

University of Westminster Eprints
http://eprints.wmin.ac.uk

Simplifying syntactic and semantic parsing of NL-based
queries in advanced application domains.

Epaminondas Kapetanios *
David Baer
Department of Computer Science, Swiss Federal Institute of Technology

Paul Groenewoud
University of Applied Sciences, Switzerland

* Epaminondas Kapetanios now works in the Harrow School of Computer
Science, University of Westminster

This is an electronic version of an article published in Data & Knowledge
Engineering, 55 (1). pp. 38-58, October 2005. The definitive version in Data &
Knowledge Engineering is available online at:

http://www.sciencedirect.com/science/journal/0169023X

The Eprints service at the University of Westminster aims to make the research
output of the University available to a wider audience. Copyright and Moral Rights
remain with the authors and/or copyright owners.
Users are permitted to download and/or print one copy for non-commercial private
study or research. Further distribution and any use of material from within this
archive for profit-making enterprises or for commercial gain is strictly forbidden.

Whilst further distribution of specific materials from within this archive is forbidden,
you may freely distribute the URL of the University of Westminster Eprints
(http://eprints.wmin.ac.uk).

In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk.

wattsn
top stamp

wattsn
Middle

wattsn
Bottom

Simplifying Syntactic and Semantic Parsing of NL
Based Queries in Advanced Application Domains

E. Kapetanios a, D. Baer a, P. Groenewoud b

aDept. of Computer Science,
Swiss Federal Institute of Technology, Zurich (ETHZ),

Hirschengraben 84, CH-8092 Zurich, Switzerland,
email: kapetanios@inf.ethz.ch, dbaer@acm.org

bUniversity of Applied Sciences,
Oberseestr. 10, CH-1475, Rapperswil, Switzerland

email: pgroenew@hsr.ch

Abstract

The paper presents a high level query language (MDDQL) for databases, which relies on
an ontology driven automaton. This is simulated by the human-computer interaction mode
for the query construction process, which is driven by an inference engine operating upon
a frames based ontology description. Therefore, given that the query construction process
implicitly leads to the contemporary construction of high level query trees prior to submis-
sion of the query for transformation and execution to a semantic middle-ware, syntactic
and semantic parsing of a query with conventional techniques, i.e., after completion of its
formulation, becomes obsolete. To this extent, only, as meaningful as possible, queries can
be constructed at a low typing, learning, syntactic and semantic parsing effort and regard-
less the preferred natural (sub)language. From a linguistics point o view, it turns out that
the query construction mechanism can easily be adapted and work with families of natu-
ral languages, which underlie another type order such as Subject-Object-Verb as opposed
to the typical Subject-Verb-Object type order, which underlie most European languages.
The query construction mechanism has been proved as practical in advanced application
domains, such as those provided by medical applications, with an advanced and hardly
understood terminology for naive users and the public.

Key words:
Natural Languages, Query Languages, Ontologies, Semantic Web, Databases, Information
Retrieval, Automata Theory.

Preprint submitted to Elsevier Science 5 October 2004

1 Introduction

1.1 Background

Querying databases through Natural Language (NL) based query interfaces - we
exclude keywords based querying - has always attracted research and development
efforts in order to ease access to and increase understandability of the full potential
of information as provided by large data repositories [1–5]. Syntactic and seman-
tic parsing of NL based queries, however, turns out to be tedious [6,7], especially
when complex or advanced terminologies are used like those found in scientific
and technical application domains. Mostly, this kind of query parsing relies in con-
structing a query tree which is compliant with the underlying NL–based syntactic
and semantic rules, which are different as they depend on the preferred NL.

In addition, constructing a query presupposes that the user is familiar with the ter-
minology itself as well as the semantic relationships among terms of the application
domain. In other words, the user needs to know not only the orthography of words
and their intentional meaning, as expressed in a particular natural (sub)language,
but also how they relate to each other. It would be impossible or, at least, too opti-
mistic to assume that one makes itself familiar with the full range of the scientific
or technical domain vocabulary, in both terms, spelling and meaning.

Therefore, the more advanced or complex vocabularies become, the more prone
to syntactic and semantic mistakes becomes the process of NL–based query con-
struction and parsing. This is also strengthened by multi–lingual user communities,
where different parsing techniques need to be considered and implemented. Con-
sequently, either the complexity of the parsing technique increases dramatically or
large parts of the information potential in databases for scientific or engineering
applications remain unexplored and cannot become part of exploratory querying.

Moreover, it is still possible to construct a syntactically and semantically correct
query, in terms of the NL–based semantics, however, the query might be still mean-
ingless [8], since it might not reflect real–world semantics. This is due to the fact
that semantic parsing mostly refers to the NL–based grammatical roles of words
or structure of the query [9,10], i.e., which is the subject or noun phrase, the verb,
the object, the connectives, etc., and not to the application domain semantics itself
[11] as expressed by some kind of ontological considerations. A query saying All
cars aged more than 40 years, which have been infected by AIDS is grammatically
correct as far as the grammatical roles (noun phrase, relative clause, verb, etc.) of
the participating words and phrases have been correctly recognized by the parsing
technique.

Complexity of query parsing and transformation is further increased, since, regard-
less the preferred natural language, the same query extensional semantics, in terms

2

of tuples received from the databases as an answer to the query, are expected to
hold. To this extent, either the same parser needs to consider various NL–specific
syntactic and semantic rules, or different parsers need to be enabled according to
the number of the preferred natural languages. Finally, it is tedious or even im-
possible to integrate into the parsing technique the intentional meaning of words
[12], in order, for example, to resolve ambiguities such as those characterizing
homonyms, i.e., terms with the same spelling but different meanings, even within
natural (sub)languages.

In order to overcome the difficulties of parsing natural language due to real–world
semantics, even in a restricted form such as that given by a query language, several
query construction approaches have been taken in the recent past, which rely on a
diagrammatic presentation of some conceptual model [13,14] reflecting some kind
of real–world semantics. These vary in their expressiveness from logical, mostly
relational, models to high level ones such as Extended Entity–Relationship (EER)
and Object Modelling Technique (OMT) diagrams. These query construction tech-
niques, however, are restricted in their expressiveness, given their limitations of
reflecting advanced real–world semantics such as constraints, exception handling,
etc., which might lead to the construction of meaningless queries. Additionally,
they are bound to visual formalisms, which introduce semantic complexity.

In an attempt to provide a query construction facility by reflecting more advanced
real–world semantics, ontology driven mechanisms have been suggested for con-
struction of queries such as those found in [15–17]. This approach enables the con-
struction of queries around the semantics of terms as given by their classification
and taxonomic relationships. The main focus, however, has been the exploration
of taxonomies or classification structures rather than the specification of a high-
level query language with the expressive power as partly known by conventional
database specific query languages, e.g., expression of logical, comparison or statis-
tical operators, arithmetic expressions, etc.

This is due to the fact that ontology descriptions rely on languages, which are
heavily influenced by a family of class–based (concept–based) knowledge repre-
sentation formalisms known as Description Logics [18]. The reasoning services,
therefore, are targeted at the explication of the relationship between the ontology
language syntax and the intended model(s) of a domain via model theoretic seman-
tics as a formalization of the meaning of the ontology description language. Con-
sequently, the reasoning services are not targeted at the construction of meaningful
queries, including operators and operations.

3

1.2 Our approach

On the contrary, our intention and approach, as presented in this paper, has been to
help users construct meaningful queries, while still making use of terms in an ar-
bitrary natural language. The reasoning services during querying construction are,
therefore, targeted at the structure and formulation of the query from a linguistic
point of view. For several years, however, the trend in natural language research has
been oriented toward the elaboration of huge linguistic dictionaries and ontologies
[19–22], including relations between concepts and common sense. The exploitation
of such dictionaries fulfilled some ”understanding” requirements, however, with
quite sophisticated parsing techniques [23,24].

In order to simplify the query formulation process and parsing, while preserving
the same extensional semantics for multi–lingual queries, we restricted the query
language vocabulary to a (sub)language as provided by the ontology. This includes
not only application domain terms, but also operators and operations, in order to
extend the expressiveness of the query language beyond taxonomies and classifi-
cations. On the other hand, given that the query formulation is driven by the on-
tology, the construction of the query becomes a matter of adding meaningful sets
of all kinds of terms as suggested by the system. The suggestion of sets of terms,
however, is driven by reasoning services, which take into consideration

• the context of terms as circumscribed by the real–world semantics and expressed
by the ontology,

• the user environment,
• the partly constructed query.

To this extent, the query construction process resembles the moves among potential
states as specified by an automaton with the reasoning services determining the
potential moves. It is this ontology driven automaton, which specifies MDDQL as
a query language.

From a linguistic point of view, the automaton also prescribes the word order type
which underlie any constructed query. Currently, queries are constructed by follow-
ing the Subject–[Verb–Object] word order type, which characterizes 42 percent of
all natural languages [25]. Moreover, according to the parametric theory of natural
languages, as stated in [25], where parameters and not words are conceived to be
the atoms of a language, it is easier to construct a meaningful query, regardless the
preferred natural language, assuming that the same word order type holds.

To this extent, the automaton shifts the grammatical structure of queries from words
to word order types. This, in turn, simplifies the parsing technique in cross–lingual
environments in terms of simply replacing the words from one natural language to
another in the ontology, while preserving the same automaton, i.e., similar reason-
ing services during query construction.

4

The simplification of query construction and parsing is also strengthened by the
fact that the query under construction is reflected, in real time, on a high level con-
ceptual query tree, which is being manipulated, i.e., changing the contents of the
query tree (adding/deleting nodes or sub-trees) or contents of nodes themselves, ac-
cording to changes, e.g., adding or deleting terms, in the query under construction.
Given also that the query tree is constructed by selecting terms out of suggested
meaningful sets of terms, it turns out that syntactic parsing of the query becomes
obsolete, since the query is not prone to syntactic or orthographic mistakes.

Furthermore, semantic parsing is also alleviated due to the context aware sugges-
tions of terms. Context of terms is defined by their interrelationships as expressed
by the ontology as well as by their intentional meaning as expressed by their anno-
tations. The latter enables disambiguation of meaning of terms during query con-
struction, not only if it is difficult to grasp the meaning of a scientific or technical
term by simply looking at a word or name, but also when the same word is used
with different meanings in the query language vocabulary.

Organization of the paper: Section 2 gives an insight into the considerations of
the ontology based vocabulary description of the query language. A partial ontol-
ogy description of the vocabulary exemplifies these considerations. Section 3 refers
to the reasoning services underlying the query construction process due to the con-
text aware suggestions of terms in conjunction with particular NL word order types
as known by linguistic theories. Section 4 illustrates the MDDQL transformation
logic of the high level query trees, which underlie the submitted query, on the ex-
ample of on–the–fly generation of SQL statements. A conclusion summarizes what
has been presented in the paper.

2 The query language vocabulary

The vocabulary of MDDQL is described by an ontology language, which is close to
the OWL 1 [26] new ontology language for the Semantic Web, as developed by the
World Wide Web Consortium (W3C) Web Ontology Working Group. Given that we
put the emphasis on readability and general ease of use as important considerations
of an ontology language to become a platform of creating and modifying ontolo-
gies, a surface syntax based on the frames paradigm has been chosen. Frames group
together information about each class or instance and, therefore, make ontologies
easier to read and understand, particularly for those who are not familiar - or do
not want to become - with (Description) Logics [26]. The frames paradigm has

1 http://www.w3.org/2001/sw/WebOnt/

5

been used in a number of well known knowledge representation systems including
Protege–2000 [27] and the OKBC 2 knowledge model.

In frames based languages, each class or instance is described by a frame. The
frame includes the name of the class, identifies the more general class or classes that
it specializes, and lists a set of ”slots”. A slot, in turn, may consist of a property–
value pair or a constraint on the values (individuals or data values) that act as a
slot ”filler”. In addition, frames can be used in order to describe properties as hav-
ing range and domain constraints, specializing more general properties or having
inverse property relationships.

In accordance with these knowledge representation issues, all available terms (ap-
plication domain, operators, operations) are defined in the ontology language as
being class, property, value and instance elements. Given that we use separate
frames in order to represent terms for properties, e.g., age, and value elements,
e.g., [20–120], frames become ”fillers” of some other frame slots. Property frames
also represent relationships among agents, which are expressed by verbs in natu-
ral language, e.g., received, admitted to, etc., having a subject and an object in the
roles of agents, which, in turn, are represented by class or instance elements. These
are known in OWL as object properties in order to distinguish them from those
properties, which relate classes or instances to data-type values, e.g., title, age, and
are known in OWL as data type properties.

To this extent, slots are reserved as modelling constructs of the ontology descrip-
tion language. They are, roughly speaking, classified as attributive, hierarchical
or membership slots, according to their roles as modelling constructs. Hierarchi-
cal slots provide the modelling constructs subClassOf , unionOf , intersectionOf ,
disjointWith, etc., which are used in order to specialize or define abstract classes
(terms).

Moreover, subClassOf slots are classified as isKindOf , isPartOf and constitute-
sOf slots. Attributive slots are used in order to relate property elements to class or
instance elements. In this case, they can be further classified either as objectProp-
ertySlots, when they refer to object properties, or as datatypePropertySlots, when
they refer to data type properties. Furthermore, they are also used to relate value
elements to property elements.

In the following, we give an example of a partial ontology description as taken from
a real–world case study. Slots are referred as slot–constraints with their classifica-
tion indicated by a semi–colon.

class o1.Patients
slot–constraint:objectPropertySlot o15.admitted to
slot–constraint:objectPropertySlot o16.have received

2 http://ontolingua.stanford.edu/okbc

6

slot–constraint:objectPropertySlot o17.have been transferred from
slot–constraint:datatypePropertySlot o19.age
slot–constraint:datatypePropertySlot o20.height
slot–constraint:datatypePropertySlot o21.insurance
slot–constraint:memberOf m10.Classes *meta–modelling level*

.
class o10.Discharged patients

slot–constraint:subClassOf:isKindOf o1.Patients
slot–constraint:objectPropertySlot o33.have been transferred to
slot–constraint:objectPropertySlot o34.to receive
slot–constraint:datatypePropertySlot o39.Date of discharge
slot–constraint:memberOf m10.Classes *meta–modelling level*

.
property o15.admitted to

slot–constraint:subPropertyOf o100.transferred to
slot–constraint:objectPropertySlot:domain o1.Patients
slot–constraint:objectPropertySlot:range o2.Hospitals
slot–constraint:datatypePropertySlot o40.admission date
slot–constraint:memberOf m11.Properties *meta–modelling level*

.
property o16.have received

slot–constraint:objectPropertySlot:domain o1.Patients
slot–constraint:objectPropertySlot:range o50.Medication
slot–constraint:memberOf m11.Properties *meta–modelling level*

.
property o34.to receive

slot–constraint:objectPropertySlot:domain o10.Discharged patients
slot–constraint:objectPropertySlot:range o30.Medication
slot–constraint:objectPropertySlot:isInverseProperty o45.recommended to
slot–constraint:memberOf m11.Properties *meta–modelling level*

.
property o19.age

slot–constraint:hasValue o110.[20–120]
slot–constraint:memberOf m112.Numerical variables *meta–modelling level*

.
property o21.insurance

slot–constraint:hasValue o120.public, private
slot–constraint:memberOf m111.Categorical variables *meta–modelling level*

.
instance o99.Aspirin

memberOf o50.Medication
..........
instance o100.Aspirin

memberOf o30.Medication
..........

7

In contrast with OWL, cross–references among the ontology elements are estab-
lished through IDs rather than names, for two purposes: (a) in order to express
homonyms, i.e., two terms having assigned the same name, however, with differ-
ent extensional semantics, e.g, medication, within the same ontology name space
without introducing artificial names, (b) in order to have the query construction
reasoning services working regardless the preferred natural (sub)language in which
the query is being constructed. In our example of the partial ontology above, we
made use of terms in English for the sake of simplicity and readability.

Since the appearance of a term to the user takes place through an assigned name,
e.g., aspirin, discharged patients, which becomes the value of a slot for all ontology
elements, we feel the need to distinguish between slots as modelling constructs for
the description of the interrelationships among the ontology elements and inher-
ited slots from meta–modelling frames. These frames stand for the description of
ontology elements themselves, which, in turn, are conceived as being instances of
these meta–modelling frames.

In an object–oriented terminology, the meta–modelling frames are represented by
meta–classes where all ontology elements are instances. In other words, the class,
property, value, instance elements are instances themselves of the classes for all
classes, properties, values, instances, respectively. The common slots, such as term
unique identifier, name, annotation, measurement unit, operationalRole, synonyms,
validity preconditions, etc., provide a ”deeper” structure to the description of each
ontology element itself, and, therefore, a deeper understanding of the terms.

For example, understanding of the term medication might be strengthened by the
value as assigned to the slot annotation. It is this intentional semantics, which al-
leviate the task of disambiguation of meaning of advanced or homonym terms, in
addition to the ontology modelling constructs. Preconditions might also have an
impact on the meaning of all kinds of ontology description elements, within the
same ontology space, according, to the target database. For example, the instance
element Total Troponin is only valid, if the target database for the intended query
is supposed to be the hospital named Triemlispital, since there is no such measure-
ment taking place at other hospitals. The latter explicates that an instance element
is bound to a particular location.

An extension of our partial ontology description example through the meta–modelling
elements by using the same modelling constructs is given in the following:

class m1.Vocabulary
slot–constraint:datatypePropertySlot m19.term unique identifier
slot–constraint:datatypePropertySlot m20.name
slot–constraint:datatypePropertySlot m21.annotation
slot–constraint:datatypePropertySlot m22.precondition

8

.
class m10.Classes

slot–constraint:subClassOf:isPartOf m1.Vocabulary
.
class m11.Properties

slot–constraint:subClassOf:isPartOf m1.Vocabulary
.
class m12.Values

slot–constraint:subClassOf:isPartOf m1.Vocabulary
.
class m13.Instances

slot–constraint:subClassOf:isPartOf m1.Vocabulary
.
class m111.Categorical variables

slot–constraint:subClassOf:isKindOf m11.Properties
.
class m112.Numerical variables

slot–constraint:subClassOf:isKindOf m11.Properties
slot–constraint:datatypePropertySlot m25.Measurement Unit

.

This kind of ontological abstraction also allows the expression of preconditions,
which hold between collections of ontology description elements, such as those
holding between comparison operators or operations and properties, since not all
(sub)sets of operators or operations make sense to be suggested for inclusion in the
query. This strongly depends on the context of terms of that part of the vocabu-
lary, which refers to the application domain. For instance, given that we have the
following description at the meta–modelling level,

class m5.Operators
slot–constraint:subClassOf:isPartOf m1.Vocabulary

.
class m51.Comparison Operators

slot–constraint:subClassOf:isKindOf m5.Operators
.
class m52.Unary Operations

slot–constraint:subClassOf:isKindOf m5.Operators
.

we could express preconditions saying that Unary Operations can be applied to
properties classified as Numerical variables, whereas the subset of Unary Opera-
tions with instances {Mean, Variance, Deviation} cannot be applied to properties
classified as Categorical variables. Similarly, the subset of Comparison Operators

9

with instances {>, <, >=, <=, between} makes sense to be considered together
with properties classified as Numerical variables only.

Summarizing, the context of query language terms is defined in terms of (a) the
membership to the meta–modelling frames, (b) their semantic interrelationships,
(c) contextualization of the ontology itself as expressed by the holding precondi-
tions. The reasoning services for guiding the user to the construction of meaningful
queries in cross–lingual communities need to take into consideration this context.
In the following, we give a short overview of the mechanism underlying the rea-
soning services by emphasizing its role as natural language constructor based on
particular word order types.

3 The query construction through reasoning services

3.1 A linguistics point of view

The major goal of the design and specification of MDDQL as a high level query
language has been the simplification of construction and parsing of meaningful
queries, with an advanced query language vocabulary, especially when more than
one natural (sub)language can be used. In order to meet this goal, the following
considerations have been taken into account:

(1) User guidance to the intended query.
(2) Syntactic and semantic parsing of a query is done implicitly during query con-

struction.
(3) The constructed query should be reflected on a high-level query tree.

Since the real–world semantics are provided by the ontology as described in the
previous section, the user guidance during the interactive query construction re-
lies upon reasoning services, which take into consideration both the real–world
semantics and the current state of the intended query. To this extent, the query con-
struction process resembles the definition of an automaton by having the reasoning
services to determine the potential states to move on, i.e., potential refinements of
the intended query. In other words, it is like having an automaton underlying the
specification of a query language, where the real–world semantics guide the syntax
rather than having the syntax guiding the semantics of a language.

The major challenge, however, behind the specification and realization of the rea-
soning services and the automaton as an interaction mode has been the construction
of meaningful queries in cross–lingual environments. Therefore, the syntax of the
constructed query should reflect a particular word order type, which characterizes
the preferred natural language. It has been shown by linguists [25] that, despite the

10

combinatorial explosion in differences at various levels of natural languages, there
are some principles and commonalities which underlie all known human natural
languages. It is, therefore, not the words, which are considered as the atoms of a
language, but rather parameters which lead to classification of natural languages
according to some word order type.

A rough classification of natural languages according to some basic word order
types and their distribution is given in the following:

• Subject–[Verb–Object], 42 percent, for example, English, German, Indonesian
• Subject–[Object–Verb], 45 percent, for example, Japanese, Turkish
• Verb–Subject–Object, 9 percent, for example, Zapotec, Welsch
• etc.

Currently, the reasoning services and the automaton are targeted at constructing
natural (sub)language based queries according to the Subject–[Verb–Object] word
order type, which characterizes 42 percent of natural languages. To this extent, sim-
ply replacing the names of the ontology elements from one natural language to an-
other, e.g., replacing the English terms with the German ones, without any changes
to the reasoning services and automaton specification, still produces queries with a
meaningful syntax in 42 percent of natural languages.

3.2 From the ontology to natural language

However, in order to get a query constructed according to this particular word order
type, we need to consider the modelling constructs of the ontology from a linguis-
tic point of view. Given that Subject, Object and Verb are rather noun and verb
phrases, respectively, than simple words, the query construction guidance mecha-
nism mainly distinguishes among the various slots and their roles in the ontology
description.

Roughly speaking, a noun phrase can be constructed by elements, which are con-
nected through all kinds of slots, which are not classified as objectPropertySlots.
According to the semantics as assigned to this kind of slots (section 2), object-
PropertySlots provide the connectives between the noun phrases, standing either
for the Subject or the Object, and the Verb phrase, which is mainly provided by the
corresponding property element.

For instance, a legitimate query would have been ”The age and weight of dis-
charged patients admitted to hospitals with location Zurich”, with ”age and weight
of discharged patients” being the Subject, ”admitted to” being the Verb, and ”hos-
pitals with location Zurich” being the Object parts of the query. This is due to the
fact that, for example, age and weight are data type properties of patients and,
consequently, of discharged patients, given that there is a slot constraint subClas-

11

sOf:isKindOf holding between patients and discharged patients (section 2). In ad-
dition, there are slot constraints classified as objectPropertySlot holding in the on-
tology between admitted to and the classes patients, hospitals.

The construction of this query, however, would have been taken place incrementally
due to the suggestions as made by the reasoning services. For example, given that
[discharged patients] has been the term at an initial state, potential subsequent
states would have been

• [discharged patients, admitted to, hospitals],
• [discharged patients, to receive, medication],
• [discharged patients, {age, height}, admitted to, hospitals],

etc. The decision to which state to move on is taken by the user, each time she/he
makes a choice among the suggested terms by the reasoning services. In addition,
term selection is also bound to intentional semantics in terms of having a look at
the annotation of vocabulary terms prior to inclusion. This leverages the choice of
correctly defined terms, in case that the word alone does not suffice to disambiguate
the meaning of a term.

Since the suggestions are made by taking into consideration the ontological con-
text of terms and the current state of the query, states like [discharged patients,
received, hospitals] or [discharged patients, {location}, admitted to, hospitals]
will never appear in a query. Furthermore, given that all elements in the ontol-
ogy, which are known as classes, can constitute an initial state, queries being in
a state like [medication, recommended to, discharged patients] are possible, how-
ever, a query being in a state [medication, recommended to, discharged patients, to
receive, medication], i.e., building a cycle, would not be possible, since to receive
and recommended to are known as inverse properties (section 2) and, therefore, [to
receive, medication] will not be suggested as a potential move.

Examples of further semantically compliant moves among query states are guaran-
teed by examining the modelling constructs among classes, such as disjointWith.
A query state such as [discharged patients, {age, height}, passed away patients,
admitted to, hospitals] is not possible, since discharged patients and passed away
patients are known to be disjoint. This would have been equivalent to a query like
”The age and height of discharged patients, who have passed away, as admitted to
hospitals...”, which is meaningless.

The reasoning services have recently been extended by including operators or op-
erations. The consideration of the OR logical operator in the query state above
would have turned the query state to a permissible one, since a query like ”The
age and height of discharged OR passed away patients, as admitted to hospitals...”
is a meaningful one. On the other side, inclusion of operators or operations would
change the state of the query and, therefore, they are also subject to the reasoning
services for meaningful suggestions of terms.

12

For instance, comparison operators, which apply only to categorical variables, are
excluded from suggestions in conjunction with properties, which are known as be-
ing instances of categorical variables (see also the partial ontology description
in section 2). Therefore, a query state like [discharged patients, {age, height},
{insurance >= ’p’}, admitted to, hospitals] will not be possible. Additionally, sta-
tistical operations such as variance, or mean value are only permissible, if the af-
fected property is known to be a member of numerical variables.

Fig. 1. A snapshot of the MDDQL query construction blackboard

The query construction takes place on a blackboard, as depicted in figure 1, which
acts as the interaction means between user and machine. All terms appear on the
blackboard by using the values, which are assigned to the slot name of the ontol-
ogy elements, in the preferred natural (sub)language. The user has the possibility
of starting the query construction process with a term as selected from a list of
initial terms which appears on the left panel. Alternatively, a search mechanism is
also available in order to locate the requested term within the given vocabulary, in
order to begin the query construction with. If an ontology element happens to have
the same name as a value, such as medication, the search results are presented in
conjunction with the term neighbourhood in order to help the user to disambiguate
the term.

A full description and specification of the reasoning services as well as a math-
ematical definition of the ontology driven MDDQL automaton lies out the scope
of this paper. It is worth mentioning, however, that the reasoning services rely
upon traversing of the graph, which reflects the ontology description in its frames
like knowledge representation. When imported into main memory, it constitutes an
object–oriented semantic network upon which the reasoning services are performed

13

in terms of mainly looking for semantically consistent nodes at the neighbourhood
of a particular node, which is already part of the intended query.

Currently, the neighbourhood is partly defined by adhering the nodes, which can
be reached from a particular node standing for a class or instance through object-
PropertySlots to other classes or instances, without changing the directionality of
the traversed nodes. This enables a direct mapping to the [Verb–Object] adherence
as foreseen for the Subject–[Verb–Object] word order type. However, reversing
the directionality of the traversed nodes of this kind would cause the adherence of
[Object–Verb] subtypes to the Subject, which, in turn results into the new word or-
der type Subject–[Object–Verb], which underlies the principles of natural language
construction for another 45 percent of human languages such as Japanese, Turkish,
etc.

3.3 Reflecting the query on a high level query tree

Regardless the word order type, according to which queries are formulated, the con-
struction of the query is reflected by the synchronous construction or manipulation
of a high-level query tree as an abstract data type construct, which resides in the
working memory of the query construction blackboard. This reflection simplifies
parsing and transformation of the constructed query toward database specific query
languages, despite the potential huge range of applicable natural (sub)languages.
It is this query tree which gets traversed in order to generate the database specific
query language, as illustrated in the next section.

The high level query tree is defined in terms of query term nodes. A node is con-
ceived as a thin version of the frame based definition of the corresponding term
from the ontological description of the vocabulary. This means that they carry on
only those values or ”fillers”, which are necessary for the transformation toward
database specific query languages. For example, the annotation slots are not in-
cluded in the query tree nodes, since they are only useful for the construction of the
query by providing explanation of terms. On the contrary, the memberOf slots are
always included, since they refer to the role of nodes in terms of meta–modelling
elements.

The structure of a potential high level query tree underlies the following constraints:

• The root of the query tree is always a Class or an Instance term node.
• A Class or Instance term node might have as children other Class, Instance or

Property term nodes.
• A Datatype Property term node might have as children other Datatype Property

term nodes or Value term nodes.
• An Object Property term node, i.e., relationship between two agents, MUST

have children, which are Classes or Instance term nodes.

14

TUI Name

Symbol

Patients

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI Name

Symbol

TUI: Term Unique Identifier

(A)
(B)

(C) (D)

Patients

having received

immediate therapy

having received

immediate therapy

discharged

having received discharged

patients

immediate therapy

thrombolysis

TUI Name

Symbol

patients

having received discharged

immediate therapy

thrombolysis

Date
Reasoning of denial

PCI preferred

<:PATIENTADMIT> <:PATIENTADMIT>

<:PATIENTADMIT>
<:PATIENTADMIT>

<:PATIENTTHER>

<:PATIENTTHER>
<:PATIENTTHER>

<:PATIENTTHER>

<:PATIENTTHER>

<:PATIENTTHER>
<:PATIENTTHER>

<:PATIENTDIS>

<:PATIENTDIS>

<:PATIENTDIS> <:PATIENTTHER>

TUI Name

Symbol
TUI Name

Symbol
TUI Name

Symbol

TUI Name

Symbol

TUI Name
TUI Name

Symbol

<:PATIENTTHER:THRMBLYS:1>

Symbol

<:PATIENTTHER:THRMBLYS:1>

<:PATIENTTHER:THRMBDAT>
<:PATIENTTHER:WHYNOTHR>

<3>

CTN

CTN

CTN

CTN

PTN PTN

RTN

VTN

Fig. 2. Query construction states as reflected on a high level query tree

• An Object Property term node, i.e., relationship between two agents, might have
as children Property term nodes.

• A Value term node might have as children only Value nodes.

Presumably, the intended query would be: date of thrombolysis for discharged pa-
tients with reasoning for denial of thrombolysis ”PCI has been preferred”. The
incremental query construction is reflected by the four query tree states as depicted
in figure 2. At state (A), the query tree reflects the refinement of patients by the
selected predication have received immediate therapy, where the query node have
received is classified as an Object Property and the nodes patients and immediate
therapy are classified as classes. At state (B), the query tree reflects the further re-
finement of the intended query term node discharged, i.e., restriction of the query
result to those patients who have been discharged.

At state (C), the query tree reflects a further refinement by focusing on thrombolysis

15

as a kind-of immediate therapy, which has been selected from suggested specializa-
tion terms. Finally, state (D) reflects a meaningless query tree, since it semantically
violates the constraint that both date of thrombolysis and denial of thrombolysis
as parts of the intended query are not permissible. In other words, it would not be
meaningful to ask for date of thrombolysis in a query, which has as reasoning for
denial of thrombolysis PCI has been preferred as part of an AND–connected re-
striction clause. Therefore, it is expected that, in these cases, thrombolysis has not
been performed at all and, correspondingly, construction as well as submission for
transformation and execution of such a query tree will not be possible.

This also applies to the class of unary operations such as average, maximum, min-
imum, etc., which can be suggested as applicable functions for datatype properties
being members of Numerical variables, such as Height, but not for Gender, since
the latter has been classified as a Categorical Variable in the ontology based de-
scription of the vocabulary. Comparison operators and unary operations are part
of the query node description in the high level query tree. Operators and opera-
tions which apply to more than one argument, they are assigned to query tree nodes
which are roots of, at least, binary (sub)trees.

The default logical and comparison operators holding for the constructed query
tree, if no other semantically compliant operator has been selected, are the AND
and the equals operators, respectively. In the following, we give an insight into the
transformation logic rather than presenting all algorithmic details and, therefore,
outrange the scope of the paper.

4 High level query tree interpretation and transformation

The transformation logic of an MDDQL high level query tree toward a database
specific query language relies upon a generative grammar, which is specified as an
automaton having as an initial state the root of the submitted high level query tree.
Subsequent states are determined by traversing the query tree nodes in a depth-first
strategy. Therefore, each state is defined of all currently visited nodes or subgraph.
According to the roles and contents of the query term nodes, it is determined which
parts of the database specific query statement should be generated.

For instance, generation of an SQL-statement is based on filling an {SELECT,
FROM, WHERE} pattern conceived as an assembly of the SELECT, FROM and
WHERE clauses. The tokens, however, to be written out as well as their destina-
tion, i.e., SELECT, FROM or WHERE clause, are determined by

• the mapping between the ontology elements as appear on the query tree nodes
and the database implementation symbols,

• the nature of the submitted MDDQL query tree,

16

• the meta–data which refers to the description of the logical database schema.

Since the nature of the submitted high level query tree has been covered in section
3.3, in the following subsection 4.1, we briefly refer to the two other factors, map-
ping of ontology elements and meta–data for database logical schema description,
as ingredients for the generation of, for example, SQL-statements, before embark-
ing into the explication of the transformation logic (subsection 4.2) on the same
example.

4.1 The ingredients

4.1.1 The storage model symbols (SMS)

The ontology elements to be found on the submitted high level query tree corre-
spond to one or more storage model symbols, which are defined as assemblies of
database model and value elements such as relations (tables), attributes, values, as
well as the database itself. SMS’s are constructed according to the notation

< [database] : relation : attribute : value >

This notation indicates, implicitly, the containment as well as interpretation of the
storage model element with database name being optional. For example, the term
named thrombolysis (figure 2) in the ontology description of the vocabulary, is
mapped into the SMS

<: PATIENTTHER : THRMBLY S : 1 >.

This indicates the fact that thrombolysis has been realized as the value 1 of the
attribute THRMBLYS that is part of the definition of the table PATIENTTHER.

Given that complex data types need to be referred by SMS’s too, an attribute in
the SMS notation can be described as dot separated list of attributes, whereas a
value can be described by a list of values. For example, the term named instances
of regular medication is represented by the SMS

<: HISTPATIENT : HISTMED.ITEM NAME >,

where ITEM NAME is an attribute of the nested table HISTRMED. Accordingly,
the term named smoker is not directly represented by one single value and, there-
fore, the corresponding SMS takes the form

<: HISTRF : SMOKE : [1, 2] >,

where [1, 2] stands for various categories of smoker such as ex-smoker, and current
smoker.

17

The mapping, however, between term unique identifiers of ontology elements and
SMS’s is provided either by the ontology description or by a mediation layer during
query transformation. Reference to this mapping at an ontology description level is
done by including the slot symbol for all elements of the query language vocabu-
lary. To this extent, the corresponding SMS is implicitly selected during the query
construction and need not be retrieved or queried at the mediation level. This works
accordingly when simple databases are targeted (see also example with query states
as depicted by figure 2). In more sophisticated environments, however, where col-
lections of databases with semantic heterogeneity are being targeted, a mapping of
ontology elements to one or more SMS’s at the mediation level is preferred.

The SMS contents not only provide the parts of the contents of the SELECT,
FROM and WHERE clauses in the generated SQL statement, but they also have
an impact on the final form of the generated SQL statement by determining ad-
ditional clauses to be considered. For example, since we might be interested in
only those discharged patients having received thrombolysis as a kind of imme-
diate therapy, as reflected by the query tree state (C) (figure 2), the query result
will be restricted not only by the inferred equi–join between the relations PATIEN-
TADMIT and PATIENTTHER (see below for more details), but also by a value
based restriction in the WHERE clause, such as THRMBLY S = 1. Instead, if
the SMS <: PATIENTTHRMBLY S > would hold indicating that a separate
relation would have been used in order to realize the concept thrombolysis, then
an equi–join between the relations PATIENTTHER and PATIENTTHRMBLYS is
inferred.

4.1.2 The meta—data for the logical database schema

The description of the logical database schema is given by an XML based notation.
This aims at describing the definition of tables in terms of assigned attributes, pri-
mary and foreign keys, data types, etc. A subset of such a description is given in
the following:

< Relationname = ”PATIENTADMIT” >
< Attributename = ”PATIENTI D” dt : type = ”NUMBER” primary = ”primary”

< RefTable relation = ”PATIENTTHER” attribute = ”PATIENT ID”/ >
< /Attribute
< Attributename = ”HOSPREC ID” dt : type = ”V ARCHAR2” primary = ”primary” >

< RefTable relation = ”CONDITION” attribute = ”HOSPREC ID”/ >
< RefTable relation = ”V ITALSIGNS” attribute = ”HOSPREC ID”/ >

< /Attribute >
< Attributename = ”SUBMISSION DATE” dt : type = ”DATE”/ >
< Attributename = ”BIRTHDAT” dt : type = ”DATE”/ >
< Attributename = ”SEX” dt : type = ”V ARCHAR2”/ >
< Attributename = ”ADMISDAT” dt : type = ”DATE”/ >
< Attributename = ”HEIGHT” dt : type = ”NUMBER”/ >
< Attributename = ”WEIGHT” dt : type = ”NUMBER”/ >
< Attributename = ”PATINSURANCE” dt : type = ”V ARCHAR2”/ >
< Attributename = ”PATTRANSFER” dt : type = ”V ARCHAR2”/ >

< /Relation >

This kind of meta–data is required in order to infer the names of the attributes over
which two tables should be joined as well as the types of the attributes involved in

18

the WHERE clause (value based restrictions) and the SELECT clause. For instance,
if the given type of an attribute in the WHERE clause is VARCHAR2, then the
corresponding value will be enclosed in single quotes.

4.2 The transformation of the high level query tree

It is not our intention to present the full specification of the automaton underlying
the implementation of the transformation logic. We would like, however, to give
a short overview of the transformation logic. Since the MDDQL high level query
tree is traversed in a depth-first strategy, the SQL statement generation is conceived
by the automaton having an initial state q0 = {S0, F0, W0}, where S0 ≡ F0 ≡
W0 ≡ {}, with S, F , W representing the SELECT, FROM, WHERE parts of the
SQL-statement.

The combination of classifications of the MDDQL query term nodes, which consti-
tute a visited edge, determine what to write and in which part of the SQL-statement.
In other words, each visited edge might cause a move from one state to another such
that qi = {Si, Fi, Wi}, with, for example, Fi 6= {}.

For example, assuming that an < PTN, V TN > edge, with PTN being a datatype
property node and VTN being a value term node, is visited on the query tree state
(D) in figure 2, and that the corresponding meaningless query would have been
permitted, this would have caused the generation of a value based restriction for
the WHERE clause such as WHYNOTHR = ’1’. Within the same hypothetical query
tree, if an edge is visited having a PTN , e.g., date of thrombolysis as a leaf node,
then the corresponding symbol THRMBDAT is written into the SELECT clause as
candidate for projection.

Accordingly, inference of equi–join operations becomes a matter of detecting such
operations during the traversal of the submitted MDDQL high level query tree by
the query transformation algorithm. This, mainly, depends on the combination of
Class and Object Property query term nodes, which belong to the visited query tree
(sub)path, as well as the contents of the corresponding SMS’s. Thus inferred equi–
join operations take also into account how a relationship between agents, in the
natural language roles as Subject and Object, has been implemented. An equi–join
operation is enabled for both:

• additional relation (table) such as those realizing N:M relationships between
entity sets,

• no additional relation (table) such as those realizing 1:1 or 1:N relationships
between entity sets.

In both cases, additional equi–join based restrictions need to be considered for the
WHERE clause. The conditional restriction is built upon the input provided by the

19

XML meta–data specification of the logical database schema, as briefly presented
above.

For instance, given that the visited edge is < CTN, CTN >, with CTN being a
Class term node and mappings to different names of relations, such as PATIEN-
TADMIT and PATIENTDIS, due to the corresponding SMS’s (query tree state (D)
of figure 2), an equi–join operation is inferred in terms of their primary/foreign
keys. In other words, the SQL statement under generation has been moved into a
state where PATIENTADMIT and PATIENTDIS are written into the FROM clause,
with additional tokens standing for the variable names, whereas the restriction PA-
TIENTADMIT.PATIENT ID = PATIENTDIS.PATIENT ID is added to the WHERE
clause.

Similarly, given the combination < CTN,RTN,CTN >, with RTN being an Ob-
ject Property term node, in a visited path having PATIENTADMIT, PATIENT-
THER and PATIENTTHER as corresponding SMS’s, only the PATIENTADMIT,
PATIENTTHER are considered for the FROM clause. To this extent, only the equi–
join restriction PATIENTADMIT.PATIENT ID = PATIENTTHER.PATIENT ID is
considered for the WHERE clause, since the relationship has been implemented by
using only two tables. This is inferred from the identical SMS’s

<: PATIENTTHER >

as assigned to both the RTN and one of the connected CTN query term nodes. It is
also possible to consider nested tables as well as operators or operations, which are
assigned to particular query tree nodes.

The final state Sqf
, Fqf

, Wqf
of the automaton reflects the generated SQL statement

and is reached when the MDDQL high level query tree has been fully traversed.
Following our example, the constructed query, which reflects the query tree state
(D), as depicted in figure 2, would have taken the form

SELECT PATIENTTHER.THRMBDAT
FROM PATIENTADMIT VAR1, PATIENTTHER VAR2, PATIENTDIS VAR3
WHERE VAR1.PATIENT ID = VAR3.PATIENT ID AND

VAR1.PATIENT ID = VAR2.PATIENT ID AND
VAR2.THRMBLYS = ’1’ AND
VAR2.WHYNOTHR = ’3’

The same SQL statement would have been generated, if words from a different nat-
ural language were assigned as values of the name slot of the query term nodes.
To this extent, the transformation or generation logic for database query language
statements remains unchanged. However, the generated, for example, SQL state-
ment would have been meaningless in terms of the real–world semantics, which

20

are not part of the SQL or other database specific query language specification.

5 Conclusion

We presented a querying approach and language aiming at simplifying the query
construction and transformation toward database specific query languages in terms
of syntactic, semantic (NL–specific semantics) and pragmatic (real–world seman-
tics) parsing of queries, especially for cross–lingual communities in conjunction
with advanced application domain vocabularies such as scientific or technical ones.

The construction of the query is driven by reasoning services, which rely on an
ontology description of the application domain semantics and, therefore, provide
a real–world semantics driven interactive query construction mechanism. This is
conceived as enabling moves among query states, which reflect a partly constructed
or intended query according to some particular word order type as an NL–specific
semantics template.

Currently, the reasoning services are targeted at constructing queries according to
the word order type Subject–[Verb–Object], which underlies almost 42 percent of
the known natural languages such as English and German. However, the reasoning
services can be slightly changed in order to guide the user to the construction of the
Subject–[Object–Verb] word order type, which underlies almost another 45 percent
of known natural languages such as Japanese and Turkish, without any change to
the ontology description.

To this extent, the impact is twofold: (a) query generation by and specification
of an automaton, where semantics guide the syntax rather than having the syntax
guiding the semantics, (b) construction of a query regardless the preferred natural
(sub)language, despite the diversity of word order types, with the same extensional
semantics in terms of the tuples received with the query result.

The latter is guaranteed through the NL–independent reflection of the intended
query on a high level query tree which, consequently, gets transformed into database
specific query languages such as SQL. This is achieved by considering not only the
nature of the submitted high level query tree, but also the mappings between ontol-
ogy elements and storage model elements such as tables, attributes, etc., as well as
a meta–data based description of the logical database schema(s).

The NL–independent reflection is also strengthened by the fact that mappings be-
tween ontology elements and storage model ones are established between term
unique identifiers of the ontology elements and the storage model ones. This also
alleviates the task of providing the same real–world semantics in more than one nat-
ural language by simply replacing the values for names of the ontology elements.

21

References

[1] F. Dinenberg, D. Levin, Natural Language Interfaces for Environmental Data
Bases, in: Second International Workshop on Applications of Natural Language to
Information Systems, IOS Press, Amsterdam, The Netherlands, 1996.

[2] J. Bernauer, A. Benneke, A. Fuesechi, M. Urban, Structured Data Entry for Medical
Records and Reports, in: Second International Workshop on Applications of Natural
Language to Information Systems, IOS Press, Amsterdam, The Netherlands, 1996.

[3] B. Bouchou, D. Maurel, Natural Language Database Query System, in: 4th
International Conference on Applications of Natural Language to Information
Systems, IOS Press, Klagenfurt, Austria, 1999.

[4] R. H. Chiang, C. E. H. Cecil, V. C. Storey, A Smart Web Query Engine for
Semantic Retrieval of Web Data and its Application to E-trading, in: 5th International
Conference on Applications of Natural Language to Information Systems, IOS Press,
Versailles, France, 2000, pp. 215–226.

[5] A. Düsterhöft, B. Thalheim (Eds.), Natural Language Processing and Information
Systems, 8th International Conference on Applications of Natural Language to
Information Systems, LNI, GI, Burg (Spreewald), Germany, 2003.

[6] V. Ambriola, V. Gervasi, Experiences with Domain-Based Parsing of Natural
Language Requirements, in: 4th International Conference on Applications of Natural
Language to Information Systems, IOS Press, Klagenfurt, Austria, 1999.

[7] M. Mittendorfer, W. Winiwarter, Experiments with the Use of Syntactic Analysis in
Information Retrieval, in: 6th International Conference on Applications of Natural
Language to Information Systems, IOS Press, Madrid, Spain, 2001, pp. 37–44.

[8] S. Ullman, Semantics - An Introduction to the Science of Meaning, Blackwell, Oxford,
1962.

[9] S. C. Kleene, Automata studies, Princeton Univ. Press, Princeton, N.J., 1956, Ch.
Representation of events in nerve nets and finite automata, pp. 3–42.

[10] D. E. Knuth, Semantics of Context-Free Languages, in: Mathematical Systems
Theory, Vol. 2, 1968, pp. 127–145.

[11] M. Uschold, M. Grueninger, Ontologies: Principles, Methods and Applications,
Knowledge Engineering Review 2.

[12] M.-S.Jeon, S.-Y. Park, M.-S. Kim, Extraction of Exact Meaning Using a Keyfact
Concept System, in: Second International Workshop on Applications of Natural
Language to Information Systems, IOS Press, Amsterdam, The Netherlands, 1996.

[13] H. Jaakkola, B. Thalheim, Visual SQL? High-Quality ER-Based Query Treatment,
in: M. A. Jeusfeld, O. Pastor (Eds.), Conceptual Modeling for Novel Application
Domains, ER 2003 Workshops, ECOMO, IWCMQ, AOIS, and XSDMER, Vol. 2814
of LNCS, Springer, Chicago, USA, 2003, pp. 129–139.

22

[14] T. Catarci, M. Costabile, S. Levialdi, C. Batini, Visual query systems for databases: A
survey, Journal of Visual Languages and Computing 8 (2) (1997) 215–260.

[15] R. Stevens, P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. Paton, C. Goble, TAMBIS:
Transparent Access to Multiple Bioinformatics Information Sources, Bioinformatics
16 (2) (2000) 184–186.

[16] N. Paton, R. Stevens, P. Baker, C. Goble, S. Bechhofer, A. Brass, Query Processing in
the TAMBIS Bioinformatics Source Integration System, in: Proc. 11th Int. Conf. on
Scientific and Statistical Databases (SSDBM), IEEE Press, 1999, pp. 138–147 1999.

[17] S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, C. Goble, Guiding the User: An Ontology
Driven Interface, in: N. W. Paton, T. Griffiths (Eds.), Proc. User Interfaces to Data
Intensive Systems (UIDIS99), IEEE Press, Edinburgh, 1999, pp. 158–161.

[18] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The
Description Logic Handbook: Theory, Implementation and Applications, Cambridge
University Press, 2003.

[19] V. Sugumaran, V. C. Storey, Creating and Managing Domain Ontologies for Database
Design, in: 6th International Conference on Applications of Natural Language to
Information Systems, IOS Press, Madrid, Spain, 2001.

[20] V. Sugumaran, V. C. Storey, An Ontology Based Framework for Generating and
Improving DB Design, in: 7th International Workshop on Applications of Natural
Language to Information Systems, Springer Verlag, Stockholm, Sweden, 2002, pp.
1–12.

[21] K. Knight, S. Luck, Building a Large Knowledge Base for Machine Translation, in:
Proc. of the AAAI-94, Seattle, USA, 1994, pp. 779–784.

[22] K. Knight, I. Chancer, M. Haines, V. Hatzivassiloglou, E.-H. Hovy, M. Iida, S. K.
Luk, R. Whitney, K. Yamada, Filling Knowledge Gaps in a Broad-Coverage Machine
Translation System, in: Proc. of IJCAI95, Montreal, Canada, 1995, pp. 1390–1397.

[23] B. Thalheim, T. Kobienia, Generating DB Queries for Web NL Requests Using
Schema Information and DB Content, in: A. M. Moreno, R. P. van de Riet (Eds.),
NLDB 2001, Vol. 3 of LNI, GI, Madrid, Spain, 2001, pp. 205–209.

[24] E. Metais, H. C. Mayr, NLDB’99: Applications of natural language to information
systems, Journal of Data and Knowledge Engineering 35 (2) (2000) 107–109.

[25] M. C. Baker, The Atoms of Language, Oxford University Press, 2002.

[26] I. Horrocks, P. F. Patel-Schneider, F. van Harmelen, From SHIQ and RDF to OWL:
The Making of a Web Ontology Language, Journal of Web Semantics 1 (1).

[27] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, M. A. Musen, Creating
Semantic Web Contents with Protege-2000, IEEE Intelligent Systems 16 (2) (2001)
60–71.

23

