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Abstract

Condensed matter physics studies many-body phenomena, the phenomena involving a 

huge number of constituents interacting with each other strongly. My theme is modelling 

in condensed matter physics: the construction of mathematical/physical structures in 

order to understand many-body phenomena in the world. I study how condensed matter 

physicists learn about many-body phenomena from the successful employment of 

models. My proposal is to construe condensed matter physics as engaged essentially with 

the three activities: model-building, model-exploring and model-based understanding. 

General theories such as statistical mechanics guide the process of model-building as 

model-building methodology. I discuss the multiple layers of interactions among general 

theories (particularly among thermodynamics and statistical mechanics) and show that 

complementation and cooperation rather than reduction are better concepts for 

understanding their relation. In model-exploring stage, we probe a model in order to 

determine what exactly the model implies in itself and what it could with additional 

constraints. I investigate a number of epistemic roles of approximations in this stage. I 

also discuss what consists of model-based understanding. With the help of appropriate 

interpretative models, an well-understood model can provide us with our best 

representation of the phenomena (substantial theories). Finally, I investigate how 

physicists successfully deal with some crucial features of critical phenomena using 

renormalization group methods. I compare the renormalization group methods of 

condensed matter physics with those of quantum field theory, and argue. I claim that the 

mean field methods and renormalization group methods in condensed matter physics 

complement to each other.
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In t r o d u c t i o n

C o n d e n s e d  M a t t e r  P h y s i c s : M o d e l -B u i l d i n g , M o d e l -E x p l o r i n g  a n d

M o d e l -Ba s e d  U n d e r s t a n d i n g

My thesis is about condensed matter physics. Condensed matter physics (CMP) studies 

macroscopic objects and many-body phenomena, the phenomena involving a huge 

number of entities. A typical many-body phenomenon involves strong interactions among 

an enormous number of constituents. Many-body phenomena are hard to deal with by 

standard theoretical tools such as perturbation methods, which have been developed 

mainly for the study of few-body phenomena, such as the motion of planets. 

Consequently, condensed matter physicists have worked to devise a lot of methods and 

research strategies especially to overcome this difficulty and to gain an understanding of 

a number of fascinating many-body phenomena.1

Important issues in contemporary philosophy of science are discussed largely within the 

context of few-body phenomena. For instance, the problem of reduction has been 

investigated in the context of the two-body problem in Newtonian mechanics and its 

relativistic or quantum counterparts.2 The nature of idealisations and the role of models 

have been widely discussed with regard to the approximate nature of the idealisation 

involved in the simple (either classical or quantum) harmonic oscillator model.3 1 claim 

that we can get new insights into many of these issues from studying them in the context 

of many-body phenomena. I try to show the fruitfulness of this kind of study here.

The main theme of my thesis is modelling, which is one of main research activities of 

physicists: the construction of mathematical/physical structures in order to understand 

target phenomena in the world. My interests in models are less in questions about their 

competition with statements as candidates for the true components of scientific theories,

1 ) Leggett 1985
2) C f Sklar 1974, Maudlin 1994
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but with what we can learn about the world (especially many-body phenomena in the 

world) from the successful employment of models. My proposal is to construe condensed 

matter physics as engaged essentially with the following three activities: model-building, 

model-exploring and model-based understanding.

A model should be carefully built out of a number of resources so that physicists can 

employ it later to understand its target phenomena. In the model-building stage, 

physicists may be helped by lots of different resources: by empirical data, by well- 

established heuristics, by a fresh look at an well-understood model and so on. Still, the 

most crucial factor in model-building in physics is the role of a few (general) theories 

such as statistical mechanics. These provide the core of our model-building methodology. 

They guide the entire process of a model-building in the sense that they usually provide 

the essential components of the model, and they tell us which way to go when we have to 

choose among different theoretical constraints on the model. Consequently, which 

general theory you pick as your model-building methodology will partially determine the 

character of the model (or how the model sees the world) and the explanatory strategy of 

the model (or how the model tackles a particular problem).

Also it is important to see how these general theories interact with each other. They 

certainly compete with each other, but in many cases they also complement and 

cooperate with each other to give us better understanding of their shared target 

phenomena. I study these multiple layers of interactions among general theories in order 

to show that not only fierce competition, but also complementation and co-operation 

among scientific theories are sometimes very fruitful. I also argue in particular that at 

least for the case of thermodynamics and statistical mechanics, the proper way of looking 

at the relationship is not through the concept of reduction but rather through the concepts 

of complementation and of co-operation.

Before we try to employ a model to understand its target phenomena, we need to 

understand the model itself first. This consists of the model-exploring stage. For instance

3) Cf. Giere 1988, pp. 62-91, Laymon 1985
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we have to know what exactly the model implies in itself and what it could with 

additional constraints. We need to see whether a particular theoretical result of a model is 

a genuine feature of that model, or an artefact from the approximations involved in the 

derivation of the result. This point is seldom discussed by philosophers, although it is by 

physicists. A model in condensed matter physics is usually a highly mathematical and 

abstract object whose physical contents are not at all clear even to an expert in its first 

arrival. You have to develop the ‘canonical’ physical intuition about the model through 

the detailed investigation of it. I discuss how physicists do this job in order to separate the 

theoretical consequences of the basic architecture of a given model from those of the 

additional assumptions made for expediency.

After we understand a model itself, we are now ready to understand its target phenomena. 

With the help of appropriate interpretative models, an well-understood (abstract) model 

may provide us with our best representation of the phenomena under consideration. I 

discuss the nature of model-based understanding, and how we manage to understand so 

large range of phenomena with various types of models constructed under the guide of a 

few model-building methodologies.

The structure of the chapters is the following: I offer my proposal to see general theories 

as model-building methodologies in chapter 1 .1 defend this view in chapter 2 in the 

particular context of thermodynamics and statistical mechanics. I shall also criticise 

Sklar’s view seeking the reduction of thermodynamics to statistical mechanics there. In 

chapter 3 ,1 study various model types in condensed matter physics to show how 

physicists use different types of models to achieve different goals in their pursuit of a 

model-based understanding of the world. In chapter 4 ,1 study the model-building and the 

model-exploring stages in detail, highlighting the distinctive roles of two different types 

of approximations/idealisations in each stage. The renormalization group is the theme of 

chapter 5. There I explain how physicists successfully deal with some crucial features of 

critical phenomena using the renormalization group methods, and argue that here again 

what we see is not one theory (renormalization group) making another theory (mean 

field) redundant, but rather a happy complementation to each other.
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C h a p t e r  1

G e n e r a l  T h e o r i e s  a n d  S u b s t a n t i a l  T h e o r i e s : 

M o d e l -B u i l d i n g  M e t h o d o l o g y  a n d  M o d e l -B a s e d  U n d e r s t a n d i n g

1.1 In tro d u c t io n

We want understanding (among other things) from our scientific theories. Condensed 

matter physics (CMP) studies the macroscopic, many-body phenomena that result from 

strong interactions1 among huge number of entities (particles or fields) in a relatively 

dense state. Naturally we expect CMP to provide us with some understanding of these 

phenomena: how water changes its phase from liquid to gas apparently instantly at the 

exactly specifiable physical conditions, or what makes metal an excellent conductor of 

heat and electricity. This thesis is an attempt to investigate philosophically how 

condensed matter physicists are doing their research in order to get this understanding. 

This chapter sets the basic scheme: the general strategies or methodologies of model- 

building and the nature of model-based understanding.

As we will see in chapter 3, CMP is full of all sorts of models employed for various 

purposes. So it is prima facie natural to start with models of CMP in order to study the 

nature of ‘understanding’ we can get from CMP. Now a model has to be constructed 

before being put into use. Recently, several authors have taught us that a typical model in 

science is not just an ‘impoverished’ theory that can, if one wishes, always be derived 

from a relevant theory by deliberately omitting certain features of the full theory. We 

need far more than a theory to build a successful model. On the other hand, a model is not 

always a product of the premature stage in scientific research before it grows up into its

1) Strong interaction in this context has little do to with the strong force among nucleons. Usually it means 
a long-range interaction such as Coulomb interaction.

2 ) See for instance, the collection of papers in Morgan and Morrison 1999, especially Cartwright 1999a for 
the case of the BCS model, Hartmann 1996 for the case of the models in hadron physics, Morgan 1999 
for the case of Fisher’s models of the monetary system and Morrison 1999 for the case of Prandtl’s 
model of a fluid.
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full-fledged form, a mature theory.3 Physicists would build a model even when they had a 

‘complete5 theory, sometimes even a calculable complete theory. I will argue in chapter 3 

and in chapter 4 that this is because the model would be built to serve special epistemic 

purposes that a ‘complete5 theory could not. Understanding of many-body phenomena 

would be one of them.

Given the non-triviality of the model-building procedure, we need to study carefully how 

a model is built out of various resources before turning our discussion to the nature of 

model-based understanding. Moreover, as I will show later, the better grip of the model- 

building procedure will contribute to tackling several other important problems in 

philosophy of science such as how to understand scientific theories and what 

mathematics can do for an empirical science. In this chapter I shall focus on the role of 

theories in the model-building procedure, while in chapter 4 the role of approximations 

(and idealisations) will be discussed.

There have been lots of discussions in philosophy of science about the nature of scientific 

theories: what scientific theories are and are not. The syntactic view and the semantic 

view in their various forms are the two most influential views among philosophers of 

science at the moment. Recently the semantic view seems to have gained more support 

over the syntactic view, especially in the form of its more liberal variety such as Giere5s 

or Cartwright’s.4 But the die-hard syntactists never surrender and the battle between two 

camps goes on.5 1 am going neither to defend one of these two competing views, nor to 

offer yet another alternative account of what scientific theories are. My focus is different. 

I am interested in what scientific theories can do, especially through and as models. I am 

also interested in what we can learn from the successful employment of scientific 

theories, again through and as models. To put it differently, my primary interest in 

scientific theories lies in their functions and cognitive utility. In order to address these 

issues, I will introduce in the next section a distinction among theories used in CMP,

3) Though some of the models can be construed as such. Lakatos 1970 provides us with an argument tour 
de force for this ‘heuristic’ role of scientific models.

4 ) See Giere 1984 and Cartwright 1983.
5) Cf. Savage 1990

10



which many physicists, I claim, implicitly make in their research. Then I will discuss the 

significance of the distinction as regards model-building and model-based understanding 

in sections 3 and 4. But before that a short preliminary remark is in order.

Throughout this chapter, I will assume as little as possible about the nature of scientific 

theories so that my conclusions about the function and the cognitive utility of theories 

should be as independent as possible of any particular view on what scientific theories 

are. For instance I do not exclude the possibility that the scientific theories we have here 

and now cannot be understood by one single account. I believe that some liberal kind of 

the semantic view such as Hughes’ or Giere’s is most satisfactory for understanding the 

theories of physical science.6 But it may well turn out that theories in so-called soft- 

science should be understood quite differently from physical theories. Still I am going to 

assume in this chapter the following: that working with models is central to the research 

of condensed matter physicists and that theories are one of major resources that scientists 

make use of when building a model. I take both claims to be uncontroversial.

1.2 General Theories and Substantial Theories in CMP

I claim that there is significant relationship between the generality of a theory in physics 

and its substantiality, the more general a theory in physics is, the less substantial it tends 

to be. Based on this relationship, I propose a categorisation of theories in physics into two 

groups: general theories and substantial theories. I will argue then that general theories 

function as a model-building methodology, while we expect substantial theories to give 

us a model-based understanding of the world. In order to explain what I mean by 

‘generality’ and ‘substantiality’, let us start with the following observation.

Physicists tend to group their diverse research subjects in two different ways. Mostly they 

would say their research interests lie in elementary particle physics, in atomic physics or 

in solid state physics. These are clearly the classification based on the kind of phenomena 

they are investigating; so elementary particle physics studies elementary particle

6 ) See Hughes 1996, 1997 and Giere 1988
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phenomena and solid state physics, solid state phenomena. But then there is another way 

of classifying theories in physics, which might be more familiar to philosophers; that is to 

say, there are classical mechanics, quantum mechanics, statistical mechanics, 

thermodynamics and so on. Notice that the majority of physicists would not describe their 

research area as classical mechanics or quantum mechanics, i.e., one from the second 

grouping.7 Exceptions are usually found among mathematical physicists who might 

happily confess researching on statistical mechanics for instance. As we will see later, 

there is a good reason for that.

More specifically in CMP, we can discern a difference in physicists’ attitude towards two 

groups of ‘theories’: between theories like quantum mechanics or statistical mechanics 

and theories like the Landau theory of continuous phase transition or the Bloch theory of 

electrons in metal. They tend to think of a theory from the first group as the source of 

versatile modelling methods, general ideas, mathematical techniques and a particular way 

of looking at the world. So they would say, ‘if we look at this phenomenon in the 

statistical mechanics formalism, we can model it by the two dimensional Heisenberg 

model’. Or they would say, ‘if we want to treat it quantum mechanically, we have to 

consider the zero-temperature fluctuations explicitly’. On the other hand, physicists tend 

to regard a theory from the second group as their, however incomplete and tentative, 

intended representations of its target phenomena and as a source of their understanding of 

the world. So they would say, ‘the Landau theory/model doesn’t quite adequately deal 

with the order parameter fluctuation very near the critical point’. Or they would say, 

‘Although we know that superfluidity is clearly a quantum mechanical phenomenon, we

7) I cannot resist the temptation of telling my small episode relating to this point. Once I was solemnly 
corrected by my supervisor on the matter of describing my major research field. At that time I was 
working for my master thesis on some interesting properties of a model called the generalised Harper’s 
equation. I thought I was doing statistical mechanics because all the mathematical techniques I was 
using and all the important theoretical ideas I was entertaining for the model basically came from 
statistical mechanics. But my supervisor, professor Moo Young Choi, persuaded me to identify myself 
as a condensed matter physicist, pointing out to me that the ultimate reason I was trying to understand 
the generalised Harper’s equation is to understand the kind of phenomena the model might successfully 
describe, for instance the two dimensional Josephson junction array under incommensurate magnetic 
field. In short, I was less interested in the development of general-purpose tools such as statistical 
mechanics, than using those tools to study many-body phenomena. If I had been a mathematical 
physicist, my interests would have been exactly reversed.
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do not understand it because we have not yet figured out the right theory/model that can 

cover all the aspects of the phenomenon’.

So why is there this difference? A quick and easy answer would be in terms of the 

intended range of target phenomena of a theory. A theory from the first group is supposed 

to apply to a wider range of phenomena, ideally perhaps to all the phenomena in the 

world. On the other hand, a theory from the second group is regarded as targeting more 

specific and restricted phenomena. So, according to this quick and easy answer all the 

differences in attitude towards the two groups of theories among condensed matter 

physicists boil down to the difference in the scope of the potential validity of a theory.

For instance, quantum mechanics is expected to be valid, if ever, everywhere in the entire 

world,8 but the Landau theory of continuous phase transition is, obviously, valid only in 

the continuous phase transition phenomena.

One consequence of this answer is uncomfortable to swallow for those who believe that 

the aim of science is to pursue the most simple, unified, truth about the world. If this 

answer is correct, most physicists turn out to be spending most of their time pursuing 

limited and disparate truths about some specific phenomena rather than the unlimited and 

grand truth.

Certainly there is no doubt that a theory from the first group is more generally employed 

to explain a number of phenomena than a theory from the second group. But we cannot 

draw from this the conclusion that therefore theories in the first group are universally 

applicable while theories in the second group are not. This is because there are important 

ambiguities in the meaning o f ‘generally applicable’. When physicists say that quantum 

mechanics for instance is generally applicable for the entire world, it could mean either 

that they would regard it to be true of the entire world or that they intend it to be 

employed for modelling as many phenomena as possible. The first meaning o f ‘general 

applicability’ is closely connected with the idea of the so-called ‘fundamental’

13



representation of the world; that is, a theory is generally applicable only if it gives us the 

complete, true representation of the world. But the second meaning does not necessarily 

imply this; we can aim to employ a theory in modelling as often as possible whenever it 

is appropriate even if the theory doesn’t even try to give us the ‘fundamental’ 

representation of the world.

I claim that in most cases (at least in CMP) what physicists mean is closer to the second; 

they generally do not confuse the intended scope of application with the assumed scope 

of truth. They rarely talk about a theory from the first group in terms of truth but rather in 

terms of effective applicability. So they would say, ‘we could treat this phenomena 

quantum mechanically, but then we wouldn’t understand some important features of it. 

On the other hand, we can successfully model most of its features classically'.9 Physicist, 

when pressed, will usually pay lip service to the fundamental truth of QM, saying, ‘Of 

course, quantum mechanics is generally true of all the phenomena of the world’. But 

when asked for their reason, they would tell us, ‘You see, we could treat all these 

phenomena quantum mechanically, if we wanted’. But that is the point: we do not always 

want to treat a phenomenon quantum mechanically. We are selective: we would construct 

a quantum mechanical model of a phenomenon only if the model could allow us some 

understanding of the phenomenon. For the same reason, we would construct a classical 

(or statistical mechanical or thermodynamic) model of the phenomenon only if we can 

gain some extra understanding of it by that particular way of modelling.10

For the entire thesis, I argue that we have to take seriously modelling and understanding 

based on the successful use of models to be central to research activities in CMP. From 

this modelling point of view then, the most important question we have to ask about a 

theory from the first group is how many resources we can draw from it when we model a 

particular phenomenon. If we look at the other side of the coin, given a phenomenon we 

are more interested in how many features of it can be understood as, say quantum

8 ) One could add ‘every when’ and say, ‘everywhere and every when in the world’. But then even the 
theories from the second group are expected to be valid, if ever, everywhen. Modem physics is 
generally not a ‘historical’ science.

9 ) Cf. Goldenfeld 1992, p. 81 and Fisher 1988
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mechanical or classical, rather than in whether quantum mechanics (or classical 

mechanics) is simply true of it.

So we conclude that the target phenomena of a theory from the first group are ‘general’ in 

the sense that its intended scope of application is potentially all the phenomena in the 

world. We try our best to use the various resources the theory offer and model as many 

phenomena as possible. On the other hand, a theory from the second group has a different 

relationship with its target phenomenon: we intend it to be our representation of that 

phenomenon, or a model from which we get our understanding of the phenomenon. Here 

the ‘truthfulness’ of a representation (or model) does matter, even if truth itself does not. 

For instance physicists do care and, if needed, are very much willing to debate on fiercely 

whether the Bloch model rather than the Sommerfeld model correctly captures the 

‘essential physics’ of electron conduction phenomena in a metal.11 The relationship 

between these two models is clearly that of competition: we have to settle down with one 

or the other as our best representation of the phenomena at the current stage of physics. 

Consider a similar situation with theories from the first group and appreciate the 

difference. Physicists are usually happy to ‘hybridise’ different modelling strategies of 

different theories in the first group if they can understand the phenomena under 

consideration better by doing so.12 There, the relationship between two theories is not a 

competition, but rather a co-operation. I shall investigate this point more closely in 

chapter 2.

Notice that a theory from the second group can have a substantial degree o f ‘generality’ 

depending on the nature of the phenomena it models. If the phenomenon is a very general 

phenomenon such as the conductivity of a metal, a theory of it, if successful, should be 

applied to a number of different metals. Also a theory is usually regarded to be better if it 

is applicable to a wider range of phenomena. The theory may not apply for all the metals 

in the world, but then we expect the theory to tell us in a physically significant way why 

it can explain these kinds of metals, but not the others. So in this sense, ‘general

10) More on this point in chapters 2 and 5
11 ) See the discussion in Ashcroft and Mermin 1976, chapters 2 and 8
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applicability’ is a virtue for a theory from the second group as well as for a theory from 

the first. But we expect more from a theory from the second group than a set of versatile 

model-building tools.13 We want it to provide us with an acceptable theoretical 

explanation of the phenomenon under consideration and possibly with a reasonable 

representation of the phenomenon.14 This explains a subtle difference in the way general 

applicability is a virtue for theories from each group. While we try to employ a theory 

from the first group and build models of as many phenomena as possible, we do not 

always regard the versatility of a theory from the second group to be desirable. Instead 

we want ‘substantial’ physical differences between different phenomena to be reflected in 

theories from the second group. In this way, the theories will be less versatile and more 

specific. But there is no contradiction here. Unlike the theories from the first group, we 

want the theories from the second group to present us our best substantial knowledge of 

the world. So we must prioritise ‘substantiality’ over ‘general applicability’. On the other 

hand, we could imagine that the theories from the first group present us our best 

knowledge about how to build a model of any phenomenon. Here the goal is to develop a 

successful methodology of model-building for as many phenomena as possible. As a 

result, we value most a versatile theory.

So the difference between the two groups runs deeper than it first looks. What I shall 

from now on call general theories (GT) such as quantum mechanics aims to provide a set 

of versatile, necessary tools for model-building, and thereby function as the background 

framework of what I will call model-based understanding. On the other hand, theories 

like the Bloch model aim to provide our best (however incomplete) representations of the 

world. I shall call them substantial theories (ST). A GT has no representational value in 

itself; all of its representation value comes through the models whose construction it 

guides, that is through its associated STs. Otherwise a GT would be an empty 

mathematical (or metaphysical) framework of how we think about the world.

12) Cf. Wise and Brock 1998
13) Cf. Cartwright, Shomar and Suarez 1995
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One often talks about the ‘Quantum World’ or the ‘Classical World’. The Quantum 

World is the world of which quantum mechanics is universally true. Consequently, 

quantum mechanics as a GT is universally applicable for modelling every single feature 

of that world. In other words, a set of quantum mechanics-associated STs can give us the 

complete understanding of that world. Obviously if you believe in the modelling power 

of quantum mechanics, you will try to envisage as many features of the real world as 

possible in terms of their corresponding features of the Quantum World. But you can 

succeed in doing so only by constructing quantum mechanics-associated STs for one 

feature after another. And each time you succeed, you will identify that particular feature 

as quantum mechanical. So the identification of a feature in the world is done by a ST 

step by step, and never by a GT in a single stroke.

Here is a rough criterion for distinguishing a ST from a GT. A ST, unlike a GT, is usually 

taken to be a theory of something; that is to say, a ST specifies its target 

object/phenomena more or less clearly. The target phenomenon itself could be a complex 

one such as all known properties of metals. However, although the final dream theory of 

metals could be postulated as a motivational ideal for the research, most of CMP models 

have only a few target features that physicists want to understand. If a particular model 

turns out to be so good that it can explain other features that were not originally targeted 

in the model-building stage, then that is very well. But it is often the case that the very 

‘targeting’ of particular phenomena in the model-building stage restricts the validity of 

the model in other phenomena, as I will argue in chapter 3.

Now I reply to some possible doubts about the usefulness of my distinction. One might 

think that my distinction makes difference in ‘degree’ into difference in ‘kind’. Surely, if 

someone believes that, say, quantum mechanics gives us the complete representation of 

the world, then quantum mechanics becomes just a ST, but a very general one that has its 

target phenomena as all the phenomena of the world. I disagree. The main reason comes 

from the following two considerations. The first comes from looking closely at how GTs

14) According to Hughes, a theoretical explanation of a phenomenon is obtained (1) if  it is given by an 
‘acceptable’ theory and (2) if the representation offered by the models of the theory is ‘adequate’, which
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are used in CMP. A GT provides a framework to set up the initial description of target 

phenomena, heuristics for picking up the set of candidate models, worked-out examples 

of successful applications of its models and standard way-outs when the researcher meets 

difficulties in working with the chosen model. In other words, a GT functions very much 

as methodology, in its original sense of ‘the system of methods and principles used in a 

particular discipline’.15 As a methodology, the semantic content of a GT is intrinsically 

indeterminate. Figuratively speaking, a GT rarely says anything definite about the world 

by itself. Of course it says various things through its ST on various aspects of the world, 

but only through them.

My second consideration is about how exactly physicists employ a GT in order to 

produce a ST. They do not necessarily use one GT in one ST: mixing GTs and 

hybridising different principles from different methodologies are common features of 

modelling in CMP.16 On the other hand, it is rare that they mix or hybridise different STs. 

Physicists may be instrumentalists in the sense that they want above all things models 

that work. But, unlike engineers, they are rarely mere instrumentalists about their models. 

If they believe for instance that the Bloch model of electrons in metal somehow captures 

the essence of electron physics in metallic phenomena, they do not hybridise the Bloch 

model with another model. Rather, they usually try to improve it by refining it, adding 

more realistic interactions or loosening unrealistic assumptions. This practice is easily 

understandable when we take GTs as model-building methodologies, and ST as our 

intended representations of target phenomena.

1.3 Model-Building Methodologies: Clarifications and Philosophical Implications

The essence of depicting a GT as a model-building methodology is to highlight how a GT 

guides the model-building process. Especially, how each GT provides us with a set of 

‘autonomous’ principles with which we can look at the world in one particular way and 

build a model for certain features of it. Autonomous principles of a GT are not strictly

again means the models offer us explanation and understanding of the phenomenon. See Hughes 1993.
15) Collins Concise Dictionary, Fourth Edition 1999
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reducible to another GT, and are also usually independent of each other within the GT. 

Taking the thermodynamic limit procedure is one notable example of these autonomous 

principles of thermodynamics. As we will see in chapter 2, you cannot justify this 

procedure by any other GT including an obvious candidate, statistical mechanics. You 

can give certain explanations why this procedure is ‘reasonable’ to follow only if you 

accept the framework of thermodynamics as your model-building guide. Still, this 

procedure is an essential element of every thermodynamic modelling of many-body 

phenomena in the world. Virtually every quantity in a typical thermodynamic model is 

obtained through this procedure. The procedure is in a way a method of turning what you 

can measure in real systems into the kind of quantities thermodynamics can deal with.

There is a long tradition in philosophy of science of talking about methodology in 

relation to theory change or choice, especially rational theory change or choice. All the 

important methodologists including Lakatos and Kuhn start their discussion of 

methodology considering a series of theories in the same research program (paradigm), 

or the temporal development of a theory through cumulative change or ‘revolutionary’ 

change. Then they typically ask questions like how we can decide one series of theories is 

better than another series of theories or how we can make sure the change a theory might 

experience through its development is rational or justifiable.17 In short they are interested 

in how to evaluate rationally a given theory with respect to its competing theories, that is 

in the methodology of (rational) theory appraisal.

My interests in methodology start from modelling: how to build a model using a set of 

resources. That is to say, my methodology is the methodology of model-building. I am 

particularly interested in how condensed matter physicists employ various resources in 

order to build a model of many-body phenomena and try to understand the phenomena 

through the model. A GT is one of the prime components among these resources, and 

functions as a methodology of model-building.18

16) Wise and Brock 1998
17) Kuhn 1970, Lakatos 1978, and Lakatos and Musgrave 1970.
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Putting it this way, my sense of ‘methodology’ would seem to have little to do with the 

more traditional sense o f ‘methodology’. But in fact there are some significant 

interconnections between two. First of all, many of the basic objects of traditional 

discussions in methodology are more or less same as mine. I say ‘more or less’ because 

the basic objects of the traditional discussion of methodology are often only loosely 

characterised. For instance, in Lakatos’ research program, ‘theory’ can mean a very 

general one such as quantum mechanics or a more specific one such as Bohr’s theory of 

the atom. It is understandable why Lakatos opted for this loose usage because he was 

mainly interested in the long-term, temporal change of a theory. As long as he can talk 

about the rationality behind these changes, the entity of the changes can be anything. In 

other words, for Lakatos’ methodological discussions, the difference between a general 

theory and a more specific theory is insignificant and even irrelevant.

On the other hand, I need the distinction between GT and ST because I am mainly 

interested in the relatively short-term process of model-building. Here the different role 

of each type of theory is crucial. Still, although both a GT and a ST could be discussed in 

terms of Lakatosian research program, GT is more susceptible to that sort of discussion 

because it is more likely to develop more dynamically as new methods are appended to 

the existing set of methods.

The similarity between GT and Lakatos’ research program (or Kuhn’s paradigm for that 

matter) goes further. In Lakatos’ research program, the positive heuristics help 

practitioners to develop the research program in an empirically successful way. A GT 

does the same thing for model-building, providing helpful suggestions and wisdom. But I 

am also interested in the models themselves and they constitute STs. While the traditional 

discussion of methodology in philosophy of science tried to give us a large-scale dynamic 

picture of scientific theory change, my discussion of methodology is an attempt to offer a 

small-scale dynamic picture of model-building. A ‘static’ counterpart would be the 

picture of how physicists study their models and get what they want from it. That is the 

topic of the next section.

18) For other resources than GTs in model-building, see chapters 3 and 4.
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But before that, there are several philosophical implications of depicting GT as a 

methodology. As we regard GTs like thermodynamics or statistical mechanics as 

alternative methodologies, it becomes difficult to talk about reductions among them.

After all, the empirical content of a methodology is given by its associated STs, and thus 

not fixed at any given time. So if someone wants to claim that a general theory A reduces 

another general theory B, he has to show a sort of meta-theorem to the effect that 

anything which can be successfully dealt with by A can be also dealt with by B; or in 

other words, all potential A-associated STs can be deduced (or explained) by the set of all 

potential B-associated STs. This would be indeed a truly impressive task if only some 

could do it. But even without the proof of the impossibility of this meta-theorem, we can 

appreciate how difficult the task would be.

Or, one should be satisfied with a more modest reduction such that all currently available 

A-associated STs can be deduced (or explained) by the set of all currently available B- 

associated STs. This is certainly an easier task. But I will show in chapter 2 that for the 

case of thermodynamics and statistical mechanics, this modest task cannot be achieved. 

There are substantial parts of many-body phenomena that can be dealt with successfully 

by some TD-associated SP’s, but not by any ofpurely SM-associated SP’s.

Treating a GT as a methodology might be thought of as just one way of looking at 

scientific theories. In a sense that is true, but there is one prominent virtue in emphasising 

the methodological nature of a GT. We can discern more clearly the autonomous and 

independent motivations and research histories of different disciplines of physics. This 

emphasis prevents us from drawing wrong conclusions about theories in physics, 

especially the ones misled by the similarity of formal/mathematical structures from two 

intrinsically different research traditions. I will argue in chapter 5 that despite the 

important mathematical connections in their formalism, the renormalization group 

methods in CMP are motivationally and conceptually quite different from those in 

quantum field theory.
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But this point is more general: the mathematical structure of a GT is an important 

component, but it tends to obscure the crucial methodological differences between 

different GTs. Still methodological differences between GTs makes a big difference in 

their associated STs, and consequently our representation of the world. For instance, even 

though you could succeed in accommodating classical mechanics within an elaborated 

Hilbert space formalism (or quantum mechanics into a generalised Hamiltonian 

formalism), that would not mean that you have found a way of converting all classical 

models into quantum models (or vice versa). The know-how of model-building is unique 

to each GT, so you would need more than a transformation (from one mathematical 

formalism to another) in order to do the trick.

1.4 The Nature of Model-Based Understanding

I argued in section 1.2 that STs have ‘representational’ value in contrast to GTs. Exactly 

what kind of representational value a ST can have however is not an easy question to 

answer. Many authors have pointed out again and again the ‘unrealistic’ character of 

models: simplified structures, omission of significant causal mechanisms and so forth. 

Then what can we expect to learn from highly idealised theories? I claim that what we 

can get from substantial theories is model-based understanding. Before I explain what 

constitutes model-based understanding, we need a short preliminary discussion.

Understanding an object by the help of another object is an epistemic-subject relative 

notion. For instance Finns can understand their history from their history books, but I 

cannot as I do not have relevant epistemic capacities, in this case the familiarity with 

Finnish. Likewise, model-based understanding should be epistemic-subject relative. So 

we may not get understanding of, say, a phenomenon of boiling water when we have the 

ultimate (presumably messy and detailed) complete description of the phenomenon.

Some form of artificial intelligence, if we are willing to accept that they have their sort of 

‘understanding’, may understand boiling water out of this description. But who cares? 

What is important to us is some theory or models by which we as educated people can 

understand a given phenomenon.
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So when we want some criteria that tell us when we have model-based understanding, the 

criteria should take into account certain built-in human capacities as well as a reasonable 

training in contemporary science way of looking at the world. Now let us consider 

possible candidates for the criteria. One obvious choice would be ‘empirical adequacy’.19 

So one might say we get model-based understanding if the model of interest is empirical 

adequate. There is no doubt that empirically adequate models are highly regarded among 

condensed matter physicists. But empirical adequacy is usually taken to be an extra virtue 

of a model, which is not considered a necessary feature of model-based understanding. 

For instance, it is quite common in a theory of phase transitions that one feels legitimate 

to say that she understands a phenomenon by a particular model when the model gets the 

qualitative features of the phenomenon right, which are regarded as the essential physics 

of the phenomenon. On the other hand, even when we have a fantastic predictive success 

by a model, physicists usually hesitate to claim they understand the phenomenon without 

understanding the model itself.20 When the model under consideration is too artificial, 

until someone figures out an ingenious interpretation of it that makes the physical content 

of physics more or less ‘transparent’ to the physicists community, physicists will not say 

they have model-based understanding with respect to that model. I will talk about more 

about the significance of interpretation in characterising models in chapter 3, but it is safe 

to say that model-based understanding does not necessarily presuppose empirical 

adequacy, at leas in Van Fraassen’s rather strong sense o f ‘empirical adequacy’.

How about instrumental utility? Hacking’s epistemologically demanding version of 

instrumental utility relates the reality of an entity to our ability to produce a new effect 

using that entity.21 Or more modestly, we generally value novel predictions as a virtue of 

a theory. Should we perhaps require a condition for model-based understanding in a 

similar spirit? So we might suggest that we get model-based understanding if we can 

produce a new, otherwise unexpected, effect thanks to the model of interest. Certainly

19) Van Fraassen 1980
20) Physicists usually refuse to take seriously the Gaussian model despite its excellent empirical adequacy 

in its high temperature limit because they think that the interactions of the model is ‘unphysical’ and 
that the model becomes ‘meaningless’ (not just empirically inadequate) in the low temperatures.
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producing a new effect using a disputed model helps a relevant physicists community to 

accept the model. For instance, there are several models in the theory of phase transitions 

that have risen up from a mere candidate mechanism of possible phase transitions to our 

best representation of a particular phase transition, mainly due to their prediction of

certain unexpected effects. The growing interests in the Kosterlitz-Thousless transition
00model has been driven by its novel predictions of non-universal critical phenomena.

But, physicists would not claim model-based understanding, despite the impressive 

effects the model predicted, if they had not thought they understood the Kosterlitz- 

Thousless mechanism on the physical grounds first. So here again, model-based 

understanding presupposes our understanding of the model itself before evaluating how 

well it performs in explaining the phenomena in the world.

Hasok Chang’s suggestion is interesting in this respect. His topic is different from mine: 

it is about realism. He proposes the reformulation of realism as the pursuit of ontological 

plausibility in our system of knowledge. Ontological plausibility is conceived as a 

precondition for the intelligibility of a scientific theory under consideration. As a result, 

the kind of realism Chang defends facilitates the understanding of the world that goes 

beyond mere description or prediction. He acknowledges the inherent difficulties in 

making objective judgements of ontological plausibility, but he suggests that they 

become manageable if we adhere to the most basic ontological principles: those 

principles that are regarded as essential features of reality in the relevant epistemic 

community.23

Here are a few examples of ontological principles that Chang discusses in the paper. (1) 

Principle of single value: a real physical property can have no more than one definite 

value in a given situation.24 (2) Principle o f ‘no miracle’: if there are regularities in 

nature, they cannot be suspended on isolated occasions to allow inexplicable happenings. 

(3) Principle of continuity: if the set-up (or cause) varies continuously, the outcome (or

21 ) Hacking 1983, pp. 262-275
22 ) Goldenfeld 1992, pp. 345-350
23) Chang forthcoming; also see Chang 1999 for related issues.
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effect) cannot change abruptly and discontinuously.25 Chang claims that the satisfaction 

of ontological principles is the basis of intelligibility in any account of reality; the denial 

of an ontological principle would strike us as nonsensical rather than false.

Translated into my discussion of models, Chang’s suggestion boils down to a 

methodological dictum: if you want to be this kind of a realist, you should try to make 

your models not only empirically successful but also consistent with basic ontological 

principles we value most in our science. Chang’s suggestion is illuminating not only 

because he forcefully claims that there should be more features for a theory/model other 

than empirical adequacy but also because he relates this extra virtue to the intelligibility 

of the model. For him an acceptable model should be intelligible to us by satisfying 

various ontological principles. If a model is empirically adequate, but not intelligible in 

this sense, according to Chang, we do not have a realistic belief about the model.

Something parallel goes on with model-based understanding. Throughout my discussions 

in this section, it becomes clear that we require the model under consideration to be 

understood (or intelligible) before we claim model-based understanding using the model. 

Here the understanding of a model typically consists of the following: figuring out at 

least one plausible (preferably realistic) physical mechanism for the model, determining 

the theoretical consequences of the model about its target phenomena and developing our 

physical intuitions about the model. A plausible physical mechanism for a model is given 

by what I call an ‘interpretative’ model: a concrete (physically possible) implementation 

of the abstract/mathematical structure of a given model, of which the physical 

constitutions are transparent enough to educated physicists.

In order to determine what the model implies about its target phenomena, we ‘explore’ 

the model using various mathematical techniques. One of the major purposes of this 

‘exploration’ is to identify what the true features of the model are; in other words, what

24) Chang discusses elsewhere how a French experimentalist Victor Regnault in the 1840s applied this 
principle to achieve an ontologically satisfactory way of determining temperatures. See Chang 2000.

25) Leibniz composed a devastating attack on Descartes’ physics relying on this principle. See Leibniz 
1985 [1692],

25



the model can do with and without additional assumptions that are not a part of the 

original structure of the model.27 Identifying these certainly helps us shape our physical 

intuitions about the model. We need however at least one successful application of the 

model in explaining a phenomenon in order to establish a set o f ‘canonical’ physical 

intuitions about the model. Physicists then use their physical intuitions when they try to 

devise alternative plausible physical mechanisms (interpretative models) for the model 

and explain different kinds of phenomena. Once physicists come up with a shared set of 

physical intuitions about a particular model, they could treat the model as if it were a real 

physical object (with some non-trivial features) like an automobile or a fax machine. 

They have stabilised expectations about the possible reactions of the model under certain 

parameter change, just as we know that we have to push certain buttons in the unique 

order in order to fax documents.

In order to illustrate these points, consider the #-state Potts model. The Potts model is a 

lattice model; that is to say, it consists of an abstract (infinite) ^-dimensional lattice with 

its only dynamic variables, ‘spins’, at each lattice point. Each spin, S,, can be in one of q 

different states (Si = 1, 2, 3, ... q). The interactions of the model are only between spins 

next to each other (nearest neighbourhood interactions) and given by the Kronecker delta 

function; that is, 5(Si, Sj) = 1 (if Sj = Sj), and 0 (otherwise).28

If we are given this mathematical structure only, we cannot claim that we ‘understand’ 

the Potts model. Of course there is one obvious sense in which we do understand the 

Potts model; that is we can imagine an abstract structure of an infinite lattice with certain 

entities and certain interactions among them. But that is rather uninteresting sort of 

understanding, at least to physicists. For instance, we have no idea, at this stage, what 

‘spins’ are intended to target, and we do not know what sort of physical interactions can 

implement this rather peculiar on-and-off type interactions between the spins. Moreover, 

it is not clear up to this point how we cash out the infinite size of the lattice, as we all 

know all physical objects CMP deals with are finite.

26) More discussions about interpretative models, see chapter 3.
27) More on the 'exploration’ of the models, see chapter 4.
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A number of interpretative models have been proposed for the Potts model, and some of 

them are quite successful. Here is one successful example. We can consider an 

interpretative model (with q = 2) where we model the magnetic moment of atoms in 

magnetic materials as ‘spin’, and their complicated electromagnetic interactions, as on- 

and-off interaction. This may look like a rather ‘unphysical’ interpretative model since 

we know that the interactions between magnetic materials are very messy. But it turns out 

that in many cases of ferromagnet, the crystal structure of the magnetic solid produces 

additional forces on the magnetic moments of the atoms which may produce alignment in 

a definite direction in space so that we can successfully model the interactions in the on- 

and-off style.29

Here we have a plausible physical mechanism of ferromagnet that provides a successful 

interpretative model for the Potts model. The combination of the interactions among 

atomic magnetic moment and of the effects of crystal field offers one physically plausible 

way of getting ferromagnetic phenomena. Equipped with this interpretative model, the 

Potts model becomes intelligible to us. We understand for instance that the on-and-off 

interactions of the Potts model can represent complex interactions under certain physical 

constraints. Also we learn from how temperature and the ground state is related in 

ferromagnet, the ‘canonical’ way of co-ordinating temperature and interactions in other 

interpretative models for the Potts model.30 That is to say, we develop a set of physical 

intuitions about the Potts model with which we can search for alternative physical 

mechanisms for the model in the future.

Here is another interpretative model for the Potts model (q —*■ 1 limit), which depicts an 

alternative physical mechanism. We take locations in space individuated by lattice points 

to be ‘spin’ and whether two neighbouring locations are connected or not, to be 

‘interactions’. Then the Potts model equipped with this interpretative model becomes a

28) Wu 1982
29) Thouless 1989
30) That is, you should model the physical interactions into the Potts model in such a way that all g-states 

are equally probable at the high temperature limit.
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model of so-called percolation phenomena such as the spreading of a ground water 

mound in a porous rock. The nature of the physical mechanism of percolation is 

probabilistic ‘transmission’ of a certain property (say, being electrically connected) 

across spatial regions (say, into four different directions in the two dimensional lattice 

case) under given physical constraints (say, the transmission probability is inversely 

proportional to the distance from a ‘seed’). Now we learn from our experience of the 

ferromagnetic interpretative model of the Potts model how to calculate the average 

strength of (spontaneous) magnetisation in a ferromagnet. We can rely on that experience 

and on the physical intuition developed from that experience to calculate some important 

quantities in this alternative interpretative model of the Potts model. For instance, the 

rough counterpart quantity of magnetisation in this model is the number of locally 

connected regions, separated from each other (‘clusters' ). So we can calculate how many 

clusters emerge on average at a given temperature and what the average size of those 

clusters is.

There are many cases in CMP where physicists hesitate to claim ‘understanding’ of a 

controversial phenomenon by a certain model despite the impressive empirical success of 

the model. Usually they are hesitant because they are not sure of the model itself. 

Sometimes the model is too outrageously unrealistic under the conventional 

interpretation; or sometimes they simply do not know what kind of physical mechanism a 

given highly abstract model represents. Unlike mathematical physicists, condensed 

matter physicists are not willing to say they understand the phenomena in these cases. In 

other words, in order to achieve model-based understanding, the successful employment 

of a model for explaining/predicting certain phenomena are not enough. We need the 

understanding of the model as well.

After we understand a model, we may employ the model to understand its target 

phenomena in the world. This is done by ‘matching’ one of the interpretative models of 

the model with the central features of the phenomena. The matching should be motivated 

(ideally both theoretically and empirically) in the sense that we have good reason to 

believe that the central features of the phenomena can be thought of as having more or
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less the same structure as postulated by the interpretative model. Citing the crystal field 

in a ferromagnet as a reason why the ‘spins’ of the Potts model can be a plausible 

representation of magnetic moment is a good example of this motivation.

When we see the ferromagnetic phenomena through a well-motivated interpretative 

model of the Potts model, we find that the central features of the ferromagnetic 

phenomena become ‘intelligible’. It is highly plausible to us that those phenomena can be 

produced by the physical mechanism proposed by the interpretative model because (1) 

we understand how we can obtain the counterpart of those phenomena from the Potts 

model with the appropriate interpretative model. (2) We know that the interpretative 

model is well motivated. In short the phenomena (through the Potts model) look 

physically sustainable in our world. Also when the matching is successful, we may be 

able to deduce various quantitative results out of the Potts model and see whether the 

model is empirically adequate as well. The positive answer from this empirical test will 

certainly raise our confidence that we genuinely have a model-based understanding of the 

phenomena, but the essence of our model-based understanding lies in the (qualitative) 

‘matching’ the well-motivated interpretative model with the phenomena.

Therefore I propose the two-stage process of model-based understanding, model-based 

understanding consists of two stages: (1) understanding of the model under consideration, 

and this involves, among other things, exploring its potential explanatory power using 

various mathematical techniques, figuring out various plausible physical mechanisms for 

it and cultivating our physical intuition about the model; (2) matching the phenomenon 

with a well-motivated interpretative model of the model. The empirical success and 

instrumental utility all play their roles in the evaluation of how successful the model is, 

but not the essential part of model-based understanding.

The significance of including stage (1) into our voyage towards model-based 

understanding is that the physical content of a typical physics model, even though it is 

painstakingly built with the guidance of GTs, is not transparent. We need to develop the 

‘canonical’ physical intuition about the model through, among other things, a number of
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well-motivated interpretative models. Until the model is understood, we cannot use it to 

represent the phenomena in the world. In this sense, a model that has not been fully 

explored or understood still remains in the realm of GT. It has no concrete 

representational message. Only if we understand the model and employ the model to 

understand (and preferably deduce quantitatively correct results about) its target 

phenomena with the help of its interpretative models, we can grant it representational 

value. But then the representational value is almost entirely with the successful 

interpretative models, rather than with the original model. So an abstract physics model 

can transform itself into a ST only in its concretised form, qualified by one of its 

interpretative models.

My aim of this chapter is to put model-building and model-based understanding as the 

central part of CMP research of macroscopic phenomena. The model-building process is 

mainly done under the methodological guidance of GPs with the help of all sorts of 

things including Chang’s ontological principles and empirical facts. And we now know 

that the main source of model-based understanding is a ST or a interpreted, successfully 

applied model with the help of its interpretative models. But then we realise that the 

model-exploration stage is an essential part of model-based understanding before turning 

them into a proper ST. So this is the full picture of how I see CMP research: model- 

building, model-exploring and model-based understanding. I’ll discuss more closely each 

issue in the following chapters.
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C h a p t e r  2  

T h e r m o d y n a m i c s  a n d  S t a t i s t i c a l  M e c h a n i c s : A l t e r n a t i v e  

M o d e l -B u i l d i n g  M e t h o d o l o g i e s  o f  C o n d e n s e d  M a t t e r  P h y s i c s

2.1 Introduction

Condensed matter physicists employ a number of resources in order to build models 

of many-body phenomena in the world and thereby to understand them. For instance, 

they may get an inspiration for a new model from newly available experimental data, 

or from a fresh look at an well-understood model. The original development of the 

Ising model as a simple model of ferromagnetic phenomena by Ising and Lenz can be 

regarded as an example of the first case.1 And employing the Ising model to represent 

the social segregation among different ethnic groups in big cities is a good example of 

the second case.2

Still, the role of general theories (GTs) in the model-building procedure is most 

prominent. This is not at all surprising given that GTs usually guide the entire 

procedure of model-construction. When we decide to model a certain phenomenon 

classically for instance (even when we know that the phenomenon is due ultimately to 

quantum mechanical effects), we are thereby committed to deploying a number of the 

well-established model-building methods and strategies of classical physics. To take a 

concrete example, suppose we want to model classically the metallic phenomena of a 

solid. We would follow what one might call the (classical) ‘analytic’ method, ‘Treat 

the motion of electrons as that of a classical particle influenced by different causal 

factors (external force given by any externally applied field, an internal force exerted 

by the other electrons, an internal force exerted by the ions, the contribution of 

collisions manifested as a ‘friction-like’ form and etc.)’. On the other hand, if we 

decide to model the same phenomena quantum mechanically, the model-building 

strategies we may follow will be different. I will talk more about the details of the 

different model-building strategies in the theory of metals in chapter 4. In this chapter

1 ) Brush 1983, pp. 233-243
2 ) Domb 1985
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I will concentrate on the general theories themselves: what the essence of a general 

theory is and how general theories work together or relate to each other.

Understandably, physicists are often quite opportunistic when they construct models. 

More specifically, it is not uncommon to employ more than one general theory in the 

construction of a model. The successful hybridisation of classical physics and 

quantum physics in the semi-classical models of various phenomena from electric 

conduction in a metal to quantum chaos is not an exception but rather a rule. What I 

hope to show in this chapter is that this opportunistic attitude is not just a temporary 

makeshift resulting from practical difficulties in real-time situations, but rather a 

proper way of doing research in CMP. Considering what physicists can gain from the 

cooperation between general theories in understanding many-body phenomena, they 

have a good reason to practise hybridisation in modelling.

More specifically I shall look at how condensed matter physicists use two of major 

general theories in CMP: thermodynamics (TD) and statistical mechanics (SM). With 

classical mechanics and quantum mechanics, TD and SM are employed most 

frequently in CMP models. Pick up any model from a standard textbook of CMP, or 

from research journals, and you are likely to find, either among the basic components 

of the model or during the theoretical investigation of it, one or another employment 

of well-established methods or strategies from TD or from SM.

For instance, almost always physicists start their theoretical description of a given 

phenomenon by defining it as either an 'equilibrium’ or a cnon-equilibrium’ 

phenomenon. So when they investigate the crystal structure of a metal as an 

equilibrium phenomenon, they are not denying that the metal will sooner or later 

undergo a certain non-equilibrium process and loose the rigid structure, in the short 

time scale due to microscopic fluctuations and in a longer time scale due to 

dissipation. When they talk about the crystal structure of a metal and picture it as a 

fixed geometric shape, they are rather saying that we are looking at a particular state 

(or time-scale) of a metal where the crystal structure is in ‘equilibrium’ enough. In 

order to investigate (or model) this particular aspect of a metal, they average out the 

small-time scale fluctuations and disregard the long-term dissipation effect. But things 

should change drastically, if they are interested in ‘non-equilibrium’ properties of a
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metal, say how dissipation occurs in a metal. Then they no longer treat the crystal 

structure as a fixed shape, but rather model it as for instance an elastic medium.

One of the lessons we may learn from the above example is a familiar one: we can 

model the same phenomenon in different ways (sometimes incompatibly different 

ways) depending on the target features of the phenomenon we particularly want to 

understand. I will discuss this point in more detail in chapter 3. Here I used the 

example to illustrate how ubiquitous the employment of TD (or SM) is in CMP 

modelling and how the choice of a general theory affects the model-construction 

procedure significantly.

Given the importance of a general theory as a model-building methodology in CMP 

and physicists’ tendency to employ more than one general theory in a single model 

the following question arises: how should we understand the relationship between 

more than one general theory employed in a single model? The traditional answer to 

this question is by the concept of reduction: one general theory (say, SM) reduces 

another general theory (say, TD). Then the use of two general theories in a single 

model may be taken to be innocuous because there is, in a certain fundamental sense, 

only one general theory used after all.

My thesis is that this way of understanding the relationship between GTs is 

unsatisfactory. In order to argue for my thesis in a more specific way, I shall discuss 

Lawrence Sklar’s sophisticated view on reduction of TD to SM. Although my 

interests in the relationship between different GTs are partially motivated by the 

‘hybridisation’ practise of physicists in modelling, my criticism of Sklar’s reduction 

will not be restricted to modelling, but general. My aim is to show why the concept of 

reduction is generally unfruitful in understanding the relationship between TD and 

SM. I will also argue that a better way of understanding the relationship is through 

alternative (modelling) methodologies. As TD and SM are two major GTs of CMP, 

by showing the fruitfulness in thinking of them as (model-building) methodologies, I 

hope to provide an additional supporting argument for my claims in chapter 1.

2.2 Sklar’s Reduction of Thermodynamics to Statistical Mechanics
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Lawrence Sklar in his recent book, Physics and Chance3, proposes a sophisticated 

account of reduction of thermodynamics (TD) to statistical mechanics (SM). He 

admits that it is hard to capture the complicated relationship between TD and SM by a 

simplistic general model of reduction. So he says, ‘One thing we shall not is that 

many important cases of alleged reduction seem to have such special features that 

none of the simpler general structural models can do them justice. ... the alleged 

reduction of thermodynamics to statistical mechanics is ... one of those cases where 

the more you explore the details of what actually goes on, the more convinced you 

become that no simple, general account of reduction can do justice to all the special 

cases in mind.’4

He discusses what he thinks is wrong with several traditional accounts of reduction in 

science including Nagel’s classical account of the reduction of TD to SM.5 He also 

acknowledges that in order to ‘derive’ TD’s theoretical results from SM, we need 

extra resources outside of SM, sometimes from observations and sometimes from the 

‘derived’ theory, TD, itself.6 Again he accepts that the reduced theory usually suffers 

changes through the reduction procedure. It is because ‘the very acting of reducing 

one theory to another usually leads us to find flaws in the reduced theory as it was 

originally formulated, and to look for an alternative to it better suited to the reduction 

procedure’.7 Despite all these concessions, he concludes that broadly reductive 

relations hold between TD and SM, although we need to be careful about exactly 

what reductive relations they are.

I shall argue that Sklar’s analysis of the alleged reduction of TD by SM is problematic 

in several respects. More specifically I will consider a few counterexamples to show 

that none of what Sklar takes to be the central features of progressive reduction in 

science holds in the case of thermodynamics and statistical mechanics. Then I will 

suggest the broader conclusion that a more useful way of understanding the 

relationship between TD and SM is as collaboration and competition among 

alternative methodologies rather than reduction of one theory to another.

3 ) Sklar 1993
4 ) Sklar 1993, p. 334
5 ) Sklar 1993, pp. 334-338
6 ) See his discussion of Krylov. Sklar 1993, pp. 369-73 and compare this with what Krylov himself 

claims in Krylov 1979.
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Three themes are prominent in Sklar’s view on reduction: unification, identification, 

and the importance of background reduction.

Unification. Sklar takes the progress of science to be ‘marked by the continual success 

of attempts to unify a greater and greater range of phenomena in more and more 

comprehensive theoretical schemes’8. One way of achieving this unification is 

reduction, with ‘the full range of phenomena handled by the reduced theory now 

being handled by the reducing theory’9.

Identification. Sklar contrasts two kinds of concepts-bridges between different 

theories: mere correlation and identification. For example, in the reduction of optics 

by classical electrodynamics, we can say either that each electromagnetic wave is 

accompanied by a light wave, or that light waves are nothing but electromagnetic 

waves. According to Sklar, in the first case we will wonder about the reason for these 

associations and consequently seek some explanation of them. On the other hand, the 

second case does not call for explanation. Sklar sees reduction by identification as one 

of the ways of unifying our theories of the world. Naturally, he argues, theoretical 

identification should be preferred to identification in reduction.10

Finally, this identiflcatory reduction takes place in a background programme of 

reduction that aims for ‘the reduction of the theory of macroscopic matter to its micro­

constituents by the identification of the macroscopic entities as structured out of 

microscopic entities’11.

2.3 Unificatory Reduction of TD to SM?

One should be puzzled about the claim that SM unifies TD for it looks the other way 

around if we focus not on the principles of the two but rather on their concepts. What 

identiflcatory reduction boils down to in the case of TD and SM is finding out case- 

by-case SM’s equivalents of TD’s general concepts in every specific kind of

7 ) Sklar 1993, p. 339
8) Sklar 1993, p. 333
9) Ibid.
10) Sklar 1993, p. 340
11 ) Sklar 1993, p. 341
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thermodynamic system. For instance, TD’s temperature is identified with the average 

kinetic energy of molecules in a particular ideal-gas in a box, and with the some 

function of the energy density of photons for radiation in a particular cavity.12

It seems more faithful to the spirit of theoretical unification, then, to say that TD’s 

general concepts, such as temperature, ‘unify’ diverse SM manifestations across 

radically different systems. TD’s concepts have every characteristic that advocates for 

unification would long for: truly general concepts applicable for a whole range of 

phenomena, simple and clear relations among themselves, etc...

In response one might admit that there are ambiguities in the concept of theoretical 

unification. The kind of unification Sklar takes as progress in science is not just the 

minimisation of theoretical concepts while maximising the coverage of phenomena 

under those concepts. So rather the desirable unification should give us, roughly 

speaking, the more correct ontology of the world with a more accurate description of 

it. 13 After all Sklar believes that in unificatory reduction we often find the reduced 

theory flawed in one way or another, and in need of being corrected by the reduced 

theory.14 SM as a more correct theory should explain why TD is wrong in some of its 

results as well as why it is right in others.

So one way of cashing out the claim that SM unificatorily reduces TD is the 

following:

(1) SM gives us, if not ultimately accurate, more accurate descriptions

than TD.

(2) SM can correct shortcomings of TD, but not vice versa.

12) Notice here that we are not making just token-token identifications, but rather context-conditioned 
type-type identifications.

13) In fact Sklar clearly shows his preference for this kind of unification when he criticises Kemeny- 
Oppenheim’s systematicity approach in reduction which illustrates nicely the alternative concept of 
unificatory reduction as ‘less theoretical vocabulary with more observation data’. Cf, Kemeny and 
Oppenheim 1956.

14) Sklar 1993, p. 339
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But, I will argue, SM is not always more accurate than TD as we will see in the 

following examples. Moreover it is in fact corrected by TD to describe certain 

phenomena as accurately as TD does.

In TD, pressure and temperature are intensive variables, not depending on the size of 

the system. This implies that they are independent of the shape of the system. On the 

other hand, internal energy and entropy are extensive variables, proportional to the 

size of the system. This implies that if we conceptually split a system up into two 

parts, total internal energy and entropy are just the sum of those parts. The truth of 

this distinction can be tested experimentally. As long as it is experimentally valid, SM 

should be able to reproduce the distinction if it is to be as accurate in this respect as 
TO 15

But SM’s treatment offinite systems cannot exactly reproduce the distinction.

Roughly speaking, TD’s distinction of intensive/extensive variables is tantamount to 

ignoring the surface effects; TD deals with only the bulk properties of its systems. But 

surface effects do contribute to the partition function of a finite system, and 

consequently to all SM quantities.

The way for SM to evade this difficulty is to consider infinite systems, to take the 

thermodynamic limit. Basically, the infinite size makes shape irrelevant for SM’s 

pressure. Similarly the infinite system with realistic16 interactions among its 

constituents makes SM’s entropy and internal energy truly extensive because the ratio 

of the summation of bulk interactions to that of surface interactions goes to zero in the 

thermodynamic limit. But surely real systems, however large they may be, are still 

finite. So here we have a clear case where TD ‘corrects’ SM so that SM can 

accommodate certain experimentally verified phenomena.

But one might argue that TD’s distinction of intensive/extensive variables is only 

approximately valid rather than exactly valid even in the systems which TD can 

successfully deal with. SM’s treatment of finite systems as finite is actually correct, 

but owing to the residual surface effects, too cumbersome to use in practice. That’s

15) See Griffiths 1972.
16 ) Mostly it means short-ranged.
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why we usually use the infinite system formalism of SM after taking the 

thermodynamic limit. The analogy here might be the case of Newtonian mechanics 

and the special theory of relativity. The mass of a moving object isn’t actually 

constant, but can be regarded as constant for most practical purposes provided the 

speed of the object is much slower than that of light. Likewise TD’s distinction of 

intensive/extensive variables is not exactly correct; nevertheless it is simple, versatile, 

and therefore worth keeping in SM.

Personally I do not think TD is approximately accurate in the sense that Newtonian 

mechanics is.17 But I shall not pursue this point for there is a case that looks hopeless 

to understand in terms o f ‘being approximately accurate’.

There are phase transitions around us: water boils to vapour, ferromagnets 

spontaneously align themselves along a certain axis, etc. TD has no intrinsic problem 

in dealing with these phenomena, but Yang and Lee showed in 1952 that no SM 

treatment offinite systems can have phase transitions. The introduction of infinite 

systems into SM is a necessary (but not sufficient) condition for describing phase 

transitions within the SM formalism.18 This has to do with the analyticity of SM’s 

partition function for finite systems; the abrupt phase-changes of a system are 

represented by SM as singularities of its partition function. But no partition function 

of a finite system can have these singularities; only infinite systems can.

The important point is that the difference here between infinite systems and finite 

systems is not just quantitative but qualitative: the (non)existence of phase transitions. 

Unlike the intensive/extensive variables case, SM of infinite systems cannot be 

regarded as an ‘approximately accurate’ substitute for the ‘accurate’ SM of finite 

systems. Moreover here ‘taking the thermodynamic limit’, despite its clear unrealistic 

posits, actually improves the accuracy of SM in describing phase transitions. And the 

addition of this procedure to SM is motivated and justified by TD. Clearly TD 

corrects SM again in the region where it is more accurate, not vice versa.

17) Unlike the Newtonian mechanics case, there is no well-defined approximation procedure taking us 
from statistical mechanics to thermodynamics. The surface effects generally do not smoothly vanish 
as the size of a system goes to infinity. Moreover the justification for ignoring surface effects in a 
given finite system is sensitive to the specifics of the system.

18) Yang and Lee 1952

38



Consequently the (desirable kind of) unificatory reduction of TD by SM is not 

attained. What we find in actual practice is mutual correction rather than uni­

directional unification.

2.4 The Case of Temperature: Reduction or Alternative Methodologies?

I shall use the case of temperature to illustrate the following theses (of course much 

more needs to be said to defend them in detail):

(TH1) Sklar’s analysis of temperature as an example of identiflcatory 

reduction is problematic.

(TH2) TD and SM are not theories at some particular level, but general 

methodologies.

(TH3) A better way to look at the relationship between TD and SM is 

to take them as alternative methodologies.

Sklar divides the temperature of SM into two kinds: first there are SM concepts which 

are correlated with TD temperature in each specific kind of individual system, such as 

temperature as the mean kinetic energy of molecules of a particular ideal-gas at a 

particular time. Then there are SM concepts applicable to ensembles such as a 

defining parameter of a canonical ensemble.19

Sklar admits that there are subtleties in relating these two kinds of SM temperature 

concepts, but I won’t discuss them. Nevertheless he does think that ‘insofar as it is

temperature as the instanced property of a particular system ... there seems nothing to

block a strict assertion o f the identity for that particular system with the appropriate 

microscopically characterised feature of it instanced at the same time’20. And he 

suggests the determinable-determinate relationship (such as colour-red) to be the right 

sort of relation for TD’s temperature and its corresponding microfeatures.

But it seems odd to say that the temperature of a certain gas-system, which is a 

property of the system, is ‘identical’ to the mean kinetic energy of gas molecules in 

the same way that light is identical to electromagnetic waves. After all temperature,

19 ) Sklar 1993, p. 351
20 ) Sklar 1993, p. 353, my italics.

39



whether it is used as a general theoretical term or as a more concrete one represented 

by individual thermometer readings, is not material stuff. And the literal identification 

of properties represented by concepts with different histories, different usages, and 

different measurement techniques takes a lot of metaphysical back-up before it 

becomes clearly intelligible, let alone plausible. So why give up on the metaphysically 

less cumbersome claim that temperature is ‘correlated’ with the mean kinetic energy 

of gas molecules?

As we saw, Sklar emphasises that when we have correlation rather than identification 

we need to explain the correlation. Interestingly the above case of temperature is 

exactly like correlation in this respect. In order to make sense of what temperature 

means in a given concrete system, we have to find out the suitable ‘correlates’ of 

temperature in the system. This job is not done by just identifying certain plausible 

quantities in the system, but rather by setting a model of the correlation and 

explaining (or making intelligible) the correlation.

Let us consider the case of an ideal gas as an illustration. In order to find out the 

suitable ‘correlates’ of temperature, we set up a concrete model where one mole of a 

gas is confined in a rigid rectangular container. We consider the collisions between 

gas molecules and the container wall, and thereby the resulting pressure upon the 

wall. From this we can derive the explicit formula for the pressure,

where Px is the pressure exerted on the wall in the x-direction, p x, the x-component of 

the momentum of a gas molecule, n, the number of such molecules per unit volume. 

Then we can employ the standard statistical mechanics formalism to ‘correlate’ the 

quantities in the above summation with their ensemble averages. Employing these 

correlations, we get,

(2 .1)
x>0

(2 .2)
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where V is the volume of the system, <...>, the ensemble average, and the mean 

kinetic energy of the system. Then, here comes the final step. We recall another well- 

known correlation in thermodynamics, namely, Boyle-Charles’ law (PV = kT), which 

relates the pressure and volume of a system with its average temperature. Combining 

(2.2) and this correlation, we see that the temperature of a gas can be correlated with 

the mean kinetic energy of the gas system. When we want to take into account the 

interactions among gas molecules, we have to generalise (2.2). The result is the Virial 

theorem, relating the mean kinetic energy and the mean potential energy with 

temperature in a gas with interactions.21 As we have seen, we explain why 

temperature is correlated with the mean kinetic energy of the molecules in the gas- 

system by setting up a concrete model. We don’t just identify them with each other.

Consider another case: the temperature of radiation in a cavity. Here, temperature is 

correlated with the pressure in a different way.22 Then, should we say, following 

Sklar, that the temperature is ‘identical’ to the fourth order root of the energy density 

over a constant? Certainly that would sound absurd. On the other hand, as soon as we 

start to think in terms o f ‘correlation’, this absurdity disappears. In fact, the 

correlation between the temperature of radiation in a cavity and the pressure of 

radiation can be explained again by setting up a concrete model of a radiation system. 

And here the famous Stefan-Boltzmann law plays an important role in correlating 

these two quantities.23 The absurdity of simple identification emerges again more
94clearly if we remember that in this system pressure is a third of energy density . Then 

should we say that temperature in the radiation-system is somehow ‘identical’ to 

suitably modified pressure?25 Certainly temperature being functionally ‘correlated’ 

with pressure is more natural.

Still it is true that we have an intuition that molecular kinetic energy has more than 

mere correlation to do with temperature in a gas-system. I guess the idea behind this 

intuition is that gas-molecules in an ideal gas are somehow ‘responsible’ for its 

temperature reading as well as for its pressure reading. Similarly we can say photons

21 ) Toda, Kubo and Saito 1983, pp. 12-17
22) T= {u/jB)v\  where T is temperature, u, the energy density of radiation, and J3, a constant.
23) Toda, Kubo and Saito 1983, pp. 74-78
24) P = u/3, where P is pressure.
25) T= {3P/j3)xl4
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in a radiation system are responsible for its temperature and pressure readings. It will 

be interesting to clarify what this ‘responsible’ means. But identification seems the 

wrong approach. Rather they are more or less (causal) correlations.

Even Sklar himself is not very consistent about this point. In one place he talks about
• • 26  •‘the microscopic feature of the system associated with its temperature’ . Yet in

another, he says ‘the appropriate microscopic feature of the system with which to

identify temperature’27.

In order to understand the complicated relations between various concepts of 

temperature, I suggest we distinguish four different concepts of temperature.

TD-temperaturei: TD’s theoretical concept, absolute temperature 

related to the efficiency of an ideal heat engine28 

TD-temperature2 : TD’s phenomenological concept, thermometer 

reading of an equilibrium system 

SM-temperaturei: SM’s theoretical concept, the derivative of internal 

energy by entropy, or physically speaking, the tendency- 

parameter of change of internal energy with respect to the 

number of accessible states 

SM-temperature2 : manifestations of SM-temperaturei in an individual 

system

The determinable/determinate relationship might hold between TD-temperaturei and 

TD-temperature2 , and/or SM-temperaturei and SM-temperature2 . For a sort of 

generic/specific relation holds in each pair. Historically, TD-temperaturei was chosen 

among infinitely many absolute temperatures in such a way that TD-temperature2 as 

measured on the Celsius scale could approximate it.29 And, when we try to find SM- 

temperature2 in a SM system, we use our physical intuition based on SM-temperaturei 

to think hard to find what the manifestation of this abstract concept in this particular

26) Sklar, Op. cit., p. 352, my italics.
27) Ibid., p. 353, my italics.
28) e = 1 -  Ti /  T2, where e is the maximum efficiency of an ideal heat engine operating between 

absolute temperatures Tj and T2.
29) Ter Harr and Wergeland 1966, pp. 20-3.
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system could be. Still it is not similar to colour; for instance, a single system can 

manifest several kinds of SM-temperature2 simultaneously (consider a system of a gas 

and electromagnetic radiation being in equilibrium with each other), while this is not 

possible for colours.

But the relation never holds between TD-temperaturei and SM-temperature2 . The 

generic/specific relations do not hold for them because we do not use our intuition of 

the efficiency of an ideal heat engine to find the SM-temperature2 in a concrete 

system. The correct relation between TD-temperaturei and SM-temperature2 is 

correlation rather than identification. This correlation is obtained in more than one 

ways. Either we correlate TD-temperaturei with SM-temperaturei on the theoretical 

level, and using the correlation between SM-temperaturei and SM-temperature2 in 

order to get the correlation between TD-temperaturei and SM-temperature2 . Or you 

may try to correlate directly SM-temperature2 with TD-temperature2 in a given 

concrete system first, and thereby establish indirect correlation between TD- 

temperaturei and SM-temperature2 in that system. In fact this direct correlation 

between two concrete temperature concepts can be used to calibrate SM-temperature2 

in a familiar system using pre-established TD-temperature2 . This calibration is 

instrumental for SM to be operationalised.

Whatever path we may take, the correlation may not be found for some cases because 

it is not always possible to define the two theoretical temperatures in a given physical 

system. There are cases such as near-equilibrium chemical interactions where you can 

define thermodynamic temperatures but not statistical mechanical temperatures. We 

can define TD-temperaturei in those situations as long as we can make sense of local 

equilibrium and of local entropy production. On the other hand, the number of
30accessible states is not well defined in this collection of open, localised sub-systems. 

Consequently, SM-temperaturei is not well defined. There are cases such as (highly) 

non-equilibrium phenomena where the number of accessible states is unambiguously 

defined. In these cases, SM-temperaturei is well defined and clearly intelligible, but 

not TD-temperaturei.

30) Kondepudi and Prigogine 1998
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These observations point to a more general fact: TD-temperaturei and SM- 

temperaturei belong to two conceptually alternative theoretical schemes. In each 

scheme, they guide us to find the concrete counterparts of themselves in individual 

systems, namely TD-temperature2 and SM-temperature2 . This point is illustrated by 

another example Sklar calls ‘concept-extension’: the negative temperature. TD- 

temperaturei cannot be negative for efficiency cannot be over 100%. But SM- 

temperaturei can be negative since in some, (highly) non-equilibrium stationary, two- 

level spin systems, you can make more ordered states by putting more energy into the 

system.31 There is nothing fancy about SM’s negative temperature because it naturally 

follows the definition of SM-temperaturei. There is no shame about TD’s non­

negative temperature because as an equilibrium concept, TD-temperaturei cannot be 

applied to highly non-equilibrium situations.32 Each concept is valid under its own 

prescribed conditions. SM-temperaturei is an alternative to, rather than an extension 

of, TD-temperaturei.

2.5 TD and SM: Alternative, Competing Methodologies of CMP

In fact physicists use TD and SM as two distinct, not necessarily incompatible, ways 

of doing physics: two alternative methodologies. This is surely a part of the account 

of why TD and SM do not fit into the usual object-specific classification of physics, 

including atomic physics, condensed matter physics, laser physics.

As methodologies, models of TD and SM are widely used across these fields provided 

the interpretation of the models is satisfactory. What TD and SM amount to in 

specific applications critically depends on which interpretation the model under 

consideration assumes. Many philosophers tend to think of TD as a macroscopic 

theory and of SM as a microscopic theory. But this is not correct. Many models in SM 

are interpreted in dramatically diverse ways. For instance, the ‘spin’ of the Ising-Lenz 

model is interpreted as a microscopic portion of a ferromagnet, or as a macromolecule 

of haemoglobin, or as lots of other things. Moreover all of these interpretations, as 

long as they are successful, are equally legitimate. There is no single correct 

interpretation of ‘spin’. Consequently, models of SM are not microscopic but usually 

abstract: their contents are determined only through their applications (or

31 ) Toda, Kubo and Saito 1983, p. 40
32) Although it can be applied to near equilibrium phenomena when generalised.

44



interpretative models).33 There is no reason why SM should always have microscopic 

interpretative models. Rather SM is a general methodology with lots of abstract 

models that can be applied to explain various levels of phenomena.

On the other hand, TD is not macroscopic, but rather phenomenological in the sense 

that it starts with certain fundamental postulates the validity of which can be 

ascertained only by examining the phenomenon under consideration. The distinction 

of intensive/extensive variables in equilibrium TD is a good example. So is the 

extension of this distinction in non-equilibrium TD. The starting point of non­

equilibrium TD is to assume that ‘local equilibrium’ is established in the system, 

which requires intensive variables of equilibrium TD to be variables of positions and 

time, and extensive variables, density-like quantities.34 Roughly speaking, this 

assumption is tantamount to postulating the validity of a hydrodynamic treatment, the 

existence of smoothly-varying quantities averaged over microscopically large but 

macroscopically small regions of the system.

These observations point to the conclusion that TD and SM are not theories at some 

fixed level, but general methodologies. They often collaborate, as in the proof of the 

existence of phase transitions in the two-dimensional Ising-Lenz model35, or compete, 

as in the early theory of superfluidity.36 The relationship between TD and SM is more 

usefully understood as fruitful interactions between alternative methodologies rather 

than of one reducing the other.

Perhaps that is why Sklar emphasises the importance of background reduction: it can 

make the otherwise separate TD and SM talk about the same objects, ‘macroscopic, 

but microscopically structured’. Still his reduction fails because TD and SM per se are 

neither microscopic nor macroscopic. But, one might hope to ‘reduce’ all models of 

TD macroscopically interpreted by certain models of SM microscopically interpreted.

I want to point out though that this ‘stretched’ sense of reduction cannot be

33) I discuss this point at length in my “Models in Condensed Matter Physics”, MS.
34) See Kondepudi and Prigogine 1998, chapters 15 and 16.
35) Peierls in 1936, based on thermodynamic stability considerations, showed that there exists a phase 

transition at T^O in the two-dimensional Ising-Lenz model. Then Griffiths in 1964 proved it in a 
SM rigorous way.

36) The competition between Tisza’s two-fluid model (TD approach) and Landau’s elementary 
excitation model (SM approach) is documented in Hoddeson et al 1992.
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guaranteed merely by hopes for the background reduction programme. It is a 

substantial question, and therefore should be carefully examined with respect to 

concrete examples 37 No matter what the verdict is, however, it is a separate issue 

from my point that TD and SM as such are alternative methodologies.

37 For instance, with respect to the examples in condensed matter physics, or theory of chemical 
reactions.
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C h a p t e r  3  

M o d e l s  in  C o n d e n s e d  M a t t e r  P h y s i c s

3.1 Introduction

In chapter 1 ,1 argue that model-based understanding should be understood as a two-stage 

process: understanding of a model and understanding of its target phenomenon through 

an interpretative model of the model. In this chapter we will see how physicists attach a 

number of interpretative models to a given abstract model in order to understand a wide 

range of phenomena. Or they might opt for a single interpretative model for a given CMP 

model, and take the model-plus-interpretative model as our canonical representation of a 

particular phenomenon; to put it using a terminology of chapter 1, the model-plus- 

interpretative model complex becomes one of our substantial theories. I discuss in 

chapter 2 the competition and the collaboration between two different methodologies in 

CMP. In this chapter we will see with more concrete examples how physicists combine 

different methodologies, or more generally incongruent model-building components from 

different sources, to achieve a consistent and unified model-based understanding of the 

world.

I shall introduce several types of models in CMP in order to investigate the following two 

issues: (1) how model-based understanding is actually obtained. (2) how model-building 

is governed by methodologies or by the cooperation of several methodologies at the same 

time.

The essence of my answer to (1) in chapter 1 was that model-based understanding is 

obtained through the understanding of the model itself and through its interpretative 

models. In order to see more clearly the implications of this simple answer, I shall 

introduce two model-types: free models and entrenched models. The distinction between 

these two model-types is based on the relationship between the intrinsically 

abstract/formal structure of a typical CMP model on the one hand and its interpretative
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models on the other. We shall see that the difference in this relationship brings about the 

difference in the kind of model-based undrstanding we can get from each model-type.

As I briefly mention in chapter 2, physicists often feel free to combine different resources 

in a single model. They may use more than one general theory or more than one level of 

descriptions. In order to see the fruitfulness of this ‘hybridisation’ in the CMP modelling,

I shall introduce another set of model-types: pure models and hybrid models. This 

distinction is based on the constitution of the building-blocks of a model. We will see in 

my discussion of these model-types that, despite widespread belief in the virtue of 

universal explanation, the ‘hybridisation’ modelling strategy is essential for the consistent 

and complete understanding of the many-body phenomena.

I need to make some preliminary remarks about models of CMP in general before I get 

into the discussion of my classification. First, I should mention that the following 

classification is not meant to be exhaustive. After all, CMP is a quite large research field 

in both its topics and its methods. It comprises many types of theoretical modelling about 

all sorts of phenomena, materials, and interactions. We should not expect that a few kinds 

of model-types cover all these variegated activities. Nevertheless I claim that the 

substantial part of condensed matter physics modelling can be characterized by 

aforementioned two sets of model-types: free versus entrenched models and pure versus 

hybrid models.

In the following discussion most of examples of each model-type will be chosen from a 

particular research field of CMP, namely the theory of phase transitions. This choice is 

not accidental: to compare the theoretical virtue of pure models to that of hybrid models 

in the same field will help us clearly see the distinct features of each model-type. 

Moreover the spectacular critical behavior which many-body systems show during phase 

transitions are arguably the representative phenomena of CMP. CMP can be 

characterized as ‘many-body physics with strong interactions among a huge number of 

entities’ as many condensed matter physicists themselves often put it.1 Phase transitions

1 ) For instance, see Anderson 1983, or Leggett 1985.
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are possible only from the complicated and coordinated interactions among a really huge 

number of entities in (relatively) condensed states; they are results of unique ‘many- 

body’ effects in CMP. If we have some specific types of models that turn out to be 

successful in dealing with phase transitions, we have good reason to expect that the 

model-types will cover a lot of modellings in other areas of CMP. That explains why I 

choose most of my examples from the theory of phase transitions.

Even when I illustrate my points about models in CMP using examples from the theory 

of phase transitions, this should not taken to indicate that these model-types are 

applicable only to this particular research area. It does apply to many other areas in CMP 

although you can find a kind of correlation between research topics and types of model. 

For example, pure models are dominant in theories of phase transition, while hybrid 

models, more common in kinetic theory. There are some good reasons for these 

correlations and I will come back to it later.

3.2 The Role of the Interpretative Model: Free and Entrenched Models

I now propose the following distinction among CMP models based on the relationship of 

a given model with its interpretative models.

• A free model is associated with an abstract Hamiltonian that has the representations 

of the basic uninterpreted entities of the model and of the primitive interactions 

between them. Or, to put it differently, the relationship between a free model and its 

interpretative models is rather loose; there are usually many legitimate (and often 

successful) interpretative models for a single free model. In this sense, a free model is 

free in its relationship with interpretative models.

• An entrenched model is associated with a relatively intuitive Hamiltonian that has the 

representations of the basic canonically-interpreted entities of the model and of the 

canonically-understood interactions between them. Or again, to put it differently, the 

relationship between an entrenched model and its interpretative model is relatively 

tight; there is a historically well-rooted (and proved to be successful) interpretative 

model to a given entrenched model. In this sense, an entrenched model is entrenched 

in its relationship with its single interpretative model.
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To say Hamiltonians of free models are abstract is not just to point out that they are 

written in a highly mathematised form and as a result we have no clear concrete intuition 

about them. In that sense, every Hamiltonian, arguably, turns out to be abstract. The 

additional abstract aspect of the Hamiltonians of free models is that they have no 

uniquely legitimate interpretative model. In other words, there is no point in talking about 

the canonical ‘picture’ that a given free model tells about the world. Usually a free model 

is associated with many different (even incompatible) but equally ‘good’ concrete 

representations of various phenomena.

On the other hand, the ‘relative intuitiveness’ of the Hamiltonian of an entrenched model 

does not mean that anybody can understand it without any difficulty. Rather, it means 

that the each term of the Hamiltonian of an entrenched model is usually associated with 

well-known canonical interpretations so that physicists share more-or-less fixed physical 

intuitions about the model. Consequently, an entrenched model tends to have only one 

legitimate interpretative model and concerns a single phenomenon in the world.

The basic entities of a free model are utterly uninterpreted. For instance, a widely used 

term, ‘spin’ as a name for the basic entities of many free models does not have any 

intrinsic connection with well-known quantum mechanical spins. (That is why I am using 

scare quotes around it.) To take a specific example, ‘spins’ in the Heisenberg model can 

be either classical or quantum depending on how many degrees of freedom we may set 

for them in a particular interpretation.2

The ‘spins’ in the free models of CMP are generally interpreted as a kind of coarse­

grained variable that is obtained from some averaging procedure over macroscopically 

few but microscopically many degrees of freedom in many-body systems. This is correct 

as long as such an averaging procedure is relevant and makes sense in that particular 

physical system. But, still, how to understand ‘spin’ in each concrete physical system is a 

non-trivial task and is not specified by giving just a free model. It is the role of

2 ) Rushbrooke, Baker Jr. and Wood 1974.

50



satisfactory context-specific interpretative models to provide for its free model the recipe 

for correctly identifying ‘spins’ in each physical system.

I am not denying that in some cases the inventor of a certain free model can have in her 

mind some particular microscopic picture to represent by the model. Lenz and Ising 

seemed to have a sort of quantum mechanical picture o f ‘spins’ in their Ising-Lenz 

model.3 One could say that the Ising model has experienced a transition from being an 

entrenched model to a free model. But this fact, although historically significant, cannot 

be an intrinsic feature of the Ising model4 for we can see nothing in the model (at least in 

its present rendition), apart from by fla t, which prohibits us from having alternative 

readings o f ‘spins’. In fact, as we will see in chapter 5, the real power of free models 

comes from the fact that the same abstract model can represent more than one physical 

system having drastically different microscopic pictures as long as we can equip it with 

corresponding, ‘successful’ interpretative models. That is why I claim that there is no 

unique ‘correct’ interpretative model for a free model.

Primitive interactions in a free model are again uninterpreted. Interaction-terms in the 

Hamiltonian of a free model are fully specified by three factors: entities involved in 

interactions, range of interactions, form of interactions or interaction strength. Now 

entities are uninterpreted in the way I explained before, and range and form of 

interactions are usually ‘artificial’ enough to allow no handy identification with either so- 

called fundamental interactions or familiar forms of phenomenological interactions such 

as the harmonic potential.

In many free models, the most commonly adopted interpretation of interactions is 

electromagnetic interactions. Nevertheless this does not mean that electromagnetic 

interactions offer the most natural interpretation of any given free model. Often we can 

represent by the same model Pauli’s exclusion principle, gravitational force, osmotic

3) See Brush 1967.
4) I will follow the physicists’ convention to call this model just the Ising model rather than the Lenz-Ising 

model, although the latter is historically more appropriate.
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pressure, etc. if we have suitable interpretative models.5 If we recall the characteristics of 

the Potts model discussed in chapter 1, we can see now that it is a free model.

Moreover even in the case where some ‘rough’ identification of primitive interactions 

with electromagnetic interactions is acceptable, the match is indeed rough, actually too 

rough to be regarded as the original ‘electromagnetic interactions between electrons and 

atoms’ in the form of a Coulomb force. Usually the range of interactions is delimited, 

such as ‘nearest-neighbour interactions’ or ‘next nearest-neighbour interactions’, to make 

interactions short-ranged, while it is a well-known fact that the long-range nature of the 

Coulomb force renders its theoretical treatment much more difficult.

On the other hand, the canonical interpretations of the entities and of the interactions of 

an entrenched model are usually agreed on among physicists. Unlike free models, an 

entrenched model starts from a more or less familiar Hamiltonian that seems to give us a 

reasonable microscopic description of the system. It is usually written in terms of so- 

called fundamental interactions (in other words, using some familiar interpretative 

models) among less abstract entities than those of free models.

For instance, when you write the Hamiltonian for the Bloch model6, each term of the 

model represents four main contributions to the metallic phenomena in a solid: free- 

electron part, free-ion part, electron-electron interactions part, electron-ions interaction 

part. Although we need lots of idealisations in order to build this model and to get useful 

results out of it, the identification of each term in the Hamiltonian is taken to be non­

problematic. Also physicists have developed a set of well-established physical intuitions 

about the Bloch model as a model of metallic phenomena. Consequently the tie between 

the Bloch model and its interpretative model for metallic phenomena has been so tightly 

made now that it is difficult to distinguish one from the other in the standard presentation 

of the Bloch model. So the Bloch model is an entrenched model.

5) See Fisher 1981
6) For more on this model, see chapter 4.
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In this sense, each entrenched model has a ‘rough’ identification of its entities and 

interactions built into it. Why do I call it a ‘rough’ identification? It is because the 

intended interpretations of entrenched models are not aimed at picking up a unique entity 

or the exact form of interactions, but rather at restricting more tightly than the implicit 

conditions of free models do what could be the proper target systems of a given 

entrenched model.

For instance, ‘particles’ in the classical fluid model, a very popular form of entrenched 

model dealing with liquid-vapor phase transitions, are typically idealised, employing the 

classical image of non-permeable point-particles. Nevertheless, this feature is not very 

significant after all, for what we are actually interested in the model is not particles 

themselves but some coarse-grained density function-like quantities averaged over 

certain regions of intermediate size, neither microscopic nor macroscopic. So there is a 

two-step idealisation here: first from complex real particles to idealised point-particles, 

then second from these point-particles to a fluid-description of them. This second step is 

a non-trivial idealisation because it requires the emergence of a well-defined density-like 

function out of point-particles that cannot be true except when we take the 

thermodynamic limit for the system.

Interactions in entrenched models look quite familiar and promising for an obvious 

interpretation such as electron-electron interactions. But still we need to fill in several 

restrictions to these interactions to get desirable results. These restrictions range from 

fairly reasonable ones, considering their physical implications, to highly ad-hoc ones 

chosen for mathematical convenience or formal simplicity. After imposing these 

restrictions, we have ‘stylised’ interactions with canonical interpretations.

Whether a free model or an entrenched model, there is an important aspect of CMP 

models that is seldom explicitly stated when physicists present them. These are implicit 

general descriptions about target systems. These descriptions are implicit because many 

physicists think that presenting a Hamiltonian is enough to fix a model. But they are 

integral parts of models because they constrain which physical system could be modelled
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by a given model. For instance, many free models in the theory of phase transition are 

supposed to be on some sort of underlying lattice with ‘spins’ fixed on each lattice point; 

the dynamics of the model is exhausted by changes o f ‘spin’-values. This fact cannot be 

read off from the Hamiltonian of a free model.

Now all quantities in which we are interested from this dynamics are equilibrium 

quantities and this fact also assumes a lot of things: for instance, the existence of 

equilibrium quantities in the free model, the plausibility of the application of the free 

model in this physical system. Moreover how to characterise certain features of a free 

model is not determined by just presenting the Hamiltonian for it. For instance, in order 

to characterise how ‘ordered’ a system is, we have to find out a way of defining the order 

parameter in a given free model. But the formal structure of the model is rarely enough to 

determine the order parameter, and it should be supplied by the implicit descriptions of 

the free model. But order parameters may be the most important quantities in the theory 

of phase transition. Related to this, we need to have some general prescription for what 

would be the nature of ordered phase of a given free model. Usually to find out the nature 

of ordered phase is one of the most difficult problems of CMP except in a few trivial 

cases.7

The role of implicit description in an entrenched model is no less important than it is in a 

free model, if less conspicuous. For instance, many entrenched models in metallic 

phenomena implicitly require that the basic entities of their models (electrons and ions) 

will be confined within a metal, despite the collisions. Usually the implicit descriptions of 

an entrenched model are incorporated into physicists’ shared physical intuition about the 

model. More generally, the implicit descriptions of any model in CMP are incorporated 

into its context-specific interpretative models.

Now I shall discuss an example of free models, a general form o f ‘spin’-lattice models: 

the ‘spin-5 Heisenberg model’. Before presenting its Hamiltonian, I wish to make one 

important point clear: this model is a sort of post-hoc construction from various pre­

7) Anderson 1983
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existing ‘spin’-models. In other words, this model itself with its full generality has never 

been proposed in order to explain particular phenomena; rather it’s main purpose is to 

offer a general framework where already known free models can be discussed in a more 

systematic way.

“Spin-5Heisenberg model”: H = Z i < j  J i j Si.Sj + H Z iS i  (3.1)

Here the Hamiltonian, H , contains two terms. The first term represent spin-spin 

interactions with Si ( S j ) being the 7-th (j-th) vector-‘spin’ S in the m-dimensional lattice. 

Jij is the interaction strength between the /'-th ‘spin’ and they'-th ‘spin’ and the summation 

over all possible pairs avoids double counting by constraining the sum only for / < j  

cases. The second terms represent spin-external field interactions with H  being the 

external vector potential. Despite its similarity to the magnetic vector potential, the 

meaning of H  is not fixed. For example, if we adopt the lattice gas interpretative model of 

a particular form of the above model where ‘spins’ represent the occupancy (or vacancy) 

of a particle on the underlying lattice, H  becomes chemical potential.

The implicit description of target-systems of this model is the following: There is an 

infinite array of lattice points having spatial dimension, m, and on each lattice point, there 

are ‘spins’, the only dynamic variable of this model. The existence of a thermodynamic 

limit, or the existence of well-behaving thermodynamic quantities, is assumed, as well as 

the adequacy of an equilibrium treatment. What these assumptions amount to is that we 

are not interested in the actual dynamic evolution of each ‘spin’; instead we assume that 

sooner or later8 thermodynamic equilibrium will be achieved in the model so that we can 

use the standard thermal average in the model.9

There are several more subtle points in this model. The interaction strength, Jtj, is 

conventionally taken as positive. Then the Hamiltonian would have a lower energy if the

8 ) Again how soon it will be is a sort of questions free models are supposed to answer.
9 ) Not all free models have this assumption. Physicists actually proposed several free models which do not 

have well-behaving thermodynamic limits or the thermodynamic equilibrium in a standard sense. But 
physicists then have a burden of showing why those free models are useful enough to study.
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inner-product of a pair of spins is positive owing to the minus sign in front of the spin- 

spin interaction term. This means, again implicitly, that the ordered phase of this model is 

something like all spins lining-up in the same direction. From this we can guess that the 

relevant order parameter should be some kind of average over spin-values. All this 

implicit information constrains our decision on what could be ‘good’ interpretative 

models for the spin-5 Heisenberg model. For instance, we would require that the 

interpretative model should describe two-phase transitions such as the order-disorder 

transition or the metal-insulator transition, not multiple-phase transitions such as the 

Kosterlitz-Thouless transition in thin films.

Several examples of entrenched models will be discussed in chapter 4. It is noteworthy 

that most of models in the theory of phase transition are free models, while most of 

models in theory of metals are entrenched models. In order to appreciate the meaning of 

this correlation, let us recall the most important difference between a free model and an 

entrenched model. It has to do with whether there is any canonical interpretative model 

for a given abstract model.

If there is a canonical interpretative model, then the model is entrenched; if not, the 

model is free. When an entrenched model is entrenched enough to make it difficult to 

distinguish the model itself from its canonical interpretative model, we tend to forget the 

abstract nature of the model and treat it as an concrete ‘picture’ of the particular 

phenomenon it describes. When the model is also successful, we take it (in fact, the 

complex model-plus-its interpretative model) to be our best interpretation of the 

phenomenon under consideration. The model comes to belong to our stock of substantial 

theories. So the fact that most of the models in the theory of metals (and solid-state 

physics in general) are entrenched models shows that physicists tend to develop specific 

representations of individual metallic phenomena. This does not mean that an entrenched 

model developed as a representation of, say, the electric conduction in a metal cannot be 

employed to represent a totally unrelated phenomenon, say the vaporisation of mercury 

with the help of a different successful interpretative model. But then the virtue of the 

model would change from being our best representation of a particular phenomenon to
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giving us a physical insight into the unifying connections between various different 

phenomena, an important virtue of a free model.

Similarly, there is some important reason why there are so many free models in the 

theory of phase transition. As we will see in more detail in chapter 5, one of the major 

task for the theory of phase transitions is to explain why almost identical patterns of 

phase transitions occur across radically different materials, apparently without good 

prima facie reasons. (The Phenomena of Universality) For instance, striking 

asymptotically identical pattern has been empirically found in the water-vapour transition 

and the order-disorder transition in ferromagnets, despite the fact that the microscopic 

composition and the nature of the interactions of each case are very different.

Now a free model may have many possibly mutually incompatible, but still successful, 

interpretative models, even for the same phenomena in principle.10 Each interpretative 

model gives us a coherent ‘picture’ of the basic entities and interactions among them for 

the phenomenon of interest. Still, there can be drastic incompatibility between two, 

otherwise satisfactory interpretative models of a single free model. It is easy to see then 

why free models are ideal for describing the phenomena of universality: the freedom of 

choice in its interpretative models enables a free model to accommodate a number of 

radically different phenomena within itself.

CMP studies a huge number of phenomena. We expect CMP to provide us with 

substantial theories of these phenomena that reflect the specificity and the diversity of 

many-body phenomena. These substantial theories are provided by entrenched models. 

On the other hand, we expect CMP to give, not just an unmanageable collection of 

numerous (entrenched) models for each minutely classified phenomenon, but also a 

unified understanding of certain, otherwise perplexing, patterns in many-body 

phenomena that appear across lots of different phenomena. This part is done by free 

models. Here we can see that two different types of CMP models serve different
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theoretical purpose; representation of specific physical mechanism and unifying 

understanding of the diverse phenomena.

3.3 Patchwork Model-Building: Pure and Hybrid Models

There is another fruitful way of distinguishing models in CMP based on different 

modelling strategies. So I now propose the following model-types:

• A pure model is homogeneous in its constitution; either the building-blocks of the 

model all come from a single general theory such as classical mechanics, or a single 

level of description, such as macroscopic, is consistently adopted within the model.

• A hybrid model is heterogeneous in its constitution; either the builiding-blocks of the 

model come from more than one general theory as in the case of semi-classical 

models, or more than one level of description (for instance, both macroscopic and 

microscopic) are mixed within the model.

Pure models are pure in their model-building strategies. When we build a pure model, we 

generally try to exhaust the model-building potential of a given general theory. We use 

all known techniques and heuristics of a given general theory and try to make a 

successful model of its target phenomena. We may succeed or we may not. When we do 

not succeed, we need to look at other general theories for help; we turn our attention to 

hybrid models. Being pure about the level of description has a further reason. There is no 

doubt that we have to have consistency among various levels of descriptions, such as 

descriptions based on so-called fundamental interactions among fundamental particles 

and descriptions based on phenomenological interactions among macroscopically 

identified objects. Pure models do the foundational job for this consistency. They provide 

us our best descriptions on each level, which can then be put into the work of co­

ordination. The second part of this job is done by hybrid models.

Hybrid models are heterogeneous in their composition in the sense that they combine in 

themselves several theories having distinct levels of description of a physical system, or,

10) It is rare that physicists entertain more than one interpretative model of a free model given a
phenomenon at the same time. It is mainly because finding out a single interpretative model is difficult
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sometimes, having different degrees of commitment from physicists. The range of 

theories that could be incorporated into a single hybrid model is fairly diverse: it could be 

a very phenomenological scattering formula, a more stable theory from other subfields of 

physics, and so forth. More specifically there is a very special way for a hybrid model to 

be heterogeneous, namely ‘semi-classical’. Often, but not always, a certain part of the 

microscopic description of the system is dealt with in a quantum mechanical way, while 

the other parts, such as the interaction process between the system and our measurable 

variables, is described in a classical way.

Let us see those points through some examples. The exchange interaction model of 

‘spins’ is a hybrid models. ‘Spins’ in this model are ‘spins’ in the typical lattice pure- 

model’ s sense. This hybrid model tries to provide one plausible link between abstract 

‘spins’ and Coulomb interactions among electrons. It is well known that the 

wavefunction of two free electrons is degenerate: singlet and triplet states. But electrons 

are not free in real systems but strongly interact with each other in the form of Coulomb 

interactions. Now there is a finite energy gap between spin-singlet and spin-triplet states 

due to Coulomb interactions if we calculate the turn-on effect up to the first-order 

perturbation of it. Then we define this finite energy gap, J , as something resulting from 

spin-spin interactions and call it the ‘exchange interaction strength’ in the standard lattice 

pure model.11

There are several important things to say about this model. First, the origin of these 

exchange interactions in this hybrid model is Coulomb interactions between electrons, 

not spin-spin interactions; real spin-spin interactions are too small to be influential in the 

first-order perturbation calculation. Second, this hybrid model seems to provide a genuine 

bridge principle between fundamental interactions between electrons and more 

phenomenological, exchange interactions in certain pure models. One might take this 

hybrid model to unravel some solid microscopic foundations behind the use of such a 

useful concept as ‘spin’ in pure models. These suppositions, however, are ungrounded:

enough, let alone two. But how to interpret a given free model better is always an important issue.
11 ) Chaikin and Lubensky 1995, pp. 21-5
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even in the ferromagnetic case, where this kind of hopeful interpretation is fairly 

plausible, spin-spin interaction terms do not represent electron spin-spin interactions, as I 

emphasized earlier. They describe Coulomb interactions among electrons. So the 

exchange interaction model o f ‘spins’ does not provide a reductive explanation of the 

‘spins’ in spin-lattice models in terms of quantum spins of electrons. ‘Spins’ in pure 

models cannot be regarded as streamlined quantum spins. If this hybrid model aims at 

showing some direct connections between quantum spins and ‘spins’ in pure models, it 

simply fails to achieve its aim. But, as I shall argue later, that was not the aim of hybrid 

models in general and certainly not in this particular case. Moreover, what we ultimately 

want from this hybrid model is not a model of two electrons but a generalization of this 

approach into the many-’spins’ case, that is a spin-lattice model. After this kind of 

generalization is taken, as we saw in our exposition of free models, even the partial link 

between Coulomb interactions among electrons and exchange interactions of electrons 

will be lost, because now the model cannot be taken to apply exclusively to ferromagnet. 

Whatever justification this hybrid model might give to the use of the corresponding free 

model for ferromagnetic phenomena, it won’t give any comfort to other applications of 

the free model for different phenomena.

One nice example of hybrid models from the theory of phase transitions is the Ornstein- 

Zernike (OZ) model of classical fluids12. This model is especially clear about the bridging 

between microscopically defined parameters and experimentally obtainable quantities. 

The model starts by introducing the concept of the molecular pair-distribution function, 

which has figured centrally in all subsequent work on liquids:

< v(dn)v(dr2 )> = n2(ri, r2)dr{ dr2 (3.2),

where v(dr) is a random variable representing the number of particles in a volume dr 

centred at r and n2{r\ , r2) is the pair distribution function representing the correlation 

between particles at n  and r2. The bracket means taking the standard thermodynamic

12) Omstein, L.S. and Zemike, F. (1914) Proc. Akad. Sci. Amsterdam 17: 783.
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average. From this pair-correlation function, we can define quantities that represent 

deviations from randomness in a homogeneous fluid case, which is:

where r = r\ - r2 and ri\(r) is the local density centred at r. We call h{f) the pair- 

correlation function.

Up to this point we have only dealt with the hydrodynamic treatment of many particle 

systems. To get the OZ model, we need help from a quite different theory, the theory of 

light scattering. Here the important quantity is the structure factor: the normalized 

intensity of the scattered light as a function of q, the difference in phase between incident 

wave (wave vector ko ) and scattered wave (wave vector ks ). That is,

(S(q), structure factor; 1(g), the density of the scattered light; Io(g), 1(g) for the case of 

random scatterers).

Now we have two very standard theoretical treatments for distinct fields, a theory of 

liquids and a theory of light scattering respectively. Here comes the important link 

between the two: since 1(g) is obtained from some average process over the scatterer, S(q) 

can be written in terms of the pair-distribution function of the scatterer and consequently, 

of the pair-correlation function. Moreover there is a theorem in thermodynamics, the 

fluctuation theorem, which connects the pair-correlation function with the isothermal 

compressibility, Kt in the following way:

h(r) = n2(rh r2 )/»i(/*i)»i(r2) -  1 (3-3),

S(q) = I(g)/I0(g) (3-4),

(Fluctuation Theorem): kTpKr = 1 + pjh(r)dr (3-5);

but,

S(k=0) / p = 1 + p J h(f)dr (3-6),

therefore,
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S(k=0) / p = 1 + p\h{r)dr = kTpKr (3-7),

where p is the (global) average density. What we have done up to this point is to combine 

three formulae from different fields and establishing a connection between 

experimentally meaningful quantities and a fairly abstract thermodynamic quantity, Kj\ 

The OZ model shows a typical procedure in hybrid models to achieve ‘bridging’ between 

and incorporating several theories into a heterogeneous whole.

The real essence of the OZ model is to conceptually divide the total correlation into two 

parts: a direct part arising from the interactions of one-pair of molecules and an indirect 

part arising from mediating effect of intervention of other molecules. Nobody knows 

what exactly this division means in physical terms or whether this division is plausible. 

But you are free to rigorously define certain quantities out of known quantities; in this 

case, a new direct correlation function out of a (total) correlation function. Why do we do 

this? It is because we think we can ‘reasonably’ assume that the new function, unlike the 

old one, is sufficiently short ranged to have moments. Then we can have, for small k (that 

is, in the domain where the direct correlation is expected to be dominant), the 

approximate form of the structure factor in a Lorenzian form, which boils down to:

S(k= 0) / p (=  1 + p\h(r)dr = kJpK T) = C£, (3.8)

where C is a constant and £, is the correlation length. This is a remarkable result for it 

means that in a critical region where the correlation length diverges, the forward 

scattering also diverges, which is so-called the ‘critical opalescence’ phenomena.

Despite its name, the direct-correlation function does not represent the ‘direct’ correlation 

between a molecule at r\ and another molecule at r i , since it is ‘defined’ to be the 

remaining part of the total correlation function minus a certain integral which is supposed 

to capture only the two-step indirect process.13 The role of this new function is to 

guarantee the physical reasonableness of the short-range assumption that is crucial for the
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whole derivation. Let me call this a ‘mediating definition’ strategy. It is not unreasonable 

and it is certainly an ingenious move to make, but the definition is clearly dictated by our 

hindsight about the range of interactions in many-body physics. For instance, Ornstein 

and Zernike assume that the direct correlation function would be of short range even if 

the total correlation function were long ranged.

Consequently, what the OZ model shows is not the reducibility of the scattering 

amplitude in terms of microscopic structure factor. Rather it shows the cotenability of our 

basic picture of fluids with an empirically well-known phenomena, ‘critical opalescence’. 

But to achieve this cotenability through ‘mediating definitions’ means that the role of 

hybrid models is not take by physicists something like ‘derivations’. The value of the OZ 

model is to provide a physically feasible ‘many-body’ structure for a well-known 

macroscopic phenomena.

The distinction of models into pure and hybrid shows what are central research strategy 

physicists adopt in order to understand as many many-body phenomena as possible. The 

first stage tries to exhaust as much as possible the capacity of a given general theory or 

model-building methodology to give coherent representations of those phenomena that 

that particular general theory is successful in dealing with. This stage produces pure 

models as its results. The second stage is to co-ordinate the successful results of the first 

stage into a consistent picture wherever different representations overlap in their target 

phenomena. This co-ordination is done by hybrid models, and it contributes to improve 

our model-based understanding.

The different functions of pure versus hybrid models can be understood using Nancy 

Cartwright’s concepts o f ‘patchwork’ and o f ‘the dappled world’.14 Pure models are 

intended to cover the dappled world as much as possible with the help of a single/pure 

model-building methodology. The range of phenomena in the world successfully 

understood by one particular kind of pure models can be thought of as one big patch with

13) Domb 1996, pp. 104-5
14) Cartwright 1999
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an irregular shape. Then there are a number of patches corresponding to different general 

theories and model-building methodologies, which cover the world, and some of them 

may overlap. Then we need to have a consistent way of co-ordinating different patches, 

and the hybrid models do this job. They make sure that the overlapping parts of the 

different patches are either jointly acceptable or at least jointly intelligible, as we saw in 

the case of the OZ model.

3.4 Conclusion

We saw that CMP uses various types of models (and their associated interpretative 

models) to contribute our model-based understanding. In the next chapter we will look at 

the dynamics of model-building process more closely.
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C h a p t e r  4

A p p r o x i m a t i o n s  in  C o n d e n s e d  M a t t e r  P h y s ic s

4.1. Introduction

In the last chapter, we looked at how physicists use different types of models for different 

purposes in order to understand condensed matter phenomena. For instance, we have 

learned that a free model, unlike an entrenched model, serves not so much as a 

representation of the phenomena but as a flexible structure with well-developed, but still 

rather abstract, physical intuitions. In this chapter we investigate a dynamical side of the 

model-based understanding in condensed matter physics; that is to say, we will ask (1) 

how models are built helped by various kinds of theoretical resources and (2) how these 

models are explored to reveal their explanatory and predictory potentials. More 

specifically I am going to highlight one important feature of these model-building and 

model-exploring stages: approximations.

For condensed matter physicists, performing approximations is a major part of their job 

when they are trying to understand certain phenomena employing models. Naturally, one 

of the virtues of a good physicist is to know how to employ approximations 

appropriately. What I am interested in is what role physicists intend approximations to 

play in both the model-building and the model-exploring stages. In order to investigate 

this, I shall ask first: what is the nature of approximations in condensed matter physics? 

Are they really ‘approximate’ to something as the conventional account has it? From the 

answer to the first question we can come back to our original question, namely for what 

purpose do we use approximations in our theoretical understanding of condensed matter 

phenomena? Do we use approximations only for pragmatic reasons? To put the question 

differently, are they just cleverly designed mathematical devices that allow physicists, for 

example, to evade difficulties with insoluble equations? But let us see first what the 

conventional account says about these issues.
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4.2. The Passive vs. the Interactive Picture of Approximation

Traditionally, approximations have seldom been a focus of attention from philosophers of 

science. The reason is rather simple: approximations have been regarded as a drawback in 

our ability to understand the world theoretically; they are practically useful, but 

nevertheless expected to be minimised as our theory advances. From this comes the idea 

that we need to look only at how theories are ‘ideally’ employed (i.e., without 

approximations) in explanation or prediction in order to grasp the fundamental structure 

of how scientific theories are applied to the world. Then we could expect that the ‘actual’ 

practice of scientists (i.e., with approximations) follow essentially the same structure as 

the fundamental one, perhaps only ineptly.1

Here is a caricature of what this conventional view of approximations would amount to in 

condensed matter physics. You start from a (ideally) complete description of a given real 

material, say a sample of copper. Then you connect this description, using various bridge 

principles, with (again ideally) true theories. So the theories tell you which equations you 

should write down for this sample of copper, and bridge principles will provide 

appropriate interpretations to each term in the equations with suitable boundary 

conditions. Now you rigorously derive some theoretical results from the equations and 

compare them with the experimental results obtained from the sample. If we assume 

(ideally) that our ability to get the relevant information from real physical systems by 

experiment is perfect, the two results should perfectly match with each other.

But obviously we do not expect that we can write down the complete description of a 

condensed-matter system full of complicated interactions among a huge number of 

constituents. Neither do we think that our current theories are the final, true theories 

about condensed-matter systems. Moreover, even granted the truth of our current 

theories, the intractability of its equations for a typical condensed-matter system (say, the

1) Cf., Laymon 1998, especially his discussion of ‘Idealizations as Approximations’. But notice that 
Laymon’s account is much more sophisticated than what I call the ‘conventional’ view. (More on his 
views see below) Perhaps Hempel 1966 is more appropriate as implicitly endorsing the conventional 
view, but then he rarely mentions approximation.
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N-body Schrodinger equation for a given sample of copper with N enormously large) 

would prohibit us from calculating any interesting quantity of the system.

Here comes the approximation. We may try to gather as many relevant facts about the 

system as possible and put them into our description of it; then hope that our descriptions 

'approximate’ the complete description of the system ‘well-enough’, whatever that would 

mean. Similarly, we might believe that our current best theory is ‘approximately true’, if 

not literally true in every detail, although we may never know which part of it is true and 

which part, false. Third, we may use a number o f ‘approximation methods’ specially 

developed in order to evade the intractability of the equations so that we can get some 

results for the comparison with the theoretical results.

I want to set aside the much-debated issue of ‘approximately true’ theories in order to 

concentrate on the other senses o f ‘approximation’: the ‘approximate’ description of the 

physical system and the ‘approximation methods’ in our theoretical treatment of the 

system. It is unquestionably true that some approximations employed in physics have the 

kind of features the conventional view assumes. For instance, for a small angle, sinQ &6, 

so we perform a linear approximation in our classical description of a pendulum: we 

replace sinQ with 6. Likewise we have a number of standard series expansion techniques 

such as Taylor expansion in theoretical physics by which we obtain the approximate 

value of an intractable mathematical function in terms of a sum of manageable terms. But 

clearly that is not the case for all approximations in physics. There are lots of 

approximations physicists help themselves with, which are neither an ‘approximately 

true’ description of the phenomena nor a mechanical result generated by a mathematical 

technique. For instance, condensed matter physicists often make the so-called ‘free’ 

electron approximation where electrons are assumed to be under no external potentials, 

which is absolutely false for all electrons in the world and not even approximately true 

for most of them. And there the conventional view falls wide off the mark.
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Ronald Laymon’s work on approximation and idealisation is probably the classic 

discussion nowadays, and he agrees.2 He discusses this issue in the framework of 

idealisation. First he (as most of philosophers of science) understands approximations in 

a narrower sense than many physicists may opt for; approximation is something really 

being ‘approximate’ to the true description or value. After assuming approximation to be 

a relatively unproblematic concept, he focuses on idealisation, a false, simplified 

description that scientists use for various purposes. Roughly speaking, the concept of 

idealisation is a familiar analytical tool for philosophers of science in understanding the 

practice of scientists that scientists usually call ‘approximation’. As I am going to 

investigate the details of how physicists use ‘approximation’ in order to build a model as 

well as to probe it, I shall respect their usage. Moreover, as we will see later, by not 

adopting philosopher’s narrow conception of approximation, we can learn a lot about the 

practice of physicists. So unless there is no chance of confusion, whenever I say 

approximation in this chapter, I always mean it in its broad sense including both the cases 

of approximation (in the narrow sense) and of idealisation.

Laymon starts his most recent discussion of idealisation with a popular, but simplistic 

view that the idealisations of science are just approximations in the narrow sense.3 But he 

is well aware of the fact that many individual instances of idealisations in science cannot 

be properly dealt with by this simplistic view. For instance it is not approximately true 

that the universe contains only two bodies as assumed in Newton’s derivation of Kepler’s 

law. Nor is an assumption Samuelson made for his influential model, ‘An Exact 

Consumption-Loan Model of Interest with and without the Social Contrivance of Money’ 

that workers lives consist of three periods and they each produce one unit of a single 

completely perishable output (say, ‘chocolate’) in the first two periods.4 So he suggests 

that we should think of individual idealisations as elements of some larger (often not 

known in advance) structure that converges on the truth. He claims that scientists 

typically use a ‘monotonically convergent’ sequence of idealisations, each idealisation 

being more realistic than the earlier ones in the sequence, and that the use of idealisations

2) See Laymon 1985, 1989, 1990
3 ) Laymon 1998
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can be justified only if idealisations are used in this way. In other words, a good 

idealisation should come from a sequence of idealisations in which each idealisation is 

comparatively truer than its earlier ones.

Laymon’s account is true of many approximations in physics, taking care of several 

difficulties the conventional view faces. As Lakatos shows in his memorable defence of 

the methodology of research programmes, one major strategies of a research programme 

is to employ systematically less and less unrealistic situations (or models) in each stage of 

research in order to overcome almost inevitable falsifications and move to more and more 

satisfactory theories. My question is whether Laymon’s elaborated account of 

approximation is entirely adequate for understanding approximations in condensed matter 

physics. My answer is no. I claim that we need more a sophisticated picture.

Notice that even according to Laymon’s account we are bound to lose some information 

by performing approximations. The loss could be due to a ‘not exact but only 

approximate’ description, or to ‘not rigorously valid but only approximately correct’ 

mathematical procedures performed on those descriptions. In any case the loss is thought 

to be damaging. For instance, we may blame the loss resulting from the use of 

approximations for any unsatisfactory match between experimental and theoretical results 

when we have great confidence in the theory involved. In sum the point is simple: more 

approximations will weaken our ability to understand the world theoretically. Or, to put it 

as a slogan, “the less approximation, the better”.

I would like to emphasise this point by characterising various forms of the conventional 

account of approximations, including Laymon’s, as the passive picture of 

approximations.5 The picture sees the approximation in physics as more or less faithful to 

its literal meaning, ‘an object, description, situation, etc. that is very like something else

4) Samuelson 1958
5) I think many philosophers of science accept this picture about approximations in science, if only 

implicitly. For instance, the picture fits well the views of those who see idealizations as approximations 
in the narrow sense. See Laymon 1998. See also Balzer et al. 1987 and Laymon 1989.
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but which does not have all its features or qualities’6. The nature of approximations in 

this picture is then characterised by the (hopefully small) departure from a (ideal) target 

and by the (unavoidable) loss of our knowledge about the target. For our discussions, the 

target is either the complete description of a real physical system or the rigorous solutions 

of the relevant mathematical equations. Notice the negative implication the use of 

approximations has under the passive picture: our science as currently practised is 

defective due to our use of approximations.

Given this negative implication of approximations, the passive picture sees the only role 

of approximations as a pragmatic one: an approximation is the last resource we go to 

when we have no alternative. The use of approximations mirrors our epistemic limitation 

in applying our theories to the world. This makes clear why I call the picture passive; it 

does not recognise any active role for approximations in our theoretical work. More 

specifically, it does not allow any possibility that employing an appropriate 

approximation in fact complements our theories in order to improve our ability to 

understand the world theoretically.

In this chapter I offer an alternative account of approximations in physics: the interactive 

picture of approximations. The interactive picture starts from the recognition that 

approximations play quite diverse roles in theoretical physics. Some of them clearly serve 

pragmatic purposes as the passive picture says. For instance physicists, confronting an 

intractable integration, often impose certain constraints on the functional form of the 

integrand in order to obtain some manageable result from the integration.7 Many of them 

however play various epistemic roles in building models, extracting the correct physical 

content of a given model, clarifying the valid scope of a model, isolating relevant causal

6 ) Collins Cobuild English Language Dictionary 1992, p. 68
7 ) One example is the ‘factoring-out’ method. A typical scenario might be the following: you encounter a 

formidable-looking integral, ff(x,t)g(t)dt, with an (in many cases) unknown function,/(*,(). Let us 
suppose that you are interested in f(x,t). As long as f(x,t) can be factored out of the integral, we might be 
able to integrate the remaining Jg(t)dt, or if not, label it as a constant a, and proceed with our 
theoretical investigation of f(x,t). If we can be pretty sure from other information that f(x,t) varies very 
little with t during the interval we are interested in, we may feel justified in doing this factoring-out 
approximation. But even without any proper justification about the slow variation off(x,t), we may just 
decide to go ahead for that is the only way we know to proceed in a given investigation off(x,t).
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mechanisms, etc. These roles of approximations are epistemic because they add 

something to our knowledge about the physical systems in the world, rather than lose 

something from it.

Moreover the interactive picture claims that approximations fulfill these epistemic roles 

by co-operating with general theories such as classical electromagnetism; they do not just 

passively attach to them. So the name, ‘interactive’ picture. In other words the interactive 

picture takes the use of approximations to be a significant part of our theoretical activities 

which complements general theories epistemically as well as pragmatically. Under this 

way of understanding approximations, the less use we make of approximations does not 

necessarily mean the better theoretical treatment of physical systems we achieve. We 

need to have some distinction between good, epistemically constructive approximations 

and bad, epistemically destructive ones. Perhaps the correct slogan should be: the more 

approximations, the better -  but only if they help us learn more!

4.3. Setting the Stage: Representational vs. Explorative Approximation

Many philosophers of science now agree that models play a central place in our scientific 

understanding of the world.8 Of course they do not share the same views on every issue. 

For instance, the exact nature of the relationship between theories and models is still a 

controversial issue: are all models in physics ‘driven’ by theory just as the classical 

simple harmonic oscillator model might be by classical mechanics?9

Nevertheless, I will assume in this chapter the following theses: (Tl) a typical way of 

getting theoretical understanding of a given system in physics consists of building a 

model for the system, working with the model in order to obtain certain theoretical results 

out of it, and interpreting the theoretical results with respect to the experimental results of 

the system; and (T2) one of the important roles of models is to allow us to represent 

certain parts of the world. I think that (Tl) is at least descriptively correct for many

8) Cf. Gahde 1995, Giere 1988, Morgan and Morrison 1999
9) Cf. Cartwright et al. 1995
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theoretical activities in physics. But still, as it seems, (Tl) claims a too substantial point 

to be assumed without any argument. Perhaps it would be better to think of the following 

argument for the interactive picture as indirect support for the plausibility of (Tl), if not a 

conclusive argument for it. For I shall make it clear that approximations play distinctive 

roles at each stage of our theoretical understanding set by (Tl). I think it is fair to call 

(T2) uncontroversial.

Now I introduce two distinctive types of approximations in condensed matter physics: 

representational approximation and exploratory approximation. My claim is then that 

these two types are genuinely different kinds of approximations despite the fact that both 

are equally called ‘approximations’ by condensed matter physicists. A representational 

approximation is a constitutive assumption of a model in the sense that it represents a 

certain aspect of the real system in the model system and by doing so, becomes a building 

block of the model. On the other hand, an exploratory approximation is a theoretical 

device for probing a model in the sense that it helps us to extract the physical content 

from the model system. Notice that different types of approximation take a different place 

in the process of our theoretical understanding of condensed matter systems. 

Representational approximations are employed when we model real condensed matter 

systems, while exploratory approximations are employed when we theoretically probe 

the model we have constructed of condensed matter systems.

Let me illustrate these definitions using a well-known model from the theory of metals: 

the Drude model.10 Three years after Thomson’s discovery of the electron in 1897, Drude 

constructed a model of electrical and thermal conduction in metals by applying the then 

highly successful kinetic theory of gases to metals. The Drude model was very successful 

in explaining a number of metallic phenomena and has served since as a basic model for 

further developments in the theory of metals.11 Basically Drude modelled a metal as a gas 

of electrons in a sea of immobile positively charged particles. When Drude formulated

10) See Ashcroft and Mermin 1976, chapter 1.
11) Despite the fact that the Drude model is a purely classical model, the phenomena that can be explained 

by the model are impressive: Ohm’s law, the Hall effect (partially), the AC electrical conductivity of 
metals, etc.
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his model, the identity of these immobile positively charged particles was not known. But 

I will consider here the modern formulation of the Drude model where a metal is taken to 

be a gas of conduction electrons (originating from valence electrons of atoms) in a 

background of fixed, positively charged ions. Electrical conduction is modelled as the 

transport of the charges of conduction electrons, and heat conduction, as the transport of 

their energy.

Apart from a somewhat intuitive picture of moving electrons in a sea of fixed ions, the 

Drude model is defined by a set of three postulates about the ‘electrons’ and ‘ions’ of the 

model: the free-electron approximation, the independent-electron approximation, and the 

relaxation-time approximation. I use scare quotes for the two kinds of theoretical objects 

in the Drude model not because they are unobservable but because I want to emphasize 

the postulated nature of them. In other words, ‘electrons’ and ‘ions’ in the Drude model 

are little more than abstract objects which satisfy the given three postulates. This point is 

very important for my later argument because the ‘electrons’ and ‘ions’ of the Drude 

model are far from being ‘approximately’ similar to real electrons and ions in a metal. 

Since this feature is true of all objects in the models I will discuss later, I will drop the 

scare quotes from now on for simplicity.

What is the free-electron approximation? In the Drude model, there is only one kind of 

interaction: ‘collisions’ between ions and electrons. Except for collisions, an electron is 

assumed not to interact with ions. So the electrons in the Drude model are ‘free’ in that 

most of the time12, they are not attracted by positive ions. It is therefore called the ‘free- 

electron’ approximation. Electrons in the Drude model are also assumed not to interact 

with each other at all. This implies that the Drude model depicts each electron as being 

causally separated from the other electrons despite the fact that there are presumably 

complicated interactions between enormous number of electrons in a metal sample. 

Physicists call this kind of model a ‘one-electron model’, and the approximation which

12) Strictly speaking, electrons of the Drude model are free for all time because the relaxation-time 
approximation requires the 'collisions’ to be instantaneous.
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ignores the electron-electron interactions, the ‘independent-electron’ approximation. 

Consequently, the Drude model is a one-electron model.

With these two approximations, the only causal mechanism left in the Drude model is 

collisions between electrons and ions. The collision in the Drude model is not so much a 

real time process of an electron’s bumping along from ion to ion. Rather it is a name for a 

particular randomisation mechanism in the following sense13: during ‘collisions’, an 

electron suffers an instantaneous, abrupt change in its velocity with a probability per unit 

time 1/ t  (t , relaxation time), and immediately after each ‘collision’ an electron is to 

emerge with a velocity that is not related to its velocity just before the collision, but 

randomly directed and with a speed appropriate to the local temperature. The first feature 

is needed so that we can assign to an electron the definite probability for undergoing a 

collision in any infinitesimal time interval dt, dt/z. The second feature is necessary for the 

instantaneous achievement of thermal equilibrium in a particularly simple way. Now it is 

clear why I call the ‘collisions’ in the Drude model a particular randomisation 

mechanism: they are constructed in such a way as to achieve certain desirable features in 

the model: a simple and definite collision probability and the effective establishment of 

local equilibrium. These specific assumptions for the collisions in the Drude model are 

together called the ‘relaxation-time’ approximation.

The above three approximations are constitutive assumptions of the Drude model. In 

other words, the Drude model is the set of these three approximations with certain 

interpretative background14. They are bricks and beams of the Drude model, so to speak. 

Moreover these three approximations contribute to the building of the Drude model by

13) Actually for some time after the model was proposed, physicists were so taken by this intuitive picture 
of ‘collisions’ that they discussed problems such as the proper aiming of an electron at an ion in each 
collision at which they were not very successful. Notice that the Drude model does not force us to 
believe this ‘billiard-ball’ picture of collisions. The model needs a certain mechanism ‘defined’ by the 
relaxation-time approximation, but the mechanism is abstract enough to be compatible with many 
different pictures. The ‘billiard-ball’ picture was brought into the model as an analogy from the kinetic 
theory of gases, but not all features of the kinetic theory of gases need be fruitful in the Drude model of 
metals. See Ashcroft and Mermin 1976, p. 6

14) The interpretative background of the Drude model includes some definitional characteristics (electrons 
and ions are classical particles, but only electrons are mobile, etc.) and implicit postulates (despite 
collisions electrons are confined to the interior of metals, etc.).
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representing real electrons and ions in metals in the model in a specific way. So as I 

define the term, they are representational approximations.

On the other hand within the Drude model, we may employ various approximation 

methods in order to calculate certain theoretical quantities. For instance, when analysing 

the current induced by a time-dependent electromagnetic field in the Drude model, we 

approximate the force contribution of the electromagnetic field towards the equation of 

motion for an electron by ignoring the force from the magnetic field and taking only the 

force due to the electric field.15 The result is the following:

dp/dt = - p /r -  eE (4.1),

where p is the (average) momentum per electron. The justification for this approximation 

is the familiar order-of-magnitude consideration. The contribution of the magnetic field 

to the equation of motion is smaller than that of the electric field by a factor v/c (v, the 

mean speed of an electron and c, the speed of light). This factor is typically 10'10 for 

metals16, and therefore the magnetic field contribution can be safely ignored. Similar 

considerations lead us to ignore the second-order time infinitesimals in the derivation of 

the equation of motion for an electron itself.17

The obvious reason for introducing this order-of-magnitude approximation is to make the 

investigation of the behaviour of electrons under the time-dependent electromagnetic 

field in the Drude model simpler and easier. In other words, the approximation is 

intended as a method which facilitates our theoretical study of what the Drude model 

implies about the behaviour of its electrons under that specific situation, which is in fact 

the famous phenomenon of plasma oscillation. So following my definition, the order-of-

15) Under the passive picture of approximations this approximation is very peculiar because it cannot be 
understood as something ‘very similar but not exactly’ to the electromagnetic field: the electromagnetic 
field cannot exist without a magnetic field however small its magnetic contribution to certain 
phenomena might be.

16) Ashcroft and Mermin 1976, p. 16
17) Ibid., p. 11
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magnitude approximation in the Drude model is an exploratory approximation; it is a 

theoretical device that helps us to extract the physical content of the Drude model.

I claim that representational and exploratory approximations are genuinely different from 

each other. They differ in their procedural path: one takes us from certain features of real 

condensed matter systems to our representation of them in a model, and the other, from 

the model to its theoretical implications. They also differ in our motivation for using 

them. We employ representational approximations in our model-building because we 

want our models to be as simple and clear in their causal mechanisms as possible so long 

as the models help us understand the condensed matter phenomena of interest. On the 

other hand we employ exploratory approximations in our investigation of a given model 

itself because without approximations it is often impossible to know what the physical 

content of the model is. To put it differently, the two types of approximations contribute 

at different stages of our theoretical activities described in (Tl).

All of the three representational approximations in the Drude model are grossly false, let
18alone approximately true, to the real interactions among electrons and ions in metal. 

Nevertheless as far as the metallic phenomena that the Drude model successfully treats 

are concerned, the simple and rather artificially constructed ‘interactions’ prescribed by 

the three representational approximations are a legitimate part of our knowledge in 

modelling metals. For we learn from the success of the Drude model lots of valuable 

information about how to model metallic phenomena. For instance, we learn from it that 

electron-electron interactions need not be modelled in the treatment of metals in order to 

explain a large number of metallic phenomena.19 Also we learn that the specific details of

18) One might say that the net effect of the three representational approximations in the Drude model is 
approximately true to certain metallic phenomena. I fully agree on that point. In fact that is why the 
Drude model is so successful. But the point is irrelevant to the question of whether the behaviour of the 
electrons and ions in the Drude model is approximately true to that of the real electrons and ions in a 
metal.

19) This does not mean of course that it need not be modelled in order to explain all metallic phenomena. 
That is a different, empirical question which should be answered through the extensive modelling of the 
other metallic phenomena not dealt with by the Drude model. In fact we now know that electron- 
electron interactions should be taken into account in order to model superconductivity. We also know 
however that the independent-electron approximation is still valid in order to understand a lot more 
metallic phenomena which cannot be properly understood by the Drude model.
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electron-ions interactions need not be modelled in order to construct a reasonably good 

model of metals. This kind of knowledge then provides useful heuristics when we build 

another model of metals, or of other condensed matter systems. Here we see one 

epistemic role of representational approximations.

Exploratory approximations allow us to have a different kind of knowledge: knowledge 

about what a given model can and cannot accommodate. Recall my example of an 

exploratory approximation in the Drude model: ignoring the magnetic field contribution 

in the equation of motion for an electron. One of the features of the Drude model 

resulting from this approximation is that the AC (i.e., time-dependent) induced current 

becomes linearly dependent on the external electric field just as the DC (time- 

independent) induced current is.20 This linearity is a nice feature of the Drude model 

since it allows us to take many general results we know about the DC phenomena into the 

AC regime and to get a unified treatment of the electromagnetic phenomena in the model. 

The linearity is introduced by an exploratory approximation and the nature of the 

exploratory approximation (order-of-magnitude considerations) makes it sure that it is 

(approximately) a genuine feature of the Drude model. So the exploratory approximation 

tells us an important fact about the Drude model, namely that it can accommodate DC 

and AC electromagnetic phenomena in a unified way. Here we see one epistemic role of 

exploratory approximations. So representational and exploratory approximations are 

again different in their epistemic roles.

4.4. Is the Distinction Significant Enough to Matter?

Someone who might be sceptical about the significance of the distinction between these 

two kinds of approximations in condensed matter physics could ask the following 

question: why shouldn’t we say that we represent in the Drude model the time-dependent 

electric field without its corresponding magnetic field? Let me first clarify what exactly 

this question is supposed to challenge. I do not think that the challenge is the rather 

obvious point that we could build a new model (different from the original Drude model)
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which has an additional (apart from the original three) representational approximation of

representing a time-dependent electric field without an accompanying magnetic field.

Surely an electric field cannot be time-dependent without the accompanying magnetic

field under Maxwell’s law. Nevertheless you could think of whatever model you want.

The important question is whether the new model is interesting enough to investigate, and
0 1it does not look very promising in this respect.

Recall that I define my typology of approximations functionally, one as constitutive 

assumptions of a model and the other as a theoretical device for the process of model- 

probing. Consequently my typology does not deny the possibility that the addition of an 

appropriate exploratory approximation produces the same ‘effect’ in a given model to 

that of another representational approximation. For instance, we could either represent 

‘collisions’ in a Drude model to be instantaneous, or build the model without this 

representational approximation and then introduce the exploratory approximation of 

ignoring the time needed for the ‘collisions’ afterwards. The important question we 

should ask is whether this possibility is a rule or an exception.

Therefore I think the real challenge raised by the question is this: Can we obtain the same 

(Drude) model by replacing the order-of-magnitude exploratory approximation with its 

corresponding representational approximation? If the answer is yes, then the exploratory 

approximations are after all not substantially different from representational 

approximations, and consequently my typology of approximations in condensed matter 

physics is not very significant.22 My general reply to this challenge will be given at the 

end of section 3 after I discuss the nature and roles of approximations in condensed 

matter physics. Here I will give my specific answer only to the case of the order-of- 

magnitude approximation in the Drude model.

20) The current density j in the AC case is still linear to the electric field E just as it is in the DC case. This 
linearity is theoretically very useful. But the linearity would be unavailable if we included the magnetic 
field contribution in the Drude model.

21) This new model cannot describe any time dependent electric phenomena at all unless the inventor of the 
model could also invent a new electromagnetic theory suitable for the model.

22) Michael Redhead in his discussions about models and approximations claims that seeking approximate 
solutions of the exact equations/models is equivalent to seeking exact solutions to approximate 
equations/models. So he would answer yes to the question. See Redhead 1980.
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My specific answer is simply to point out that we cannot obtain the same Drude model by 

replacing the order-of-magnitude exploratory approximation of ignoring the magnetic 

contribution to the equation of motion of an electron, by a corresponding representational 

approximation representing no magnetic field in the Drude model. Recall that the 

magnetic field itself has the same magnitude as the electric field. The justification for 

ignoring the magnetic field contribution in formula (1) (i.e., the equation of motion of an 

electron) was a comparative, not an absolute, one: there are two components from the 

total force for an electron, one from the electric field and the other from the magnetic 

field, and the latter is negligible with respect to the latter.

The crucial point is that we do not ignore the magnetic contribution simply because the 

proportion factor of it, v/c, is very very small. If that very very small effect were the only 

contribution, we should not ignore it. This is in fact what happens when we consider the 

AC dielectric constant in the Drude model. Consider the following formulae in the Drude 

model:

Vx(VxE) = -V 2 E (4.2)

Vx(VxE) = (ico/c)Vx H (4.3)

(/'<y/c)VxH = co2 /c 2(1 + 47c/ c t /  co)E (4.4)

-V 2E = co2 / c 2( 1 +4ni<j/ co)E = co2 /c 2e(co)E (4.5)

where E is an electric field, H, a magnetic field, and s(co), the complex AC dielectric 

constant. Formula (4.2) is a simple result of vector calculus, and Formula (4.3) is 

obtained by taking a curl of one of Maxwell’s equation.23 Formula (4.4) is also from one 

of Maxwell’s equations using the linear relation between the (induced) current density, j 

and the electric field, E. Finally formula (4.5) follows from formulae (4.2), (4.3), and 

(4.4) altogether.

23) In CGS units
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Recall that we ‘ignore’ the magnetic contribution by the order-of-magnitude exploratory 

approximation and get the linear relation between j and E. Recall also however that the 

order-of-magnitude approximation is based on a comparative reasoning. As we can see in 

formula (4.3), we do not ignore the magnetic field, H, despite its 1/c factor, when we 

calculate the AC dielectric constant. This is because the contribution of H to the AC 

dielectric constant is the only contribution that reflects the time-dependent effects from E. 

If we ignored H in formula (4.3), we would not have the imaginary part of the dielectric 

constant in formula (4.5). Then the AC dielectric constant would collapse into the DC 

dielectric constant (which is simply 1 in CGS units) and the Drude model would become 

incapable of dealing with any time-dependent phenomena such as plasma oscillation. 

Understandably physicists do not use an exploratory approximation that ignores the 

magnetic contribution in this case.

The moral is this: representing no magnetic field instead of a particular exploratory 

approximation during the calculation of the AC conductivity does not give us the same 

Drude model. It can only offer us a much less attractive impoverished version of the 

Drude model that cannot accommodate time-dependent phenomena. In this particular 

case, we can clearly recognize the distinctive roles that two different kinds of 

approximations play.

4.5. Approximation and Model: the Interactive Picture of Approximation

As we can see from the above discussion, the kind of considerations involved in the 

choice of representational approximations are different from those for exploratory 

approximations. For instance, physicists (although they could if they wanted) do not 

choose to represent a time-dependent electric field without magnetic field in the Drude 

model. On the other hand, when physicists probe the capability of the Drude model to 

deal with various metallic phenomena, they are happy to ignore the magnetic contribution 

in one case (the AC conductivity) and not in the other case (the AC dielectric constant).
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I claim that the interactive picture can explain this difference. Physicists would not use a 

representational approximation that entirely ignores the magnetic field in the Drude 

model because it would substantially diminish the value of the model as a model of 

metals. On the other hand they do use the exploratory approximation of ignoring the 

contribution due to the magnetic field based on order-of-magnitude considerations, 

because it allows them to write down theoretical results of the model in a more 

transparent and manageable form. More specifically, it allows them among other things 

to describe in the Drude model the electromagnetic phenomena in a unified way.

The interactive picture says that representational approximations are constitutive 

assumptions of a model. Given the nature of representational approximations, physicists 

wouldn’t adopt one which builds a shortcoming into the model. The interactive picture 

says that exploratory approximations are theoretical devices for probing a model. Again, 

given the nature of exploratory approximations, physicists would adopt it in a model 

whenever they think the use of it can facilitate the probing of the physical content of the 

model.

Now I will consider two more approximations in condensed matter physics to argue for 

the interactive picture. Recall that the interactive picture, unlike the passive picture, 

argues that approximations play various different epistemic roles. Moreover it claims that 

approximations fulfil these roles by cooperating with general theories. The following two 

examples will fit nicely into this interactive picture.

Let me consider first the long-wavelength approximation in the Drude model. Recall 

formula (4.1). The formula is in fact a special case of the following more general 

equation:

dp/dt = - p /r  + f(t) (4.6)

where p is again the average momentum per electron and f(t) is the external force applied 

to the electrons of the Drude model. The first term on the right hand side of (4.6) (the

81



collision term) represents the net-effects of the electron’s collisions with ions on an 

electron under the relaxation-time approximation.

Notice that (4.6) is dependent only on time with no spatial dependence. That is because 

p is a variable averaged over space, and the relaxation-time approximation assigns the 

same collision probability (1/x) to an electron no matter where it is located, and we 

consider a spatially uniform force in (4.6). If we consider a special case of (6) where the 

external force is given by a time-dependent, but spatially uniform electric field, then we 

will get (4.1). Equipped with (4.1), the Drude model can cope with the time dependent, 

but spatially uniform electrical phenomena as well as time independent ones.

The problem arises when we want to consider in the Drude model time dependent and 

spatially varying electrical phenomena such as the propagation of electromagnetic waves. 

It is no good to put in a form of electric force that is both time and space dependent, 

-eE(x, t), as f(t) in (4.6) since the other two terms in (4.6) implicitly require the spatial 

uniformity of the Drude model. Especially the relaxation approximation cannot be valid 

if the Drude model has any spatial dependence. For if the model had spatial dependence, 

the collision term would not be independent of the spatial location of an electron. Then, 

using the space-dependent electric force in (4.6) would make the equation inconsistent, 

not mathematically but physically with respect to one of constitutive assumptions of the 

Drude model.

Of course one can try to evade this difficulty by proposing a new equation of motion 

which has both time and space dependence and replacing (4.6) with it. Then the new 

equation (by construction) may accommodate the time dependent and spatially varying 

electrical phenomena, not in the Drude model but in a new model where the relaxation­

time approximation is no longer valid. But it is not clear why we should make this move 

since we can come up with a way that allows us to clarify the exact physical implications 

of each constraint in the problem and to coordinate them in a certain way. And indeed 

that is what condensed matter physicists do in this case.
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The reconciliation starts from looking at the relaxation-time approximation in the Drude 

model more carefully and thinking about which conditions assure its validity. The core 

idea is this: we may be able to rewrite (6) with spatial dependence even under the 

relaxation-time approximation in a way that preserves some desirable features of the 

Drude model, such as the linear dependence of the current density on an external electric 

field.

Recall that under the relaxation-time approximation, a series of collisions separated with 

an average time interval, t, is the only ‘internal’ causal mechanism for an electron. Thus, 

between collisions the only force an electron would experience is an external force. To be 

more specific, let us consider an electric force due to E(x, t) as an external force. Then 

the current density (the local average of electron density, proportional to p) in the Drude 

model at a certain point and time will be entirely determined by what the electric field has 

done to each electron at that point since its last collision. Under the relaxation-time 

approximation, this last collision takes place with an overwhelming probability no more 

than a few mean free paths24 away from the point.25 So if the external electric field does 

not vary appreciably over distances comparable to the electronic mean free path, the field 

will be locally uniform (although globally not) enough to determine linearly the current 

density at the point. In other words, both (4.7) and (4.8) hold in the Drude model:

j(<D) = a(o)E(co), (4.7)

j(r, a>) = a(a>)E(r, a>). (4.8)

This is a nice result because (4.8) allows us to deal with a much larger range of AC 

phenomena in the Drude model than (4.7) alone does.

In sum, when we consider a spatially-varying electric field in the Drude model, we are 

under a threat of inconsistency. An electron in the Drude model is assumed to ‘feel’ the 

same force, independent of its location, and (4.7) results from that assumption. But the

24) The mean-free path of an electron is the average length an electron can cover between one collision and 
the next one. This is of the order of 1/x.
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spatially-varying electric field requires that an electron should feel a different force 

depending on its location. The solution is this: as long as the wavelength of X of the field 

is very large compared to the mean free path, there is no real inconsistency. We can apply 

the Drude model even to the case of a spatially-varying (but only very smoothly) electric 

field. This approximation is called the long-wave length approximation.

The long-wavelength approximation is an exploratory approximation: it is used for 

probing the Drude model’s ability to deal with AC phenomena. The diagnosis is that the 

Drude model is compatible only with those AC phenomena due to a ‘comparatively long’ 

wavelength electric field. The precise meaning o f ‘comparatively long’ is given by one of 

the constitutive assumptions in the Drude model, that is the relaxation-time 

approximation.

One interesting point about this exploratory approximation is that it is not motivated by 

any kind of mathematical intractability whatsoever. This means that the role of this 

particular approximation is not pragmatic as the passive picture might suggest. Rather we 

try to coordinate a certain constitutive feature of the model with another constraint 

imposed by our cherished theory, in this case classical electromagnetism. By doing so, 

the long-wavelength approximation clarifies the valid scope of the Drude model: the 

Drude model is valid only for long-wavelength AC phenomena. This is a clearly 

epistemic role: the approximation helps us realise a new fact about the Drude model that 

was not clear from just looking at the constitutive assumptions of the model. As we can 

see in this example, doing approximations does not necessarily mean losing some 

valuable information. Sometimes we can gain from it.

Let me consider another example, the Bloch approximation in the Bloch model. The 

Bloch model is the fundamental model for the band structure of metals. Also it, unlike the 

(classical) Drude model, is one of the most successful quantum models in the theory of 

metals. The constitutive assumptions of the Bloch model are the following: (Bl) the 

independent-electron approximation, (B2) ions form a perfectly periodic, fixed lattice,

25) Ashcroft and Mermin 1976, p. 25
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and (B3) every electron experiences the same effective potential which has the same 

periodicity as the underlying lattice. Let us call (B2) and (B3) together the Bloch 

approximation.

The Bloch approximation is a representational approximation: it is perhaps the most 

crucial building-block of the Bloch model although it is false in real metals. Almost every 

important result in the Bloch model follows from (B3)26, while (B2) is necessary to get 

(B3). The motivation for the Bloch approximation is twofold: first, to reduce a many- 

electron problem to a one-electron problem with an effective potential, and the second, to 

investigate the effects of the periodic structure of the lattice on electronic motion. Let me 

give a rough sketch of how these motivations are embodied in order to get at the Bloch 

approximation.

Consider the motion of an electron in a model of metals consisting of only electrons and 

ions. In principle we need to investigate complicated interactions among ions and 

electrons in order to determine the motion of an electron. But suppose that ions form a 

perfect crystal, a fixed lattice structure with a certain periodicity, i.e. suppose (B2). Then 

the motion of an electron is given by its interaction with the other electrons and its 

interaction with the fixed lattice. But under the independent-electron approximation (Bl), 

the only interaction the electron can have is its interaction with the lattice. Now let us 

express this interaction by an effective one-electron potential. Since electrons are identical 

to each other, each electron should feel the same effective one-electron potential. The 

exact form of this potential will depend on the exact lattice structure under study. But if 

ions are similar enough to each other in the lattice so that we can model them as
27

identical, the perfect lattice will produce the periodic potential that has the same 

periodicity as the lattice itself. Then since the lattice is the only thing that an electron can 

‘feel’, the effective one-electron potential should have the same periodicity as the lattice. 

Thus (B3).

26) For instance, a lot of properties of electronic levels (band structure) follow from (B3).

85



Notice that unlike the Drude model the Bloch model does not explicitly mention 

‘collisions’ at all. Does this mean that there are no ‘collisions’ between electrons and ions 

in the Bloch model? Not really. By construction, the ‘correct’ one-electron effective 

potential is supposed to contain all interactions between electrons and the ionic lattice. So 

this ‘correct’ one-electron effective potential should contain some contributions from 

collision-like behaviour of electrons with ions. We should rather say that the Bloch model 

does not separately recognise ‘collisions’ as its causal mechanism to be responsible for 

the metallic phenomena explained by the model. In fact it is a theoretical result of the 

Bloch model that an electron has a non-vanishing velocity without any retardation, which 

means there are no ‘collisions’ in a classical sense in the model.

The Bloch approximation suggests to us a good heuristic for modelling metals. Its advice 

is to separate conceptually the problem of describing metallic phenomena into two parts 

and attack each part one by one:28 (1) consider the motion of an electron moving through 

a (fictitious) perfect ionic lattice and experiencing a certain periodic potential due to the 

lattice, and (2) treat any deviations from the first part (quasi-periodic lattice, impurities, 

dislocations, lattice vibrations, etc.) by modifying the results from the first part. The first 

part consists of investigating the effect of periodicity of the ionic lattice on electronic 

motions. On the other hand, the second part concerns the ‘disturbance’ of this effect when 

we introduce other causal factors.

As a whole the heuristic aims at analysing the effects of various causal factors on 

electronic properties in metals separately from each other. The Bloch model with the 

Bloch approximation picks up a causal mechanism from the ionic lattice to electrons 

through the effective one-electron potential. The fact that this potential has the same 

periodicity as the lattice explains a lot of metallic phenomena. On the other hand, under 

the Bloch approximation the model does not identify ‘collisions’ as a separate causal 

mechanism. In this way the Bloch approximation allows physicists to study exclusively

27) Although this assumption is essential for getting at (B3), it is rarely mentioned in the textbook. Cf, 
Ashcroft and Mermin 1976, pp. 132-3

28) Daniela Bailer-Jones takes this as a general prescription for modelling. See Bailer-Jones 1999, 2000.
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the effects of the periodicity of typical lattice structures of metals in a highly idealised 

Bloch model.

After finding out what kinds of phenomena the periodicity of the lattice can give rise to in 

the Bloch model, physicists then can consider a more complicated model by introducing 

more causal mechanisms one by one. What they usually do is to apply the same heuristic 

as the Bloch approximation. For instance if physicists want to introduce a new causal 

mechanism by allowing ions to ‘vibrate’ with respect to their equilibrium positions, they 

(1) consider a new model with an electron moving through a (fictitious) perfect ionic 

lattice with lattice vibrations, and (2) try to figure out the composite effects of both causal 

factors (the periodicity of the lattice and lattice vibration) in this model. In the first part 

of this theoretical investigation, physicists need another representational approximation in 

order to study exclusively the effects of lattice vibrations on metallic phenomena without 

paying too much attention to the motion of electrons. So they adopt the adiabatic 

approximation where electrons are assumed to adjust themselves very quickly to the 

(relatively slow) vibration of ions so that they will always be in their ground states.29 In 

the second part, they try to understand how a new causal mechanism (lattice vibrations) 

modifies the effective one-electron potential given by the Bloch approximation.

Both in the Bloch model and in a new model with lattice vibrations, what we see is the 

powerful method of theoretical physics: the analytical method. And the two 

representational approximations (the Bloch approximation and the adiabatic 

approximation) are the core of the application of this method to our theoretical 

investigation of metals. They help us pick up various causal factors (the periodicity of the 

lattice, lattice vibrations, etc.) when we construct models of metals. Then they also help 

us study one particular channel of causal mechanism exclusively (the effective one- 

electron potential, normal modes, etc.) Here we can see how representational 

approximations can add something to our understanding of condensed matter systems. 

They teach us how to model condensed matter systems.

29) Ashcroft and Mermin 1976, pp. 425-6
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I have argued that the interactive picture accounts for many facts about the nature and 

roles of approximations in condensed matter physics far better than the passive picture. 

Now I can more fully answer the challenge about the significance of my typology of 

approximations. As I said before, although I do not deny the possibility that one 

representational approximation and another exploratory approximation have the same 

physical content, I think that such cases are exceptions, not the rule.

The reason comes from my discussion of this section. Representational and exploratory 

approximations serve different purpose: the former is to build models or to isolate certain 

causal mechanisms, and the latter is to extract the correct physical content of a model or 

to clarify the valid scope of a model. It is not unthinkable that some approximations are 

good at all these epistemic roles. But as we saw in the case of the magnetic field 

contribution in the Drude model, the considerations for each type of role are usually 

different. Ignoring the magnetic field entirely in the model does not give us a good 

representational approximation while it does give us a good exploratory approximation 

depending on the specific problems we address in the model. Similarly, representing a 

model to be suitable only to the long-wavelength electric phenomena without any 

independent reason is unlikely to be a good representational approximation, since the 

model, after the exploring process, might turn out to be applicable to all wavelengths.

4.6. Conclusion

Approximations actively play various epistemic roles in theoretical physics. They can add 

something to our knowledge of how to model physical systems in the world. The proper 

way of looking at the relationship between general theories and approximations is 

through coordination rather than passive appendum. This is the account of the interactive 

picture of approximations, and I have argued for it discussing it in condensed matter 

physics.

We can distinguish two types of approximations in condensed matter physics based on 

which roles they play in the process of our theoretical understanding assumed by (Tl).
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Representational approximations serve as constitutive assumptions of a model, and 

exploratory approximations, as model-probing devices. Condensed matter physicists use 

them for other purposes as well, such as isolating causal mechanisms, coordinating the 

model with general theories, and clarifying the valid scope of a model. These two types 

of approximations convincingly illustrate how inadequate the passive picture is. Both 

representational and exploratory approximations in condensed matter physics are best 

understood in terms of the interactive picture of approximations.

One of the motivations for me to look at approximations in this way comes from an 

observation that physicists show different attitudes towards different kinds of 

approximations. Sometimes they are fastidiously meticulous about the ‘correctness’ of 

certain approximations: whether a given series expansion does converge to the true value, 

and if it does, whether it converges rapidly enough so that it is safe to take just a few 

leading terms as an approximate. And sometimes they very much care whether a given 

idealised model can be improved by replacing an unrealistic approximation by more 

realistic one. These are the cases that the passive picture can deal with. But there are 

other cases where physicists are quite happy with the ‘unrealistic’ nature of certain 

approximations. Galilean idealisation is one of them.30 Moreover this different attitude is 

closely related to the different points at which physicists employ approximations in their 

building and exploring of models. The different types of approximations are use at the 

different stage of their model-based research. Consequently, physicists’ attitudes towards 

these two types of approximations will depend on what considerations they think most 

important in each stage of their research. As the kind of considerations taken to be crucial 

at the model-building stage are generally different from that at the model-exploring stage. 

Physicists tend to have different attitudes towards different types of approximation.

30) McMullin 1985
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C h a p t e r  5

T h e  R e n o r m a l i z a t i o n  G r o u p  M e t h o d  in  C o n d e n s e d  M a t t e r  P h y s i c s

5.1 Introduction

In this chapter I discuss the renormalization group (RG) method in condensed matter physics 

(CMP): how its main ideas are motivated by other theoretical developments in CMP, how it 

works and what its philosophical implications are. The RG method is one of the most 

successful theoretical frameworks employed by condensed matter physicists for modelling 

and understanding macroscopic phenomena. For instance it provides, among other things, the 

most impressive explanation of critical phenomena by present physics. By looking at how 

this method has been developed and how it works, we can learn a lot about the gist of 

successful modelling in CMP.

Except for recent notable exceptions,1 the RG method has been discussed by philosophers 

usually in the context of quantum field theory (QFT).2 In contrast, the rich and independent 

theoretical tradition of the RG method in CMP has been largely neglected in the literature. I 

will talk a little about the relationship between these two methods, more on their substantial 

differences than on their formal similarities. In fact I will claim that there are a number of 

theoretical, conceptual and motivational differences between these two mathematically 

closely related methods.

More specifically I will argue that the theoretical need for the RG method in CMP has been 

motivated by different considerations from the notorious problem of infinities in QFT, and 

that the RG in CMP has many theoretical implications not shared by the RG of QFT and vice 

versa. It is important to realise the significance of these issues. Some authors (Cf. Huggett 

and Weingard 1995) seem to assume that the RG of CMP is just another application of the 

RG ideas of QFT, and that any philosophical conclusions possibly correct for the RG of QFT

1 ) See Batterman 1998, Batterman 2000 and Hughes 1999 for the insightful discussion on several philosophical 
implications of the RG in CMP. Also there are a few historical and conceptual works by physicists on the 
topic. Domb 1996 is an excellent history of the theory of critical phenomena, offering a balanced view on the 
role of the RG method in this history. Fisher 1999 is insightful on the differences of the RG in CMP and the 
RG in QFT.

2 ) For the historical and philosophical discussions of the RG method in QFT, see Brown 1993, Cao 1999, Cao 
and Schweber 1993, Huggett and Weingard 1995 and 1996, Schweber 1994 and Teller 1994, chapter 7.
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are automatically valid about the RG of CMP. Understandably Huggett and Weingard (1995, 

1996) illustrate their claims about the principles of the RG in QFT, often by examples of 

CMP. In section 5.4 I will challenge this view and investigate a number of other related 

issues.

I use the word ‘method’ in the expression ‘RG method’ on purpose, and thus avoid a 

probably more conventional name, the RG theory. Both, the ‘RG method’ and the ‘RG 

theory’, are used by physicists to characterise the RG ideas and applications in CMP. It is fair 

to say that physicists tend to use the ‘RG theory’ when describing various abstract 

formalisations of the RG ideas such as a general theory of £-expansion in momentum space. 

On the other hand, they opt for the ‘RG method’ when discussing concrete implementations 

of the RG ideas such as a dynamic RG treatment of non-equilibrium phenomena.

Still there is a tendency among some physicists (especially field theorists working on CMP 

problems) to talk freely about the RG theory as i f  RG were a universal algorithm, to which 

we may put any physical questions expecting beautiful answers in a row. I think that this 

tendency is at best misleading and at worst simply misrepresents how the RG method works 

in CMP. First of all even when it is appropriate to talk about a RG ‘theory’, the definite 

article in ‘ the RG theory’ is unjustifiable for, if my claims in section 5.4 are correct, there are 

significant variations in the nature of RG from QFT to CMP.

More importantly the RG in CMP cannot be identified by a fixed formal theory one can 

uniquely designate. Each of the RG applications in CMP is an implementation of a set of 

loosely connected ideas, carefully designed for modelling condensed matter phenomena. In 

order to achieve a successful RG modelling of a given phenomenon, physicists need a lot of 

context-sensitive creativity and not just the formal theory of RG. Consequently a large degree 

of variations in formalism and in structural assumptions exist among the different RG 

implementations.

Consider the idea of scaling for instance. It is one of the most important ideas of the RG 

method in CMP. But there are many different ways of embodying this idea depending on the 

specifics of the problem one might want to study, as we can see in section 5.2. Still we can

3 ) Cf Goldenfeld 1992, chapters 9-12
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understand all of them under the banner of the RG method. To put it differently, there is no 

unique set of (mathematical or implicit) features shared by all RG implementations in CMP. 

One of the consequences of this feature of the RG in CMP is that you cannot write down an 

unambiguous procedure for applying the RG for a given physical problem. In this sense the 

RG is not a theory in contrast to the theory of graph expansion in QFT for instance.

Each implementation of RG picks up only some of the RG ideas and adapts them to the 

specific nature of a given problem. The unifying power of the RG method partly lies in its 

plasticity. All these considerations are reflected in my second claim that the RG in CMP is 

not a uniquely identifiable mathematical theory, but rather a collection of interrelated and 

mutually inspired ideas and theoretical techniques, that is to say, a method. I am going to 

argue for this in section 5.5.

The RG method in CMP has achieved its most notable success with critical phenomena, 

phenomena involving phase transitions of many-body systems. This does not mean however 

that before the arrival of the RG, critical phenomena were a sort of mystery for condensed 

matter physicists. An influential and versatile method called the mean fie ld  (MF) method was 

(and still is) used to explain a number of characteristics of phase transitions both qualitatively 

and quantitatively. The mean field method has been continuously bolstered by a number of 

sophisticated series expansion techniques in precisely calculating the values of critical 

exponents.

Whether physicists or philosophers, those who are overwhelmingly impressed by the power 

of the RG method in CMP tend to think of the relationship between the RG method and the 

MF method as replacement. That is, the RG theory (as they would prefer to call it), being 

more correct and offering us the more comprehensive explanation of critical phenomena, has 

made the mean field theory effectively redundant. I shall argue that talking of replacement in 

this case is not even factually correct let alone philosophically fruitful. What has happened in 

the development of the theory of phase transition is best understood as the constructive 

complementation between two methods. The RG method is good at describing the scaling 

behaviour of a many-body system near its critical points; but it is silent about other important 

issues such as the nature of phases far from critical region. In contrast the MF method is 

inherently unreliable very near critical points because its fundamental assumption about the 

analyticity of thermodynamic functions breaks down there; but it is excellent at answering
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exactly those questions with which the RG method cannot help us. In sum we need both the 

MF method and the RG method in order to get a comprehensive explanation of critical 

phenomena. This is why complementation, rather than replacement, is a better concept to 

understand the relationship between these two methods, or so I will argue in section 5.6.

But first of all we will look at the theoretical background with respect to which RG has 

emerged as a new method in CMP modelling. Then we can discuss what the RG method in 

CMP actually consists of and how it works in section 5.3.

5.2 Correlation Length, Universality, Scaling and the Mean Field Method

Imagine a many-body system, say a gas in a box. We can measure a number of macroscopic 

properties of this gas such as its density, compressibility, specific heat, etc, while keeping its 

external parameters such as pressure and temperature fixed. Let us suppose that the system is 

in equilibrium, which means that these macroscopic properties are not changing over time. 

Notice that I am not talking about equilibrium in terms of its more theoretical definition in 

statistical mechanics, namely being characterised by the microcanonical measure. Rather I 

want to start my discussion with an empirical fact that the macroscopic properties of some 

physical systems are not changing appreciably over time. I do this because I want to make it 

clear the link between this empirical observation and some of important theoretical concepts 

in CMP. In fact you can take a many-body system being unchanging as regards its 

macroscopic properties as the de facto definition of it being a thermodynamic system.

Now divide the system into two roughly equal halves. If the system is big enough, some 

macroscopic properties of each sub-system, the intensive properties, will then remain the 

same as those of the original system.4 This fact generally holds true if we repeat this kind of 

division many times. It is obvious however that this cannot be true after too many repetitions. 

For instance, there is some point at which the compressibility of a sub-system fluctuates 

substantially. In fact the stability of (intensive) macroscopic properties is bound to fail at the 

level of very small sub-systems as the concept of compressibility is not even applicable to 

atoms.

4 ) The other kind of macroscopic properties, extensive properties are proportional to the volume of the system. 
So in this case the values of extensive parameters of the halved sub-system will be a half of those of the 
whole system.
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The length scale at which the (intensive) macroscopic properties of a sub-system are 

appreciably different from those of the whole-system gives a measure of what is called the 

correlation length of the system.5 We could say that any two regions of a system would 

significantly influence each other only if they are apart less than the correlation length of the 

system. Consequently, the microscopic fluctuations in different regions of the system apart 

more than its correlation length could be regarded as being effectively independent of each 

other. In this case, two regions of the system are virtually so ‘disconnected’ from each other 

that when we separate the two, there is no appreciable change in their macroscopic properties.

This is a nice example of how elegantly a rather simple theoretical concept of CMP can 

capture the physical content of well-established empirical facts about many-body systems. A 

many-body system under a given set of external conditions typically exhibits more or less 

stable macroscopic properties in its entire region; but only up to a certain length scale. We 

understand this phenomenon employing the concept of correlation length. Two regions of the 

system, separated further than its correlation length, are not substantially ‘correlated’ with 

each other. As a result it will make no appreciable difference to their macroscopic properties 

if the connection is actually severed, for instance if the system is physically divided into two 

parts. On the other hand if the system is divided so finely that the dimension of its dividends 

is smaller than its correlation length, the physical properties of the dividends will be different 

from one to another significantly. This is because the physically significant interactions 

among the dividends are cut off in this case and therefore their contributions to the physical 

properties of the dividends are lost.

It is noteworthy that the correlation length of a many-body system generally depends on the 

external parameters as well as the specifics of the system. The physical implication of this 

fact can never be clearer than in the phenomenon of phase transition. Consider a ferromagnet 

that exhibits below its Curie temperature so-called spontaneous magnetisation, magnetisation 

without any applied magnetic field. The correlation length of a ferromagnet varies a lot 

depending on its temperature and applied magnetic field. Especially, as the system 

approaches its paramagnet-ferromagnet phase transition point (i.e., its Curie temperature with 

no applied magnetic field), it increases continuously and finally becomes infinite at the

5) A formal definition of correlation length is the following: £ is the correlation lengthof a system if the 
correlation function of the system, C(r, r), behaves like exp{-\r -  r'|/  ̂) in the thermodynamic limit. The
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t ransition point. From our earlier discussion of correlation length, we can immediately 

conclude that at this particular external condition, every bit of the ferromagnet is strongly 

correlated with each other. This fact makes this type of phase transition, the so-called 

continuous phase transition, very difficult to study mathematically: many favourite analytic 

techniques of physicists such as perturbative expansions are not applicable.6 As we shall see 

in section 3.1, the RG method is a nice way of evading this difficulty.

Another empirical fact we know about the continuous phase transition is its universality. It 

turns out many (not all)7 properties of a class of systems near8 their critical points are largely 

independent of the microscopic details of the interactions between their constituents. For 

instance it has been recognised since the early twentieth century that the liquid-gas phase 

transition shares many features with that of the paramagnet-ferromagnet phase transition.9 So 

if we draw the graph of the reduced density, p -  pc, for water (where p is the density of water 

and pc, the density at the transition point), it shows the striking resemblance with that of the 

magnetisation, m, in the paramagnet-ferromagnet transition. Similarly, the isothermal 

compressibility of water shows the almost same bahviour with the zero field susceptibility of 

a ferromagnet. In modern terminology, we say that both transitions belong to the same 

universality class, in this case to the Ising universality class. One of the pivotal achievements 

of the RG method in theory of phase transition is to explain these phenomena of universality.

The phenomena of universality can be vividly seen through another important empirical fact 

that has fascinated physicists for a long time in various fields: scaling. In its simplest form, 

scaling just means that two measurable quantities depend on each other in a power-law 

fashion. A familiar example is Kepler’s law, relating the (mean) radius R of a planet’s orbit to 

the period T of the orbit:

T x R 3'2 (5.1)

correlation function, C(r, r), gives a measure of how much two regions centred at r and at r' are correlated 
with each other. Cf Goldenfeld 1992, pp. 95-98

6 ) Many of important thermodynamic functions such as free energy (or their derivatives such as specific heat) is 
not analytic (meaning mathematically singular) on the critical point. It is not due to the divergence of these 
quantities although they are inevitably divergent when we take the thermodynamic limit of them. Rather it 
results from the fact that the continuous change of a phase into another phase cannot be represented in a 
mathematically smooth way. Notice that this is already a quite different reason from the parallel difficulties 
of perturbative expansions in QFT, that is, the problem of undesirable infinities.

7 ) See section 5.3.3 for the discussion of this point.
K) See section 5.3.1 and 5.3.2 for the significance of this ‘nearness’ of universal critical phenomena.
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The scaling exponent of Kepler’s law, 3/2 in (5.1) can be deduced from dimensional analysis 

once we assume the inverse square law Mr2 for the gravitational force. It is known that the 

scaling exponents obtainable from simple dimensional analysis will be generally rational 

numbers.10

Several important scaling relations like (1) were experimentally found in critical phenomena. 

In ferromagnets for instance physicists have established the following power-law behaviours 

of important thermodynamic functions in the vicinity of its phase transition point:

C ~ A \ t \ ~ a (5.2)

lim//^o+Moc ( - t f  (5.3)

X^(dM/dH)  L =0oc | / b  (5.4)

M o z \ h \ vs (5.5)

where C is the specific heat in zero field (apart from terms which are regular in /); t, the 

reduced temperature t = { T -  Tc)/ Tc with Tc, the critical temperature; M, the spontaneous 

magnetisation, %, the zero field susceptibility; /?, the reduced external magnetic field, h = HUcb 

Tc. Notice that the above scaling relations phenomenologically define critical exponents such 

as a, P, y, 5.

Interestingly experimentalists found in early 60’s that many physical systems with radically 

different microscopic compositions share the same critical exponents. For instance the same 

critical exponents of ferromagnets are shared by ordinary liquids such as water as regards 

their liquid-gas phase transition. Again, properly modelled, many percolation phenomena 

exhibit these same critical exponents. This is a clear case of universality of critical 

phenomena.

Experimentalists also found that the critical exponents are in general irrational numbers. It 

implies that simple dimensional analysis is inadequate for understanding critical phenomena. 

Simple dimensional analysis is known to be adequate if there is only one ‘significant’ length

9) Domb 1996, pp. 9-14
10) Cardy 1996, pp. 3-4
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scale in the physical problem under consideration. For instance, there is a single length scale 

in Kepler’s problem, namely the radius of a planet’s orbit, which is responsible for the 

rational scaling exponent, 3/2. Although there are many other length scales involved in the 

motion of the planets around the sun, for instance the radii of the planets, they can be ignored 

when we study the large-scale features of the planets’ motion such as Kepler’s law. The 

irrationality of critical exponents then implies that this convenient feature of many physical 

problems, ‘the separation of significant length scale’, is not valid in critical phenomena. In 

order to study critical phenomena properly, we have to take into account physics of all length 

scales, from the minute-scale random fluctuations of atoms to the extremely long-range 

correlations among the parts of a system. This fact gives a serious difficulty for theoretical 

physicists because many conventional techniques developed for more expedient problems are 

inapplicable.

The task for condensed matter physicists is then to explain how these scaling behaviours are 

brought about and hopefully obtain numerically accurate values of critical exponents. By 

doing so, they could say something about how the tantalising phenomena of universality 

should be understood. Before and after the arrival of the RG method in CMP, condensed 

matter physicists used a powerful and versatile theory of phase transitions, the mean field  

(MF) method11, to do this job. The physical idea behind the MF method is rather simple: it 

amounts to ignoring individual correlations among constituents of a many-body system, and 

postulating instead that every constituent responds to the same field obtained by averaging 

the correlations over the entire system. Let me explain this point by a concrete example, the 

ferromagnetic Ising model.

The fundamental quantity we have to consider for the ferromagnet Ising model is its partition 

function, and it is given as follows:

Z = Tr exp[(l/2)PZJ(r, r)s(r)s(r) + fiHZs(r)] (5.6)

J is the interaction strength between a spin at r and a spin at r', (3, MkT where k is Boltzmann 

constant and H is an external magnetic field; each spin can take either +1 or -1 as its value.

11 ) There are many variations of the MF method in many branches of many-body physics from atomic physics 
to solid state physics, hence the name the mean field ‘method’ rather than the mean field ‘theory’.
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In short this model describes a ferromagnet as a many-body system o f ‘spins’ interacting with 

each other as well as with the external magnetic field.

Now it is very difficult to calculate the partition function even for this simple model of 

ferromagnets. So one might try to replace (5.6) with a new partition function describing a 

non-interacting system under a uniform field. This must be done in such a way as to 

encapsulate the essential physics of the problem, which is a non-trivial task. In the present 

case we know that the applied field H will give rise to some non-zero magnetisation M = (s) 

where (s) is the thermodynamic average of all spins. So we start from the following identity,

s(r)s(r') = (M + (s(r) -  M))(M + (s(r') -  M)) (5.7)

and then to expand this to the first order in the fluctuation, 5s(r) = s(r) -  M:

s(r)s(r') = M2 + M5s(r) + MSs(r') + 0((8s(r)2) (5.8)

s(r)s(r') «  -  M2 + M(s(r) + s(r')). (5.9)

As we can see from (5.9), the MF treatment of the model given by (5.6) replaces spin-spin 

interactions by spin-magnetisation interactions plus a constant. To put it in a different way, 

the MF method deprives spins of any correlations with each other. This is rather drastic.

From the earlier discussion, we know that correlations within a correlation length do matter. 

For instance two spins neighbouring each other are strongly correlated. On this physical 

ground we can expect that the MF method will give us quantitatively correct results only 

when the correlation length of a given system is very small.

In fact we can utilise this connection between correlation length and the MF method in order 

to formulate a (rough) criterion for the valid scope of the MF method, namely the Ginzburg 

criterion12 given as follows:

(Ginzburg criterion): the MF method is valid when Zs4~d «  R4 (5.10),

12) Cardy 1996, pp. 25-6

98



where £, is a correlation length of a given system, d, the spatial dimension of the system and 

R, the range of interaction. Roughly speaking then, the MF method is valid when a measure 

of the range of interactions among constituents (given by R) is much bigger than the 

correlation length. Or to use our division-analogy before, the MF method is valid when we 

can get the stability of the macroscopic properties even to very minute scales.

This criterion is very useful for understanding why the MF method is very successful in 

explaining some phenomena such as (Type-1) superconductivity by the BCS theory, but even 

qualitatively unsatisfactory for some other phenomena such as the near-critical behaviour of 

continuous phase transitions. The explanation goes like this. For most systems R is of the 

same order as a, the microscopic length scale (for instance lattice spacing). We therefore 

expect that the MF method becomes invalid by the time the correlation length becomes a few 

times a as the system approaches its critical point. This is why the MF method is quite good 

at explaining far-from-critical point properties of the system while unsatisfactory as regards 

near-critical behaviours.13 On the other hand, for some systems such as type-I 

superconductors, R is large, of the order of the size of a Cooper pair. For such a system, it is 

very difficult to see the deviation from the MF predictions, even when experimenters probe 

the system very close to its critical point.

The MF method offers its explanation of the phenomena of universal critical behaviour. In 

fact the MF method gives us a remarkable degree of universality, in many cases too 

remarkable to be consistent with experimental data. The critical behaviour, according to the 

predictions of the MF method, is independent of almost every detail of the system under 

consideration. Actually, there is only one single set of critical exponent values according to 

the MF method, often referred to as the Landau values.

In sum we see how correlation length, scaling, universality and the MF method are 

interrelated in CMP research. For instance the scaling relations in critical phenomena provide 

us with a remarkable example of universality, and again the correlation length shows a 

scaling. It is also important to notice that each concept (or method) constrains the others in 

such a way to delimit the usefulness or validity of them. For instance correlation length 

delimits the validity of the scaling of macroscopic properties. Universality can be understood

13) This point is crucial for my argument in section 5.3.4.
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by the MF method, but then the validity of the MF method relies on the comparison of the 

range of interaction with respect to the size of correlation length.

5.3 The RG Method in CMP

5.3.1 Motivation

I shall first try to convey the main ideas of the RG method in CMP before going into the 

details of its mathematical formalism. Suppose we want to investigate some specific problem 

about a condensed matter system. Instead of solving the problem in its original form, we may 

first try to re-express the relevant parameters of the problem in terms of some others, hoping 

that this re-expression renders the problem easier to tackle. For instance in the problem of 

how long-range order is established, we may decide to ‘integrate out’ the short-distance 

degrees of freedom of a given model and represent the system with a new model. Or, we may 

modify the effects of large-scale disturbances in a model of fluid turbulence and arrive at 

another model. The point is that we start with a model of certain phenomena, and transform it 

into a new one, by which we wish to understand the phenomena better.

Another important point is that we never even try to preserve everything by this change of 

models. After all, by the change we move from one model to another as our intended 

representation of the phenomena. Unless the change is trivial, these two models do not share 

all of their features; loss is inevitable. Naturally, we want to keep the crucial features of the 

phenomena we are interested in as intact as possible while allowing the change of some other 

features. For instance in the earlier example of the establishment of long-range order, we may 

allow somewhat radical modifications in the short-distance features of an original model as 

long as it preserves the long-distance characteristics of the model.

From our discussion in chapter 4 of the function of representational approximations in the 

model-building stage, we know that this distinction of important (thus preserved) and 

unimportant (thus modified) features is not absolute, but clearly depends on the nature of the 

problems we are studying. Indeed the RG applications in CMP provide us with plenty of 

examples illustrating this point. For instance, when we are more interested in how exactly the 

short-range fluctuations are organised down to a very small scale in the aforementioned fluid
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mo del, we may be willing to bear with modifications of large-scale disturbances, but require 

the preservation of the short-range structure.14

Sometimes this transformation of one model into another is recursive in the sense that we can 

apply the same transformation again to the modified model, and get a further modified model. 

Furthermore this recursive transformation may have a group structure (actually semi-group 

structure). Particularly, the ‘nature’ of the transformation could have something to do with a 

renormalization, that is the rescaling of, say, the spatial dimension) of a model accompanied 

by appropriate changes in its interaction parameters. Combining these two features, we get 

the renormalization group of a series of models. The RG method in CMP is to use the RG 

transformation of a given CMP model in order to study some highlighted features of the 

model. Notice that even in this rough description of it there is no mention of the problem of 

infinity, one of the focal points in philosophical discussion of the RG in QFT.15

5.3.2 The RG Method and the Universality of Critical Phenomena

Now I will explain how the RG method works in a concrete case taking the two-dimensional 

Ising model (Ising-2D) as an illustration. The Ising-2D model is a free model, a model not 

fixed to any particular interpretation.16 It describes an abstract two-dimensional (infinite)17 

lattice system of which primitive entities are ‘spins’ located on each lattice point. (Figure 5.1) 

Here ‘spin’ is just a name for the only dynamic variable of this system, not intrinsically 

related to quantum mechanical spins. Actually ‘spins’ in CMP models can be either classical 

or quantum, depending on the nature of the physical system the model is intended to describe. 

‘Spins’ in the Ising-2D model are interacting with each other as well as with an external field 

(usually taken to be a magnetic field). The Ising-2D model describes quite diverse 

phenomena including the order-disorder transition of a ferromagnet and the liquid-gas 

transition of a simple fluid.

Recall our earlier discussion of correlation length. Figuratively speaking, the system ‘looks’ 

the same whether we look at the whole system or certain part of it provided the correlation 

length is large enough. To put it differently, a system with a large correlation length looks the 

same whether we see it closely or a bit from a distance. As the Ising-2D system approaches

14 ) Cardy 1996, p. 29
15 ) Cf Cao and Schweber 1993 and Teller 1994
16 ) For the discussion about various model-types of CMP, see chapter 3.
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its phase transition point, its correlation length gets larger and larger. So we can expect that in 

its critical region the Ising-2D system exhibits so-called scale invariance: the invariance of 

the critical properties of the system under the (length) scale change. We can formalise this 

point using Kadanoff s block-spin idea.

Kadanoff proposed that when the Ising-2D system is near its critical point, if we consider a 

new system consisting of block-spins obtained from a local average of several neighbouring 

spins of the original system, the new system should show the same critical behaviour as the 

original system.18 From this postulate and assumptions about the scaling of two important 

thermodynamic variables of the system, reduced temperature, t, and reduced field, h, he could 

explain several empirically known scaling relations of the system. There is more than one 

way of defining block-spins and I choose one of the simplest, shown in Figure 5.2. As we can 

see, each block spin comes from 9 original spins and the value of the block spin is determined 

by a simple majority rule, that is, the arithmetic mean of all the spins in a given block spin.

As original spins have a value of either XA or -lA, the block spins will get either lA or -lA as 

well.

Now we should decide how these block-spins interact with each other. A bold conjecture of 

Kadanoff was to require that the new system should be governed by the same form of 

Hamiltonian as the original system (Invariance of Hamiltonian), which means that the block- 

spins also should interact only with their nearest neighbour block-spins and with the external 

magnetic field. This proposal, although innovative and seemingly reasonable, was actually an 

unfortunate one since the new system is in general governed by a different Hamiltonian. We 

can easily see this point from Figure 5.3. Even when the original Hamiltonian has only 

nearest-neighbour interactions, the block-spins usually come to have next nearest-neighbour 

interactions.

This feature turns out to be not special to the 2D-Ising model, but a general characteristic of 

any block-spin transformation for models of critical phenomena. To illustrate this point, let us 

consider a rather unphysical model of Ising-spins where spins interact only with next nearest- 

neighbour, not the nearest ones. Still, after a block-spin transformation, the nearest-neighbour 

block-spins have to interact each other! In this case, the new system clearly does not share the

17 ) That is, after taking the thermodynamic limit.
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Hamiltonian with the original system. The point we can learn from this consideration is this: 

the block-spin transformation and its generalised version, the RG transformation, will 

generally generate a different system from its starting system governed by a different 

Hamiltonian. The two model-systems share some properties just as two different physical 

systems could share certain characteristics. Still we need to keep in mind that the original 

Hamiltonian and its block-transformed Hamiltonian represent two different physical systems 

in order not to draw wrong conclusions out of the RG method in CMP.

Now then how can we determine the new (renormalized) Hamiltonian of block-spins in the 

2D-Ising model? Recall that in statistical mechanics the partition function is the fundamental 

quantity in describing a physical system. Many of the important quantities of the statistical 

mechanics description of a system come from the derivatives of a partition function. 

Consequently as long as two systems with different Hamiltonians share the same partition 

function, the SM description of them will be the same in many respects. So it is reasonable to 

require that the renormalized system with block-spins should have the same partition function 

as the original system; that is,

Z = Tiye~'w'(s') = Trse"’W(s) = Z '  (5.11),

where *H is the (reduced) Hamiltonian of the original system and 7-(', that of the renormalized 

system.19 We can implement our particular majority rule of the block-spin transformation by 

introducing the following projection operator,

T(s';si, s2, ..., s9) = 1 if s'UjSi > 0

= 0 otherwise. (5.12).

Using the constraint (5.11) and the projection operator defined by (5.12), we can now 

formally define the renormalized Hamiltonina as follows:

e -* V >  _  Trj n Wo<to7(s'; s,, s2, s9)e-*(s) (5.13).

18) Kadanoff 1966
19) Following a commonly adopted notational convention among condensed matter physicsts, I let /3(=kT) be 

absorbed into the redefined Hamiltonian. This newly defined Hamiltonina is called a reduced Hamiltonian.
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The meaning of (5.13) is this: the new Hamiltonian is determined by ‘tracing-out’ all the 

contribution of the interactions within each block to the orginal partition function. The 

resultant, partially traced-out, partition function implicitly defines the renormalized 

Hamiltonian of block-spins.

The idea behind this ‘tracing-out’ is that we construct a new model and preserve in it all the 

Targe distance’ physical features of the 2D-Ising model. The trick is that we ‘trace-out’ all 

the ‘short-distance’ physics of the 2D-Ising model and obtains its ‘renormalized’ model by 

requiring the partition function of the two models to be the same. This procedure can be 

applied to the new model again, and results in another new model and so on ... The hope is 

that by studying this chain of models and their RG transformation we might be able to 

understand better the critical behaviour of the 2D-Ising model.

Unfortunately, the partial-trace in (5.13) is hopeless to work out even for very simple 

projection operator like (5.12). Moreover, standard approximation methods are hard to apply, 

as there are often no small parameters to work with if we consider the RG transformation in 

real space (real space RG). This is why many condensed matter physicists find another kind 

of RG, the momentum space RG, attractive; there are often small parameters such as the 

famous e in Wilson’s e-expansion in the momemtum space RG. I’ll talk more about this issue 

in section 5.3.3.

Now let us come back to the real space RG. Without doing the relevant calculation of the RG 

transformation explicitly, we can still learn a lot about the critical behaviour of the 2D-Ising 

model by studying the general feature of its so-called RG-flow. In order to discuss the RG- 

flow, we need to think of all the possible couplings of a given Hamiltonian as forming a 

vector {K} = {Ku K2, ...}. In the original 2D-Ising model, there is only the nearest neighbour 

coupling, say Kj, with all the other K,= 0. But, as discussed before, the renormalization 

transformation will eventually generate all the other couplings. We may therefore picture the 

RG transformation as acting on the parameter space of all possible couplings {K}:

{ £ -} -* ({ * } )

{ i n =««*"})=k2«*})
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(5.14)

We may think of each {K1} as representing a model (or its Hamiltonian) which results from 

/'-times application of the RG transformation, R, to the 2D-Ising model. If we follow these 

/Ts, we get the RG-flow of the 2D-Ising model. (See Figure 5.4)

The basic strategy of the RG method in the theory of critical phenomena is to assume the 

existence of a fixed point in the RG transformation under consideration (especially when we 

know that there is a phase transition in its corresponding system) and to study the 

consequences of the assumption. That is, we assume there exists in parameter space a fixed 

point, K* which satisfies 7?({./P}) = {K*}. Roughly speaking, as a RG transformation 

increases (in absolute terms) the canonical length scale of the models along a RG flow, the 

model picked up by K* represents the long-range behaviour (including its critical behaviour) 

that all the models in the RG flow share.

In order to illustrate this point, let us consider the correlation length £ of the 2D-Ising model. 

From our discussion in secion 5.2, we know that at the critical point, £ should be infinite. 

Now as the block-spin transformation we have considered for the 2D-Ising model reduces the 

size of the system by 3 (scale factor), the following holds for the correlation length: =

3 =£[K(W )]. But then for K*, f[JT*]/3 = fl^({JT*})] = $K*} must hold. This means 

that £[K*] can only be zero or infinity. The (critical) fixed point corresponding to an infinite 

correlation length represents the singular critical phenomena, while the (trivial) fixed point 

corresponding to zero correlation length represents the bulk phases of the system. Here we 

can see how the concept of fixed points of the RG transformation captures one important 

feature of phase transitions, an infinite correlation length.

In fact many important critical phenomena including the universality of phase transitions are 

explained by looking at how the RG flow behaves locally near the critical fixed point, rather 

than at the critical fixed point itself. So we also assume that the RG transformation is 

differentiable at its fixed point so that we can linearise R  about K* as follows:

KJ -  K *  ~ Zb Tab(Kb - K b*) (5.15)
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where 7kb = {dK^ IdKb)\x = k* . Call the (left) eigenvalues of the matrix T, A1, and its 

eigenvectors {u\}, so that

I*au'aTab = Ub. (5-16)

Basically we can extract from A1 most of the important characteristics of the critical behaviour 

of the 2D-Ising model including its critical exponents. In order to do that, we define scaling 

variables, v, = Zau'a (Ka - K a*), which are linear combinations of the deviations Ka - K a* 

from the fixed point. Scaling variables transform multiplicatively near the fixed point:

V / =  liaiKa'-Ka* )  =  i / 'a  Tab(Kh - Kb*)

= Z bX i i b (Kb - Kb*) = X v , . (5.17)

It is convenient to define the quantities^/, renormoalization group eigenvalues, by A1 = F': 

where b is a scale factor (3 for the particular block transformation we chose before). There 

are three cases to distinguish:

• >>,>0: repeated renormalization group iterations drive v,- always from its fixed 

point value. In this case, v, is said to be relevant.

• y,<  0: repeated renormalization group iteration drive v, awey from its fixed point 

value. If we start sufficiently close to a fixed point, v, will iterate towards zero. In 

this case, v; is said to be irrelevant.

• Ifyi = 0: V, is said to be marginal. In this case, we cannot tell from the linearised 

equations whether v, will move away from the fixed point or towards it. v, is 

related with logarithmic corrections to scaling.

In order to explain the physical meaning of this classification let us consider a fixed point
O A

about which <R has n relevant eigenvalues and n' irrelevant eigenvalues , which makes the 

dimension of the parameter space, n + nr. Near the fixed point, consider a linear space 

spanned by the irrelevant eigenvectors, an ^'-dimensional hypersurface. From the definition 

of irrelevant eigenvectors, we can see that successive renormalization will lead any point on 

this surface to the fixed point. The hypersurface is called the critical surface, as the critical 

phenomena of the model on this surface will be given by the fixed point (and the near-fixed

20 ) Although strictly speaking the number of irrelevant eigenvalues are infinite.
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point behaviour of the RG-flow). The irrelevancy of irrelevant eigenvectors comes from this 

insensitivity: couplings related to irrelevant eigenvectors are irrelevant as far as the 

description of critical phenomena is concerned.

On the other hand, the models not on the critical surface will not exhibit the same critical 

behaviour as the models on the critical surface. Successive RG transformations will lead them 

away from the critical surface. In order to ‘bring’ these models on to the critical surface, we 

need to control the couplings related to the relevant eigenvectors. From the viewpoint of 

experimentalists, this controlling amounts to controlling certain physical parameters of the 

experiment such as temperature, pressure or magnetic field. We may refer to these as ‘knobs’ 

in order to highlight its operational implications for an experimentalist.21 In order to end up 

on the ^'-dimensional critical surface, and then to the fixed point, she must therefore adjust 

exactly n knobs.

In a sense, the distinction between the relevant/irrelevant ‘knobs’ explains the universality of 

critical phenomena. First of all, the existence of irrelevant ‘knobs’ explains why many 

systems, quite different in various respects, exhibit the same critical behaviour and thus 

belong to the same universality class. It is because the RG transformation is unresponsive to 

any change of irrelevant ‘knobs’ in the sense that the differences become insignificant 

through the successive application of the RG transformation. Although different systems are 

indeed different in their various characteristics, and their differences do matter in some other 

contexts, 22 the RG transformation is designed in such a way as to disregard any difference 

that is not responsible for most of the critical phenomena.

On the other hand, the existence of relevant ‘knobs’ explains why there is more than one 

universality class as regards critical phenomena. After all, if all physical features of a system 

could be regarded as irrelevant, there should have been one universality class described by its 

unique fixed point. The successive application of the RG transformation along a relevant 

eigenvector leads a starting model away from a given fixed point and ultimately leads it to 

another fixed point. Consequently, we may say that the relevant ‘knobs’ for models will 

classify them into a number of different universality classes, each of which is described by 

different fixed points.

21 ) C f Cardy 1996, pp.41-43
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So here is a picture of how these things work. (Figure 5.4) There can be a number of fixed 

points in the parameter space; each of them describes a different universality class. Any 

model represented in the parameter space would, following the RG-flow in the direction of 

relevant eigenvectors, ‘attract’ onto one of the critical surfaces. On a critical surface it would 

again ‘attract’ to its fixed point, and its critical behaviour will be described by the fixed point. 

Here we can see that the role of relevant eigenvectors is to ‘separate’ different regions in the 

parameter space for its corresponding universality class. On the other hand, the role of 

irrelevant eigenvectors is to ‘guide’ each model on a critical surface to its fixed point.

As an illustration consider the order-disorder phase transition of a ferromagnet. Here two 

‘knobs’ must be adjusted to make a sample of a ferromagnet exhibit a phase transition: the 

magnetic field should be slowly lowered to zero while temperature is set to a specific value 

Tc (the critical temperature of the ferromagnet). Interestingly, the same is true of the liquid- 

gas transition of a simple fluid; only in this case the ‘knobs’ are temperature and pressure.

The RG explanation of these facts roughly goes like the following: (1) As far as their critical 

phenomena are concerned, we may model both ferromagnet and a simple fluid by the 2D- 

Ising model. 23 (2) There are two relevant eigenvectors as regards the critical fixed point of the 

2D-Ising model, and all the other eigenvectors are irrelevant. (3) Therefore, despite their 

differences in many other physical features, both a ferromagnet and a simple fluid belong to 

the same 2D-Ising universality class.

In fact, the 2D-Ising universality class includes a wider range of models than those models 

that can be modelled by the 2D-Ising model with nearest-neighbour interactions. Consider 

Figure 5.4 again. Here we see a two-dimensional hypersurface (spanned by two reduced 

coupling constants, Kj and K 2) in the parameter space we considered before. Kj equals Jj/kT, 

where Jj is the strength of the nearest-neighbour interactions, and K 2 , J 2/I1 T where J 2 is the 

strength of the next nearest-neighbour interactions. As we can see from the RG flow, both the 

2D-Ising model with the nearest neighbour interactions and a new model (2D-Ising* model) 

with only the next nearest-neighbour interactions are governed by the same critical fixed 

point. So their critical behaviour will be the same.

22 ) Especially, for the so-called non-universal critical phenomena.
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But notice that the 2D-Ising model and the 2D-Ising* model do not share every features in 

critical phenomena, although they belong to the same universality class. For instance, the 

critical temperature for each model is generally different as we can see from Figure 5.4. 

Critical temperature is an example of non-universal critical behaviour. The existence of the 

non-universal critical behaviour highlights the fact that the RG transformation will pick up 

only some of the critical behaviours which are universal such as critical exponents, the 

number of relevant 'knobs’.

Now consider a more general model that has both the nearest-neighbour interactions and the 

next nearest-neighbour interactions. As we change the temperature ‘knob’, the model follows 

the dotted line in Figure 5.4. Here we can see the ‘relevance’ of the temperature ‘knob. When 

the temperature is above 7c, the successive application of the RG transformation will lead the 

model to the high temperature fixed point, and the universal critical behaviour of the model 

will be the same as a model with no interaction. On the other hand, when the temperature is 

below 7c, the successive application of the RG transformation will lead the model to the zero 

temperature fixed point, and the universal critical behaviour of the model will be the same as 

a model with infinite Kj and K2 interactions.

Our next question is how we can get the empirically known critical scaling relations of, say, a 

ferromgnet out of the RG transformation. As defined by (5.2) -  (5.5), the scaling relations for 

the ferromagnet are related to the power-law behaviour of thermodynamic functions such as 

spontaneous magnetization M , or of response functions such as specific heat C. 

Thermodynamic functions and response functions are first or second derivatives of the free 

energy of the 2D-Ising model respectively. So what we need to know is how the free energy 

of the 2D-Ising model is changed by the RG transformation. It turns out that we can write the 

singular part of the free energy in terms of the reduced temperature and the reduced magnetic 

field (two ‘knobs’) and their corresponding RG eigenvalues:

/ ,  (/, h) = I tlto f *  <K [ ( h/ho )/( | t/to ry' )] (5.17)

23) In fact the relation between a simple fluid and the 2D-Ising model is indirect: first, a simple fluid is
modelled by the lattice-gas model, and then the lattice-gas model turns out to be mathematically equivalent to 
the 2D-Ising model.

109



where f s is the part of free energy density that is not analytic at the critical point, 0 , a scaling 

function, y t, the RG eigenvalue for temperature ‘knob’, a n d ^ , the RG eigenvalue for external 

magnetic field ‘knob’.

Now it is rather straighforward to get the critical exponents from (5.17). For instance, specific 

heat is d2f  /dt2 1/, = 0 oc \t \d/yt~2̂ so that a  = 2 - d/yt. Likewise, spontaneous magnetization is d f  

!dh \h = o oc (- / ){d~yh)ly\  so that ft = ( d - yh  )/yt. Similarly we get y  = (2yh -  d)/yt and 8 = yy/ d -  

yh. We see that the four principal critical exponents are given in terms of the two RG 

eigenvalues. This implies that there must be two so-called hyper-scaling relations between a, 

j3, y  and 8 such that a + 2(3 + y = 2 and a  +/3(1 + 8) = 2. These relations were postulated from 

experimental results, before the introduction of the RG method into the theory of phase 

transition. The RG explanation of the hyperscaling relation illustrates how simple and clear 

the RG explanation of critical phenomena can be. There are only two ‘relevant’ RG 

eigenvalues for the 2D-Ising model, and all four critical exponents are expressible in terms of 

these eigenvalues, so two relation should hold between four critical exponents.

Notice that no irrelevant scaling variable nor eigenvalues appear in (5.17). In general 

irrelevant scaling variables do affect the scaling function, <F, in (5.17), and their contribution 

is manifested as a correction to the scaling function. The correction is usually small, but not 

always. When it is large, we need to probe the system very near to its critical point in order to 

see the scaling relations predicted by (5.17).24 This fact shows the ‘approximate’ nature of the 

RG transformation in the context of CMP. The ‘equivalent’ models in a same universality 

class are equivalent only with respect to some critical behaviours. Moreover, their 

equivalence will emerge when we probe them very close to the critical fixed point. 

Sufficiently far from the fixed point where the linear approximation of *R is not valid, they are 

different even in these critical behaviours.

5.4 A Comparison: the RG in CMP and the RG in QFT

Several issues about renormalization in QFT have been discussed by philosophers as well as 

historians. 25 Two issues seem most prominent and actively debated. The first issue concerns

24) Cardy 1996, pp. 48-9
25 )C f  Brown 1993; Cao 1998, 1999; Cao and Schweber 1993; Huggett and Weingard 1995, 1996; Schweber 

1994; Teller 1994, 1998
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the nature of the ‘infinities’ that are frequently popping up in QFT calculations. Do they 

somehow correspond to genuine infinities in nature? Or are they just artefacts of our clumsy 

current theories? Fortunately physicists had managed to develop various procedures to evade 

this problem and extract meaningful answers from the relevant QFT calculations. The 

procedures range from a rather simplistic cutoff renormalization to a more sophisticated 

regularization program, and more recently to the RG method. The second issue is whether 

these procedures are justifiable. At a first glance, the introduction of the procedures could 

look ad hoc since the development of the procedures was mainly motivated by physicists’ 

urge to eliminate infinities and get the final results to be finite.

Paul Teller suggests three ways of looking at these issues. 26 First, the cutoffs approach. Here 

the order of doing two mathematical procedures is crucial. When we calculate in QFT a 

potentially diverging quantity such as mass, we make it finite by introducing a cutoff. Then 

we absorb a finite correction to bare mass into our definition o f ‘observed’ mass. The 

rationale here is that we can observe only ‘dressed’ mass, not bare mass. The next step is to 

take the limit of the cutoff and make our definition of observed mass cutoff-independent. 

This approach emphasizes that we only deal with finite quantities at each step of calculation, 

so the problem of infinity is illusory. The justification of renormalization in this approach is 

given by the fact that each step is mathematically consistent and respectable.

But some theorists feel uncomfortable about this approach. Their complaints are directed to 

the conceptual problems of the cutoff-dependent intermediate quantities. These quantities do 

not satisfy various theoretical constraints physicists value highly, such as gauge invariance, 

unitarity, etc., and are therefore not satisfactory. So they argue that we have to conceptualize 

QFT calculations entirely in terms of cutoff-independent quantities. Teller calls this way of 

thinking about the renormalization in QFT the real-infinities approach. According to this 

approach, what we do during renormalization is literally to throw away genuine infinities. It 

is clear that the advocates of this approach take very seriously the infinities in QFT 

calculations. Still it is hard to see, according to Teller, how this discarding of genunine 

infinities can be justified.

26) Teller 1994, pp. 159-69
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The third approach is named by Teller the mask-of-ignorance approach. This approach points 

out that in order to take seriously the infinite quantities in QFT calculations we have to be 

sure of the correctness of our current theories at all energies. But clearly we know that our 

current theories for instance QED break down at high enough energy. So we should think 

(according to this approach) that our current, infinity-plagued theory must be, at best, an 

approximation to some divergence-free ‘correct theory’. Notice that this approach implicitly 

assumes that there is no genuine infinity in nature so that the ‘correct theory’ should be 

divergence-free. As we do not have this ‘correct theory’ yet, we do not know from which 

energy level our approximate theory becomes reliable. In the same vein we do not know 

which regularization scheme we should choose in order to arrive from our approximate 

theory to the ‘correct theory’. Here comes the renormalization procedure as a rescue: it 

circumvents the problem and extracts cutoff independent quantities that are independent of 

the details of the regularization scheme used during calculations. In short, according to the 

mask-of-ignorance approach, the use of renormalization is justified by its instrumental utility 

in allowing us to get finite reliable quantities in QFT calculations despite the approximate 

nature of our current theory.

But then Teller picks up another interesting question: can we justify renormalizability as a 

constraint on theory construction? He offers one way of answering the question. It starts with 

regarding the current approximate theory as ‘incomplete’ in a sense that it should be 

supplemented by ‘measured’ parameters just as Hooke’s law is supplemented by spring 

constants. In theory construction, we also assign ‘measured’ values to the parameters of a 

theory, hoping that someday we might be able to calculate them from the ‘correct theory’.

But then if a theory requires infinitely many parameters to be assigned in this way, the theory 

is no use. That’s why we require our approximate theory to be renormalizable.

Teller then quickly connects the issue of renormalizability with that of whether a given QFT 

model is insensitive to the details of what happens at very high energies. His explanation is 

rather intuitive.27 Conceptually it is one thing to insist that a model have finite experimentally 

determined parameters (which seems reasonable if the model is to be ‘workable’), and it is 

another thing to insist that a model should be insensitive to the details of very high-energy 

physics. If the ‘correct theory’ turns out to be completely describable by a fininte number of

27) Teller 1994, p. 168
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parameters, our approximate model may have to be sensitive to the details of the ‘correct 

theory’, but still have finite experimentally determined parameters.

A more satisfactory explanation of this connection could be sought from noticing a fact o f the 

matter that some of the successful (though approximate) models in QFT are insensitive to the 

details of the regularization scheme used for their renormalization. Then we realize that we 

can characterise this fact of the matter by a theoretical condition, renormalizability. In fact 

this is the route condensed matter physicists follow in their use of the RG method. They start 

from an empirical fact of universality in critical phenomena: various different physical 

systems (or their models) share most of their critical behaviours. Then they notice that these 

models have a finite number of relevant ‘knobs’ under a well-chosen RG transformation *R. 

Here the connection is physically much deeper: the finiteness of relevant ‘knobs’ explains 

why models in a universality class described by the same fixed point for <R could be so 

different in their details, but still share many critical behaviours.

Huggett and Weingard criticise Teller for focusing too much on perturbative 

renormalization. 28 They highlight that the renormalization group is more appropriate than 

perturbative expansions for the discussion of renormalization in QFT. As the RG method is 

exact and non-perturbative, one can study the validity of perturbative results by checking 

whether a given theory is exactly renormalizable or not. For instance the exact RG analysis 

can distinguish physical QFTs in the sense that they can be regarded as just approximations 

to true physics in small lattice from unphysical ones such as quantum electrodynamics 

(QED) . 29 Basically they want to separate the problem of ‘infinities’ in QFT, to which Teller 

pays much attention, from the issue of whether a given theory is exactly renormlizable by the 

RG method. Still they seem to endorse a view similar to Teller’s mask-of-ignorance 

approach. Approving Georgi’s ‘mild’ version of the effective field approach, they say that 

very successful theories such as quantum elelctrodynamics (QED) are irreducibly 

phenomenological. They are not correct at very high energies, and should be regarded as 

‘effective’ field theories in a sense that they are valid only at low enough energies.

28) Huggett and Weingard 1996, p. 312, my italics
29) Huggett and Weingard 1995, pp. 184-5
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The problematic part of Huggett and Weingard’s view on the RG method appears when they 

say, “two theories with different cutoffs can describe the same physics. ” 30 It is not at all clear 

what they mean by The same physics’. But clearly they mean by it a strong enough thesis to 

imply “since the RG is defined to relate physically equivalent theories, every theory, with 

varying cut-off, on our unstable manifold is equivalent the continuum physics of the limit.” 31 

Interestingly they seem to think that this analysis is true of all the RG applications both in 

QFT and in CMP; they make their points using examples from QFT as well as those from 

CMP such as Kadanoff s blockspin transformation.

It is easy to see why this cannot be generally correct. Let me get their point straight first. The 

RG procedure in QFT starts with a phenomenological theory that is valid only at sufficiently 

low energies, and takes it closer and closer to the unknown ‘correct theory’ that is valid at 

any arbitrarily high energies. Therefore the relation between two could be thought of as that 

of approximation: the ‘correct theory’ is more fundamental and the phenomenological theory 

is only an effective theory. On the other hand, two different phenomenological theories can 

be taken to the same fixed point by the RG transformation. In this case, providing the RG 

transformation is mathematically exact, we can say that two phenomenological theories are 

physically equivalent with each other. When the fixed point describes a continuum physics, 

we could indeed say that they are both equivalent to a continuum physics.

In CMP, the RG procedure starts with a model and transforms it into another model. Here 

there is little sense to saying that the latter is more fundamental than the former. It is just a 

different model with a different Hamiltonian. Even the model described by a fixed point is 

not specially privileged: it is just a hypothetical model for which a one more time RG 

transformation changes nothing. As we have seen before, the really important information 

about the critical phenomena comes from the near fixed-point behaviour of the RG 

transformation, not from this hypothetical model.

In fact this model does not have much physical content in itself. Strictly speaking we need to 

apply a suitably defined RG transformation infinitely many times in order to arrive at the 

model, averaging out all scales of interactions so to speak. But clearly that doesn’t mean that 

all the models described by fixed points are models with no interactions, and therefore

30) Huggett and Weingard 1995, p. 179
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physically indistinguishable from each other. (That would mean there is only one universality 

class!) Remember that by taking the blockspin transformation in Figure 5.2, we reduce the 

linear dimension of the system to one third of its original size. Repeating the blockspin 

transformation many times, we would sooner or later reduce the system to nothing, or 

wouldn’t we? The trick is that we implicitly take the thermodynamics limit of each blockspin 

system, and thereby effectively deal with infinite systems. In short the fixed point doesn’t 

have any representational value: we do not know how to write down the Hamiltonian for it, 

and we surely do not think that the hypothetical model describes the essence of critical 

phenomena. What is important is the scaling relation of free energy, and this can be obtained 

from the near fixed-point behaviour of the RG transformation.

Contrary to Huggett and Weingard, the RG in CMP does not relate physically equivalent 

theories. The models belonging to the same universality class do not share all the physically 

important features. They share physical features relevant to their critical phenomena. In 

particular they usually do not share bulk properties of a stable phase such as density of liquid 

phase or elasticity of solid phase. Even about critical phenomena, they do not share all 

relevant physical features. There are non-universal critical phenomena as well: most notably 

the critical temperature is different from model to model within the same universality class. 

The RG in CMP picks up the universality class of critical phenomena among models, not an 

equivalent class of all the physical features among models.

Why is there a difference? The basic reason is that the RG in QFT is supposed to study how 

the same system can be theorised at different energies. Then you might be able to prove that 

under a certain RG transformation, two different theories are physically equivalent in the 

sense that they can be understood as two different representations of the same system probed 

at different energies. In CMP, the RG is supposed to study why many different systems share 

some remarkable characteristics in critical phenomena, that is to provide an explanation of 

universality and scaling relations. Then you might be able to explain why among potentially 

infinitely many physical features of a given model, only a few of them are relevant to the 

major characterisation of the critical phenomena and therefore define the universality class. 

The RG methods are employed in different ways in the two fields in order to achieve

31 ) Huggett and Weingard 1995, p. 182
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different goals. Despite its similarity in mathematical formalism, the RG of CMP has 

substantial theoretical differences from the RG of QFT.

In fact the RG of CMP is motivated by different considerations from that of QFT. First of all, 

the problem of dealing with undesirable infinities in calculations does not even arise in CMP. 

One generic way of getting infinities in QFT is through some integration up to an infinite 

energy/momentum scale {ultra-violet divergence). This corresponds to, in real space, the 

integration up to an arbitrary small length scale. In generic critical phenomena models (or 

many other applications of the RG method in CMP), we start from a certain lattice structure 

with a finite lattice spacing like the one in Figure 5.1. Here when we do the RG 

transformation, we take a chunk of spins and transform it into a single blockspin. As I pointed 

out before, the system becomes smaller before taking the thermodynamic limit. Figuratively 

speaking, we partially integrate out towards bigger and bigger linear dimension, which is the 

opposite direction from that of the RG in QFT. Due to this feature of the RG in CMP, the 

infinities arising in CMP are not directly related with the RG, but with the existence of phase 

transitions and ultimately with taking the thermodynamic limit. That is why the infinities and 

divergences in CMP, such as infinite correlation lengths or the divergence of specific heat, 

are called infrared divergence.

In QFT, it is hard to justify a particular choice of cutoff over another, so we want our theory 

to be cutoff independent in the end of calculations. On the other hand, there is a natural 

cutoff in the RG of CMP. By construction, there is nothing between lattice points; therefore it 

is meaningless to talk about interactions shorter than the lattice spacing. Consequently, the 

lattice spacing of a given model gives a natural choice of cutoff when we apply the RG 

method to the model.

Without undesirable infinities to eliminate, what kind of considerations could motivate the 

development of the RG method in CMP? The answer is easy to guess from our discussion in 

section 2. There are many empirical facts about the properties of many-body physical systems 

in the world: the stability of bulk properties, the universal critical behaviour many radically 

different systems share when they change their bulk phases, etc. Condensed matter physicists 

have developed many useful concepts in order to understand these empirical facts: correlation 

length, long range order, scaling relations, etc. The RG method in CMP is another 

development in this physicists’ effort to understand many-body phenomena.
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More specifically the RG method allows us to see why only a few features in a given model 

matter as regards its critical behaviour, while many other features not. The RG method also 

allows us to calculate in principle many quantities such as critical exponents, which are 

otherwise only empirically obtainable. These are great achievements of the RG method in 

CMP. But still the method is motivated by a longstanding tradition of many-body modelling, 

not by the problem of infinities. This explains why the real space RG is, despite its 

disadvantage in calculation, more prominent in CMP, rather than the momentum space RG 

that is almost universally adopted in QFT. What I have said here is not only historically 

correct about the introduction of the RG method into CMP, but also true to condensed matter 

physicists’ practice these days.

Finally, let us consider how appropriate the mask-of-ignorance view is for interpreting the 

RG method in CMP. There is certainly an element of ignorance in the RG method in CMP. 

For instance, except for a few simple cases, we do not know how to calculate renormalized 

Hamiltonians on a given RG flow from (5.11). But this doesn’t mean that we do not have 

definite models on the RG flow of CMP in the same sense that we do not know the ‘correct 

theory’ at high enough energies in QFT. We do have a definite analytical expression given by 

(5.11) for each renormalized Hamiltonian. Every model on the RG flow is fully specified, 

even though we cannot write it down explicitly. Here the ignorance involved is more or less 

that of classical statistical mechanics. But there is one aspect that the RG method in CMP 

shares with the mask-of-ignorance view of the RG method in QFT: it has methodological 

nature. Adopting the RG method in QFT is a methodological decision to get reliable, 

effective theories about mid-range energy phenomena in order to evade our ignorance of the 

‘correct theory’. Employing the RG method in CMP is a methodological decision to extract 

the relevant features of critical phenomena taking a ‘rough’ look at many-body systems. That 

is to say, adopting the RG method in investigating critical phenomena means pursuing a 

research strategy of understanding a large part of critical phenomena without even trying to 

calculate the practically uncalculable partition function of the model.

5.3.3 The RG in CMP as a method rather than as a theory
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Now briefly I want to argue that the RG in CMP should be understood as method rather than
• 33theory. In fact these two ways of referring to the RG can be found even in a same text, so it 

might be just a matter of terminology. But when I emphasise the RG as method, what I want 

to say is the following: (1) The RG is not an algorithm. (2) There is no common set of 

features shared by all RG applications in CMP.

First, about the non-algorithmic character of the RG. As we have seen in section 5.3, there is 

no prescription for building an appropriate RG transformation given a model. A consequence 

of this is that when we do not find any fixed point from a RG transformation, we cannot 

conclude that the model has no fixed point. Perhaps the RG transformation is badly designed, 

and a better designed RG transformation might give us a fixed point. But recall that the 

existence of a fixed point is directly related to the existence of a phase transition in the model. 

Presumably, whether a given model has a phase transition or not has a definite answer. Still, a 

mere application of RG cannot decide this matter.

This indeterminacy makes it hard to call the RG in CMP a theory. A theory should have 

unambiguous implications about the targeted phenomena no matter whether we can actually 

write down those implications or not. The RG method in CMP has no such implications. It 

cannot tell whether there is a phase transition in a given model. What it can do is to give us a 

framework with lots of heuristics by which we can investigate the question. The RG method 

itself does not say much about the critical phenomena. It talks about how to establish a set of 

effectively equivalent (with respect to relevant features) models given a starting model, and 

how to get valuable information out of the set. This is what I see as one of the major 

characteristics of the methods in physics.

A typical scientific theory describes or claims something about the world. In order to do that, 

it should have a well-defined set of conditions shared by all of its applications. You can apply 

the classical kinetic theory of gases to nitrogen, oxygen and even to water, so long as each 

application satisfies the conditions given by the theory, such as very weak interaction among 

constituents, low density, etc. The RG method in CMP does not have a well-defined set of 

conditions. In earlier sections I mainly discuss an intuitively clear application of the RG

32) See Domb 1996 for the canonical evaluation of the significance of the RG method in CMP. Domb’s view 
shared by many other authors, including Cardy 1996, Fisher 1999, Goldenfeld 1992 and Uzmov 1993.

33) For instance, Goldenfeld 1992.
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method in CMP: a blockspin transformation in real space. Here the RG deals with the 

renormalization in physical space. It connects a starting model with its blockspin models 

generated by physical space rescaling. But this feature is not necessary, although it is very 

widely used in CMP. When we study percolation phenomena, such as draining of water into 

soil, using RG, what we renormalize is not along the physical space, but along time. Given a 

model, we generate renormalized models that correspond to the later stages of the model. In 

this case, a fixed point describes a kind of stabilised percolation state. Here only certain 

conditions of the RG method are kept, while others are either loosened or not met. This kind 

of RG, so-called dynamic RG, is as legitimate an application of the RG ideas as the real-space 

RG and the momentum-space RG. The success of the dynamic RG in CMP shows that the 

RG in CMP better be understood as method rather than theory.

5.3.4 The RG method and the MF method in CMP: Co-operation rather than Replacement 

Now I will argue very briefly that the MF method is co-operated with, rather than replaced 

by, the RG method in CMP. First of all, let me make the following facts clear. It is simply 

wrong to say that the MF method is actually not used anymore in CMP, at least in an 

advanced research level, and all the theoretical investigation is done by the RG method. The 

MF method is quite widely used for research purpose. Many important calculations have been 

done by the MF method. Moreover, new techniques have been developed for the last 20 years 

in order to meet various difficulties arising from the applications of the method.34 That is to 

say, the MF method is very much an active research method, widely used and valued. So in 

this sense, the RG method does not replace the MF method.

But we need to be careful at this point because there is another sense of replacement. We 

often say that Newtonian mechanics is replaced by the special theory of relativity. But that 

does not bar us from using Newtonian mechanics in various areas including mechanics itself, 

nor from developing new techniques in Newtonina mechanics to tackle new problems arising 

in its theoretical and engineering applications. What we mean by ‘replacement’ in this 

context is that we could do all the calculations and explanations Newtonian mechanics do 

using special theory of relativity. It might be much more cumbersome to do the relevant 

calculations, and sometimes we would have less intuitive explanations from special theory of

34) Cf. Uzunov 1993
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relativity. (After all we do not ‘feel’ like living in the four-dimensional Minkowski 

spacetime.) But special theory of relativity makes Newtonian mechanics redundant in 

principle.

Now this is certainly not true of the RG method and the MF method. The RG method does 

not make the MF method redundant. On the contrary, in order to give us a full explanation of 

critical phenomena, the RG method should be supplemented by the MF method. If we recall 

how the RG method works, the reason is clear. The RG method is specially aimed to find out 

the near fixed-point behaviour of the RG transformation *R. From this, we can obtain the 

scaling relations of the free energy of a given model and get the explanation of the phase 

transition. But in any of these results, we have no clue about the nature of phases away from 

phase transition. This information should be available if we want to understand the physical 

implications of the change from one phase to another phase. The MF method can give this 

information by investigating the model away from the phase transition point. Then we can 

combine this result with the RG result and get the whole picture of phase transitions. In this 

way the RG method and the MF method complement each other in our quest for the 

explanation of critical phenomena.
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Figure 5.1: The 2D-Ising model
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Figure 5.2: Block-spin transformation (2D-Ising model)
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Figure 5.3: Generation of next-nearest neighbour 
couplings
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Figure 5.4: RG flows and Fixed Points

Tc for the next nearest neighbour 2D-Ising* model

Critical fixed point

Zero temperature fixed point
Kj K-i ^

Tc  for the nearest neighbour 
2D-Ising model

High temperature fixed point

124



Bibliography

Achinstein, P. and Hannaway, 0. (eds.) 1985, Experiments and Observation in Modern 

Science, Boston, MA: MIT Press.

Anderson, P.W. 1963, Concepts in Solids, Reading, MA: W.A. Benjamin.

Anderson, P. W. 1984, Basic Notions o f Condensed Matter Physics, Reading, MA: 

Addison-Wesley.

Anderson, P. W. 1994,/I Career in Theoretical Physics, Singapore: World Scientific.

Ashcroft, N. W. and Mermin, N. D. 1976, Solid State Physics, New York: Holt, Rinehart 

& Winston.

Auyang, S. Y. 1998, Foundations o f Complex-system Theories in Economics,

Evolutionary Biology and Statistical Physics, Cambridge: Cambridge Univ. Press.

Bailer-Jones, Daniela 1999, ‘Tracing the Development of Models in the Philosophy of 

Science’, in Magnani, Nersessian and Thagard 1999.

Bailer-Jones, Daniela 2000, ‘Modelling Extended Extragalactic Radio Sources’, Studies 

in History and Philosophy o f Modern Physics 31: 49-74.

Balzer, W., Moulines, C.U. and Sneed, J.D. 1987, An Architectonic for Science: The 

Structuralist Program, Dordrecht: Reidel.

Batterman, R. W. 1997, “ Into the Mist’: Asymptotic Theories on a Caustic’, Stud. Hist. 

Phil. Mod. Phys. 28: 395-413.

Batterman, R. W. 1998, ‘Why Equilibrium Statistical Mechanics Works: Universality and 

the Renormalization Group’, Philosophy o f Science 65: 183-208.

Batterman, R. W. 2 0 0 0 , “Multiple Realizability and Universality”, British Journal for  

Philosophy o f Science 51: 115-145.

Brown, L. M. (ed.) 1993, Renormalization: From Lorentz to Landau (andBeyond), New 

York: Springer-Verlag.

Brush, S.G. 1967, ‘History of the Lenz-Ising model’, Reviews o f Modern Physics 30: 

883-93.

Brush, S.G. 1983, Statistical Physics and the Atomic Theory o f Matter: from Boyle and 

Newton to Landau and Onsager, Princeton, NJ: Princeton Univ. Press.

125



Cao, T. Y. 1998, Conceptual Developments o f 20th Century Field Theories, Cambridge: 

Cambridge Univ. Press.

Cao, T. Y. (ed.) 1999, Conceptual Foundations of Quantum Field Theory, Cambridge: 

Cambridge Univ. Press.

Cao, T. Y. and Schweber, S. 1993, ‘The Conceptual Foundations and Philosophical 

Aspects of Renormalization Theory’, Synthese 97: 32-108.

Cardy, J. 1996, Scaling and Renormalization in Statistical Physics, Cambridge: 

Cambridge Univ. Press.

Cartwright, N. 1983, How the Laws o f Physics Lie, Oxford: Clarendon Press.

Cartwright, N. 1989, Nature’s Capacities and their Measurement, Oxford: Clarendon 

Press.

Cartwright, N. 1999a, ‘Models and the Limits of Theory: Quantum Hamiltonians and the 

BCS Models of Superconductivity’, in Morgan and Morrison 1999, pp. 241-281.

Cartwright, N. 1999b, The Dappled World: A Study o f the Boundaries o f Science, 

Cambridge: Cambridge Univ. Press.

Cartwright, N., Shomar, T. and Suarez, M. 1995, ‘The Tool-Box of Science’, Poznan 

Studies in the Philosophy o f Science 44: 137-149.

Chaikin, P.M. and Lubensky, T.C. 1995, Principles o f Condensed Matter Physics, 

Cambridge: Cambridge Univ. Press.

Chang, H. 1999, ‘History and Philosophy of Science as a Continuation of Science by 

Other Means’, Science and Education 8 : 413-425.

Chang, H. 2 0 0 0 , ‘Spirit, Air and Quicksilver: the Search for the ‘Real’ Scale of 

Temperature’, Historical Studies in the Physical and Biological Sciences.

Chang, H. forthcoming, ‘How to Take Realism Beyond Foot-stamping’, Philosophy.

Craig, Edward (ed.) 1998, Routledge Encyclopedia o f Philosophy, version 1.0, London 

and New York: Routledge.

Darden, Lindley (ed.) 1997, PSA 1996, Vol. 2, Philosophy of Science Association.

Davies, Paul (ed.) 1989, The New Physics, Cambridge: Cambridge Univ. Press.

Domb, C. (ed.) 1972, Phase Transitions and Critical Phenomena, vol. 1, London: 

Academic Press.

126



Domb, C. 1985, ‘Critical Phenomena: A Brief Historical Survey5, Contemp. Phys., 26: 

49-72.

Domb, C. 1996, The Critical Point: A historical introduction to the modern theory o f 

critical phenomena, London: Taylor and Francis.

Domb, C, and Green, M.S. (eds.) 1974, Phase Transitions and Critical Phenomena, vol. 

3, London: Academic Press.

Ehrlich, P. 1982, ‘Negative, Infinite and Hotter than Infinite Temperatures5, Synthese 50: 

233-277.

Feshbach, H., Matsui, T. and Oleson, A. (eds.) 1988, Niels Bohr: Physics and the World 

(Proceedings o f the Niels Bohr Centennial Symphosium), London: Harwood 

Academic.

Feyerabend, Paul K. 1981, Problems o f Empiricism, Philosophical Papers Vol. 2, 

Cambridge: Cambridge University Press.

Feynman, R.P. 1972, Statistical Mechanics: A Set o f Lectures, Reading, MA: W.A. 

Benjamin.

Fine, A, Forbes, M. and Wessels, L. (eds.) 1990, PSA 1990, vol. 2, East Lansing, MI: 

Philosophy of Science Association.

Fisher, M. E. 1981, ‘Simple Ising Models Still Thrive5, Physica, 106A: 28-47.

Fisher, M. E. 1988, ‘Condensed Matter Physics: Does Quantum Mechanics Matter?5, in 

Feshbach, Matsui and Oleson 1988, pp. 65-116.

Fisher, M. E. 1999, ‘Renormalization Group Theory: its basis and formulation in 

statistical physics5 in Cao 1999, pp. 89-135.

French, Peter A. et al. (eds.) 1993, Midwest Studies in Philosophy XWIII: Philosophy o f 

Science, Notre Dame, IN: University of Notre Dame Press.

Friedman, Michael 1974, ‘Explanation and Scientific Understanding5, in Pitt 1988.

Gahde, U. 1995, ‘Holism and the Empirical Claim of Theory-Nets5, in Moulines 1995.

Giere, R. 1988, Explaining Science: A Cognitive Approach, Chicago, IL: University of 

Chicago Press.

Goldenfeld, N. 1992, Lectures on Phase Transitions and the Renormalization Group, 

Reading, MA: Addison-Wesley.

Griffiths, R. 1972, “Rigorous Results and Theorems55, p. 1 1, in Domb 1972.

127



Hacking, Ian 1983, Representing and Intervening: Introductory Topics in the Philosophy 

o f Natural Science, Cambridge: Cambridge Univ. Press.

Hartmann, S. 1999, ‘Models and Stories in Hadron Physics’, in Morgan and Morrison 

1999, pp. 326-346.

Hasok, Chang 1999, ‘How to Take Realism Beyond Foot-Stamping’, manuscript.

Hempel, C. G. 1966, Philosophy o f Natural Science, Englewood Cliffs, NJ: Prentice- 

Hall.

Hoddeson, L. et al. 1992, ‘Collective Phenomena’, in Hoddeson, Braun, Teichmann and 

Weart 1992.

Hoddeson, L, Braun, E., Teichmann, J. and Weart, S. (eds.) 1992, Out o f the Crystal 

Maze, Oxford: Oxford Univ. Press.

Huggett, N. and Weingard, R. 1995, ‘The Renormalisation Group and Effective Field 

Theories’, Synthese 102: 171-194.

Huggett, N. and Weingard, R. 1996, ‘Critical Review: Paul Teller’s Interpretive

Introduction to Quantum Field Theory’, Philosophy o f Science 63: 302-314.

Hughes, R. I. G. 1993, ‘Theoretical Explanation’, in French et al. 1993, pp. 132-153.

Hughes, R. I. G. 1996, ‘The Semantic View of Theories’, manuscript.

Hughes, R. I. G. 1997, ‘Models and Representation’, in Darden 1997, pp. S325-S336.

Hughes, R. I. G. 1999, ‘The Ising Model, Computer Simulation, and Universal Physics’, 

in Morgan and Morrison 1999, pp. 97-145.

Kadanoff, L. P. 1966, ‘Scaling Laws for Ising Models near Tc\  Physica 2: 263-272.

Kemeny, J. and Oppenheim, P. 1956, “On Reduction”, Philosophical Studies 7: 10-19.

Kitcher, Philip 1981, ‘Explanatory Unification’, in Pitt 1988.

Kitcher, Philip 1989, ‘Explanatory Unification and the Causal Structure of the World’, in 

Kitcher and Salmon 1989.

Kitcher, Philip and Salmon, Wesley C. (eds.) 1989, Minnesota Studies in the Philosophy 

o f Science, Volume XIII: Scientific Explanation, Minneapolis, MN: Univ. of 

Minnesota Press.

Kondepudi, Dilip and Prigogine, Ilya 1998, Modern Thermodynamics: From Heat 

Engines to Dissipative Structures, New York: John Wiley & Sons.

128



Krylov, N. 1979, Works on the Foundations o f Statistical Physics, Princeton: Princeton 

Univ. Press.

Kubo, R., Toda, M. and Hashitsume 1985, Statistical Physics II: Nonequilibrium 

Statistical Mechanics, Berlin: Springer-Verlag.

Kuhn, T. S. 1970, The Structure o f Scientific Revolution, 2nd edition, Chicago, IL: 

Chicago University Press.

Lakatos 1970, ‘Falsification and the Methodology of Scientific Research Programmes’, 

in Lakatos and Musgrave 1970, pp. 91-196.

Lakatos, Imre 1978, The Methodology o f Scientific Research Programmes, Philosophical 

Papers Vol. 1, (eds.) John Worrall and Gregory Currie, Cambridge: Cambridge 

University Press.

Lakatos, Imre and Musgrave, Alan (eds.) 1970, Criticism and the Growth o f Knowledge, 

Cambridge: Cambridge University Press.

Laymon, R. 1985, ‘Idealizations and the Testing of Theories by Experimentation’, in 

Achinstein and Hananway 1985.

Laymon, R. 1989, ‘Cartwright and the Lying Laws of Physics’, Journal o f Philosophy 

8 6 : 353-372.

Laymon, R. 1990, ‘Computer Simulations, Idealization and Approximation’, in Fine, 

Forbes and Wessels 1990.

Laymon, R. 1998, ‘Idealizations’, in Craig 1998.

Leggett, A. J. 1985, Problems o f Physics, Oxford: Oxford Univ. Press.

Leibniz, G.W. 1985 [1692] ‘Critical Remarks Concerning the General Part of Descartes’, 

in Methodology and Other Philosophical Essays (trans. and ed. by Paul Schrecker 

and Anne Martin Schrecker), New York: Macmillan.

Liboff, Richard L. 1990, Kinetic Theory: Classical, Quantum andRelativistic 

Descriptions, London: Prentice-Hall.

Lovesey, Stephen W. 1980, Condensed Matter Physics: Dynamic Correlations, Reading 

MA: W.A. Benjamin.

Magnani, L., Nersessian, N.J. and Thargard, P. (eds.) 1999, Model-Based Reasoning in 

Scientific Discovery, New York: Kluwer Academic/Plenum Publishers.

129



Maudlin, Tim 1994, Quantum Non-Locality and Relativity: Metaphysical Intimations o f 

Modern Physics, Oxford: Blackwell.

McMullin, Ernan 1885, ‘Galilean Idealization’, Studies in History and Philosophy o f 

Science 16: 247-273.

Morgan, Mary S. and Morrison, Margaret (eds.) 1999, Models as Mediators:

Perspectives on Natural and Social Science, Cambridge: Cambridge University 

Press.

Moulines, C.U. (ed.) 1995, Structuralist Theory o f Science: Focal Issues, New Results, 

Berlin: de Gruyter.

Negele, J.W. and Orland, H. 1987, Quantum Many-Particle Systems, Reading MA: 

Addison-Wesley.

Pitt, Joseph C. (ed.) 1988, Theories o f Explanation, Oxford: Oxford Univ. Press.

Redhead, Michael 1980, ‘Models in Physics’, British Journal fo r  the Philosophy o f 

Science 31: 145-163.

Risken, H. 1989, The Fokker-Planck Equation: Methods o f Solution and Application, 2nd 

Edition, Berlin: Springer-Verlag.

Rushbrooke, G.S., Baker Jr., George A. and Wood, P.J. 1974, ‘Heisenberg Model’, in 

Domb and Green 1974.

Samuelson, Paul 1958, ‘An Exact Consumption-Loan Model of Interest with or without 

the Social Contrivance of Money’, Journal o f Political Economy 6 6 : 467-82.

Savage, C. Wade (ed.) 1990, Minnesota Studies in the Philosophy o f Science XIV: 

Scientific Theories, Minneapolis MN: University of Minnesota Press.

Schweber, S. 1994, QED and the Men Who Made It, Princeton, NJ: Princeton Univ.

Press.

Sklar, Lawrence 1974, Space, Time, and Spacetime, Berkeley, CA: Univ. of California 

Press.

Sklar, Lawrence 1993, Physics and Chance: Philosophical Issues in the Foundations o f  

Statistical Mechanics, Cambridge: Cambridge University Press.

Ter Harr, D. and Wergeland, H. 1966, Elements o f Thermodynamics, Reading, MA: 

Addison-Wesley.

130



Teller, P. 1994, An Interpretive Introduction to Quantum Field Theory, Princeton, NJ: 

Princeton Univ. Press.

Teller, P. 1998, ‘On Huggett and Weingard’s Review of An Interpretive Introduction to 

Quantum Field Theory. Continuing the Discussion’, Philosophy o f Science 65: 

151-161.

Thouless, David 1989, ‘Condensed Matter Physics in Less than Three Dimensions’, in 

Davies 1989.

Toda, M., Kubo, R. and Saito, N. 1983, Statistical Physics I: Equilibrium Statistical 

Mechanics, Berlin: Springer-Verlag.

Uzunov, D. I. 1993, Introduction to Theory o f Critical Phenomena: Mean Field, 

Fluctuations and Renormalization, Singapole: World Scientific.

Van Fraassen, Bas C. 1980, The Scientific Image, Oxford: Clarendon Press.

Von Plato, Jan 1994, Creating Modern Probability : Its Mathematics, Physics and 

Philosophy in Historical Perspective, Cambridge: Cambridge Univ. Press.

Wise, M. N. and Brock, D. C. 1998, ‘The Culture of Quantum Chaos’, Studies in History 

and Philosophy o f Modern Physics, 29B: 369-390.

Wu, F. Y. 1982, ‘The Potts Model’, Review o f Modern Physics, 54: 235-287.

Yang, C.N. and Lee, T.D. 1952, ‘Theory of Phase Transitions’, Physical Review 87: 404- 

1 1 .

131


