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Summary 

 

Photosynthetic picoeukaryotes (PPEs) are important components of the marine 

picophytoplankton community playing a critical role in CO2 fixation but also as 

bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these 5 

organisms and an improved understanding of the genetic diversity of this group we still 

know little of the environmental factors controlling the abundance of these organisms. 

Here, we investigated the quantitative importance of eukaryotic parasites in the free-

living fraction as well as in associations with PPEs along a transect in the South Atlantic. 

Using TSA-FISH (Tyramide Signal Amplification - Fluorescence in situ hybridization) 10 

we provide quantitative evidence of the occurrence of free-living fungi in open ocean 

marine systems, while Perkinsozoa and Syndiniales parasites were not abundant in these 

waters. Using flow cytometric cell sorting of different PPE populations followed by a 

dual-labelled TSA-FISH approach we also demonstrate fungal associations, potentially 

parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These 15 

data highlights the necessity for further work investigating the specific role of marine 

fungi as parasites of phytoplankton to improve understanding of carbon flow in marine 

ecosystems.  
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Introduction  

Photosynthetic picoeukaryotes (PPEs), herein defined as cells <5 µm in diameter, are 

gaining recognition as significant contributors to CO2 fixation in many marine 

ecosystems (Jardillier et al., 2010; Cuvelier et al., 2010). Whilst long considered as 

obligate autotrophs, PPEs are now known to include active bacterivores i.e. they exhibit 5 

mixotrophic behaviour (Hartmann et al., 2012, 2013; Unrein et al., 2014). Hence, these 

organisms are not only key CO2 fixers but also play a role in controlling bacterioplankton 

abundance, acting as producers of organic matter and predators at the same time. Interest 

in these organisms has thus increased dramatically in recent years, and we now have a 

relatively good knowledge of their molecular diversity, largely through surveys of 10 

nuclear and plastid-encoded small subunit rRNA genes (e.g. Vaulot et al., 2008; Kirkham 

et al., 2013). In contrast, factors controlling the abundance of PPEs remain poorly 

understood. Recent ship-board nutrient addition experiments suggest that, at least over 

the short term (10-11 h), nutrient availability does not limit CO2 fixation by these 

organisms (Grob et al., 2015) suggesting top-down regulation the most likely controlling 15 

factor of open ocean PPE CO2 fixation. Here, we investigated the impact of eukaryotic 

parasitism on PPEs, which remains largely unexplored in ocean ecosystems.  

Eukaryotic parasites are characterized by complex life cycles. They can include 

developmental stages comprising free-living zoospores 2-6 µm in size that are well 

represented in molecular studies (Guillou et al., 2008; Chambouvet et al., 2008, 2014). 20 

As a result they can infect hosts belonging to various trophic levels (Marcogliese and 

Cone, 1997). For a long time they have been neglected in mathematical models of aquatic 

trophic networks (Lafferty et al., 2008). However, their introduction into such models can A
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have important qualitative and quantitative impacts on ecosystem functioning, e.g. by 

extending the length of food chains and/or modulating the transfer of carbon (Niquil et 

al., 2011).   

 In oceanic environments eukaryotic parasites are mainly representatives of the 

“superphylum” Alveolata - a polyphyletic group including ciliates, Apicomplexa, 5 

Perkinsozoa and Dinoflagellata (Chambouvet et al., 2008, 2014; Gachon et al., 2010; 

Guillou et al., 2008; Leanders and Keeling, 2003). Many Fungi, especially those 

belonging to the Chytridiomycota, are also known to be parasitic in a wide range of 

habitats (e.g. see Sime-Ngando, 2011). However, very few fungal lineages have been 

detected or isolated from oceanic environments (Massana and Pedrós-Alió, 2008), 10 

perhaps due to the limited number of geographic regions that have been analysed so far. 

Fungal diversity has been investigated by both conventional culture-dependent methods 

(Le Calvez et al., 2009; Burgaud et al. 2009; Jebaraj et al. 2010;) and culture-independent 

methods (Bass et al., 2007; Lopez-Garcia et al., 2007; Jebaraj et al., 2010; Nagano et al., 

2010; Sauvadet et al., 2010; Nagahama et al., 2011). Deep-sea environments, including 15 

hydrothermal vents, are the best studied in terms of fungal composition (for a review see: 

Nagano and Nagahama, 2012). Fungi reported from these environments mostly belong to 

the phylum Ascomycota. However, Chytridiomycota have also been detected as one of 

the major fungal components in several deep-sea environments, such as hydrothermal 

vents and methane cold-seeps, but only by culture-independent methods (Nagano and 20 

Nagahama, 2012). In contrast, very few species have been detected in surface marine 

waters using both culture and culture-independent approaches (Massana and Pedrós-Alió, 

2008; Gleason et al., 2011, Richards et al., 2012; Lepelletier et al., 2014). Therefore, A
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culture-independent molecular probing of potentially infected organisms could reveal 

important new information about interactions with marine fungi.   

Here, we employed a sensitive dual-label (parasite-host) TSA-FISH (Tyramide Signal 

Amplification-Fluorescence in situ Hybridisation) analysis to begin to evaluate the 

potential impact of eukaryotic parasitism by members of the Syndiniales, Perkinsozoa 5 

and a wide range of Fungi including Chytridiales (i.e. the largest group of the true-fungal 

division of Chytridiomycota) on PPEs. Samples used in this study were collected along a 

transect in the Atlantic Ocean from October 13
th

- December 1
st
 2009 during the AMT19 

cruise (Figure 1) aboard the Royal Research Ship James Cook. Ten stations 

encompassing the southern subtropical gyre (SG) and southern temperate (ST) region of 10 

the Atlantic Ocean were sampled from the surface mixed layer. Filtered samples were 

analysed to evaluate the abundance and distribution of free-living members of the 

Syndiniales, Perkinsozoa and Fungi along AMT19. We also combined flow cytometric 

cell sorting and dual-label TSA-FISH to determine interactions between PPEs and 

potential parasites for two different PPE size fractions that are easily distinguishable 15 

populations on flow cytograms: small, plastidic eukaryotes (Plast-S, 2±0.1 µm in size) 

and large, plastidic eukaryotes (Plast-L, 3.1±0.3 µm in size). For more details on the 

materials and methods please refer to the Supporting Information.  

Results and Discussion  

PPE composition along AMT19 20 

To determine which photosynthetic classes were potentially susceptible to parasitism we 

first assessed the composition of the Plast-S and Plast-L populations along AMT19. The 

contribution of different classes to the total eukaryotic community (<5 µm) is expressed A
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as a percentage of all positively hybridised eukaryotic cells targeted by the probe 

EUK1209 (Giovannoni et al., 1988). At all stations, the Plast-S fraction was dominated 

by Pelagophyceae (30±11%) and Chrysophyceae (20%±14) whereas Prymnesiophyceae 

were the principal component of the Plast-L cells (48±18%) (Supplementary Table 1). 

Cryptophyceae were detected at some stations, but where detected represented only 5 

2±1% of the total eukaryote population in both fractions (Supplementary Table 1). The 

composition of these PPE size classes is similar to those obtained previously in Atlantic 

waters (Jardillier et al., 2010; Grob et al., 2011). At most of the stations the three classes 

Prymnesiophyceae, Chrysophyceae and Pelagophyceae encompassed the majority of 

PPEs. However, for some stations (i.e. JC039056; JC03970), the percentage of PPEs 10 

targeted by these FISH probes was rather low, suggesting other PPE classes, perhaps with 

more sporadic distributions, dominate in such locations. Indeed, previous molecular 

characterization found for example some Prasinophyceae clades (e.g. 16S Clades VI and 

VIII) can constitute a large part of the PPE community in some oceanic regions (Kirkham 

et al., 2013). 15 

Parasite abundance and distribution along AMT19 

Sequences affiliated to Syndiniales have been regularly observed in 18S rRNA gene 

libraries from marine ecosystems (Guillou et al., 2008). However, their quantitative 

distribution has rarely been studied in oceanic waters (Siano et al., 2011). The abundance 

of the free living stage of Syndiniales (dinospores, 3-7 µm diameter, Figure 2a) assessed 20 

using the general Syndiniales group II probe (ALV01) was highly variable along the 

AMT19 transect, though generally cell numbers were low. No Syndiniales dinospores 

were detected at six stations (Table 1), principally in the Subtropical Gyre (SG), whereas A
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in Southern Temperate (ST) areas they reached a maximum concentration at station 

JC03972 (800 cells ml
-1

 

) and contributed up to 26% of total eukaryote cells (<5µm; 

targeted by the probe EUK1209). However, the total abundance of Syndiniales may be 

underestimated because of the specificity of the ALV01 probe, which targets only 33 of 

the 44 described clades. Unfortunately, oligonucleotide probes for FISH analyses could 5 

not be designed to cover the entire genetic diversity of marine alveolates group 2 (MALV 

II, Siano et al., 2011). Nonetheless, our FISH data is consistent with Syndiniales 

dinospores being more abundant in coastal waters compared with open ocean sites, 

especially when considering oligotrophic systems (Guillou et al., 2008; Chambouvet et 

al., 2008; Siano et al., 2011). Indeed, these latter authors found a positive correlation 10 

between zoospore occurrence and higher nutrient concentrations.  

The phylum Perkinsozoa is part of the Alveolata “super-phylum” and comprises a 

diverse group of aquatic parasites infecting a wide range of species such as molluscs, 

amphibians and phytoplankton (Bråte et al., 2010, Lepelletier et al., 2014). However, 

FISH analysis using the PERKIN_01 and PERKIN_02 probes gave no positive signals, 15 

except for stations JC03970 (1-2 cells ml
-1

) and JC03972 (3-4 cells ml
-1

) (Figure 2b). 

This is consistent with Perkinsozoa being largely absent from the water column but rather 

being preferably found in sediments (Chambouvet et al., 2014).  

Recent environmental surveys of lacustrine microbial eukaryotes have revealed a 

wide species diversity and major role of fungal parasites in these systems, consisting 20 

primarily of chytrids (Chytridiomycota). In contrast, 18S rRNA gene surveys focusing on 

the small eukaryotic fraction (<5 µm) in surface ocean waters have shown <1% of the 

sequences to be affiliated with fungi (Massana and Pedrós-Alió, 2008). However, A
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whether this low abundance of fungal sequences is real or due to copy number bias when 

using the 18S rRNA gene (Zhu et al., 2005) is unclear. To potentially get around the copy 

number problem, herein we assessed the distribution and abundance of free living fungal 

stages along AMT19 using three FISH probes targeting (1) all divisions of the Eumycota 

(MY1574; Baschien et al., 2008), (2) fungal species of the order Chytridiales (Chyt1061; 5 

Jobard et al., 2010), and (3) a subsection of environmental fungal sequences branching 

within the Cryptomycota clade which forms one of the deepest branches within the fungi 

(LKM11_01; Mangot et al., 2009). Members of Chytridiales and Cryptomycota are 

known to be parasites of phytoplankton in freshwater ecosystems (Sime-Ngando et al., 

2011; Jones et al., 2011).  10 

 Free-living stages of fungi (mostly zoospores) were observed at all stations with 

probe MY1574, representing on average 9.3% of the total eukaryote community (Table 1 

and Figure 2c). The maximum abundance of Eumycota (14% of all eukaryote cells 

targeted by the probe EUK1209) was recorded at station JC03974 in the ST region. 

Chytridiales (Chyt1061 probe) were less abundant, representing on average 3.5% of the 15 

total eukaryote community, and was absent from surface waters at three stations (Table 

1). The LKM11-01 probe gave no positive signals at station sampled along AMT19, 

suggesting members of the Cryptomycota are not abundant in ocean surface waters 

(Jones et al., 2011), although environmental sequences corresponding to this group have 

been retrieved from deep-sea ecosystems, ocean sediments and freshwater lakes (Nagano 20 

et al., 2012; Jones et al., 2011; Lepère et al., 2008). 

Associations between PPEs and potential parasites 

Using dual labeling TSA-FISH on sorted Plast-S and Plast-L cells, no association was A
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detected between Syndiniales dinospores and PPEs. This observation is consistent with 

their known parasitism of larger cell types e.g. dinoflagellates (Siano et al., 2011). An 

increase in abundance of larger eukaryotic cells may be the reason for the comparatively 

high Syndiniales cell counts at station JC03972, though unfortunately we did not perform 

dinoflagellate cell counts here.  5 

Studies of fungal pathogens of marine algae have mostly focused on macroalgae 

(Kohlmeyer & Kohlmeyer 1979; Küpper et al. 2006) and tend to rely on cultivation-

based methods. In this study, dual-labeled TSA-FISH combined with wheat germ 

agglutinin (WGA) chitin staining allowed us to detect associations between fungi and 

PPEs. The fungal structures that were identified correspond to the chitin positive 10 

sporangia life stage. Sporangia, which are larger than zoospores, appear attached to the 

surface of their algal hosts (Figure 3 and 4). The use of oligonucleotide probes that target 

rRNA allows to visualize active cells, which helps to reject the hypothesis of saprotrophic 

nutrition by the attached fungi. 

No fungal associations were observed for any PPE class within the Plast-S 15 

population. However, dual TSA-FISH demonstrated fungi in association with 

Prymnesiophyceae and Chrysophyceae within Plast-L populations from several stations 

along the transect (Figures 3 and 4, Table 2). We would argue here that the significant 

difference (p<0.05) in associations between Plast-S and Plast-L populations is not due to 

sampling and sorting issues since the same method was used. Where positive signals 20 

were detected, on average 3±0.6% of Chrysophyceae cells were associated with fungi 

(detected by probes MY1574 and Chyt1061; Table 2, Figure 4). In contrast, an average of 

6.4±0.9% Plast-L Prymnesiophyceae cells were identified with attached fungal structures A
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detected by the Eumycota probe MY1574, and 3.5% (on average) with the Chytrid probe 

Chyt1061. These associations were observed at stations all along the AMT19 transect 

studied here, including both ST and SG regions (Table 2), the numbers corresponding 

fairly well to observed maximum abundances of Prymnesiophyceae in the flow sorted 

Plast-L population (Supplementary Table 1). Moreover, we were able to see putative 5 

different stages of a fungal infection, highlighted by positive signals with the MY1574 

probe combined with WGA (Wheat Germ Agglutinin) staining detecting the presence of 

fungal chitin (Figure 3).  

Conclusions 

This work suggests the quantitative importance of fungi in open ocean pelagic 10 

marine systems. Our direct microscopy observations complement phylogenetic data (for a 

review see: Richards et al., 2012) which suggested that marine fungi are more abundant 

and taxonomically diverse than previously thought. Thus, they are known to include a 

number of novel groups, the majority of which branch below the Dikarya radiation, close 

to the chytrid branches (Le Calvez et al., 2009; Richards et al., 2012), and are suspected 15 

to be parasitic. 

Indeed, here, for the first time, we demonstrate potentially parasitic fungal 

associations with picophytoplankton, particularly members of the Prymnesiophyceae, one 

of the most abundant members of the PPE community globally (Liu et al., 2009; Kirkham 

et al., 2013). Further investigation of the diversity and specific roles of marine fungi is 20 

therefore warranted, particularly to better understand carbon flow in pelagic ecosystems. 

Besides viral and grazing pressure, our data suggests that picophytoplankton may be 

subjected to parasitism across vast tracts of the global ocean. We propose that future A
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investigation of eukaryotic parasitism will provide important new insights essential for 

measuring and modeling microbial food webs and biogeochemical cycles.  

Acknowledgements 

The authors would like to thank the Captain and crew aboard the RRS James Cook during 

AMT19. We thank Sophie Mazard for her helpful comments on the manuscript. This 5 

study was supported by the UK Natural Environment Research Council through Research 

Grants NE/F004249/1 and NE/G005125/1. C.L. was supported by the FP7- IEF Marie 

Curie program. This is Atlantic Meridional Transect Publication no 203. 

A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

12 

References 

Baschien, C., Manz, W., Neu, T.R., Marvanova, L., and Scewzyk, U. (2008) In situ 

detection of freshwater fungi in an alpine stream by new taxon-specific 

fluorescence in situ hybridization probes. Appl Environ Microbiol 74: 6427-6436.  

Bass, D., Howe, A., Brown, N., Barton, H., Demidova, M., et al. (2007) Yeast forms 5 

dominate fungal diversity in the deep oceans. Proc Biol Sci 274: 3069–3077.  

Burgaud, G., Le Calvez, T., Arzur, D., Vandenkoornhuyse, P., Barbier, G. (2009) 

Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. 

Environ Microbiol 11: 1588–1600.  

Chambouvet, A., Morin, P., Marie, D., and Guillou, L. (2008) Control of toxic marine 10 

dinoflagellate blooms by serial parasitic killers. Science 322: 1254-1257.  

Chambouvet, A., Berney, C., Romac, S., Audic, S., Maguire, F., de Vargas, C., and 

Richards T.A. (2014) Diverse molecular signatures for ribosomally ‘active’ 

Perkinsea in marine sediments. BMC Microbiol. 14: 110. 

Cuvelier, M.L, Allen, A.E., Monier, A., McCrow, J.P., Messié, M., Tringe, S.G., et al. 15 

(2010) Targeted metagenomics and ecology of globally important uncultured 

eukaryotic phytoplankton. Proc Natl Acad Sci USA 107: 14679–14684. 

Gachon, C.M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A., and Kim, G.H. 

(2010) Algal diseases: spotlight on a black box. Trends Plant Sci 15: 633-640.  

Gleason, F.H., and Marano, A.V. (2011) The effects of anti-fungal substances on some 20 

zoosporic fungi (Kingdom Fungi). Hydrobiologia 659: 81-92. 

Grob, C., Hartmann, M., Zubkov, M.V., and Scanlan, D.J. (2011) Invariable biomass 

specific primary production of taxonomically discrete picoeukaryote groups across A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

13 

the Atlantic Ocean. Environ Microbiol 12: 3266-3274. 

Grob, C., Jardillier, L., Hartmann, M., Ostrowski, M., Zubkov, M.V., and Scanlan, D.J. 

(2015) Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in 

the Atlantic Ocean remain unchanged after nutrient addition. Environ Microbiol 

Rep 7: 211-218. 5 

Giovannoni, S. J., E. F. Delong, G. J. Olsen, and N. R. Pace. (1988) Phylogenetic group-

specific oligodeoxynucleotide probes for identification of single microbial cells. J. 

Bacteriol. 170:720–726. 

Guillou, L., Viprey, M., Chambouvet, A., Welsh, R.M., Kirkham, A.R., Massana, R., 

Scanlan, D.J., and Worden, A.Z. (2008) Widespread occurrence and genetic 10 

diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ 

Microbiol 10: 3349-3365.  

Hartmann, M., Zubkov, M.V., Scanlan, D.J., and Lepère, C. (2013). In situ interactions 

between photosynthetic picoeukaryotes and bacterioplankton in the Atlantic Ocean: 

evidence for mixotrophy. Environ Microbiol Rep 5: 835-840. 15 

Hartmann, M., Grob, C., Tarran, G.A., Martin, A.P., Burkill, P.H., Scanlan, D.J., and 

Zubkov, M.V. (2012) Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc 

Natl Acad Sci USA 109: 5756-5760. 

Jardillier, L., Zubkov, M.V., Pearman, J., and Scanlan, D.J. (2010). Significant CO2 

fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic 20 

Ocean. ISME J 4: 1180–1192. 

Jebaraj, C.S., Raghukumar, C., Behnke, A., and Stoeck, T. (2010) Fungal diversity in 

oxygen-depleted regions of the Arabian Sea revealed by targeted environmental A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

14 

sequencing combined with cultivation. FEMS Microbiol Ecol 71: 399-412. 

Jones, M.D.M., Forn, I., Gadelha, C., Egan, M.J., Bass, D., et al., (2011) Discovery of 

novel intermediate forms redefines the fungal tree of life. Nature 474: 200–203  

Kirkham, A., Lepère, C., Jardillier, L., Mead, A., and Scanlan, D.J. (2013) A global 

perspective on marine photosynthetic picoeukaryote community structure. ISME J 5 

7: 922-936.  

Kohlmeyer, J., and Kohlmeyer, E. (1979) Marine Mycology: The Higher Fungi. New 

York: Academic Press. 

Kupper, F.C., Maier, I., Müller, D.G., Loiseaux-de Goer, S., and Guillou, L. (2006) 

Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, 10 

Eurychasma dicksonii (Wright) Magnus and Chytridium polysiphoniae Cohn. 

Cryptogam Algol 27: 165–84.  

Lafferty, K.D., Allesina, S., Arim, M., Briggs, C.J., de Leo, G., Dobson, A.P. et al., 

(2008) Parasites in food webs: the ultimate missing links. Ecol Letts 11: 533-546.  

Leander, B. S. and Keeling, P.J. (2003) Morphostasis in alveolate evolution. Trends Ecol 15 

Evol 18: 395–402. 

Le Calvez, T., Burgaud, G., Mahé, S., Barbier, G., and Vandenkoornhuyse, P. (2009) 

Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75: 

6415–6421. 

Lepelletier F., Karpov, S. A., Alacid, E., Le Panse, S., Bigeard, E., Skovgaard, A., 20 

Jeanthon, C., and Guillou, L. (2014). Parvilucifera rostrata sp. nov. (Perkinsozoa), a 

novel parasitoid that infects planktonic dinoflagellates. Protist 165: 31-49. A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

15 

Lepère, C., Domaizon, I., and Debroas, D. (2008) Unexpected importance of potential 

parasites in the composition of the freshwater small-eukaryote community. Appl 

Environ Microbiol 74: 2940-2949.  

Liu, H., Probert, I., Uitz, J., Claustre, H., Aris-Brosou, S., Frada, M., et al., (2009). 

Extreme diversity in non-calcifying haptophytes explains a major pigment paradox 5 

in open oceans. Proc Natl Acad Sci USA 106: 12803-12808.  

Lopez-Garcia, P., Vereshchaka, A., and Moreira, D. (2007) Eukaryotic diversity 

associated with carbonates and fluid seawater interface in Lost City hydrothermal 

field. Environ Microbiol 9: 546–554.  

Marcogliese, D.J., and Cone, D.K. (1997) Food webs: a plea for parasites. Trends Ecol 10 

Evol 12: 320-325.  

Massana, R., and Pedrós-Alió, C. (2008) Unveiling new microbial eukaryotes in the 

surface ocean. Curr Opin Microbiol 11: 213-218. 

Nagahama, T., Hamamoto, M., Nakase, T., Takami, H., and Horikoshi, K. (2001). 

Distribution and identification of red yeasts in deep-sea environments around the 15 

northwest Pacific Ocean. Antonie van Leeuwenhoek 80: 101–110. 

Nagano, Y., and Nagahama, T. (2012) Fungal diversity in deep-sea extreme 

environments. Fungal Ecol 5: 463-471. 

Nagano, Y., Nagahama, T., Hatada, Y., Nunoura, T., Takami, H., Miyazaki, J., Takai, K., 

and Horikoshi, K. (2010) Fungal diversity in deep-sea sediments -the presence of 20 

novel fungal groups. Fungal Ecol 3: 316-325. 

A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

16 

Niquil, N., Kagami, M., Urabe, J., Christaki, U., Viscogliosi, E., and Sime-Ngando, T. 

(2011) Potential role of fungi in plankton food web functioning and stability: a 

simulation analysis based on Lake Biwa inverse model. Hydrobiologia 659: 65-79.  

Richards, T.A., Jones, M.D.M., Leonard, G., and Bass, D. (2012) Marine fungi: their 

ecology and molecular diversity. Ann Rev Mar Sci (2012) 4: 495–522. 5 

Sauvadet, A.L., Gobet, A., and Guillou, L. (2010) Comparative analysis between protist 

communities from the deep-sea pelagic ecosystems and specific deep hydrothermal 

habitats. Environ Microbiol 12: 2946-2964. 

Siano, R., Alves-de-Souza, C., Foulon, E., El Bendif, M., Simon, N., Guillou, L., and 

Not, F. (2011) Distribution and host diversity of Amoebophryidae parasites across 10 

oligotrophic waters of the Mediterranean Sea. Biogeosciences 8: 267–278. 

Sime-Ngando, T., Lefevre, E., and Gleason, F.H. (2011) Hidden diversity among aquatic 

heterotrophic flagellates: ecological potentials of zoosporic fungi. Hydrobiologia 

659: 5-22. 

Unrein, F., Gasol, J.M., Not, F., Forn, I. and Massana, R. (2014) Mixotrophic 15 

haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME J 8: 

164–176. 

Vaulot, D., Eikrem, W., Viprey, M., and Moreau, H. (2008) The diversity of small 

eukaryotic phytoplankton (<3μm) in marine ecosystems. FEMS Microbiol Rev 32: 

795-820.  20 

Zhu F, Massana R, Not F, Marie D, Vaulot D. (2005) Mapping of picoeucaryotes in 

marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol 

Ecol (2005) 52: 79-92.A
cc

ep
te

d 
A

rti
cl

e



 
This article is protected by copyright. All rights reserved. 

17 

 

Tables: 

Table 1. The percentage contribution of Syndiniales and Fungi, targeted by the ALVO1, 

MY1574 and Chyt1061, probes respectively, to the total eukaryotic community (<5 µm). 

 5 

Table 2. The percentage association between PPEs and fungi along AMT19. 
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Figures: 
 

Figure 1. A schematic map of the South Atlantic Ocean showing the area sampled along 

AMT19 in 2009. ST: Southern temperate region; SG: Southern subtropical gyre; Dotted 

line represents the separation between ST and SG. 5 

Figure 2. Epifluorescence micrographs of a) free living Syndiniales (targeted by the 

ALV01 probe b) Perkinsozoa (targeted by the PERKIN-01 probe), and c, d) fungi 

(targeted by probes MY1574, and Chyt1061) (the green colour shows the positive signal 

of the horseradish peroxidase (HRP)-labeled probes). 

Figure 3. Epifluorescence micrographs of the potentially different stages of fungal 10 

infection of Prymnesiophyceae cells. The green colour shows the positive signal of the 

horseradish peroxidase (HRP)- labelled probe MY1574 (a, c), whilst the blue colour is 

wheat germ agglutinin binding of chitin cell walls (b, d) and the red colour constitutes the 

positive signal of the PRYM02 probe after TSA-FISH  

Figure 4. Epifluorescence micrographs of (a) a Prymnesiophyceae (PRYM02 probe, red) 15 

and (b) a Chrysophyceae (CHRYSO1037 probe, red) in association with chitin structures 

(stained with wheat germ agglutinin, in blue/white).  
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Supplementary Table 1. The location, abundance and composition of PPEs at specific 

stations along AMT19. 
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Table 1. The percentage contribution of Syndiniales and Fungi, targeted by the ALVO1, MY1574 and Chyt1061, probes respectively, 

to the total eukaryotic community (<5 µm).

Syndiniales 

Station Depth (m) ALV01 probe MY1574 probe Chyt1061 probe

SG JC039053 5 1 12 1.2

SG JC039053 25 0 8.2 1.9

SG JC039055 5 0 3.3 0.8

SG JC039056 5 0 11 5

SG JC03967 5 0 2.1 0

SG JC03967 25 5 8.2 2.1

SG JC03969 5 2 5.1 2

SG JC03970 88 0 8 2.1

ST JC03971 5 7 1.5 0

ST JC03972 5 26 9 3.6

ST JC03974 10 0 14 9.3

ST JC039 5 3 2 0

% total euk 

Fungi 
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Table 2. The percentage association between PPEs and fungi along AMT 19

% association with % association with % association with % association with 

Prymnesiophyceae (PRYM02) Chrysophyceae (CHRYSO1037) Prymnesiophyceae (PRYM02) Chrysophyceae (CHRYSO1037)

station Depth (m)

SG JC039053 5 7 5 5 1

SG JC039053 25 5 2 0 0

SG JC039055 5 9 0 3 0

SG JC039056 5 0 0 5 2

SG JC03967 5 0 0 0 0

SG JC03967 25 0 1 0 0

SG JC03969 5 6 0 3 0

SG JC03970 88 0 0 0 0

ST JC03971 5 4 6 3 3

ST JC03972 5 0 0 0 0

ST JC03974 10 12 4 2 0

ST JC039 5 2 0 0 0

Mean 4 1.5 2 0.5

Plast-L 

General fungi probe (MY1574) Chytridiales probe  (Chyt1061)
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