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Identifying interactions in the time and frequency
domains in local and global networks - A Granger
Causality Approach
Cunlu Zou1, Christophe Ladroue1, Shuixia Guo2, Jianfeng Feng1,3*

Abstract

Background: Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations
(ODEs) and information theory are widely applied to deriving causal relationships among different elements such
as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal
data. There are several well-established reverse-engineering approaches to explore causal relationships in a
dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger
Causality.

Results: Here we focused on Granger causality both in the time and frequency domain and in local and global
networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger
causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins
was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and
predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the
frequency domain were also recovered.

Conclusions: The results on the proteomic data and gene data confirm that Granger causality is a simple and
accurate approach to recover the network structure. Our approach is general and can be easily applied to other
types of temporal data.

Background
One of the most fundamental issues in computational
biology is to reliably and accurately uncover the network
structure of elements (genes, proteins, metabolites, neu-
rons and brain areas etc.), based upon high throughput
data [1,2]. There are several well-established reverse-
engineering approaches to explore causal relationships
in a dynamic network, such as ordinary differential
equations (ODE), Bayesian networks, information theory
and Granger Causality.
The notion of Granger causality, which was first intro-

duced by Wiener and Granger [3-5], proposed that
there is a causal influence from one time series to
another if the prediction of one time series is improved
with the knowledge of the second one. The prediction is
made in terms of an auto-regressive model. In addition,

Granger causality has the advantage of having a corre-
sponding frequency domain decomposition so that one
can clearly find at which frequencies two elements inter-
act with each other. Granger’s conception of causality
has been widely and successfully applied in the econo-
metrics literature and recently in the biological literature
[6-11].
Considering the four different approaches to the same

problem, a natural question is to investigate which
should be preferred. In a previous paper [12], we pre-
sented a comparison study of Granger causality and
dynamic Bayesian network inference approaches. The
result showed that Granger causality outperformed the
dynamic Bayesian network inference when the time ser-
ies were long enough because the Granger causality was
then able to detect weak interactions. In a recent Cell
paper [13,14], the authors carried out a systematic com-
parison between the ODE, Bayesian and information
theoretic approaches for a small synthesized gene* Correspondence: jianfeng.feng@warwick.ac.uk
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network in the yeast (Saccharomyces cerevisiae). The
authors concluded that the ODE was the best
approaches amongst those three. We have applied our
conventional Granger causality approach on the same
recorded time-series and found that the results derived
by it were better than all the other three approaches’ in
the original paper. A small network of seven previously
investigated proteins [15] was also re-constructed. Inter-
estingly, the two important proteins DDX5 and RFC1
found in experiments were at the top of the re-con-
structed network. Frequency domain results were ana-
lyzed and they indicated that DDX5 and BAG2
interacted at a frequency of one cycle per three hours.
Due to the complexity of biological processes, in order

to capture the dynamics of complex systems and investi-
gate the functions of genes and neurons in detail, it is
much better to treat the network as a whole instead of
analyzing a very limited portion of it. Until now, most
of the analysis tools currently used for the whole net-
work are based on clustering algorithms. These algo-
rithms attempt to locate groups of genes that have
similar expression patterns over a set of experiments.
Such analysis has proven to be useful in discovering
genes that are co-regulated and/or have similar function.
A more ambitious goal for analysis is revealing the
structure of the transcriptional regulation process, for
example, for a given transcription factor, could we find
all its upstream and downstream transcription factors?
This is clearly a challenging and fascinating problem.
Most popular approaches, such as Granger causality,

are powerful in cases where the length of the time series
is much larger than the number of variables, which is
exactly the reverse of the situation commonly found in
microarray experiments, for which relatively short time
series are measured over tens of thousands of genes or
proteins. The real difficulty comes from the fact that
when the dimension is larger than the length of time ser-
ies, the design matrix of predictors is rectangular, having
more columns than rows; in such case, the model is
under-determined and cannot be uniquely fitted. Baye-
sian network is a graph-based model of joint multivariate
probability distributions that captures properties of con-
ditional independence between variables, but as it
requires a large number of parameters and assumptions
upon the variable distribution, it also quickly becomes
intractable for large networks. Keeping these limitations
in mind, it is still an important task to developing meth-
odologies that are both statistically sound and computa-
tionally tractable to make a full use of the wealth of data
now at our disposal. In order to tackle this problem, we
propose a new framework: Global Granger Causality
(GGC) This framework builds on the use of partial Gran-
ger causality which was illustrated in our previous paper
[16]. We first construct an initial sparse network by

considering all possible links by computing bivariate
pair-wise Granger causality. Once we identify such a net-
work structure, there is uncertainty about the true causal
structure; we need to check whether the links appearing
in pairwise causality are direct or indirect. We do so by
computing GGC step by step. If a link is found to be an
indirect relationship in the sense of GGC, we delete such
a link from the initial network. Theoretically, iterating
the procedure will remove all indirect links and only
direct connections will remain. The advantage of such an
approach is obvious. By explicitly taking more sources
into account, it provides a less biased structure of the
network due to latent variables than in a small network
as described above. It also provides information on the
ancestors and descendents of key elements such as DDX
and RFC1 in our network. The results can then guide
experimentalists to investigate the properties of a small
subset of specific proteins.
The rest of the article is divided in two sections. First,

in the method sections, we introduce Granger causality
in details, as well as its formulation in the frequency
domain. We also describe global Granger causality, the
new procedure for applying Granger causality to large
networks. Next, in the result section, we apply our
method on small (local) and large (global) networks. In
both cases, simulations and actual biological data (gene
and protein time-series) are used and results discussed.
And we also provide a theoretical proof of its reliability

Method
A measurement of Causal influence for time series was
first proposed by Wiener-Granger. We define the causal
influence of one time series on another by quantifying
the improvement made on the prediction of a time ser-
ies when we incorporate the knowledge of a second one.
Granger implemented this notion in the context of lin-
ear vector auto-regression (VAR) model of stochastic
processes. In the AR model, the variance of the predic-
tion error is used to test the prediction improvement.
For instance, consider two time series; if the variance of
the autoregressive prediction error of the first time ser-
ies at the present time is reduced by the inclusion of
past measurements from the second time series, then
one can conclude that the second time series have a
causal influence on the first one. Geweke [17,18]
decomposed the VAR process into the frequency
domain and converted the causality measurement into a
spectral representation which made the interpretation
more appealing.
The pair-wise analysis introduced above can only be

applied to bivariate time series. For more than two time
series, a time series can have a direct or indirect causal
influence to other time series. In this case, pairwise ana-
lysis is misleading and not sufficient to reveal whether
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the causal interaction between a pair is direct or indir-
ect. In order to distinguish direct and indirect causal
effects, one introduces conditional Granger causality
which takes account of the other time series effect. In
the following we present an analysis on how to define
the conditional Granger causality on an ARIMA (autore-
gressive integrated moving average) model. ARIMA is a
generalization of an ARMA model. The model is gener-
ally referred to as an ARIMA(p,d,q) model where p, d,
and q are integers greater than or equal to zero and
refer to the order of the model. Given a time series of
data Xt, an ARIMA(p,d,q) model is given by:
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Where L is the lag operator, the error term εt has nor-
mal distribution with 0 mean.

Conditional Granger Causality in the time domain
Giving two time series Xt and Zt and their kth and mth

order differences ΔkXt and ΔmZt (without loss of gener-
ality, we assume that m = k from now on), the joint
autoregressive representation for ΔkXt and ΔkZt by
using the knowledge of their past measurement can be
expressed as
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The noise covariance matrix for the system can be
represented as
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where var and cov represent variance and co-variance
respectively. Incorporating the knowledge of the third
time series, the vector autoregressive mode involving the
three time series ΔkXt, Δ

kYt and ΔkZt can be repre-
sented as
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And the noise covariance matrix for the above system
is
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where εit, i = 1,2,...,5 are the prediction errors, which
are uncorrelated over time. If we rewrite equation (2)
and equation (4) in terms of X, Y and Z themselves, we
see that whether a coefficient vanishes or not is almost
unchanged. Hence it is safe to say that the conditional
Granger causality form Y to X conditional on Z can be
defined as (see [19] for the classical definition)
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When the causal influence from Y to X is entirely
mediated by Z, the coefficient b2i is uniformly zero, and
the two auto-regressive models for two or three time
series will be exactly same, thus we can get var(ε1t) =
var(ε3t). We then have FY®X|Z = 0, which means Y can
not further improve the prediction of X including past
measurements of Y conditional on Z. In other words, Y
doesn’t have an influence on X. For var(ε1t) > var(ε3t),
FY®X|Z > 0 and therefore there is a direct influence
from Y to X, conditional on the past measurements
of Z.

Conditional Granger Causality in the frequency domain
To derive the spectral decomposition of the time
domain conditional Granger causality, we multiply the
normalization matrix
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to both side of equation (2) and rewrite it in terms of
the lag operator L. I is identity matrix. The normalized
equations are represented as:
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Then we can apply the same normalization procedure
to the equation (4) multiplying the matrix
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the lag operator
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After Fourier transforming equation (8) and (12), we
can rewrite them in the following representations
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where Δ(l, k) is the Fourier transform of the differ-
ence operator Δk. Therefore, for ARIMA and ARMA
model in the frequency domain, their causality is identi-
cal. This is in agreement with our conclusions in the
time domain causality and in general the Kolmogorov
identity holds true, that is: integrating the frequency-
domain Granger causality over all frequencies yields the
time-domain Granger causality.

Global Granger Causality
Partial Granger causality (PGC) provides an accurate
description of the internal dynamics of the system when
the number of nodes is much smaller than the length of
recorded time series. However, when the number of nodes
increases, especially when they are larger than the length
of time series, a ‘curse of dimension’ immediately arises, it
is a situation for which usual methods break down.
Here we propose the following Global Granger Caus-

ality (GGC) algorithm to tackle this problem. The

general idea is as follows: if we could find all ancestors
of a given target T, the whole network could be recon-
structed. Hence for a given target T, we want to find all
directed ancestors (parents of target T). For illustration,
a small subset of the whole network, which contains tar-
get T and all its ancestors, is shown in the Fig. 1A. We
assume that each nodes from {X1,...Xn} has only a single
pathway to target T, and each nodes from {Y1,...,Yn} has
two distinct pathways to target T. From Fig. 1A, we can
find the parents of target T are T1, T2, T3.
The detailed algorithm is illustrated as follows:
First, apply the bivariate pair-wise Granger causality to

find all of the ancestors of the target T. This set is
denoted A0(T). In theory, we can detect all possible
Granger-causal links in this procedure, both direct and
indirect. In Fig. 1A, A0(T) = {T1, T2, T3, X1,...Xn, Y1,...,Yn}.
Secondly, we identify whether the links detected in

step 1 are direct or indirect. For such a purpose, we
carry out the following iterative procedures.

(I) For each node in A0(T), compute the partial
Granger causalities conditioned on all other single
nodes in the A0(T). If the relationship vanishes,
delete this node from the initial network and obtain
the 1-stage network. After this procedure, all indirect
links conditioned on one single node have been
removed. In Fig. 1A, {X1,...Xn} are deleted from A0

(T), denoting the remaining set as A1(T) ={T1, T2,
T3, Y1,...,Yn}. This is proved in Lemma 1 of Discus-
sion section.
(II) For each node in A1(T), compute the partial
Granger causalities conditioned on all possible pairs
in A1(T). We obtain the 2-stage network in where
all indirect links conditioned on a pair of nodes have
been removed. In Fig. 1B, {Y1,...,Yn} is further deleted
from A1(T), denoting the remaining set as A2(T) =
{T1, T2, T3}.
(III) Continue the procedure above until we can not
remove any nodes from Ak(T).

The rationale is as follows: if the usual Granger caus-
ality from Y ® X is large but significantly decreases
when conditioned on a third signal Z (FY®X|Z ), then
the connection Y®X is only indirect and should be dis-
carded. We use this principle to find the direct ances-
tors (signals acting on a target X with no intermediate)
of each nodes. At step 0, we search for all signals Y
such that FY®X is large. We call A0 this collection of
candidate ancestors. At step 1, we filter this set further
with keeping the signals YÎA0 such that FY®X|Z is still
large for all ZÎA0. We call A1 this new set and carry on
the procedure by conditioning on groups of 2, then 3
etc. signals from the previous set until such an opera-
tion is not possible (the size of Ai decreases or stabilizes
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Figure 1 Global Granger causality approach. (A) Ancestors of target node T, A0(T) = {T1, T2, T3, X1,...,Xn, Y1,...,Yn}. T1, T2, T3 are direct ancestors
to target T. {X1,...,Xn} connect to T through a single pathway, thus, {X1,...,Xn} are not direct ancestors to target T. {Y1,...,Yn} connect to T through
two distinctive pathways (B) {X1,...,Xn} can be removed by Granger-conditioning on a single node, A1(T) = { T1,T2,T3,Y1,...,Yn}. (C) S is connected to
T through two different paths, both {B1,B2} and {B3} are sections from S to T, but {B3} is the bottleneck. (D) There may exist other common drives
to the observed nodes X and T, we assume the partial Granger causality can delete the influence of such drive and exclude such case in our
analysis. (E) Histograms of the number of bottleneck for a variety of connection probability p for N = 100 and 500 simulations.
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proteins do not necessarily belong to the path from one
node to the other, but rather they have some substantial
influence on the connection as a whole, for example on
some members of the path.

How reliable is Global Granger Causality?
In theory, we can recover all possible links from the
pairwise Granger causality procedure and have to Gran-
ger-condition on all combinations of the nodes in the

system to remove an indirect connection. However, it is
an NP-hard problem and we will stop at a stage k, i.e.,
we only need to Granger-condition on the combinations
of up to k nodes. Therefore, the analysis on how to
choose k and the probability of correctly uncovering the
true relationship of the whole network when we stop at
stage k is of vital importance. In this section, we will
provide some simulation and theoretic results on these
questions.

Figure 8 Global Granger Causality algorithm applied on experimental data for global network re-construction. (A) The overall mean
clustering coefficient (the probability of neighbours being inter-connected) is an order of magnitude larger than the one of a random network
(0.022 instead of 1/768 = 0.0013). But the network is not modular: the mean clustering coefficient with respect to degree is more or less
constant. (B) Direct ancestors of RFC1, as well as their own direct ancestors. The causal link from DDX5 to RFC1 is now completely identified: an
intermediate protein (SLBP) connects them.
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Consider a network with N nodes {X1,...,XN} with a
connection probability p. There are N × (N - 1) × p
direct links on average in the whole system. We intend
to estimate how many indirect connections are left
when we stop at stage k. Here we focus on a pair X to
T, where X, T are in {X1,...,XN}. If there exists only one
single path from X to T, this link can be discarded by
Granger-conditioning on a single intermediate node in
the path. If there are more than one paths from X to T,
in theory, this link should be discarded by Granger-con-
ditioning on all the other nodes.
Definition 1 (bottleneck). Assume that there are m dis-
tinctive directed paths from S Î {X1,...,Xn} to T and p(S,
T) be the set of all distinctive directed paths from S to T.
A set of nodes {Z1,...,Zm} is called a section from S to T if
there is no directed path from S to T in the graph {X1,...,
XN}-{Z1,...,Zm}. A section which minimizes its total num-
ber of elements of the section is called a bottleneck.
For example, in Fig. 1C both {B1, B2} and {B3} are sec-

tions from S to T, but {B3} is the bottleneck..
Lemma 1. Assume that the set {B1,...,Bm} is the bottle-

neck from S to T, we have

FS T B Bm→ =|{ }1
0

Proof. We only check two cases here. The first case is
that there is a single serial connection from S to T. For
example, we have S ® B1 ® B2 ®...Bn ® T where every
single node {Bi} is a bottleneck of the path. If we condition
on one of the single node Bi in the path, we need to show

FS T Bi→ =|{ } 0

According to the definition, we need to find the auto-
regression expression:

T C T D Bi= + +( ) ( )Γ Γ 

where Γ is the delay operator and C, D are polyno-
mials, ξ is the noise term. From the assumption of the
path structure, we conclude
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where E, F, G are polynomials and ε is the noise
(could be different). From the equation above, we see
that for any node Bi, we have FS T Bi→ =|{ } 0 . Intuitively,
in a serial path S ® B1 ® B2 ®...Bn ® T, the informa-
tion cannot be transmitted from S to T if Bi is removed.
In conclusion, for a single path, the Granger causality is
zero whenever we condition on one of its nodes in the
path. It is not necessary to condition on the whole path
to remove the causality.
The second case is as depicted in Fig. 1C. There are

two different paths from S to T, B1 and B2 converge to
a common bottleneck B3. It is easy to see that informa-
tion can not be transmitted from S to T if B3 is
removed, then we can easily see that

FS T B→ =|{ }3
0

Combining the above two cases completes the proof
of the lemma.
Lemma 1 tells us that if there are m distinctive paths

from S to T, i.e., the number of the bottleneck is m,
then the causality between S and T will vanish when we
take into account the partial Granger causality on {X1,
...,Xm}. There may exist other common drives to the
observed nodes S and T such as Fig. 1D. We assume
the partial Granger causality can delete the influence of
such drive and exclude such case in our analysis.
The exact formula of the number of bottlenecks seems

to be fairly complicated but we can have a first look at
the empirical distribution of it. For a variety of connec-
tion probability p, we generate 500 random networks
when N = 100. For each network, we randomly select
two nodes and compute the number of the bottleneck
between them. Fig. 1E shows the histograms when p =
0.015, 0.02, 0.03 and 0.05, respectively. From these fig-
ures, it can be easily seen that the sparser the network
is, the quicker we can detect the true structure from
global Granger causality. When p = 0.015, it is very
likely for any two nodes to be unconnected or directly
connected, then almost all the true relationships can be
uncovered at stage 1. When p = 0.02, all the true rela-
tionships can be uncovered at stage 2. When p = 0.03,
the probability of uncovering the true relationship is
90.8% at stage 2 and 98.6% at stage 3. When p = 0.05,
the probability of uncovering the true relationship is
82.2% at stage 4 and 97.8% at stage 6. It is not until
stage 9 that all indirect links can be discarded.

Conclusion
In this paper, we focused on the Granger causality
approach in both the time and frequency domains in
local and global networks. For a local gene circuit, a
recent Cell paper by Irene Cantone et al. [14] assessed
systems biology approaches for reverse-engineering and
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modeling by investigating a gene synthetic network in
the yeast consisting of 5 genes with 8 interactions (also
see highlight [13]). From our results, we found that our
conditional Granger approach could also correctly infer
most regulatory interactions and outperform the three
approaches reported in the [14]. For a local protein-
interaction network, our derived network is in good
agreement with biological characteristics. Therefore, the
results on the proteomic data and gene data confirm
that the Granger causality is a simple and accurate
approach to recover the network structure. For a global
network, our novel approach was successfully used to
build a large network from all the recorded 812
proteins.

Additional material

Additional file 1: The global network derived by Global Granger
causality algorithm. The re-constructed global network is stored in PDF
format.
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