M +f 6s dWs -  i  2 &>), 0 <  t < 2T.

The Girsanov-Meyer theorem (see for example Protter (2004, Theorem 39)) 
yields W  defined as

/** +  CtOsWt = Wt + /  ^  3 ds,
J0 &

where Wt is a standard Brownian motion under P, for 0 < t < 2T.

The next step is to derive the underlying processes under the minimal mar­
tingale measure. The EUA1 price process under P follows, along with W , the 
SDE,

dSt =  (p +  aff,)S, dt +  oSt (dWt -  !£ ± ^ 1  dtj

= crSt dWt, =  so- (3.4)

Since 6 is assumed to be independent of W  and the minimal martingale measure 
leaves the orthogonal martingale to W  unchanged, the law for 0t is invariant after 
the change of measure. For any state i 6  E, we denote (Q)(i) = J^jeE  
where Aij is the (i,j)-th  entry in Q. The continuous-time Markov chain is 
characterised by a semi-martingale representation (see for example Jacod (1975)) 
as

@t — + At + Nt,

At = [  (Qs)(0s)ds=  [  ( { l - 6 s) \ i  + { - l - 0 s) \ - i ) d s ,
Jo Jo
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where At is a finite variation process with Aq = 0 and Nt is a martingale process
with No = 0 and this decomposition is unique.

Since we adopt the minimal martingale measure approach, the unused permit 
at 2T  is evaluated under this measure. We can now give a precise definition of 
the EUAO price under complete information.

D efinition  3.3 Under the minimal martingale measure, the EUAO price in 
Phase II  contracts at T  is defined as

where E[*] is the expectation operator under p.

With the minimal martingale measure, derivatives prices are determined from 
Follmer and Schweizer (1991) as follows:

T heo rem  3.1 (Theorem 3.14 in Follmer and Schweizer (1991))

where the process Lc  = {L f ,  0 < t < 2T} is a square integrable P-martingale

See, for the proof, Follmer and Schweizer (1991). In our problem, C  is defined 
from equation (3.5) as

The requirement of T t ~ and ^T-measurability and square integrability for the 

payoff C  is met in our setting.

Before stating the main result, we introduce a fundamental property with 
respect to the Markov chain.

Let C € L2{Ul, Tyr, E) and let P be the unique minimal martingale measure for 
S  given by equation (3.3). Then there exists a unique £c  such that

with L q =  0 and orthogonal to S.

C  =  1{0t =-i}OSt +  K ) +  l{0r =i}E[l{02T=-i}(S,2r  +  K ) I St ,Ot  = l].

77



3.2 Models for EUA Prices

P ro p o sitio n  3.1 The process M , given by the formula

follows a P -martingale orthogonal to S.

P ro o f  Mt follows a P-martingale since

(* -  =(* -  p £ ) +

+ f S 6s -  S t x t ) (Ai+A-i)e(Al+A'1)Sds

=  (e»-& rrr ) + f 0 ^ +x- *

The last equation follows from the semi-martingale representation, 

d0t =  (—(Ai +  A_i)$t +  Ai — A_i) dt +  dNt.

Since the minimal martingale measure preserves orthogonality and 0 is indepen­
dent of W, the process M  is orthogonal to W . □

From Proposition 3.1, as well as equation (3.4), it follows that the EUAO price 
under the complete information setting is calculated as per Theorem 3.2.

T heorem  3.2 The EUAO contract price a t t  < T ,  (3.5), under complete infor­
mation is given by

«  -  , *  +  K ) ( ,  -  1 ( H i  + ( . ,  _  i - i l  ( |  +

(3.6)

where A =  Ai +  A_i.

P ro o f With the minimal martingale approach, the EUAO prices can be written 
as

Pt = e [(S t + K )̂ -{dT=-i}  + E  1{02T= - i}(S2t  + AT)| St ,0t =  1 l{0T=i}| .T7*].

Since Ot takes the value either 1 or —1 at t = T  and 2T, the EUAO price is 
written as

Pt = e [ ( S t  +  + f c [ ! — ^ ( S z r  +  K ) \ S T ,6 T  =  l ]  Pt]
1 — 02t 1 +  Ot
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The inner expectation can be written as 

1 — &2T
E 2  (S2 T + K ) \S t ,0 t  = 1

S 2T  +  K  n jt 2AT —=  E 2
St +  K

—  M2T&

—AT Ai -  A_

=  (ST +  J O ^ ( l - e - * r ). (3.7)

The second equality comes from the fact that when S 2 T and M^r are orthogonal 
martingales and conditioned on $ t = 1, M t  =  (1 — (Ai — A_i)/A)e^T. The EUAO 
price is, therefore, given by

Pt =  E (ST + K ) ^ 2  + ( S t  +  * 0 ^ ( 1  -  e~'XT) ^ ^ \ T t] 

1 + 0 t \  . / n . t v - \  A_1/1 —A7\ 1 + $T
=  e [ (S t  +  i f ) ( l  -  - ^ )  + ( S t  + * 0 - ^ ( 1  -  e_Xr) - T Z | 

=  e [ (S t  +  K)  +  (ST +  ( - 1  + ^ - ( 1  -  e ^ T)) | Ft\ .

Noting

E {ST + K) 1 +  Ot
=  E

St  + K ( l  + MTe~~XT +
Ai -  A_

*)l Pt

=  S t ± K (  2Ai 
2 V A

-A(T-t) (3.8)

the EUAO price is then

fi -  <s, + « ( ,  -1  ( f  .  (., -  i - t l ).-W-.) $  +
□

Note that

in equation (3.7) and

¥ a - ^ T)
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in equation (3.8) correspond to the probability F(02T =  —1 | =  1) and
P (Ot  = 1 | 0t), Ot € E, respectively. Since the EUAO price is expressed as

the extension to a multi-period setting is straightforward. The details of several 
possible extensions are discussed in Section 3.5.

3 .2 .3  P ric ing  under Incom p lete  Inform ation

In this subsection, we consider the pricing problem in a more realistic setting. 
The process Ot is, in fact, not always observable to market participants. The 
information available to market participants is that generated by S  and only at 
T  and 2T, which are announcement times, by 0. By setting up a new filtration 
in such a way that information for Ot is included only at T  and 2T  and pricing 
is done with the new filtration, this aspect is included in the pricing. We define 
the new filtration, Q, expressing this situation where Q is defined as

The new filtration Q represents the following:

— At t < T ,  only St is observed.

— At t = T, both St and 0t are observed.

— At T  < t  < 2 T, only St is observed.

— At t = 2T, both St and Ot are observed.

Due to the definition of filtration (see, for example, Section 1.1 in Protter (2004)), 
it has an increasing family of cr-algebras, meaning that the filtration Qt includes 
all information before t. In other words, once observed, the values of Ot and O2 T 
are held in the filtration.

0 is no longer an adapted process with respect to Q. It is however partially
observed through the fluctuations of S, from equation (3.1), thereby allowing
use of the projection of 0. Under this setting, the distribution of 0 restricted

Pt = (St +  K ) (l — P(#2T =  1 I 0T = 1)P(#t =  1 | Ot)),

' for t < T,
Pt V a (0r) for T  < t  < 2T,
F f  V a(0T) V o~(02t ) for t =  2T.
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3.2 Models for EUA Prices

to Q is implemented. For 0 < t < 2T, the conditional expectation process of 0 
under Q, denoted by 0 , is defined by

ot =  W t \ G t \ -

We consider the spot and forward relationship under the new filtration Q with 
6. We start by deriving the dynamics of 6.

T heorem  3.3 Define the innovation process W  by

W t = f  dSs - ( ^  + a ^a)S8ds
Jo &Ss

Then, W  is a Q-Brownian motion.

P ro o f From standard filtering theory, see for example Liptser and Shiryaev 
(2001, Theorem 8.1), W t is a {/-Brownian motion in 0 < t < T  and in T  < t < 
2T. W t stays a martingale at T  since for t < T ,

E [WT | Qt] = W t.

By Levy’s characterisation theorem of Brownian motion, see for example (Prot- 
ter, 2004, Theorem 39), W  is a {/-Brownian motion at T. An analogous relation 
holds for W  at 2T. □

Using the {/-Brownian motion Wt, the EUA1 price process is written as

dSt = (// +  a6t)St dt +  aSt dW t , So =  so- (3.10)

The SDE for 0t is derived from the conditional probability of dt on Qt. Define 
û(t) := P(0£ =  i | Qt), for any i 6  E, which is given for 0 < t < T  by

f t  f t  2in  __
lTi(t) = 7Tj(0) +  /  Afc -  (Al +  A_l)7Tidu+ /   lTi(l -  ITi) dW t. (3.11)

Jo Jo a

and for T  < t < 2T by

/•* rl 2ia_________ __
Ki(t) = tii(T)+ Xk -  (Ai +  \-i)iT idu  -I- /   7Ti(l -  7Ti) dW t. (3.12)

Jt  Jt  cr

where {&} =  E \{ i}  and 5i(T) =  1 if 0t  =  i, 0 otherwise. See for example Liptser 
and Shiryaev (2001, Theorems 9.1 and 9.3) for the derivation and related topics.
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3.2 Models for EUA Prices

Note that at T  the information with respect to Ot  is revealed and therefore 7T{ 
will jump and these processes follow the same SDE with different initial values. 
This system is referred to as the Wonham filter. The dynamics of 6t are therefore 
given from equations (3.11) and (3.12) and 7Ti(t) +  7T-i(t) =  1 that for 0 < t < T,

dSt =  -(A i(«t -  1) +  A_i(«t +  1)) dt +  ^(1 -  S 2) dW t, 90 =  2tti(0) -  1,
(3.13)

and for for T  < t < 2T,

dSt = - { X 1(St - l )  + X-1(St + l))dt  +  ^ ( l - S t2)dWt, S t  =  0 t ,  (3.14)

where the initial values are given by Oo =  7Ti(0) — 7r_i(0) =  27Ti(0) — 1 and at 
T  6 t = &\{T) — <5_i(T) =  Ot- Since the actual value of the net position of the 
zone is revealed at time T, Ot will jump to Ot at t = T. Also at time 2T, O2 T will 
jump to O2 T’

Now we consider pricing under Q. Since 0 is not tradable, this pricing is 
again considered as being in an incomplete market and the local risk-minimizing 
approach is capable of dealing with this setting. The minimal martingale mea­
sure P used in the complete information setting would not coincide with the 
martingale measure with respect to the new filtration Q. However, there is still 
a unique minimal martingale measure P*, which is to be distinguished from p. 
The Radon-Nikodym derivative is given by

^ 1 - 7 *  
dP 2T’

where

Z . =  eXp ( - j f ^ ^ . - i j f ( i i ^ ) 24  0 <  t < 2T.

From Girsanov-Meyer theorem, under P* the process W* is a ^-Brownian motion 
where

w ;  = w t + r ^ d s .  (3.15)
Jo V
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Underlying processes under P* are written, along with W*, as

dSt = crSt dW*, S0 = s0, (3.16)

dOt — — (Qt — 1) +  A_i(Ot +  1) +  @t){A4 d- dt

+ -(i - S > )  a w ; , (3.i7)cr
0o =  27ri(O )-l, (3.18)

Qt  =  Qt , (3.19)

$2 t  = Bi t - (3.20)

The EUAO price is defined under the filtration Q as follows:

P roposition  3.2 The price of the EUAO contract at time t < T  under incom­
plete information is written as

Pt  = E*[l{0T=-i}(<Sr +  K ) +  l{0r =i}E*[l{02T=_i}(5,2r +  K)\ S t,Q t = l] | Gt],
(3.21)

where E*[*] is the expectation operator under P*.

Calculation of equation (3.21), along with the processes (3.16)-(3.20), requires 
the joint distribution of (St ,  Qt) given Qt and that of (S2 T, #2t )  given Gt since 
Qt will be equal to Qt at T  and 2T  and these values are used.

The distribution of Qt  given Gt, 0 < t < T, under the minimal martingale 
measure is given as

7ri(r ,t)  := F*(QT = i \Gt)

=  E *[l{eT=j} | Qt]

=  E*[E*[l{eT=i} I ] I St],  V i €  E.

The second equality comes from the definition of Qt, t < T  and the tower prop­
erty. Since the inner expectation is written as the limit of n(t) as

E* [l {0T=i} I F t \  = [h e^ i]  I Fu\ =  E* [ h ^ i }  I =  Hm 7Ti(«).

Consequently, the distribution is given as
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Analogous relations hold for the distribution of 62t  given Qt  while the process 
7Ti(t) for T  < t  < 2T  is governed by equation (3.12).

It turns out that these extrapolating distributions are obtained simply by 
simulating the conditional probability. For 0 < t < T, 7Ti(t) under P* is given 
from equations (3.11) and (3.15) as,

diri(t) =  — (Ai-PA—i)7Ti(t) — 2 ^ +  ^ ^ ^ 7rfê ^ Q!) 2a 7rtft)(l-7ri(t))) dt
Ojrv

+  7Tj(t) (1 — 7Tj(t)) dWf , 7Tj(0) =  P*(0O =  i I 5o), (3.22)(7
and for T  < t < 2T, it is given from equations (3.12) and (3.15) as, 

d'Kiit) =  (A* -  (Ai + A_i)7Ti(t) -  2 ^  + *2 ?r'k̂  a  ̂ -  *i W)) dt
2 ict

+ n ( T )  = Si(T). (3-23)

7rj(£), for any z e E, generally depends not only on 7r*(t) itself, but also on 
all other states, 7Tfc(t), {&} =  E  \  {z}. It therefore requires the simultaneous 
simulation of all states in E. This simulation is, however, simplified in our 
setting. Since E  consists of two states, a sample path for 7q(t) is simply computed 
from that for 0t . Simulation of Qt is thus implemented rather than that of 7rj(t). 
After simulating Qt  up to T —, we use the relation that 7ri(T) = (IQt -  + l)/2 .

Consider solving numerically the expectation (3.21) with Monte Carlo sim­
ulation. We partition [0,2T] into N  sub-intervals of equal length At = 2 T / N  

and over each sub-interval [t, t +  At] simulate a process after the discretization 
as follows:

2
St+At = St e x p ( ~ A t  + a(W t*+At -  W ?)), (3.24)

ft+A t =  9 t ~  (A i(# i — 1) +  +  1) +  ^2 (1 — )(/* +  a ®t) )  A t

+ ^ ( l - e t2)(W t\ A t - W t%  (3.25)

where W£+At — W* follows a normal distribution with mean 0 and variance At. 
The Monte Carlo algorithm is summarized below:

S tep  1: Simulate St and Qt from t =  0 to t =  T  using equations (3.24) and
(3.25). The initial value for S  is so and for 0 is set to a uniform random 
number £ by means of 2£ — 1.
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3.3 Parameter Estimation

S tep  1 .1 : At time t, generate a normal random number e and compute

Step 2 : Simulate Ot and set Ot as follows:

Step 2.1 : Generate a uniform random number £ and set Ot by means of 

Ot =  1 if £ < (Ot- +  l) /2  and Ot = — 1 otherwise.

Step 2 .2 : Set Ot = Ot-

Step 3: Simulate St and 0t from t = T  to t = 2T using equations (3.24) and
(3.25) in a similar manner to Step 1. The initial values are S t  which is 
simulated in Step 1 and Ot set in Step 2 respectively.

Step 4: Simulate 02T and set Ot as follows:

Step 4.1: Generate a uniform random number £ and set #2T by means of 

O2 T =  1 if £ < (O2 T-  + l)/2  and O2 T =  — 1 otherwise.

Step 4.2: Set O2 T = @2 T-

Step 5: Calculate the EUAO price, Pi, from equation (3.21).

Step 6: Repeat Step 1 to Step 5 independently M  times and obtain independent 
samples Pi, i = 1,2, . . . ,M . The EUAO price is then calculated by the 
experimental average,

Extension to a multi-period setting is straightforward by repeating Steps 3 and 
4. The details of several possible extensions are discussed in Section 3.5.

3.3 Param eter Estim ation

In this section, we estimate the parameters of the proposed model. There are two 
means of estimating parameters: one is with historical data, the other is with

S  and 0 for time t +  At. Note that both processes are driven by the 
same Brownian motion, the same e is used for computing both St+At 

and Ot+At-

EUAO
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contemporaneous day-to-day market data. In the former approach, parameters 
are estimated from time-series of associated data. An alternative is to estimate 
parameters with the data of a contemporaneous day, or implied data. In this ap­
proach, parameters are estimated with derivatives prices of the day. Derivatives 
prices are functions of variables so that the parameters axe implied from their 
prices. Since there are not enough liquid derivatives markets for estimating all 
parameters, we estimate all parameters from historical data and use them for 
pricing.

Since an investor can observe only the EUA1 prices, we are in the classic 
situation of an HMM with the observable process St and unobservable process 
6t- Given the setting that the unobservable process follows a finite-state Markov 
chain and the conditional distribution of the log increment of the observable 
variable follows a normal distribution, it is possible to estimate parameters by 
maximizing the likelihood function. The unconditional distribution of St follows 
a kind of mixture of normal distributions, but not a simple mixture because 
the unobservable state follows a Markov chain. In an HMM, the most popu­
lar method for estimating parameters would be the EM algorithm, which we 
apply here. After reviewing the EM algorithm for finding maximum likelihood 
estimators, we estimate parameters.

To apply the EM algorithm, we derive the discrete-time version of the SDEs. 
Partition the interval [0, T] at the points 0 = to < t\ < • • • < = T  where =
k A , for k =  0 ,1 , . . . ,  N, and A =  T /N  is the length of the discrete time interval. 
First we consider the transition probabilities computed with the the infinitesimal 
generator. Suppose the Markov chain has the transition matrix, denoted by R, 
with entries Rij(t) := p(0* = j  \Qq = i). The transition probabilities, along with 
the infinitesimal generator, satisfy the following Kolmogorov forward equation,

— =  R(t)Q, R(0) = I, 

or

/  R'-! ,_ ! «  \  =  f  -R—i,i(i) \  /  -A i A! A
 ̂ K -iw ) v fli.iW) \  *-i -A-i) ’

where I  is the identity matrix. Since =  1 — R - i ,- i ( t )  and =
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1 — R i ti(t), the forward equations simplify to

R -i ,- i ( t )  = —(Ai +  \ - i ) R - i - i ( t )  +  A_i, ^2_i,_i(0) =  1,

= ~~ (Ai +  X -i)R ifi(t) +  Ai, Ri,i(0) = 1.

These ordinary differential equations are solved as,

=  r l~ A  +  X t \  (3.26)A i +  A_ i  A i +  A_ i

^ - 1,1 W — 1 — -R-l.-lW)

-Rl,-lW =  1 — -Ri .i W j

f li-i w = A 7 T ^ + A r T h e" <Al+A' ,,‘ ( 3 - 2 7 )

Next, we consider the log price of the EUA1 process (3.1). Applying Ito’s formula 
yields

dlog St =  (ji +  oc9t — ^cr2  ̂dt +  a dWt.

The log increment of the EUA1 price in discrete-time is thus defined as

yn : =  log Sn+1 -  log Sn = (// +  aOn -  i<72)  A +  a (Wn+i -  Wn), (3.28)

where Wn+i — Wn follows a normal distribution with mean 0 and variance A. 
Thus, the conditional increment follows a Gaussian distribution. Hence, the 
family of parameters for the HMM are

^R(A ), N  ^ (/i +  aO -  A, a2A^ , , (3.29)

representing the transition probabilities, R, output probabilities which follow the 
normal distribution, N((p  + aO — l/2cr2)A ,a2A), and initial state probabilities, 

Pi = P(0O — 0? f°r i € E. This system generates sequences of obser­
vations in the following way: the initial state of the unobservable variable is 
determined probabilistically based on p. At each time step, the system produces 
an unobservable state $k from 0k-\ one step before, according to the transition 
probability. Once Ok is determined, the observation is produced according to the 
output probability distribution.

87



3.3 Parameter Estimation

3.3 .1  EM  A lgorith m

We explain the EM algorithm used to estimate the parameters of the mod­
els. For HMM or models with incomplete data, in general, the EM algorithm 
is more popular than gradient ascent approaches. The EM algorithm originally 
developed by Dempster, Laird and Rubin (1977) is a numerical method for calcu­
lating maximum likelihood estimates of partially observed models. It computes 
the incomplete data log-likelihood via the iterative maximization of the expected 
complete data log-likelihood, conditional on the observed data. It has the ap­
pealing property that an iteration does not decrease the value of the likelihood 
function. Convergence results for the EM algorithm under general conditions 
are investigated in Wu (1983). Suppose that we observe data yo, . . . ,  vn (or in 
short, 2/0:iV)> which are generated from the unobservable sequence 0o:jy.

Let A be a family of parameters. Our aim is to estimate parameters A 6  A 
so as to maximize the log-likelihood function of the data yo-.N,

1{V0:N | A) := logP(i/0:iV | A).

Since there is an unobservable variable 9 in our setting, maximizing the log- 
likelihood is not straightforward. The maximizing log-likelihood function has no 
closed-form solutions. To avoid numerical routines, we employ the EM algorithm 
for finding the parameters. The EM algorithm does not implement numerical 
routine so as to maximize the likelihood function. Instead of maximizing directly 
the log-likelihood function including only observable variables, in the EM algo­
rithm, the complete data log likelihood function including both observable and 
unobservable variables is maximized. Here, we explain how the EM algorithm is 
connected to maximizing the log-likelihood. From the definition of conditional 
probability, trivially we have the following relation:

W HV0:N, #0:AT | A)¥{yo:N A) =  — -----:-------- —.
P(0O:JV | 3/0:AT, A)

By taking logarithms, we have

log W(yO:N | A) =  logP(yo:7\T,0O:iV | A) — logP(0O :N  I 3/o.at, A). (3.30)

Taking the expectation with respect to 0o:7v|2/O:iV> An in which An are the param-
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eters in the n-th iteration,

J  logP(yO:JV I X)dF{0o:N \ V0:N, An ) =

J  ̂ OgW>(y0:N̂ 0:N | A) dP(0o:N | 2/0 :N,^n) ~ J  logP(0O:JV | 2/0 :N, dF(0():N | 2/0:7V, An ).

Since the left-hand-side of equation (3.30) is independent of 0o:7V, it is simply- 
written as

JlogHVO,  | X)dF(9o:N | 2/0 :iV, An ) =  lo g P (? /0:iV | A ).

For the right-hand-side, we define:

L{\,  An ) : =  J  logIP(2/O:jV,0O:JV I A)dP(0O:AT I 2/0:N , An ) ,

H{A, An) := J  log P($0:iV | 2/0:iV, A) dP(%AT I 2/0:7VjAn).

Overall,

logP(t/0:iV I A) =  L (A ,  An) -

We seek An+i which attains logP(yo:JV I An+i) > log P(2/0:Ar | An), or equivalently,

■ (̂An+l? An) T(An, An) (i/(An+l? An) H (An, An)) ^  0 .

The essence of the EM algorithm is that it can be shown by using Jensen’s 
inequality, that for any An+i,

An) — An, An) < 0 .

For the derivation of the EM algorithm, see for example Tanner (1993). There­

fore, the inequality logP(^o:Ar|An+i) > logP(2/0:iv|An) is guaranteed by choosing

A n + i  =  a r g m a x L ( A ,A n ).
AeA

Since L  represents a complete data log-likelihood, finding parameters that max­
imize the log-likelihood function is replaced by repeatedly maximizing complete 
data log-likelihood function. The algorithm consisting of an E step and an M step 
at each iteration is summarized below:

S tep  1 : Set initial value Ao 6 A.
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S tep  2: (E s tep ) Evaluate the expected complete data log-likelihood function.

L(A, An) =  E [ l o g P ( 2/0:iV, 0O-.N | A) | U0 :N, An] . (3.31)

S tep  3: (M  step ) Derive An+i from An which takes the following form:

An+i =  arg maxL(A, Xn). 
xeA

S tep  4 Repeat E and M steps until a stopping criterion is satisfied.

Given initialisations of the parameters and the observed data, in the expectation 
part of the algorithm, the EM algorithm starts by calculating the smoothers 
of a particular state. With the smoothers, the algorithm constructs the ex­
pected complete data log-likelihood function. The expected complete data log- 
likelihood function is then maximized in the maximization part of the algorithm 
in order to obtain new estimates of the parameters. This is done by equating 
the first-order derivatives, with respect to the parameters, to zero. Using these 
new estimates, the algorithm returns to the expectation part again until new 
estimates satisfy some stopping rule. In most cases, however, the EM algorithm 
is not guaranteed to converge to the global optimum. Instead, it stops at a local 
optimum. The extent to which the algorithm correctly estimates parameters 
is reflected by the initial set of parameters. Initialization of the algorithm is 
therefore an important consideration. We run multiple procedures of the EM 
algorithm with different initial values and compare the likelihood of different 
convergences.

We derive the EM algorithm for finding the maximum likelihood estimate of 
the parameters of an HMM given a set of observations. This algorithm is known 
as the Baum-Welch algorithm proposed by Baum and Petrie (1966) and Baum, 
Petrie, Soules and Weiss (1970). The formal definition of an HMM is as follows:

A =  (A, B, p).

A  is the time-homogeneous transition matrix storing the probability of state j  
following state i.

A  = {dij}, ciij = P(0fc =  j  | Qk-\ = i), V i J e E .
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B  consists of the time-homogeneous density functions for observations assigned 
to each state. They are assumed to follow the Gaussian distribution,

B = {&i(y)}, =  Vi & E,

where distributions have the different means, pL\ and P2 , respectively but the
same variance, E. p is the initial state probability,

P  =  { P i }> P i  =  P (0 o  =  *)> V« G E .

A direct approach for estimating A =  {A , B,p}  is maximizing the log-likelihood
function I.

N  N

I {yO:N | A) =  log Y l  Hvk  I *) =  ^ 2  los ̂ 2  Vk ’ ^  I A) • (3*32)
k— 0  k=0 6 k

The problem with equation (3.32) comes from the inner summation over all 
possible values of the unobserved data 6 t, which might be difficult to compute due 
to the dimension and length of the data. Summation might grow exponentially 
and computing the gradient and likelihood in a gradient ascent maximization is 
infeasible. In the EM algorithm, equation (3.31) can be written as:

L(A, An) =  ^  logP(?/0:Ar, 0O:Ar| A) P(0O:aH yO:N,  An)
0O-.N

N - 1 N

= '52H0O:N\yO:N,*n)(logpeo +  ^  log O0 k0 k + 1  + ^  l°g b0 k M )  ,
9q:n k=0 k=0

(3.33)

where the last equation comes from the fact that the joint density function of 
the hidden states 6 q:n  and associated observations yo.N is given by

P(yo:iv, 0o:jv| A) =  pe0 be0 (yo)aeo0 1 • • • aeN_1eNbeN(yN)
N - 1 N

=  P 9 0  J J  a>ek e k + 1  II W -
k=0 k=0

To maximize equation (3.33), we can maximize the terms separately since it 
has additive form and they are not related. The first term in equation (3.33) 
becomes

^ 2  P(0O:JV| yO:N, An) log Pe0 =  ^  P(0O =  *| 2/0:JV, A„) log p t .
9q:n  i £ E
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Introducing the Lagrange multiplier 5 corresponding to the equality constraints 

J2ieEPi = and setting the derivative equal to zero, it yields: 

d
=  *l2/0:iV, An) log P i + 5 P i  -  l ) )  =  0,

Pi a -  
which is solved by

dpi \ zi e E  i e E

 ̂ u- \”\j  ̂| 2/0: AT j A n ) w  it> (o o  a \
Pi = ^ — n------- rr>  (3-34)

z 2 i e E  =  A 2/0:AT) An)

The second term in equation (3.33) can be written as:

N —l

^ P ( ^ 0 : A r |  2/0:AT, An) log a0fc0fc+1
00: TV fc= 0

N —l

= ^ 2  S  =  *’ 0*+! =  ■?!2/0:7V’An) log ai3'
i , j eE  k=0

In a similar way to the first term, the Lagrange multiplier combined with the 
constraint, =  ^  yields:

dij =  £ ^ P ( g *  =  * A + 1=71»:Ar,An) Vi, j  € E. (3.35)
E S p ( » t = i i » . y

The third term in equation (3.33) becomes:
N  N

^ 2  H ° 0 :N12/0:at? An) ^  log bdk (yk) = Y 1 J 2  ¥ ^ k = i \y° :Ni An )log&i(2/fc).
00:7V fc= 0  i e E  k—0

(3.36)

Since bi{yk), for any i £ E, and k =  0, . . .  ,N  is assumed to follow a normal 
distribution with mean p i  and variance E, the right-hand-side of equation (3.36) 
can be written as:

£  £  P(0* =  i| Vo-Jf, A„) ( - ( y t ~s ft)2  -  i  log 2tt -  i  log s ) .  (3.37)
fc=0

The maximizers are given by differentiating equation (3.37) with respect to p i  

and E and setting them both equal to zero. This yields

P i  = ^ fc=°y.k ¥ ^ k ~ ..zJ..̂ Q:7V’ A-nJ ; V i e T  (3.38)
]Cfc=0 =  *1 2/0:AT? An)

£  _  ^ 2 ie E  13fc=o(2/fc /^)2 P(flfc — 1̂2/0:AT> An)
Sfe^o =  *1 2/0:AT? An)
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Acquiring updated parameters Ara+i =  (A, B, p) from An requires two quantities,

=  * | 2/0 :AT? An ) (3.40)

P(̂ A: =  h ®k+l =  j  | 2/0:N, An ),  (3-41)

which appear in equations (3.34), (3.35), (3.38) and (3.39). They are referred to 
as smoothers, in that estimates are given based on whole observations. These 
quantities are obtained with the Baum-Welch algorithm including a forward- 
backward procedure.

In the EM algorithm, the stopping criterion used to stop the algorithm is the 
absolute difference of maximized log-likelihood functions from one step before 
being less than 10-4 . That is, the algorithm is stopped if

1 2̂/05 • • • V n \ A n + l )  - % 0 , - - - , 2 / / v |  An ) I <  10- 4 .

B aum —W elch A lgorithm

In the Baum-Welch algorithm, two quantities, equations (3.40) and (3.41) are 
efficiently computed with forward and backward procedures. For each itera­
tion, start computing the forward procedure and then the backward one, with 
parameters An. For the forward procedure, we define

a i (k)  =  P ( y O:fc,0fc =  * I An ),  V i e E ,  k =  0 , . . .  ,N ,

which is the probability of the partial observation sequence yo,. ..yk where 0 is 
in state i  at time k.  The key result is that cti(k)  can be computed recursively 
as:

1. a i ( 0 )  = P i b i ( y 0 ) ,  M i e E .

2.  o t i { k )  =  a j i k  ~  t f a j i )  b i { y k ) ,  V i  €  E ,  A; =  1 , . . .  ,1V .

3. lP(2/0:iV | A) =  T,ieEa i(N )'

The backward procedure is analogous to the forward procedure except it starts 
at time N  and works back towards time 0.

Pi(k)  =  HVk+i-.N I fa =  h  A n),  V i e E ,  k =  0 , . . . , 1 V -  1,
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3.3 Parameter Estimation

which is the probability of the partial sequence yk+i, • • •, Vn  given the starting 
state i at time k.

1. A (AO =  1, V ie  E.

2. Pi{k) = Y ,j£Eai3h3(yk+\)Pj(k + 1), V i e E ,  k = N -

3. H vo-.n  | A) =  T , i e E P M y o ) P i ( 0 ) -

For k = 0 , . . . ,  N  and any i e E ,  define

7 i(k) : =  P (0k =  * I 2/0:AT, An ) ,

which is the probability of being in state i at time k given the whole observation, 

2/o> • • • j yN- Note that

mfQ -I  % \ P(2/0:JV, Ok ~  * | A n) P(2/0:iV, =  * | An )P(0fc =  * I 2/0:iVj A n) =  ------—;--------j-r-TT  =  = ------------ - -------- r y y r .
F(yO:N | An ) z 2 j s E ^ ( y 0 : N ,  Ok =  J \ A „)

Also note that because of Markovian conditional independence, for any i and k, 

a i ( k ) f i i ( k )  =  P ( 2/0;fc, 0k =  i \  An ) F ( y k+i :N  I 0k =  i,  An ) =  F(yo-.N, 0k =  i \ X n ).  

Consequently we can calculate 'yi(k) in terms of cti(k) and fli(k) as

7 , ( 1 1 " « *  * ■ « • • • • • *

Next, we define

&j(fc) :=P(0fc =  i,Ok+i = j\yo:N,Xn), V i , j e E ,  fc =  0 , . . . , J V -  1, (3.42)

which is the probability of being in state i at time k and being in state j  at 
k +  1. This can be computed as:

* / ,  v _  P(^fc =  * A + i  =  j,2/Q:Jv| A) _  Q i ( k ) a i j b j { y k+ i ) / 3 j ( k  +  1)

13 H vo-.n \ 0k =  i, A) H i , j e E  <Xi(k)aijbj(yt+i)Pj(k +  1) '

Both 7  and £ appear in computing the updating parameters in equations (3.34), 
(3.35), (3.38) and (3.39).
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3.3 Parameter Estimation

3.3 .2  D a ta  and E stim ation  R esu lts

The spot, futures and options contracts are traded both over-the-counter (OTC) 
and on exchanges. Daily data on closing prices of futures contracts in the EU 
ETS are obtained from the European Climate Exchange (ECX), the most liquid 
futures market. 80% of EU ETS transactions were struck OTC and 38% of OTC 
transactions are cleared through the ECX, see the report from Capoor and Am- 
brosi (2008). In the ECX, futures contracts with various maturities are traded. 
For example, during 2008, the first year of Phase II, the spot contracts which 
expire in December 2008 are traded and futures contracts expiring December 
2009-2012 respectively have been traded. The time period considered is from 
June 2, 2006 to December 31, 2007, totally 430 trading days, for estimating the 
parameters of the futures contract maturing in December 2008.

Parameter estimation based on the EM algorithm described in the previous 
subsection is performed. We set 240 trading days per year, A = 1/240. Esti­
mates are presented in Table 3.1. The maximum likelihood estimates appear in 
the first row and the corresponding asymptotic standard deviations calculated 
from the outer product and Hessian matrix appear in the second row.

Table 3.1: Estimation results of equation (3.29)

Ml M2 E
0.0093 - 0.0022 0.00057

(2.6 x 10-4 ) (5.1 x 10"4) (0.2 x 10" 4)

„  (  0.549 0.451 \  , _ n v
(  0.090 0.910 )  ’ P ~  ( ) '

The log-likelihood =  987.04.

The estimation results of the transition matrix are indicative that during the 
data period, the market has been almost in one state. This is consistent with 
some reports that the EU ETS was, during Phase I, significantly over-allocated, 
meaning companies received more allocations compared to the actual emissions 
and the market had been long. See, for example, Ellerman and Buchner (2008). 
Since the market was long in this period, we set the relationship between /xi and
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3.4 Numerical Studies for EUA Prices

H2  and n  +  otd as

(/z +  a -  =  ii2

( / i - a - i < r 2) A i  =  /ii.

Combined with the relation that

a2 A t = E2,

//, a  and cr are calculated. The relationship between R  and A is given by equa­
tions (3.26) and (3.27). Corresponding parameters in continuous-time are given 
in Table 3.2.

Table 3.2: Parameters in continuous-time

A* a a Ai A-i
0.92 -1.38 0.37 155.80 31.08

3.4 Num erical Studies for EUA Prices

The purpose of this section is to compare price characteristics between complete 
information and incomplete information. Emphasis will be placed on experi­
ments which highlight differences in key quantities such as initial prices, drift 
coefficients and the infinitesimal generator. The EUAO price under the complete 
information setting is given in equation (3.6) and under the incomplete informa­
tion setting in equation (3.21). We use the following set of parameters shown in 
Table 3.3. Monte Carlo prices are obtained with 100,000 simulations.1

Table 3.3: Parameters in numerical studies

so a cr Ai A-i K #0 7Ti(0) T
30 - 2.0 0.5 0.5 160 30 100 1 1.0 1.0

xDue to the requirement of time discretization, a sample path of 0 t  could diverge. To avoid 
divergence, we discretize 1 year into 100,000 time steps.
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3.4 Numerical Studies for EUA Prices

Figures 3.1, 3.2 and 3.3 show the prices under complete information and 
incomplete information with respect to so5 Ai and A_i, respectively. The overall 
impression is that their sensitivities have similar patterns in the sense that prices 
have the same sign of first and second order derivatives. The higher value in Ai 
or lower value in A_i leads to the higher probability of 0 =  1, indicating lower 
EUAO prices.

Prices under incomplete information are, in the sense that they depend on 
the coefficients of S , /x, a  and a, different to those under complete informa­
tion. Figures 3.4, 3.5 and 3.6 show the sensitivities with respect to /x, a  and a , 
respectively. Since prices under complete information do not depend on these 
parameters, they are flat, while prices under incomplete information do depend 
on these parameters. Since equation (3.17) indicates that a higher value of fi 
leads to a lower value of 0 with our parameters, the higher value of fi leads to 
the lower EUAO price as shown in Figure 3.4. Both a  and c  are included in 
equation (3.17) as a quadratic form, leading to the shape of quadratic function 
as in Figures 3.5 and 3.6.

Another interesting phenomenon is the jump at T  in the conditional expec­
tation, which occurs when the verified emissions are announced. Consequently, 
it causes the discontinuous changes in the EUAO price since the cash flow at T  is 
determined based on Qt  and the initial value to compute the expectation at 2T 
will vary. We confirm this on a sample path by sample path basis. At T, the true 
position of the zone is revealed and the conditional expectation Ot  will jump to 
the revealed value Ot • Simulation is done as follows. The EUA1 price and pro­
cess of the conditional expectation under P are simulated with equations (3.10) 
and (3.14). At each £*, with (5^, 0^), the EUAO price is computed using Monte 
Carlo simulation. Figure 3.8 presents the sample paths for the EUAO and EUA1 

prices. Assume at T, the verified emissions amount is revealed and the market 
is long. Consequently, the conditional expectation jumps as shown in Figure 3.7 
and the price for EUAO is discontinuous as shown in Figure 3.8.
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3.4 Numerical Studies for EUA Prices

Figure 3.1: The EUAO price with various initial values, so- Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 3.2: The EUAO price with various initial values, Ai. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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3.4 Numerical Studies for EUA Prices

Figure 3.3: The EUAO price with various initial values, A_i. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 3.4: The EUAO price with various initial values, fi. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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3.4 Numerical Studies for EUA Prices

Figure 3.5: The EUAO price with various initial values, a. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 3.6: The EUAO price with various initial values, a. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.

Price 
42

41

40

39

38

37

36
0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

a

100



3.4 Numerical Studies for EUA Prices

Figure 3.7: Simulated process of the conditional expectation.
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Figure 3.8: Simulated EUAO and EUAl prices. Solid line represents the EUA1 
price and dashed line the EUAO price.
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3.5 Concluding Remarks

3.5 Concluding Remarks

In this chapter, we consider the spot and forward relationship in the carbon 
emissions market based upon the no-arbitrage principle. This market differs due 
to the trading regulations and the market design from other financial markets: 
the net position of the zone is taken into consideration for explaining the re­
lationship. We assume the net position of the zone follows a continuous-time 
Markov chain and the drift term of the forward price process depends on the net 
position of the zone. Bankability is included in the framework in the form of an 
expectation of future cash-flows.

Two information settings are considered: complete and incomplete. The 
complete information setting is defined when market participants can access full 
information. Since the net position of the zone is not tradable, this setting is pric­
ing in an incomplete market. We adopt the locally risk-minimization technique 
so as to fix the equivalent martingale measure. With the minimal martingale 
measure, the analytical arbitrage-free price is obtained. Under the incomplete 
information setting when market participants can observe the forward process 
and the net position of the zone only at announcement time, a filtering technique 
is applied to derive the optimal projection of the net position of the zone onto 
the new filtration. This leads to the use of the Wonham filter. The minimal 
martingale measure is found and the distribution of the net position of te zone 
restricted to the new filtration under this measure is calculated. Consequently, 
the arbitrage-free price is obtained using Monte Carlo simulation.

There could be several extensions without changing the framework. The 
assumption that there are only two trading periods can easily be extended to 
multi-periods. In the multi-period setting when banking is prohibited only at the 
end of the phase and intra-period banking is available, the payoff function has 
a nested structure. We denote by Tn  the end of the phase when the banking is 
prohibited and by T i , . . . ,  Tjq-\ the end of each trading year when intra-banking
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3.5 Concluding Remarks

is available. The payoff function can be written as follows: 

Prr _  /  STn + K  if eTN = - 1,
P t « - \ o  if eT„ = l.

P t , =  {
+ K  if 6^ = —1,

E[-Pri+i |Sth 0Ti = l] if &Ti = 1, «=  l , . . . , i V - 1.

The extension of the assumption that the net position of the zone follows 
a two-state Markov chain is straightforward. With the assumption of an N -  

state Markov chain that takes values in E  = { i i , .. •, «at}, it expresses the extent 
of how long or short the market is. The semi-martingale representation of an 
iV-state Markov chain is written as

0t =  0o +  A t  +  N t ,

A t = f  (Qs)(9s)d s =  f  y ^ ( i  -  es)Xj ds,
Jo  Jo  i£ E

where Ai represents the jump intensity to state i from other states and Nt is a 
martingale. Computing the spot price under the complete information setting 
with these extensions would be complicated but straightforward. Under the in­
complete information setting, the conditional expectation process of 9t is defined 
as

et = Y 2 i7r*W»
i eE

7Ti(t) := P (Qt =  i | Qt)-

Furthermore, P(0* =  i \ Qt), i £ E  is obtained from filtering theory. Extrapolat­
ing probabilities between each year, 7r;(Ti+i,Tj), have to be derived and this is 
analogous to equation (3.22) because of the Markovian structure.

A discount factor, or interest rate, can be included in the framework. A 
deterministic or stochastic interest rate which is independent of EUA prices is 
easily implemented in the form of a zero-coupon bond. To implement a stochastic 
interest rate which is correlated with EUA prices, a change of measure technique 
can be used to manipulate the equations.

Since the market for the EU ETS has become considerably more active, the 
link between EUA contracts and other carbon contracts has deepened. For ex­
ample, the EU ETS scheme not only allows companies to trade among themselves
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but enables interactions with other countries not included in the EU ETS via 
the Clean Development Mechanism and Joint Implementation schemes. During 
Phase II, firms can cover their requirements by purchasing Certified Emission 
Reduction Credits from such projects. The amount of these contracts are grow­
ing, and therefore their pricing is important.
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Chapter 4

The Spot and Forward Relationship in 
Carbon Emissions Markets II

4.1 Introduction

In this chapter, we deal with the same problem as in Chapter 3 in a different 
setting. We assume that the net position of the zone follows a linear diffusion 
while it is assumed to follow a Markov chain in Chapter 3. The threshold that 
determines the market is long or short is introduced. The forward process is 
assumed to be driven by a Brownian motion and its drift term is modelled 
to be a function of the net position of the zone which is assumed to follow 
a linear diffusion, driven by another Brownian motion. The setting where the 
unobserved process follows a linear diffusion leads to the use of the Kalman-Bucy 
filter. Parameter estimation is done with the Kalman filter.

The outline of this chapter is as follows. Section 4.2 introduces the models 
used for pricing. We present models for the forward price process and the net 
position of the zone and then derive the spot and forward relationship under both 
complete and incomplete information settings. Estimated parameters are given 
in Section 4.3, along with the EM algorithm for the Kalman filter. Numerical 
examples are provided in Section 4.4, where the price differences are highlighted 
in the two information settings with respect to each parameter. The jumps 
in the filtered process coming from the announcement of the actual value and 
consequent changes in the spot price are of interest. Concluding remarks and 
several possible extensions are discussed in Section 4.5.
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4.2 M odels for EUA Prices

The framework for exploring the spot and forward relationship in the EU ETS 
market is introduced in this section. For simplicity, assume two EUAs are traded 
in the market: an EUA for the current year denoted by EUAO, and an EUA 
for the following year denoted by EUA1. We will first introduce the underlying 
processes and subsequently define the equation which the EUAO price satisfies.

4.2 .1  T h e sp o t and forward relationsh ip  in E U  E T S m arkets

Let (f2, T , P) be a stochastic space with a filtration Tt and all stochastic processes 
defined on this space are assumed to be F-adapted, F =  (Tt)§<t<T*, where T* 
is a fixed but arbitrary time horizon. We adopt a similar approach to Qetin 
and Verschuere (2009). Let the positive-valued EUA1 price process, S , be a 
continuous-time process satisfying the stochastic differential equation (SDE),

dSt =  (/z ce0t)St dt -f- crsSt dWt, (4-1)

where /z, a  and as  are assumed constant, Wt is a one-dimensional standard 
Brownian motion. 9t is assumed to be a linear diffusion expressing the net 
position of the zone whose details are explained later. The pair, (St, 6t), is a 
vector-valued Markov process. From equation (4.1), it follows that the drift term 
of the EUA1 price has a different expected mean depending on the value of the 
net position of the zone. The choice of the drift coefficient is meant to reflect the 
changing demand for allowances depending on the net position of the market.

EU ETS provides companies with fixed, free allowances on an annual basis at 
the beginning of each trading year and announces the total allowances submit­
ted by the companies at the end of each trading year. Companies which receive 
allowances can emit CO2 up to their allocated allowance and in the market com­
panies can trade allowances to offset any excess or shortage, as explained in 
Section 4.1. While total allowances are capped by regulators, the total amount 
of emissions is uncertain, indicating that every year total allowances are uncer­
tain. The net position of the zone models the difference between emissions and 
allocations. If the total allowances were over-allocated, or companies abated
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CO2 emissions, the net position of the zone is long, meaning that the total al­
lowances would be in excess. On the other hand, if numerous companies emit 
more than their allocations, or they abate less, the net position of the zone is 
short, meaning that the total allowances would result in a shortage.

The net position of the zone, 6t, is assumed to follow a continuous-valued 
linear diffusion taking values in E  := R.

standard Brownian motion, which is independent of Wt.

The spot and forward relationship under the assumption of no banking, which 
was in effect in 2007 during the transition from Phase I to Phase II, was anal­
ysed in Qetin and Verschuere (2009). In their approach, they modelled the net 
position of the zone as a Markov chain taking two values, one short and the 
other long. Under the assumption of no banking, the EUAO price would go to 
zero as the expiry date approaches, provided that the net position of the zone 
is long. This is because there are companies which have allowances that more 
than cover actual emissions and the excess allowances are worthless after expiry, 
which therefore drives the price to zero. If the net position of the zone is short, 
EUA1 turns to EUAO next year by paying a penalty, denoted by K , for every 
excess tonne of emissions, because of regulations.

Considering the above points, along with the assumption that 0t follows a 
Markov chain with two states as in Qetin and Verschuere (2009), the value of 
EUAO at the end of Phase I, T, denoted by Pt  is assumed to satisfy the following 
relationship:

D efinition 4.1 (Qetin and Verschuere (2009)). The EUAO price at the end of 
Phase I, T, is defined as

tions with respect to 0t  and introducing the threshold k, assumed constant. We

d0t = (a +  bOt) dt +  gq dBt , (4.2)

where a , b and gq are assumed constant. Bt is assumed to be a one-dimensional

St  K  if 0t  =  —1
0 if 0t  — 1-

We modify Definition 4.1 for continuous-valued 9 simply by changing the condi-
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set 6t < ft and Qt > ft corresponding to the net position of the zone at t being
short and long, respectively. The higher and lower the values of Qt, the greater 
the degree of being long and short respectively.

consists of three years, from 2005-2007, and Phase II consists of five years, from 
2008-2012, but for simplicity in what follows, we assume that there are only 
two periods to trade, one being [0, T] and the other [T, 2T\, where 2T  <T*, and 
there is no constraint on intra-period banking between [0, T] and [T, 2T], and 2T  
is the maturity of the phase when banking for next year is banned. At 2T, since 
banking is not allowed, the unused permits are worthless provided the market is 
long. We assume that at 2T  the following relationship will hold,

unused permits are no longer worthless. Banking is in effect so that unused 
permits can be transferred and used later, provided that the market is long. 
We assume in this case that EUAO is evaluated as the expectation of the future 
value. The price of an EUAO contract, in the case that the market is short, is 
equal to that of EUA1 plus a penalty as the market is short at 2T. The relation 
at T  is therefore

where 1 {et=i\ is an indicator function which returns 1 if Qt =  i, 0 otherwise 
and E[-] is the expectation operator under a pricing measure explained later. 
Considering the relationship at T, it turns out that EUAO is regarded as an 
option on EUA1 as well as on the net position of the zone. In the next two 
subsections, we discuss the pricing method based on a local risk-minimizing 
approach.

4 .2 .2  P ric in g  under C om plete  Inform ation

We consider no-arbitrage pricing in the sense that there exist equivalent mar­
tingale measures and the fair price is calculated as an expectation of future

In this chapter, we discuss the relationship when banking is in effect. Phase I

S 2 T +  AT if Q2 T < ft)
0 if 02T > ft-

We consider the relationship at T. Now that intra-period banking is in effect,

( St  +  K  if Qt  < ft,
I E[l{02T</t}(5,2T +  K)  | St , Qt  > ft] if Qt  > ft5
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cash-flows under these measures. In this subsection, pricing is done under the 
complete information setting: market participants can access full information, 
F, and the expectation is taken with respect to F.

The pricing problem in our setting is considered as that in the incomplete 
market. Incompleteness arises in the presence of the net position of the zone, 
since it is not tradable. The uncertainty in the EUAO price caused by W  and 6 
cannot be hedged perfectly by only trading S. We employ a local risk-minimizing 
strategy for fixing one equivalent martingale measure as in Chapter 3. The 
minimal martingale measure, P, in our setting, is identified by the following 
Radon-Nikodym derivative,

dP -
s  =  ^  (43 )

where

Z t  =  e x p ( -  0 < t < 2 T .

The Girsanov-Meyer theorem (see, for example, Protter (2004, Theorem 39)) 
yields W  defined as

I
Wt = Wt + -  - - -  ds,

where Wt is a standard Brownian motion under P, for 0 <  t < 2T.

The next step is to derive the underlying processes under the minimal mar­
tingale measure. The EUA1 price process under P follows, along with W, the 
SDE,

dSt =  (m +  a8t)St dt + as St (dWt -  >J‘ + a6t dt)
\ O S '

= as St dWu (4.4)

and 0t under P has the same representation as under P because of orthogonality, 
and so

d9t = (a +  bOt) dt +  oq dBt. (4.5)
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As a result, St and Qt are independent under P. 6t follows a normal distribution 
with mean and variance, respectively, given by

E[0t | P.] = eaeb{f - ^  -  ^(1 -  e6*4- 8’)

Var[0( | P.] =  - | | ( 1  -  e2̂ ) ) .

Since we adopt the minimal martingale measure approach, the unused permit 
at 2T  is evaluated under this measure. We can now give a precise definition of 
the EUAO price under complete information.

D efinition 4.2 Under the minimal martingale measure, the EUAO price in 
Phase II  contracts at T  is defined as

With the minimal martingale measure, derivative prices are determined from 
Follmer and Schweizer (1991) mentioned in Theorem 3.1. In our problem the 
payoff, C , is defined from equation (4.6) as

payoff C is met in our setting.

The EUAO price under the complete information setting can be written as 
follows.

T heorem  4.1 The EUAO contract price at t < T ,  (4.6), under complete infor­
mation is given by

where G =  P(#2r  < k \ Qt  >

P ro o f  With the minimal martingale measure, the EUAO prices can be written 
as

Pt = e [{St  + K ) l {dT<Ky + E[l{e2T<K}(S2T + K) \ St ,Qt  > « ]1{eT>«}|^t]-

{  SJ  + K
I  E[l{02r <K}(S2T +  -flO|

where E[*] is the expectation operator under P.

c  = 1{0t <k}(s t  + K)  +  l{0T>K}E[l{92T<K}(S2T + K)  I St ,Qt  > «].

The requirement of T t - and ^T-measurability and square integrability for the

Pt = (St + K)  (1 -  (1 -  G)V(8t  > K I Pt)) (4.7)
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Since 02T and S 2 T are independent, 1{02T} and S 2 T are independent as well. The 
EUAO price is thus given by

Pt =  e [(S t + K)1{6t<k} + E[1{02t<k} I >  *]E[(S2T + K)  I s T]l{eT>K}\Pt] 

=  E [(ST +  K) 1{qt<k} +  (S t  +  K)G1{9t>k}\ Pt\,

where G =  P(02T < k \ 6t  > k). Finally,

Pt = &[(St  + 1 0 (1  -  heT>K}) +  (St  +  K)G1{9t>k} \ P t] 

= (St +  K)(  1 -  F(6t  > k | P t) +  (St +  K)GF(eT > n \ P t) 

= (St + K ) (1 -  (1 -G )P (0 t  > k | Pt)) •

□

Since the EUAO price is expressed using the relation,

P(0T > K, 02T < K | Pt) , F(0T > @2T > K | -Ft) _  ^
p (0T > K I Pt) F(0T > « | Pt) ’

as

-Ft =  (St + K)  (l — F(9t  > «> #2T > « I -Ft)) »

the extension to a multi-period setting is straightforward. The details of several 
possible extensions are discussed in Section 4.5.

4 .2 .3  P ricin g  under In com p lete  Inform ation

In this subsection, we consider the pricing problem in a more realistic setting. 
The process 6t is, in fact, not always observable to market participants. The 
information available to market participants is that generated by S  and only at 
T  and 2T, which are announcement times, by 6. By setting up a new filtration 
in such a way that information from 6t is included only at T  and 2T  and pricing 
is done with the new filtration, this aspect is included in the pricing. We define 
the new filtration, Qt, expressing this situation where Qt is defined as

{ p f  for t <  T,
P?V<t(6t ) for T  < t  < 2T,

p f  V a(0r) V a($2 t )  for t = 2T.

The new filtration Q represents the following:
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— At t < T, only St is observed.

— At t = T, both St and 6 t are observed.

— A t T < t <  2T, only St is observed.

— At t = 2T, both St and Ot are observed.

Due to the definition of filtration (see, for example, Section 1.1 in Protter (2004)), 
it has an increasing family of cr-algebras, meaning that the filtration Qt includes 
all information before t. In other words, once observed, the values of Ot and 6 2 T 
are held in the filtration.

0 is no longer an adapted process with respect to Q. It is however partially
observed through the fluctuations of S , from equation (4.1), thereby allowing
use of the projection of 0 onto Q. We first consider the distribution of Ot on

(Gt, P ) .

T heorem  4.2 (Theorem 11.1 in Liptser and Shiryaev (2001)) Ot on ( Tf ,  P) 
follows a normal distribution.

See, for the proof, Liptser and Shiryaev (2001).

The expectation and variance fully characterize normal distributions so that 
we define the conditional expectation and variance of Ot on (Qt, P) respectively, 
for 0 < t < 2T, by

Ot :=  E [Ot | Qt],

7 t := E [ ( 0 , - 5 , ) 2 | Qt]
= e  [(et - 6 t)2]-

Note that since Ot — Ot is independent of Qt, 71 is a deterministic function and 
these details are given later. We consider the spot and forward relationship under 
the new filtration Q with these variables. We start by deriving the dynamics of 
0 and 7  under Q.

T heorem  4.3 Define the innovation process W  by

W t : =  f *  d S s - ( l ^  +  o:Ss)S3 d s  
Jo V s S s

Then W  is a Q-Brownian motion.
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P ro o f From standard filtering theory, see for example Liptser and Shiryaev 
(2001, Theorem 8.1), Wt is a (/-Brownian motion for 0 < t < T  and for T  < t < 
2T. Wt stays a martingale at T  since for t < T ,

E [WT | Qt] =  W t .

By Levy’s characterisation theorem of Brownian motion, (see for example, (Prot- 
ter, 2004, Theorem 39)), IF is a (/-Brownian motion at T. An analogous relation 
holds for W  at 2T. □

Exploring the processes for Qt and 71 under the setting that St and Qt follow 
linear SDEs, as in equations (4.1) and (4.2), has been carried out by several 
authors, see, for example, Liptser and Shiryaev (2001). This system is referred 
to as the Kalman-Bucy filter. For 0 < t < T, the SDE for Qt is derived with W,

dQt =  (a +  bQt) d t  -\------71 d W t , Qo =  E[$o | Qo], (4-9)

and for T  < t < 2T, since the value of Qt  is revealed at T, it is given by

dQt =  (a +  bQt) dt H 71 dWt, Qt — Qt- (4.10)
crs

The variance satisfies the following ordinary differential equation, for 0 < t < T,

a 2
d'yt =  2674 +  <70---- 2“7t » 7o =  E [(0o -  ^o)2 | Qo],

as

and for T  < t < 2T,

a 2
d j t =  2byt + ° e  jT h  7r  =  0 .

For the derivation of these processes, see Theorem 10.1 in Liptser and Shiryaev 
(2001). In our setting, it has an analytical solution, for 0 < t < T,

2P7Q +  ((& +  P) 70  +  <?0)(e2pt ~ 1 ) ,4 n x

2p - i b - p  -  ^ 7o)(e2Pt -  1)°s

and for T  < t < 2T,

a 2 ,e2p(t-T) _

7t =  2p — (b — p ) ( e 2P(t-T) — 1 ) ’ ( 4 1 2 )
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where

a?p = 2 \\b2 +  —5-a2.
r 2

V
Note that since the actual value of the net position of the zone is revealed at 
time T, 6 t will jump to 9t at t =  T. Similarly at time 2T, O2 T will jump to 6 2 t-  
Using the (7-Brownian motion Wt, the EUA1 price process is written as

j— a(0t -  dt)
° s

= (p + Oi0t)St dt +  asSt dW t. (4.13)

dSt = {H + aOt)St dt + as St (dW t -  ^  ^  dt)

Now we consider pricing under Q. Since 0 is not tradable, this pricing is 
again considered as being in an incomplete market and the local risk-minimizing 
approach is capable of dealing with this setting. The minimal martingale mea­
sure P used in the complete information setting would not coincide with the 
martingale measure with respect to the new filtration Q. However, there is still 
a unique minimal martingale measure P*, which is to be distinguished from P . 

The Radon-Nikodym derivative is given by
dP*

where

o s , s z r -

From the Girsanov-Meyer theorem, under P* the process is a (/-Brownian 
motion where

W ; = W t + C  /J +  ds. (4.14)
Jo &S

The underlying processes under P* are written, along with W*, as

dSt = *sS tdW t*, (4.15)
2

dSt = ( a -  +  (b -  ^ - 7 t)St)  dt + ^ - 7« dWt\  (4.16)
s  ^  s  ^

00 =  E*[0o I Go],

6t  = Ot ,

02 T  =  02T*

The EUAO price is defined under the filtration Q as follows:
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P ro p o sitio n  4.1 The price of the EUAO contract at time t < T  under incom­
plete information is written as

Pt  = E *[(S t +  K ) l { g T<Ky +  E * [l{« 2T< K}(S ,2r +  if ) |S r , 8T >  « ] l{ 0 T>,s}| St] ,
(4.17)

where E*[-] is the expectation operator under P*.

Since 0t will jump to 0t at T  and 2T  and these values, along with the pro­
cess (4.15), are used for calculating equation (4.17), the joint distributions of 

( S t , @ t )  and ( S 2t ,  # 2t )  restricted to (Qt , P*) and ( Q t ,  P*), respectively are ex­
actly what we need. The following result shows that these distributions follow 
normals.

T heorem  4.4 The joint distribution of (Ot , log S t ) on (Qt,  P*) is normal. 

P ro o f  The joint characteristic function of (Ot , log S t ) on (Qt,  P*) is defined as

ip(0T , logSr)(et,p*) :=E* exp(«(Ai0T +  A2 logST)) | Q t\-

Because the minimal martingale measure, P*, is defined by means of the Radon- 
Nikodym derivative, the Bayes rule (see Karatzas and Shreve (1991, p. 193)) 
yields the characteristic function under the original measure, P, as

E
ip(0T, log St)(c?t, p*) =  —

e x p ( A i0 t  +  A2 log ST)) \ Qt]

z ;
Using the definition of Qt, t < T  and the tower property, it becomes

E
i/j(Ot , log S t) (&, p *) =  —

E exp ( i  (Ai0t  +  A2 log S t ) )  Z.f | ^ ] | Qt]

Z*t

Ot  follows a normal distribution on (J7̂ , P)> as shown in Theorem 4.2 and we 
use the following notation that Ot -  =  limt-^T^t and 7t -  = limt_>T7 t5

E[exp(«A0r) | F t \ =  exp^*A0r- — 7 ^ 7 T~ ) ,

and so the characteristic function is written as

, 1 x E[exp(z(Ai^T- +  A2 lo g S r))Z j| Qt\ 
tl)(0T, logST)(St,p*) = e x p ^ - -A 17T- J —!=------------------—---------------------- .
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We go back to the minimal martingale measure and under this measure the 
function is written as

v>(0T , logSr)(0t>P*) =  ex p (-^A 27r - )  E* |exp(i(Ai0r -  +  A2 log£r ))| Gt\ •

The process log St under the minimal martingale measure is derived from equa­
tion (4.15) as

2

dlogSt = - ^ f d t  + <7S dWt\  (4.18)

and the process 0t is given from equation (4.16). For notational simplicity, define 
&>u, X t and Yt by

£t,U

d X t

dYt

=  E* [exp(i(AjX„ +  A2Vu)) | Qt

= (tq +  u2Xt) dt +  o x  dW£, 

=v\ dt +  cry dW^.

Since both processes are Markov and satisfy the Lipschitz condition, the Feynman- 
Kac formula (see Karatzas and Shreve (1991, p. 268) for example) yields the 
following partial differential equation with respect to

t v \ dt 1  {  2  &Z o  d2Z 2  d2Z\  n
dt +  (“ 1 +  “ 2 *) dx t + Vl dYt +  2 ax f + ax° V dYtdXt + ° Y dYt2 )  ~  ’ 

(4.19)

with boundary condition,

Zu,u =  e x p ( « ( A i A u +  A 2F u ) ) .

Since Xt and Yt are linear SDEs, we make the following ansatz:

Zt,u = exp (A tiV, "t- Bt,uX t +  Ct,uY^j, 

where At,u, B^u and Ct,u are deterministic. Each term in the partial differential
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equation is calculated as

t (dAt,u dBt,u v  , dCt,u r̂\ 
m  - ( { ~ d T  +  ~ d T  +  ~ d T  * ) '  

dt,
d X t

— tB Uu,

(4.20)
^ -  = fC  
9 Y t

a x 2 ^ t ,u ,

d2t  _  cC2 
d Y 2 

d 2^ ^
dXtdYt = ^Bt'uCt’u'

By substituting equation (4.20) into equation (4.19) and remembering that this 
equation is to be satisfied by any X t and Y*, the partial differential equation is 
reduced to the system of ordinary differential equations for B^u and Ct,u,

J^U +  u iBt,u +  v\Ct,u +  ~2‘B2u +  -^-C 2U - f  <j x&Y Bt,uCt,u =  0?

dBt,u 75 n  +  U2 Bt,u — 0 ,dt
dCt,u

=  0 ,dt

and boundary conditions with respect to each variable are computed from

£u,u — exp(z(AiAu +  A2l'u))5

so that we have

=  0,

Bu,U =  iA i,

Cu,u =  i \2 -
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These ordinary differential equations are solved as

At,u — ^ 1  J  exp^ J  U2  duj u\ ds +  i \ 2  J  v\ ds

1 f u f f u \  1 f u
— -X i J  exp^ j  2 u 2 duj <Jx d s  ~  7^2  j  a Y  ds

— A1A2 r exp ̂  J  U2  duj ctx&y ds,

Bt,u = exp U2  d u j ,

Ct,u = iX.2'

By computing the partial derivatives of £t,u and substituting them into the equa­
tion (4.19), the partial differential equation is separable in X t and Yt and the 
ordinary differential equations axe obtained by identifying coefficients.

As a result, the characteristic function is written as

V>(0t, log ST)(gt,p*) =  exp(zAi (exp(KtyT)dt +  £  exp(Ksj )  {a -  dsj

-\-iX2(logSt - ^ a l ( T - t ) j  + exp(2Ks,T) ^ n fs d s j

~  as(T  ~  0  ~ *1*2 £  exp(ATS)r)o:7s d sj, (4.21)

where K t,r = (b — f r 7u) du. It verifies that (Qt , log St ) on (Qt, P*) follows 
a joint normal distribution. □

In the same way, we can prove (log S 2 T, &2 t )  on (Qt, P*) also follows a joint 
normal distribution.

Theorem 4.4 shows all characteristics of the normal distribution, that is the 
means and variances of log (St and Qt  and covariance between them on (Qt, P*). 
The mean of log St  is specified in the zA2 term in equation (4.21) as

iog s ( - i < 7f ( r - t ) .

The variance of log S t  is obtained from the —1/2)^ term in equation (4.21) as

4  ( T - t ) .
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From Theorem 4.4, the mean and variance of Qt  is specified using the iX\ and 
—l/2Af terms respectively in equation (4.21) as

By computing the means, variances and covariance numerically and applying 
Monte Carlo simulation, we can price the EUAO contracts. To compute these 
variables, we use the trapezium rule with equi-distant steps. The Monte Carlo 
algorithm is summarized below:

S tep  1: Compute numerically means, variances and covariances in [t , T].

S tep  2: Simulate St and Qt at T  by generating a two-dimensional normal ran­
dom number computed in Step 1.

S tep  3: If Qt  < go to Step 4, otherwise simulate St and Qt at 2T  by generating
two-dimensional normal random number with St  and Qt  already generated 
in Step 2.

S tep  4: Calculate the EUAO price, Pi, with equation (4.17).

S tep  5: Repeat Step 2 to Step 4 independently M  times and obtain independent 
samples Pi, i = 1 ,2 ,. . . ,  M. The EUAO price is then calculated by the 
experimental average,

Extension to a multi-period setting is straightforward by repeating Step 3. The 
details of several possible extensions are discussed in Section 4.5.

exp(K t,T)Qt +  £  exp(KS,T) (a -  

and

I t -  +  £  exp(2K s,t )

Their covariance arises from the —A1A2 term in equation (4.21) as

exp(KSfT)a'ys ds. 

EUAO
i= 1

119



4.3 Parameter Estimation

4.3 Param eter Estim ation

In this section, we estimate the parameters of the proposed model. There are two 
means of estimating parameters: one is with historical data, the other is with 
contemporaneous day-to-day market data. In the former approach, parameters 
are estimated from time-series of associated data. An alternative is to estimate 
parameters with the data of a contemporaneous day, or implied data. In this 
approach, parameters are estimated with derivative prices of the day. Derivative 
prices are functions of variables so that the parameters are implied from their 
prices. Since there are not enough liquid derivatives markets for estimating all 
parameters, we estimate all parameters from historical data and use them for 
pricing.

Since an investor can observe only the EUA1 prices, we are in the situation 
of estimating parameters with the Kalman filter in which the observable process 
and unobservable process are St and Ot respectively. Given the setting that 
the unobservable variable follows a linear diffusion and the log increment of the 
observable variable, conditioned on the unobservable variable, follows a linear 
diffusion, it is possible to estimate parameters by maximizing the likelihood 
function. We adopt the EM algorithm for maximizing the likelihood function. 
After reviewing the algorithm for finding maximum likelihood estimators, we 
estimate parameters.

The Kalman filter consists of two equations: state and measurement. The 
state equation expresses the dynamics of the unobservable variable and the mea­
surement equation expresses the dynamics of the observable process. To apply 
the EM algorithm, we derive the associated discrete-time version of the SDEs. 
Partition the interval [0, T] at the points 0 = to < t\ < - - •<  tw = T  where 
tk =  k A , for k = 0 ,1 , . . . ,  JV and A =  T /N , the length of the discrete time 
interval. The state equation is obtained by discretizing equation (4.2) with the 
Euler-Maruyama scheme as

0fc+i = 0k +  (a -f bOk)A  +  aQ(Bk+1 — Bk)

:= AOk +  B  +  Wk, (4.22)

where A := bA +  1 and B aA. Wk follows a normal distribution whose mean
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and variance are zero and Q := of A, respectively. As for the measurement 
equation, equation (4.1) is discretized as follows:

Sk+i = 5fce x p ^ /i  +  a 0A; -  i<7 |)A  +  <7s(Wfc+i -  Wfc)).

The log increment of the observable process is thus calculated as

logSk+i -  \ogSk =  (n  +  adk -  i<rf) A +  as {Wk+i -  Wk).

For notational simplicity, the log increment of the observable process, yt, is 
defined as follows

yk := log Sk+1 -  log Sk = C6k + D  +  vk, (4.23)

where C  := aA  and D  := (fi — l / 2crf )A. vk follows a normal distribution whose 
mean and variance are zero and R  := erf A, respectively. From the assumption 
in Section 4.2, wk and vk are independent. This system generates sequences of 
observations in the following way: the initial state of the unobservable variable 
is determined probabilistically. At each time step, the system produces an un­
observable state 0k from 0k- i  one step before, according to the state equation. 
Once 6k is determined, the observation is produced according to the measure­
ment equation.

4.3 .1  EM  algorithm

We explain the EM algorithm used to estimate the parameters of the models. For 
models with incomplete data in general, the EM algorithm is more popular than 
gradient ascent approaches. Originally developed by Dempster, Laird and Rubin 
(1977), it is a numerical method for calculating maximum likelihood parameter 
estimates of partially observed models or with missing data. It computes the 
incomplete data log-likelihood via the iterative maximization of the expected 
complete data log-likelihood, conditional on the observed data. It has the ap­
pealing property that an iteration does not decrease the value of the likelihood 
function. Convergence results for the EM algorithm under general conditions 
are investigated in Wu (1983).

Suppose that we observe data yo, . . . ,  y x  (or in short, yo:n ), which are gen­
erated from the unobservable sequence 6q:n - Let A be a family of parameters.
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The algorithm consists of an E step and an M step at each iteration summarized 
below:

S tep  1 : Set initial value Ao € A.

S tep  2: (E s tep ) Evaluate the expected complete data log-likelihood function.

L(A, An) =  E [ log p  (yo-.N, #0: N  | A) | yo.N, An] . (4.24)

S tep  3: (M  step) Derive An+i from An which takes the following form:

An+i =  argmaxL(A, An).
AeA

S tep  4 Repeat E and M steps until a stopping criterion is satisfied.

Given initialisations of the parameters and the observed data, in the expectation 
part of the algorithm, the EM algorithm starts by calculating the smoothers 
of a particular state. With the smoothers, the algorithm constructs the ex­
pected complete data log-likelihood function. The expected complete data log- 
likelihood function is then maximized in the maximization part of the algorithm 
in order to obtain new estimates of the parameters. This is done by equating 
the first-order derivatives, with respect to the parameters, to zero. Using these 
new estimates, the algorithm returns to the expectation part again until new 
estimates satisfy some stopping rule. In most cases, however, the EM algorithm 
is not guaranteed to converge to the global optimum. Instead, it stops at a local 
optimum. The extent to which the algorithm correctly estimates parameters 
is reflected by the initial set of parameters. Initialization of the algorithm is 
therefore an important consideration. We run multiple procedures of the EM 
algorithm with different initial values and compare the likelihood of different 
convergences.

In order to apply the EM algorithm outlined above to our setting, we derive 
the expected complete data log-likelihood function. Based on equations (4.22) 
and (4.23), Ok follows a normally-distributed random variable with mean AOk-1 + 
B  and variance Q, conditioned on Ok-1, and similarly conditioned on Ok, yk 
follows a normally-distributed random variable with mean COk +  D and variance
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B,

r(8k I 8k- 1, A) =
\f2nQ eH  20---------- ) ’

¥{yk | 8k, A) =  - T =  exp ( - -(y* CBk D ^ I
Using the Markov property, the joint probability is

N

P(2/0:iV, Oo-.N | A) =  P (#0 | A) P(0fc | 0fc_i, A) P(?/jfc | 9 k , A).
k= 1

By assuming that the unconditional distribution for the initial state 9q follows 
a normal distribution with mean 9q and variance Qo,

(00-8 o )2p(e0 1 a) = exp /  w o - v o r \
v 2Q 0 'y/27rQo

the log of the joint probability is written as,

logp(0o:*, VO*  I A) =  -  £  iVk -  C°kR  ~ D ?  -  log |A|

(9k - A 9 k. 1 - B ) 2 N
k=o 
N

-E
k=1 2Q -  y  l°g|Q |

-  ^ ° 2g ^  “  ^ loS KM -  (N +  1) log27r.

The set of parameters is given by A = (A, B, Q, C, D , B, 0o? Qo)- In the E-step, 
the expected log-likelihood function, (4.24), can be written as

L(A, A„) =  E [logP(0O:iv, yo:N | A) I 2/0 :AT, Ar

=  - « E  2

1
- 2 E

1
- 2 E

E (2/fc -  C9k -  D )
B 2/0:AT, A r

/c=0

*  ( ^ - A ^ - B ) 2

JV +  1
log |B|

E
fc=i
(^o-<9o):

Qo

Q

2/0: JV, A t

yO:N, At
N

- y l o g l Q I

-  -  l° g  |Qo| -  (JV +  1) log 27r. (4.25)

In the M-step, the new set of parameters is given by differentiating L  with 
respect to each parameter, setting to zero, and solving. To do so, we need three
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smoothers, Qk\n , Pk\N and Pk,k-i\Ni denoted respectively by the symbols:

@i\j •—E[$i| 2/0:j»An], (4.26)

Pi\j

P i+ l,i\j

= Var[0i|yO:j,An], (4.27)

=  Cov[6i+i6i\ 2/0:j, An], i < j . (4.28)

These quantities are called smoother estimates in the sense that they are esti­
mates of unobservable variables given the future observation and are obtained 
through the Kalman smoother procedure. To obtain smoother estimates, it re­
quires the filter estimates 0k\k and P k\k . They are called filter estimates in the 
sense that they are estimates of unobservable variables at time k given observa­
tions up to time k. The difference between the Kalman filter and smoother lies in 
the fact that the recursion in the filter moves forward and in the smoother moves 
backward. In other words, the smoother estimates differ from the ones obtained 
in the filter in that they depend on past and future observations. Consequently, 
in the E-step, we first implement the Kalman filter to obtain filter estimates 6k\k 
and P k\ki f°r k =  1, ...,JV, and then implement the Kalman smoother, along 
with filtered estimates, to obtain smoother estimates 6k|_/v, P k\N and Pk+i,k\Ni 

for k =  0 , . . . ,  N  — 1 with the current set of parameters. The full procedures are 
explained later.

By differentiating equation (4.25) with respect to each parameter, setting it 
to zero and solving, new parameters which appear with smoother estimates are 
obtained. For the state equation, this results in the following:

^  _  E fcL l @k\N@k—l\N +  Pk,k-1\N ~  B 0 k_ llN

E k = i e l - 1 \ N  +  P k - 1 \ N

n ZlfcLl +  Pk,k-1\N Y lk = l  flfe-l|JV
2- /̂k=1 k\N n2 I p

b  = -------------------------  S f i W + a - n *   3

l 2 k = 1 ^fc-l|jV +  Pk-1\N  

1 N
Q  =  t f t \ N  +  P k \ N  — M O k \ N 0 k - l \ N  +  P k , k - 1 \ N )  -  B Q k \ N i  (4 -3 1 )

fc=l

% = @o\Ni (4-32)

Qo =  Pq\n - (4.33)
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New parameters of the measurement equation are given as follows.

T ,k = 0  e i \ N  +  P k \ N

( 4 .3 4 )

( 4 .3 5 )

(4.36)

New parameters are set as An+i =  (A , B ,Q ,C , D , R , 0 q, Q o). Acquiring these
updated parameters from An requires three quantities, 0k\Ni Rk\N and Pk,k-i\Ni 
which are included in equations (4.29)-(4.36) and are obtained with the Kalman 
smoother algorithm. With these parameters, we return to the E-step. See the 
derivations of the EM algorithm for the Kalman filter in Shumway and Stoffer 
(2006, Chapter 4).

In our setting, the stopping criterion used to stop the algorithm is the ab­
solute difference of the maximized log-likelihood functions from one step before 
being less than 10-4 . That is, the algorithm is stopped if

From the assumption, the density function of yk conditional on yk-i, k = 
1 , . . . ,  iV, follows a normal distribution with mean and variance

respectively, and that of yo follows a normal distribution with mean and variance

respectively. As a result, the log-likelihood function, l ( y o - . N  I A), is computed

| % 0:JV I An+i) -  l(yo-.N I An)| < 1 0  4 .

Vk\k-i • C6k\k—i D) 

:=  C2Pk\k-i +  R,

Vo\-i C0O +  D , 

-Po|—1 C2Qq +  R,
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with the Markov property of as

N

1{V0:N  | A) =  logP(j/0 | A) Y l  H Vk  I 2/0 :Ac—17 A)
k = 1

AT - AT

fc=l fc=l *1" 1

1  ̂ o  1 1 17-1 1 1 (2/0 — y 0| - i ) 2 , ,  Q_.-  - log27T- - lo g |F 0|_il -    p —  . (4.37)

Kalman Filter and Smoother

In the Kalman filter, filter estimates are given recursively from k = 1 to k = N. 
The prediction equations are given below with initial values 0q|o =  and P0|o — 
Qo- From k =  1 to k =  T,

0 k \k - l = A d k - i \ k - l  + B y

P k \k -1  = ^ 2-Ffc-l|fc-l + Q •

The updating equations are given by

@k\k =  ®k\k—1 “1“ ^ k  (Vk {C@k\k— 1 ^ )) >

P k\k =  P k \k -1  K k P k \k —\ C  •>

where K & is called the Kalman gain and is defined as

r ,    P k\k—l ^
k ~  C t p ^  + R '

In the Kalman smoother, smoother estimates are given backwards from k =  N  
to k = 0. Note that at k = N , initial values of the smoother are the same as 

the filter, and P/v|iV and define the initial covariance, P n , n - i \ n  =  (1 — 
K n C)APn _ i \n _ i . From k = N  — 1 to fc =  0,

@k\N =  @k\k +  J k { 0 k + 1 \ N  — 0 k + l \ k ) ,

P k \ N  =  P k \ k  +  J k { P k + l \ N  ~  -Pfc+l|fc)»

P k ,k -1 \N  — J k - lP k \k  + J k J k - l { P k + l ,k \N  ~  A P ty k )>

j P k \k A
J k =  p-----

k-\-\\k
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4.3 Parameter Estimation

Using these smoother estimates, equations (4.29)-(4.36) are computed.

It is worth mentioning that maximizing the likelihood function directly also 
works for estimating parameters. A direct approach is to find parameters, A = 

{ A, B, Q, C, D, V, do, Qo}5 so as to maximize the log-likelihood function with 
respect to the parameters we want to estimate. This is done by differentiating 
the log-likelihood function numerically, and performing the gradient ascent. In 
this maximization, only the Kalman filter is used and the Kalman smoother need 
not be implemented. Because of the recursive nature of the Kalman filter, the 
dependence of the log-likelihood on parameters is complicated and maximization 
is usually done numerically. See Harvey (1991, Chapter 3) for deriving the direct 
maximization.

4.3 .2  D a ta  and E stim ation  R esu lts

The spot, futures and options contracts are traded both over-the-counter (OTC) 
and on exchanges. Parameters are estimated from the same data as in Chapter 3. 
Parameter estimation based on the EM algorithm described in the previous sub­
section is performed. We set 240 trading days per year, A =  1/240. Estimates 
are presented in Table 4.1. The maximum likelihood estimates appear in the 
first row and the corresponding asymptotic standard deviations calculated from 
the outer product and Hessian matrix appear in the second row.

Table 4.1: Estimation results of equations (4.22) and (4.23)

A B Q
0.941 -0.014 0.267
0.0053 0.0133 0.6796

C D R
-0.00023 -0.00027 0.00059

1.219 x 10" 4 7.842 x 10“ 5 1.502 x 10~6

The log-likelihood =  986.9.

An obvious shortcoming of adopting a continuous-valued process for express­
ing the net position of the zone is that identifying the extent of being long or
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4.4 Numerical Studies for EUA Prices

short is difficult from data, although a linear diffusion approach renders express­
ing the extent of being long or short of the net position of the zone feasible. 
The EM algorithm leaves k, unspecified. After estimating all parameters except 
for k with the EM algorithm, we estimate k from historical spot prices so as to 
minimize the pricing error defined as

rain (P tm°del(«) -  P,market) 2 ,
t

where P tmarket is the spot price traded in the market. Since data period is in 
Phase I, P fmodel is the spot price defined as

p m odel =  E .  [ ( 5 r  +  K ) l {9T<K}\ g t] .

Corresponding parameters in continuous-time are given in Table 4.2.

Table 4.2: Parameters in continuous-time

a a* a b °e K
-0.056 0.005 0.376 -3.37 -11.89 7.99 -2.26

4.4 Numerical Studies for EUA Prices

The purpose of this section is to examine price characteristics between complete 
information and incomplete information. Emphasis will be placed on experi­
ments which highlight differences in key quantities such as initial prices and 
drift coefficients. The EUAO price under the complete information setting is 
given in equation (4.7) and that under the incomplete information setting in 
equation (4.17). For prices under complete information, we compute G and 
p {$t  > k | P*} in equation (4.7) with Monte Carlo simulation. For prices un­
der incomplete information, we generate the two-dimensional random numbers 
following normal in equation (4.21) after computing the means, variances and 
covariance. The results indicate some differences between the two settings might 
be of interest. We use the following set of parameters shown in Table 4.3. Monte 
Carlo prices are obtained with 100,000 simulations.
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4.4 Numerical Studies for EUA Prices

Table 4.3: Parameters in numerical studies

So a <?s a b oe K 0o 7o K T
30 -0.06 0.005 0.4 -3 .0 -11.4 8.2 100 0.07 2.9 —2.0 1.0

Figures 4.1, 4.2, 4.3, 4.4 and 4.5 show the prices under complete information 
and incomplete information with respect to so, a, b, oq and k, respectively. The 
overall impression is that their sensitivities have similar patterns.

Prices under incomplete information are, in the sense that they depend on 
the coefficients of S, fi, a  and as, different to those under complete information. 
Figures 4.6, 4.7 and 4.8 show the sensitivities with respect to //, a  and as, 
respectively. Since prices under complete information do not depend on these 
parameters, they are flat, while prices under incomplete information do depend 
on these parameters. Since equation (4.16) indicates that a higher value of /x 
leads to a lower value of 9 with our parameters, the higher value of (i leads to 
the lower EUAO price as shown in Figure 4.6. Both a  and as  are included in 
equation (4.16) as a quadratic form, leading to the shape of quadratic function 
as in Figures 4.7 and 4.8.

Another interesting phenomenon is the jump at T  in the conditional expec­
tation, which occurs when the verified emissions axe announced. Consequently, 
it causes the discontinuous changes in the EUAO price since the cash flow at T  
is determined based on Ot and the initial value to compute the expectation at 
2T  will vary. We confirm this on a sample path by sample path basis. At T, 
the true position of the zone is revealed to the market and 6t -  will jump to the 
revealed value 6 t • Simulation is done as follows. The EUA1 price and process 
of the conditional expectation under P are simulated with equations (4.13) and 
(4.9). At each U, with {St^OtJ, the EUAO price is computed using Monte Carlo 
simulation. Figure 4.10 presents the sample paths for the EUAO and EUA1 
prices. Assume at T, the verified emissions amount is revealed and the market 
is long. Consequently, the process of the conditional expectation jumps as shown 
in Figure 4.9 and the prices for EUAO is discontinuous as shown in Figure 4.10.
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4.4 Numerical Studies for EUA Prices

Figure 4.1: The EUAO price with various initial values, so- Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 4.2: The EUAO price with various initial values, a. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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4.4 Numerical Studies for EUA Prices

Figure 4.3: The EUAO price with various initial values, b. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 4.4: The EUAO price with various initial values, gq. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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4.4 Numerical Studies for EUA Prices

Figure 4.5: The EUAO price with various initial values, k. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 4.6: The EUAO price with various initial values, fi. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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4.4 Numerical Studies for EUA Prices

Figure 4.7: The EUAO price with various initial values, a. Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.
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Figure 4.8: The EUAO price with various initial values, a s • Solid line represents 
the price under the complete information setting and dashed line under the 
incomplete information setting.

Price
42



4.4 Numerical Studies for EUA Prices

Figure 4.9: Simulated process of the conditional expectation.
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Figure 4.10: Simulated EUAO and EUA1 prices. Solid line represents the EUA1 
price and dashed line the EUAO price.
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4.5 Concluding Remarks

4.5 Concluding Remarks

In this chapter, we consider the spot and forward relationship in the carbon

tionship. We assume the net position of the zone follows a linear diffusion and 
the drift term of the forward price process depends on the net position of the 
zone. Bankability is included in the framework in the form of an expectation of 
future cash-flows.

Two information settings are considered: complete and incomplete. The 
complete information setting is defined when market participants can access full 
information. We adopt the locally risk-minimization technique so as to fix the 
equivalent martingale measure since the net position of the zone is not trad­
able. With the minimal martingale measure, the analytical arbitrage-free price 
is obtained. Under the incomplete information setting when market partici­
pants can observe the forward process and the net position of the zone only at 
the announcement time, a filtering technique is applied to derive the optimal 
projection of the net position of the zone onto the new filtration. This leads to 
the use of the Kalman-Bucy filter. The joint distribution of the underlying pro­
cesses is derived and it follows normal under the minimal martingale measure. 
Consequently, the arbitrage-free price is obtained using Monte Carlo simulation.

There could be several extensions without changing the framework. The 
assumption that there are only two trading periods can easily be extended to 
multi-periods. In the multi-period setting when banking is prohibited only at the 
end of the phase and intra-period banking is available, the payoff function has 
a nested structure. We denote by T}v the end of the phase when the banking is 
prohibited and by T i , . . . ,  TV-i the end of each trading year when intra-banking 
is available. The payoff function can be written as follows:

emissions market based upon the no-arbitrage principle. This market differs due 
to the trading regulations and the market design from other financial markets: 
the net position of the zone is taken into consideration for explaining the rela-

ST i+ K
E[Pri+i\STi,0Ti > «]

if $Tn < k, 
if 0tn > «• 
if STi < k,
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4.5 Concluding Remarks

A discount factor, or interest rate, can be included in the framework. A 
deterministic or stochastic interest rate which is independent of EUA prices is 
easily implemented in the form of a zero-coupon bond. To implement a stochastic 
interest rate which is correlated with EUA prices, a change of measure technique 
can be used to manipulate the equations.

Since the market for the EU ETS has become considerably more active, the 
link between EUA contracts and other carbon contracts has deepened. For exam­
ple, the EU ETS scheme not only allows companies to trade among themselves, 
but enables interactions with other countries not included in the EU ETS via 
the Clean Development Mechanism and Joint Implementation schemes. During 
Phase II, firms can cover their requirements by purchasing Certified Emission 
Reduction Credits from such projects. The amount of these contracts are grow­
ing, and therefore their pricing is important.
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Chapter 5

Summaries and Conclusions

This dissertation consists of two topics. The first discusses approximation meth­
ods for pricing swaptions and the second proposes frameworks for the spot and 
forward relationship in carbon emissions markets.

In Chapter 2, the validity of two kinds of approximation methods based on 
moment expansions with multi-factor affine jump-diffusion processes are inves­
tigated and their precision are compared numerically. One is based upon the 
Gram-Charlier expansion in which normal distributions are used to approximate 
the density of underlying swap values and the associated approximation formula 
is derived. The formula is given in additive form and coefficients are written with 
the cumulants of the swap values, in that the gap between the density of swap 
values and that of normal distributions is adjusted with cumulants of underlying 
swap values. The other is based upon the generalized Edgeworth expansion in 
which any distribution is used and we adopt the one zero-coupon bond repre­
senting the final cash-flow in swap values as the approximating variable. The 
associated approximation formula consists of the options on the zero-coupon 
bond and adjustment terms. This decomposition of swaption prices indicates 
that swaptions can be partially hedged with options on zero-coupon bonds. The 
gap between the density of swap values and that of the zero-coupon bond is 
adjusted with cumulants of underlying swap values and that of the zero-coupon 
bond. The calculation of swaptions is reduced to that of higher-order moments of 
products of zero-coupon bonds, which is obtained by solving ordinary differential 
equations under a multi-factor affine jump-diffusion process.

We implement five numerical examples: the model with Gaussian-type volatil­
ity and exponentially, normally or truncated normally distributed jump size,
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5. Summaries and Conclusions

and that with CIR-type volatility and exponentially or truncated normally dis­
tributed jump size. Each price with the moment expansions is compared with 
that using Monte Carlo simulation. Based on the numerical examples, the 
higher-order approximation yields more accurate prices on average for both the 
Gram-Charlier and the generalized Edgeworth expansions in any jump setting. 
For some special cases, such as low swap rate and low volatility, the generalized 
Edgeworth expansion outperforms the Gram-Charlier expansion in the sense 
that it can attain the same level of pricing error but requires a lower degree 
of moments and less CPU time. The idea that the options on the zero-coupon 
bonds can be used for hedging swaptions is supported numerically. For the ex­
ponentially distributed jump size setting, the ordinary differential equations are 
solved analytically and moment expansion methods work efficiently, much faster 
than Monte Carlo methods. For the normally distributed and the truncated 
normally distributed jump sizes, the ordinary differential equations axe solved 
numerically. Solving the ordinary differential equations numerically works well 
although it is more time-consuming than that for an exponentially distributed 
setting. Even so, approximation methods run much faster than Monte Carlo 
simulation.

The spot and forward relationship in carbon emissions markets is derived in 
Chapters 3 and 4. Two kinds of framework axe proposed. An exogenous forward 
price process is assumed and its drift term is a function of the net position 
of the zone, representing the difference between total allocation and emissions. 
The spot price at maturity is the forward price plus penalty conditioned on 
the net position of the zone being short and it is an expectation of the cash­
flow conditioned on the net position of the zone being long, and it is therefore 
considered the derivative contract on the forward price and net position of the 
zone. The net position of the zone is assumed to follow a Markov Chain in 
Chapter 3 and a linear diffusion in Chapter 4, respectively. Two filtrations 
used in pricing are implemented in each chapter. One of these is complete 
information: market participants observe both the forward price process and 
the net position of the zone at any time. Since the net position of the zone 
is not a tradable instrument, this is the pricing in an incomplete market. We 
apply a locally minimization approach to fix the equivalent martingale measure.
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5. Summaries and Conclusions

The no-arbitrage spot price is obtained analytically. The other is incomplete 
information: market participants observe the forward price process at any time 
and the net position of the zone only at the announcement time. The filtration 
is generated to express this situation. The distribution of the net position of the 
zone restricted to the new filtration is examined. In Chapter 3, the distribution 
is obtained as an application of Wonham filter. The locally risk-minimizing 
approach is applied and the distribution under the minimal martingale measure 
is calculated. In Chapter 4, the distribution is obtained as an application of 
Kalman-Bucy filter. The distribution under the minimal martingale measure still 
follows normal. The no-arbitrage price is obtained using Monte Carlo simulation.

Numerical simulations compare the prices under the complete and incomplete 
information settings. They have similar patterns with respect to the parameters. 
At announcement time, the jump in the net position of the zone occurs and 
trends in prices of forward and spot prices vary.
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