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Methodological Review

Abstract—Over the past decade, dramatic increases in computa-
tional power and improvement in image analysis algorithms have
allowed the development of powerful computer-assisted analytical
approaches to radiological data. With the recent advent of whole
slide digital scanners, tissue histopathology slides can now be
digitized and stored in digital image form. Consequently, digitized
tissue histopathology has now become amenable to the application
of computerized image analysis and machine learning techniques.
Analogous to the role of computer-assisted diagnosis (CAD)
algorithms in medical imaging to complement the opinion of a
radiologist, CAD algorithms have begun to be developed for dis-
ease detection, diagnosis, and prognosis prediction to complement
the opinion of the pathologist. In this paper, we review the recent
state of the art CAD technology for digitized histopathology. This
paper also briefly describes the development and application of
novel image analysis technology for a few specific histopathology
related problems being pursued in the United States and Europe.

Index Terms—Computer-aided diagnosis, computer-assisted in-
terpretation, digital pathology, histopathology, image analysis, mi-
croscopy analysis.

I. INTRODUCTION AND MOTIVATION

HE widespread use of computer-assisted diagnosis
(CAD) can be traced back to the emergence of digital
mammography in the early 1990s [1]. Recently, CAD has
become a part of routine clinical detection of breast cancer
on mammograms at many screening sites and hospitals [2] in
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the United States. In fact, CAD has become one of the major
research subjects in medical imaging and diagnostic radiology.
Given recent advances in high-throughput tissue bank and
archiving of digitized histological studies, it is now possible
to use histological tissue patterns with computer-aided image
analysis to facilitate disease classification. There is also a
pressing need for CAD to relieve the workload on pathologists
by sieving out obviously benign areas, so that the pathologist
can focus on the more difficult-to-diagnose suspicious cases.
For example, approximately 80% of the 1 million prostate
biopsies performed in the U.S. every year are benign; this
suggests that prostate pathologists are spending 80% of their
time sieving through benign tissue.

Researchers in both the image analysis and pathology fields
have recognized the importance of quantitative analysis of
pathology images. Since most current pathology diagnosis is
based on the subjective (but educated) opinion of pathologists,
there is clearly a need for quantitative image-based assessment
of digital pathology slides. This quantitative analysis of digital
pathology is important not only from a diagnostic perspective,
but also in order to understand the underlying reasons for a
specific diagnosis being rendered (e.g., specific chromatin
texture in the cancerous nuclei which may indicate certain
genetic abnormalities). In addition, quantitative characteriza-
tion of pathology imagery is important not only for clinical
applications (e.g., to reduce/eliminate inter- and intra-observer
variations in diagnosis) but also for research applications
(e.g., to understand the biological mechanisms of the disease
process).

A large focus of pathological image analysis has been on
the automated analysis of cytology imagery. Since cytology im-
agery often results from the least invasive biopsies (e.g., the cer-
vical Pap smear), they are some of the most commonly encoun-
tered imagery for both disease screening and biopsy purposes.
Additionally, the characteristics of cytology imagery, namely
the presence of isolated cells and cell clusters in the images and
the absence of more complicated structures such as glands make
it easier to analyze these specimens compared to histopathology.
For example, the segmentation of individual cells or nuclei is a
relatively easier process in such imagery since most of the cells
are inherently separated from each other.

Histopathology slides, on the other hand, provide a more
comprehensive view of disease and its effect on tissues,
since the preparation process preserves the underlying tissue
architecture. As such, some disease characteristics, e.g., lym-
phocytic infiltration of cancer, may be deduced only from
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a histopathology image. Additionally, the diagnosis from a
histopathology image remains the “gold standard” in diag-
nosing considerable number of diseases including almost all
types of cancer [3]. The additional structure in these images,
while providing a wealth of information, also presents a new set
of challenges from an automated image analysis perspective. It
is expected that the proper leverage of this spatial information
will allow for more specific characterizations of the imagery
from a diagnostic perspective.

The analysis of histopathology imagery has generally fol-
lowed directly from techniques used to analyze cytology im-
agery. In particular, certain characteristics of nuclei are hall-
marks of cancerous conditions. Thus, quantitative metrics for
cancerous nuclei were developed to appropriately encompass
the general observations of the experienced pathologist, and
were tested on cytology imagery. These same metrics can also
be applied to histopathological imagery, provided histological
structures such as cell nuclei, glands, and lymphocytes have
been adequately segmented (a complication due to the com-
plex structure of histopathological imagery). The analysis of
the spatial structure of histopathology imagery can be traced
back to the works of Wiend et al. [4], Bartels [S] and Hamilton
[6] but has largely been overlooked perhaps due to the lack of
computational resources and the relatively high cost of digital
imaging equipment for pathology. However, spatial analysis of
histopathology imagery has recently become the backbone of
most automated histopathology image analysis techniques. De-
spite the progress made in this area thus far, this is still a large
area of open research due to the variety of imaging methods and
disease-specific characteristics.

A. Need for Quantitative Image Analysis for Disease Grading

Currently, histopathological tissue analysis by a pathologist
represents the only definitive method (a) for confirmation of
presence or absence of disease and (b) disease grading, or the
measurement of disease progression. The need for quantitative
image analysis in the context of one specific disease (prostate
cancer) is described below. Similar conclusions hold for quan-
titative analysis of other disease imagery.

Higher Gleason scores are given to prostate cancers, which
are more aggressive, and the grading scheme is used to predict
cancer prognosis and help guide therapy. The Gleason grading
system is based solely on architectural patterns; cytological
features are not evaluated. The standard schematic diagram
created by Gleason and his group (see Fig. 1) separated archi-
tectural features into 1 of 5 histological patterns of decreasing
differentiation, pattern 1 being most differentiated and pattern 5
being least differentiated. The second unique feature of Gleason
grading is that grade is not based on the highest (least differen-
tiated) pattern within the tumor. Recently several researchers
have reported discrepancies with the Gleason grading system
for grading prostate cancer histopathology. Many researchers
have found grading errors (both under- and over-grading) in
prostate cancer studies [7]-[11]. Similar issues with cancer
grading have been reported for other diseases such as breast
cancer [12].
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Fig. 1. Schema showing different cancer grades prevalent in prostate cancer.

In light of the above, Luthringer er al. [13] have discussed
the need for changes to be made to Gleason grading system. In
late 2005, the International Society of Urologic Pathologists in
conjunction with the World Health Organization (WHO) made
a series of recommendations for modifications to the Gleason
grading system, including reporting any higher grade cancer, no
matter how small quantitatively.

Luthringer et al. [13] have also suggested the need for
re-evaluation of original biopsy material by a highly experi-
enced pathologist which could help guide patient management.
Stamey et al. [14] discussed need for developing methods to
accurately measure cancer volume and better estimate prostate
cancer to better predict progression of cancer. King et al. [8]
has similarly called for developing a methodology to help
reduce pathologic interpretation bias which would likely result
in significantly improved accuracy of prostate cancer Gleason
grading.

B. Differences in CAD Approaches Between
Radiology and Histopathology

While CAD is now being used in radiology in conjunction
with a wide range of body regions and a variety of imaging
modalities, the preponderant question has been: can CAD
enable disease detection? Note that this question, as opposed
to more diagnostic questions, is motivated by the inherent
limitation in spatial resolution of radiological data. For in-
stance, in mammography, CAD methods have been developed
to automatically identify or classify mammographic lesions. In
histopathology, on the other hand, simply identifying presence
or absence of cancer or even the precise spatial extent of cancer
may not hold as much interest as more sophisticated questions
such as: what is the grade of cancer? Further, at the histological
(microscopic) scale one can begin to distinguish between dif-
ferent histological subtypes of cancer, which is quite impossible
(or at the very least difficult) at the coarser radiological scale.

It is fair to say that since CAD in histopathology is still
evolving, the questions that researchers have started to ask of
pathology data are not as well articulated as some of the prob-
lems being investigated in radiology. A possible reason for this
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is that image analysis scientists are still trying to come to terms
with the enormous density of data that histopathology holds
compared to radiology. For instance, the largest radiological
datasets obtained on a routine basis are high-resolution chest
CT scans comprising approximately 512 x 512 x 512 spatial
elements or ~ 134 million voxels. A single core of prostate
biopsy tissue digitized at 40 X resolution is approximately
15000 x 15000 elements or ~ 225 million pixels. To put this
in context, a single prostate biopsy procedure can comprise
anywhere between 12 and 20 biopsy samples or approximately
2.5-4 billion pixels of data generated per patient study. Due
to their relatively large size and the content, these images fre-
quently need to be processed in a multiresolution framework.

Also, while radiological CAD systems mostly deal with gray-
scale images, histological CAD systems often need to process
color images. Furthermore, with the recent advent of multispec-
tral and hyperspectral imaging, each pixel in a histopathology
section could potentially be associated with several hundred
sub-bands and wavelengths.

These fundamental differences in radiology and
histopathology data have resulted in specialized CAD schemes
for histopathology. While several similar reviews have been
published for CAD in medical imaging and diagnostic radi-
ology [15]-[23], to the best of our knowledge no related review
has been undertaken for digitized histopathology imagery. A
survey for CAD histopathology is particularly relevant given
that the approaches and questions being asked of histological
data are different from radiological data. The motivation
of this paper is to present a comprehensive review of the
state-of-the-art CAD methods and the techniques employed for
automated image analysis of digitized histopathology imagery.

C. Organization of This Paper

We have organized this paper to follow the general image
analysis procedures for histopathology imagery. These analysis
procedures are generally applicable to all imaging modalities.
In Section II, we describe digital pathology imaging modalities
including immunofluorescence and spectral imaging and ex-
plain the difference between cytopathology and histopathology.
In Section III, image preprocessing steps such as color nor-
malization and tissue auto-fluorescence compensation are re-
viewed. In Section IV, we discuss recent advances in detec-
tion and segmentation in histopathological images. Section V is
dedicated to feature extraction and selection at different levels,
with real-world examples. In Section VI, we review classifi-
cation and sub-cellular quantification. Finally, in Section VII
we discuss some of the potential issues that image analysis of
histopathology could be used to address in the future and pos-
sible directions for the field in general.

While there are a large number of applicable methods
for preprocessing (Section III), detection and segmentation
(Section 1V), feature extraction and selection (Section V), and
classification and sub-cellular quantification (Section VI), we
will present here only some common examples. We refer the
interested reader to the references contained within the various
sections for further reading.
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II. DIGITAL PATHOLOGY IMAGING MODALITIES

A. Histopathology and Cytopathology

Histopathology is the study of signs of disease using the mi-
croscopic examination of a biopsy or surgical specimen that
is processed and fixed onto glass slides. To visualize different
components of the tissue under a microscope, the sections are
dyed with one or more stains. The aim of staining is to reveal
cellular components; counter-stains are used to provide contrast.
Hematoxylin-Eosin (H&E) staining has been used by patholo-
gists for over a hundred years. Hematoxylin stains cell nuclei
blue, while Eosin stains cytoplasm and connective tissue pink.
Due to the long history of H&E, well-established methods, and
a tremendous amount of data and publications, there is a strong
belief among many pathologists that H&E will continue to be
the common practice over the next 50 years [24].

Cytology, on the other hand, is related to the study of cells in
terms of structure, function and chemistry. Resulting from the
least invasive biopsies (e.g., the cervical Pap smear), cytology
imagery is the most commonly encountered for both disease
screening and biopsy purposes. Additionally, the characteristics
of cytology imagery, namely the presence of isolated cells and
cell clusters in the images, and the absence of more complicated
structures such as glands make it easier to analyze these speci-
mens compared to histopathology.

B. Immuno-Fluorecence Imaging and Multiple
Imaging Modalities

Recently, immuno-fluorescent labeling-based image analysis
algorithms have been presented to quantify localization of pro-
teins in tissue [25]-[27]. Commonly used molecular markers
are based on chromogenic dyes (such as DAB), or fluorescent
dyes (such as Cy dyes or Alexa dyes). Fluorescent dyes have the
advantage of multiplexing the dyes to acquire images of mul-
tiple proteins. A general overview of molecular labeling, high
throughput imaging, and pattern recognition techniques is pre-
sented by Price ef al. [28].

With current imaging techniques, it is not possible to simul-
taneously image H&E dyes and immuno-fluorescent molecular
biomarkers due to fluorescent characteristics of the H&E
dyes, and due to chemical interactions of H&E dyes with the
fluorescently labeled antibodies. Recently, methods have been
developed to facilitate sequential imaging and registration
techniques that enable different modalities presented digitally
from the same histological tissue section. Additionally, se-
quential imaging and registration enables imaging of multiple
immuno-fluorescent stains acquired in multiple steps rather
than conventional simultaneous multiplexing techniques. This
allows an order of magnitude increase in the number of molec-
ular markers to be imaged for the same tissue section. These
techniques make it possible to explore unexamined relation-
ships between morphology, sub-cellular spatial distribution
of proteins, and protein-protein interactions. An example of
these techniques is shown in Fig. 2. For brightfield images,
hematoxylin stains the nuclei blue [Fig. 2(a)], and for fluores-
cent images DAPI can be used to stain nuclei [blue channel in
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Fig. 2. (a) H&E image of a breast tumor tissue. Fluorescently labeled markers superimposed as green color on the H&E image, (b) 3-catenin, (c) pan-keratin,

and (d) smooth muscle «-actin, markers.

Fig. 2(a)]. The first nuclei image is set as the reference image
and each of the subsequent nuclei images are registered to the
reference. Once the transformation parameters are estimated,
then all the channels at a sequential step are mapped onto
the reference coordinate system. Fig. 2(b)—(d) shows super-
imposed b-catenin, pan-keratin, and smooth muscle a-actin
markers superimposed on the H&E with green pseudo-color
[29]. Another recently developed sequential imaging method
known as MELC [30] has the ability to produce images of
the same specimen with up to 100 proteins by utilizing the
photo-bleaching characteristics of the fluorescent dyes.

One of the major problems with such “multichannel”
imaging methods is the registration of the multiplexed images,
since physical displacements can easily occur during sequen-
tial imaging of the same specimen. In [29], the authors used
mutual information-based error metrics to register the nuclei
images from sequential staining steps. While the fluorescent
images include dedicated nuclei channels (such as DAPI), the
nuclei images from the H&E images can be computed using
decomposition techniques [31], [32], or using simple ratio or
differencing methods that utilize the fact that blue wavelengths
are absorbed less than green and red channels by the hema-
toxylin dye.

C. Spectroscopic Imaging Modalities for Histopathology

In recent years, several spectral data acquisition methods
have been employed to aid the diagnosis process with additional
information about the biochemical makeup of cells and other
tissue constituents. Generally, computerized histopathology
image analysis takes as its input a three-channel (red, green,
and blue or RGB) color image captured by digital imaging
equipment (normally a CCD camera) and attempts to emulate
the manual analysis and/or provide additional quantitative
information to aid in the diagnosis. While analysis of ordinary
color images has been shown to be useful, one of the major
drawbacks is that only three color channels of the light spec-
trum are used, potentially limiting the amount of information
required for characterizing different kinds of tissue constituents.
On the other hand, recently proposed immuno-histochemistry
(IHC) methods are not sufficiently well developed for their use
in quantitative pathology [33].

Spectral methods offer a relatively inexpensive way of pro-
viding a deeper insight into tissue composition. Most of these
methods can be categorized into three broad classes: point spec-
troscopy, spectral imaging, and spectroscopic imaging. Point
spectroscopy is a well-established area of study whereby, in the

context of histopathology, the chemical composition of a tissue
sample is ascertained with the help of the spectrum emitted or
absorbed at a specific point on the biopsy. Point spectroscopy
methods can employ both visible light and beyond. Spectral
imaging, also known as multispectral or hyperspectral imaging,
measures intensity of light from the entire optical field after
exciting the sample with visible light of varying wavelengths.
Spectroscopic imaging combines the strengths of both of the
above two methods, building spatial imaging of the human
tissue in a multitude of wavelength regimes.

1) Point Spectroscopy: Vibrational spectroscopy is the most
widely researched point spectroscopy method for characteriza-
tion of normal and diseased tissue. It measures molecular vibra-
tions, induced by incident light, corresponding to the chemical
makeup at the molecular level in two different ways: absorption
of electromagnetic radiation or frequency shifts between inci-
dent and scattered light—the so-called Raman scattering effect.

In case of infrared (IR) absorption spectroscopy, the sample is
irradiated with a mid-IR beam and the transmitted light is exam-
ined for absorption of energy. The absorption spectrum, a plot
of absorption versus different wavelengths, can reveal the bio-
chemical makeup of the molecules. IR spectroscopy has been
used to analyze tissue constituents at a molecular level for al-
most 60 years [34], [35]. Indeed, IR spectra was investigated
for characterization of normal and neoplastic tissue as far back
as 1952 by Woernley [36], who also showed that the absorption
at certain frequencies can be correlated with the concentrations
of nucleic acids in tissues. Recent advances in machine learning
and pattern recognition algorithms and the development of the
IR spectroscopic imaging modality have renewed interest in this
technique for studying the biochemical makeup of healthy and
diseased tissue.

In Raman spectroscopy, the sample is illuminated with a
monochromatic visible or near-IR (NIR) light from a laser
source and frequency shifts in the scattered light are measured.
The Raman spectrum is a plot of intensity of the scattered
photon versus shifts in its frequency, often measured in terms
of wave numbers in cm~!. NIR-Raman spectroscopy is often
used as an alternative to IR spectroscopy since NIR light has
higher energy than mid-IR light and can penetrate much farther
into the sample.

Fourier-transform (FT) spectroscopy, known as FT-IR when
IR light is used, allows a faster acquisition of the IR spectra
by using an interferometer followed by the Fourier transform
(FT). FT-IR spectroscopy is the most commonly used form of
IR spectroscopy.
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2) Spectral Imaging: Spectral imaging is carried out by
building an image cube with slices corresponding to images of
the same scene obtained by incident light at differing wave-
lengths. This technique is referred to as multispectral (MS) or
hyperspectral (HS) imaging depending on the number N, of
spectral bands, individual slices of the image cube in the spec-
tral direction (generally with N, < 40 for MS and N, > 40 for
HS).

3) Spectroscopic Imaging: Spectroscopic imaging is similar
to spectral imaging in that a volumetric cube is obtained with
a spectrum per pixel in the optical field. The main difference is
that spectroscopic imaging builds the image cube by dividing
the image scene into a uniform Cartesian grid, raster scanning
the scene according to the grid, and collecting point spectra for
each of the grid points.

Fernandez et al. [33] have proposed an IR spectroscopic
imaging method based on a Michelson interferometer and
all-reflecting microscope equipped with a 16-element linear
array detector with a narrow aperture size of 6.25 pmx 6.25
pm. A massive 1641-dimensional point spectrum was obtained
for each pixel spanning a spectral range of 4000-720 cm~!
at an effective spectral resolution of 2 cm~! and at a spatial
resolution of 6.25 um. Tissue sections were also stained with
H&E and imaged with a digital light microscope for manual
histopathology analysis.

While most of the above methods are generally invasive for
internal body organs, magnetic resonance spectroscopy (MRS)
is a completely noninvasive way of probing the biochemical
makeup of tissue. By this virtue, it is a particularly attractive
prospect for the imaging of brain tumors, along with magnetic
resonance (MR) imaging which has become a mainstay in the
diagnosis of suspicious brain lesions [37]. The main principle
behind MRS imaging is the chemical shift process, the process
whereby different metabolites in the tissue respond at different
resonating frequencies, with the chemical shift often measured
in parts per million (ppm). One particular advantage of MRS
is that it can be tuned to specific nuclei in the tissue; with hy-
drogen (*H, also known as proton) being the most commonly
studied one. Studies have shown clear differences between 'H
MRS spectra of brain tumors and normal brain [38].

4) Spectral Analysis for Histopathology: In IR spec-
troscopy, McIntosh ef al. [39] investigated the use of infrared
spectroscopy for the characterization of in vitro basal cell carci-
noma (BCC) specimens, exploiting the fact that mid-IR light is
absorbed by a variety of skin components. Point spectroscopy
was performed using an IR spectrometer and an aperture of
20 pmx 20 pm from carefully selected regions containing
only one type of skin lesion. Their analysis of the normalized
spectra employing linear discriminant analysis (LDA) iden-
tified absorption bands that arise mainly from CH2 and CH3
absorptions in dermal spectra that are similar to those seen
in samples rich in protein and collagen in particular. H&E
staining for standard histological examination was carried out
after the spectra had been obtained. In a more recent paper,
Mclntosh et al. [40] utilized LDA to analyze the near-IR (NIR)
absorption spectrum for noninvasive, in vivo characterization of
skin neoplasms. Their rationale for using NIR light was that the
mid-IR light could be completely absorbed by samples greater

than 10-15 pm in thickness, therefore limiting the utility of
mid-IR spectroscopy to in vitro analysis.

In Raman spectroscopy, Frank et al. [41] examined Raman
spectra from breast and observed that visible laser excita-
tion could be used to reveal Raman features for lipids and
carotenoids. Huang et al. [42] explored the use of a rapid acqui-
sition NIR Raman spectroscopy system for in vitro diagnosis
of lung cancer. Student’s ¢-test was performed to discriminate
between normal and malignant bronchial tissues using the ratio
of Raman intensity at two specific wavelengths. Chowdary et
al. [43] showed that the Raman spectra could be useful for
discriminating between normal and diseased breast tissues,
although a simple principle component analysis (PCA) of
spectra was employed for discrimination purposes. Analyzing
the Raman spectra of malignant breast tissues, they concluded
that malignant tissues had an excess of lipids and proteins.
Robichaux-Viehoever et al. [44] investigated the use of NIR
Raman spectra for the detection of cervical dysplasia and
achieved high correlation between the results of their spectral
analysis and the histopathology diagnosis.

Recently, Wang et al. [45] have shown that FT-IR spec-
troscopy can be effectively used for detecting premalignant
(dysplastic) mucosa and leads to better inter-observer agree-
ment, in terms of the r-statistic. Oliveira et al. [46] have
explored a setup involving a fixed-wavelength (1064 nm) laser
line as an excitation source and FT-Raman for generating the
spectra. Spectral analysis using PCA and Mahalanobis distance
were used to detect dysplastic and malignant oral lesions.
Their results using LDA showed effective separation of spectra
of benign lesions from those of premalignant and malignant
lesions.

Over the years, MS and HS imaging have demonstrated an
enormous potential in remote-sensing applications, leading
many researchers to expect promise about their usefulness in
histopathology [47]. This promise has been demonstrated by
and [48] in their work on the diagnosis of colon adenocar-
cinoma. However, two recent studies [49], [50] have found
that the additional spectral information does not significantly
improve the classification results. This may be due to the fact
that most MS and HS imaging methods employ the visible part
of light spectrum which may not be very useful in terms of
highlighting important biochemical characteristics, as opposed
to the near-IR or mid-IR spectrum. The number of stains
present in the sample, as well as the characteristics of the stains
themselves will also directly affect the performance of MS and
HS image analysis methods.

In MRS, several studies, such as [51], can be found in
the literature that report high correlation between automatic
grading of in vivo tumors and their corresponding post-opera-
tive histopathology findings. However, MRS spectral analysis
has traditionally been limited to rather simplistic ratio tests.
Tiwari et al. [52] recently proposed an unsupervised spectral
clustering-based algorithm for diagnosis of prostate cancer
from the MRS spectra, reporting higher specificity compared
to the popular z-score scheme, routinely used for the analysis
of MRS data.

Spectral analysis using different modalities discussed above
has demonstrated its potential for diagnosis and grading of
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(@) (b)

Fig. 17. (a) Histology section of prostate gland with CaP extent stained in
purple (upper right) and corresponding mapping of CaP extent via COFEMI
onto (b) MRI (CaP extent shown in green). (c) Overlay of histological and MRI
prostate sections following registration.

expect that a human reader will be able to manually annotate
all nuclei. Evaluation of the scheme may have to be performed
on randomly chosen segments of the image. Similarly, if the ul-
timate objective of the CAD algorithm is, for instance, cancer
grading, perfect segmentation of histological structures may not
guarantee perfect grade-based classification. Evaluation should
hence be tailored towards the ultimate objective that the CAD
algorithm is being employed for. Additionally, special attention
needs to be paid to clearly separate training and testing datasets
and explain the evaluation methodology.

A. Multimodal Data Fusion/Registration

While digital pathology offers very interesting, highly dense
data, one of the exciting challenges will be in the area of mul-
timodal data fusion. One of the big open questions, especially
as it pertains to personalized medicine, will be the use of multi-
modal data classifiers to be able to make therapy recommenda-
tions. This will require solving questions both in terms of data
alignment and in terms of knowledge representation for fusion
of heterogeneous sources of data, in order to answer questions
that go beyond just diagnosis, such as theragnosis (therapy pre-
diction) and prognosis.

H&E staining is traditionally used for histopathology
imaging. Several other modalities exist for imaging of the
tissue, each offering its own advantages and limitations. Com-
bining images from different modalities, therefore, may seem
to be an attractive proposition, although it does not come
without its own challenges, most importantly registration, not
to mention the extra cost associated with imaging, storage,
and computational time. Registration of image data across
the different modalities and fusion of the information con-
tained therein result in a powerful resource of information
for diagnosis and prognosis purposes. Fusion methods have
been developed for images from different microscopy imaging
methods [26] and micro-scale histopathology and large-scale
MR images [123]-[125].

Madabhushi et al. [126] have been developing computerized
detection methods for prostate cancer from high-resolution mul-
timodal MRI . A prerequisite to training a supervised classi-
fier to identify prostate cancer (CaP) on MRI is the ability to
precisely determine spatial extent of CaP on the radiological
imaging modality. CaP can be precisely determined on whole
mount histopathology specimens [Fig. 17(a)] which can then
be mapped onto MRI [Fig. 17(b)]. Fig. 17(c) shows the result
of registering [Fig. 17(b)] the 2-D MRI slice to the histological
section [Fig. 17(a)]. This requires the use of sophisticated and
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robust multimodal deformable registration methods to account
for (a) deformations and tissue loss in the whole mount histo-
logical specimens during acquisition, and (b) ability to over-
come intensity and feature differences between the two modal-
ities (histopathology and MRI). In [123], [124] a rigid registra-
tion scheme called combined feature ensemble based mutual in-
formation (COFEMI) was presented that used alternate feature
representations of the target and source images to be registered
to facilitate the alignment.

B. Correlating Histological Signatures With Protein
and Gene Expression

Multiplexing, imaging of a tissue sample with several an-
tibodies simultaneously, allows correlation of characteristic
patterns in histopathology images to expression of proteins.
Teverovskiy et al. [127] recently proposed a novel scheme for
automated localization and quantification of the expression of
protein biomarkers using a DAPI counter-stain and three other
biomarkers. They showed it to be useful for predicting recur-
rence of prostate cancer in patients undergoing prostatectomy.
Recently, it has become clear that information regarding ex-
pression of certain proteins related to the onset of cancer is not
sufficient. Analyzing multiple-stained histopathology images
can help identify oncogenesis-induced changes in sub-cellular
location patterns of proteins. Glory et al. [128] proposed a
novel approach to compare the sub-cellular location of proteins
between normal and cancerous tissues. Such a method can also
be used for identification of proteins to be used as potential
biomarkers.

C. Exploratory Histopathology Image Analysis

Exploratory analysis of histopathology images can help in
finding salient diagnostic features used by humans, associating
them with the computed features, and visualizing relationships
between different features in high-dimensional spaces. Less-
mann et al. [129] have proposed the use of self-organizing maps
(SOMs) for exploratory analysis of their wavelet-based feature
space. The SOM-based visualization of the feature space al-
lowed the authors of [129] to establish a correlation between
single features and histologically relevant image structures,
making the selection of a subset of clinically important features
possible. Iglesias-Rozas and Hopf [130] showed that SOMs can
be effectively employed to correctly classify different subtypes
of human Glioblastomas (GB) and also to select significant
histological and clinical or genetic variables. Alternatively,
dimensionality reduction methods may offer a way of looking
at trends and patterns in the data in a reduced dimensional
space [131]-[133].

D. Computer-Aided Prognosis

The use of computer-aided diagnosis for digitized
histopathology could begin to be employed for disease prog-
nostics, allowing physicians to predict which patients may be
susceptible to a particular disease and also predicting disease
outcome and survival. For instance, since grade is known to
be correlated to outcome (high grade correlates to worse out-
come), image-based predictors could be used to predict disease
recurrence and survival based on analysis of biopsy specimens
alone. This would have significant translational implications in
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that; more expensive molecular assays may not be required for
predicting disease.

While there may be a small minority of researchers who are
experts in both computer vision and pathology, the vast majority
of histopathology image analysis researchers are computer vi-
sion researchers. As such, it is important to maintain a constant
collaboration with clinical and research pathologists throughout
the research process. There are unique challenges to analysis of
medical imagery, particularly in the performances required for
eventual use of the technique in a clinical setting. It is the pathol-
ogist who can best provide the feedback on the performance of
the system, as well as suggesting new avenues of research that
would provide beneficial information to the pathologist com-
munity. Additionally, it is the pathologist that is best equipped
to interpret the analysis results in light of underlying biolog-
ical mechanisms which, in turn, may lead to new research ideas.
Similarly, where appropriate it might be pertinent to include the
oncologist and radiologist within the algorithmic development
and evaluation loop as well.
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