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ABSTRACT 

Discrete event simulation modelling has been extensively 
used in modelling complex systems. Although it offers 
great conceptual-modelling flexibility, it is both computa-
tionally expensive and data intensive. There are several ex-
amples of simulation models that generate millions of ob-
servations to achieve satisfactory point and confidence 
interval estimations for the model variables. In these cases, 
it is exceptionally cumbersome to conduct the required 
output and sensitivity analysis in a spreadsheet or statistical 
package. In this paper, we highlight the advantages of em-
ploying data warehousing techniques for storing and ana-
lyzing simulation output data. The proposed data ware-
house environment is capable of providing the means for 
automating the necessary algorithms and procedures for 
estimating different parameters of the simulation. These 
include initial transient in steady-state simulations and 
point and confidence interval estimations. Previously de-
veloped models for evaluating patient flow through hospi-
tal departments are used to demonstrate the problem and 
the proposed solutions. 

1 INTRODUCTION 

The benefits of employing data warehousing techniques 
and On-Line Analytical Processing (OLAP) tools in pre-
paring data for estimating the input parameters of various 
decision models has already been demonstrated 
(Koutsoukis, Mitra and Lucas 1999, Vasilakis, El-Darzi 
and Chountas 2004). Although streaming simulation output 
data to a data warehouse has been mentioned before 
(Banks 1997), there exists no literature on the database is-
sues pertaining to the design of such a data warehouse. The 
aim of this paper is to fill this gap.  

This paper is organized as follows. We begin by giving 
a brief introduction to recent developments in the database 
technology for analytical processing before giving a brief 

introduction to output analysis in steady-state simulations. In 
section 3 we examine the dimensionality of simulation out-
put data. In section 4 we describe the theoretical models that 
underpin the data warehouse environment while in section 5 
we demonstrate a prototype software application. Finally, a 
summary and conclusions can be found in section 6.  

2 BACKGROUND 

2.1 Data Warehousing and OLAP Systems 

The database technology for supporting analytical process-
ing as opposed to transactional processing has already 
shifted from the standard relational model and On-Line 
Transaction Processing systems (OLTP) to multidimen-
sional models and On-Line Analytical Processing systems 
(OLAP) (Chaudhuri, Dayal and Ganti 2001). OLAP is a 
category of software technology that provides fast, consis-
tent and interactive access to a wide variety of possible 
views of information. OLAP applications are generally 
characterized by the representation of data into multidi-
mensional perspectives and the ability to formulate com-
plex, ad-hoc queries that often use statistical formulae to 
aggregate data (Codd, Codd and Salley 1993). These mul-
tidimensional views provide quick access to historical in-
formation, usually stored in a data warehouse.  

At the conceptual level of data warehouses, data are 
seen either as facts with their associated numerical meas-
ures or as dimensions that characterize these facts. Rela-
tional-dimensional modelling, where data are organized in 
a star or snowflake schema, is often preferred to entity rela-
tionship (ER) modelling as the conceptual design technique 
(Kimball 1998). A relational-dimensional model contains 
the same information as a typical ER model but the repre-
sentation of the data is optimized for user understandability 
and analytical query performance. A star schema is a logi-
cal structure that has a factual table in the centre sur-
rounded by dimension tables containing reference data for 
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the facts (Connoly and Begg 2002). A snowflake schema is 
a variant of the star schema where the dimension tables are 
normalized and thus, the hierarchy of the dimensions can 
be depicted. The choice between the two schemata depends 
mainly on performance-related issues.  

If the data are to be stored in a relational database 
(ROLAP architecture), then the above relational-
dimensional model is sufficient. Once this schema has been 
implemented and populated with data, standard SQL can 
be used to extract information from it.  

In multidimensional databases (MOLAP architecture) 
however, data are stored in n-dimensional arrays 
(Vassiliadis and Sellis 1999). The “data cube” is almost 
universally accepted as the underlying logical construct to 
conceptualize these multidimensional databases (Thomas 
and Datta 2001). It plays the same role as the “relation” in 
relational databases. There exists however, no universally 
accepted notation to describe a data cube. The model and 
notation proposed by Thomas and Datta (2001) for concep-
tualizing data cubes has been shown to have enough 
descriptive power without being overly complicated 
(Vasilakis 2003, Vasilakis, El-Darzi and Chountas 2004). 
It is also employed here for describing the relevant data 
cubes and formulating OLAP user requests. 

2.2 Simulation Output Analysis 

2.2.1 Initial Transient in Steady-State Simulations 

According to Alexopoulos and Seila (1998), there are two 
types of simulations with respect to output analysis: the fi-
nite horizon, also known as terminating (Law and Kelton 
2000, Banks, Carson and Nelson 2001), and the steady-
state or non-terminating. In the former, the simulation 
starts from an empty and idle state and is run until a termi-
nating event occurs. The purpose of a steady-state simula-
tion on the other hand, is that of studying the long-run be-
haviour of the system. In such a simulation there is no 
natural event to signify the length of each run of the model. 
The performance measures of such simulations, which are 
characteristic of the equilibrium distribution of an output 
stochastic process, are called steady-state parameters (Law 
and Kelton 2000).  

One of the main issues in steady-state simulations is 
the estimation of the initial transient (also referred to as ini-
tial bias or warm-up period). A simulation is said to have 
reached steady state when it is in a state of dynamic equi-
librium in which the effects of the starting conditions have 
been lost (Pidd 1998).  

A number of methods exists for estimating the warm-up 
period. Robinson (2002) arranged them in the following 
categories: graphical methods, heuristics approaches, statis-
tical methods, initialization bias tests and hybrid methods. 
Graphic methods concern the visual inspection of output 
data plotted as time series. Heuristics approaches rely upon 
simple rules while statistical methods apply some statistical 

principles for estimating the warm-up period. Initialization 
bias tests detect possible presence of initial bias in the output 
data and thus they have to be combined with another 
method. Hybrid methods combine graphical or heuristic 
methods with some initialization bias tests. In addition to 
these, a new method that is based on the principles of statis-
tical process control has recently been proposed (Robinson 
2002). In this method, a simulation in steady-state is consid-
ered to be “in-control”, whereas it is considered to be “out-
of-control” during the transient phase.  

The graphical procedure of Welch (1983) is considered 
to be the most popular method of estimating the warm-up 
period. The main reasons for its popularity are generality 
and relative ease of implementation (Alexopoulos and Seila 
1998, Law and Kelton 2000). The Welch method states that 
for defining the initial transient period, ℓ: 

 
• Make n replications (n ≥ 5) of i = 1,2,...,m length 

(where m is large) 
• Average the ith observation of each replication 
• Smooth out the high-frequency oscillations by de-

fining a moving average of window w (where w ∈ 
N+ and w ≤ m/2) 

• Plot the moving average for several values of w 
and choose the smallest value of w for which the 
plot is reasonably smooth (by trial and error) 

• Choose ℓ to be the value of i beyond which the se-
ries appears to have converged. 

 
This method can be applied to almost any type of 

steady-state simulation. However, albeit easy to implement 
when there are few observations, problems arise when the 
number of required observations per replication runs to the 
thousands. A possible solution to this problem is described 
in section 4.3. 

2.2.2 Point and Confidence Interval Estimators 

Law and Kelton (2000) have identified six different proce-
dures, all of which seek to eliminate or at least reduce the 
effects of autocorrelation: replication/deletion (also known 
as independent replications or IR), batch means (BM), 
autoregressive, spectral, regenerative, and standardized 
time series. The IR and BM methods are the most widely 
used and are further explained below.  

The IR approach requires k independent runs of length 
n (Alexopoulos and Seila 1998). The warm-up period, ℓ, 
can be determined with any of the methods described 
above. After ℓ has been deleted from each run and letting 
xij be the ith observation of the jth simulation run, the fol-
lowing equations can be used to compute the sample means  
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(equation 1), unbiased estimators for the steady-state mean 
µ (2) and sample variance (3): 
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Additionally, given sufficiently large n and k an ap-
proximate 1-α confidence interval for µ can be computed by: 
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The IR approach is believed to give good statistical 

performance, is easy to implement, and can be used to es-
timate different parameters of the model (Law and Kelton 
2000). However, since data must be deleted from each rep-
lication this approach is believed to be uneconomical 
(Banks, Carson and Nelson 2001).  

The BM method overcomes the problem of having to 
go through the warm-up period many times by having only 
one long replication of the model. Further, it is believed 
that the BM estimators for µ converge faster than the re-
spective IR (Alexopoulos and Goldsman 2003). The output 
of this single long replication of n observations is then di-
vided into batches, which can be treated as independent 
(Banks, Carson and Nelson 2001). The batches are formed 
after the initial transient, ℓ, has been deleted. Figure 1 illus-
trates this concept for k batches of size m = (n - ℓ) / k, 
where xi is the ith observation of the single long replication. 
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Figure 1: The Batch Means Method, Adapted from 
Banks, Carson and Nelson (2001) 

 
The mean of the batches is computed by equation (5) and 
the variance of the sample mean by (6) (Banks, Carson and 
Nelson 2001). As before, (4) can be used to compute the 
100(1-α)% confidence interval for µ, where 0 < α < 1.  
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3 THE DIMENSIONALITY OF  
SIMULATION OUTPUT DATA 

In examining the dimensionality of simulation output data, 
the emerging critical dimension is that of “Model”, which 
has also been suggested to be considered as a dimension 
(Koutsoukis, Mitra and Lucas 1999). Generally, for any 
decision modelling situation, such a dimension can be used 
to conceptualize the concept of having different model ver-
sions or scenarios. These model versions can be conceived 
as part of either “what-if” or sensitivity types of analyses. 
It can be assumed that there is a two-level hierarchy asso-
ciated with such a dimension, the root level being the 
“Model” and the second level being the “Scenario”. The 
former, can be thought of as the generic level of analysis, 
while the second can be thought of as the version-control 
level (e.g., different versions of the same model with dif-
ferent parameter values). 

In simulation modelling however, two more levels must 
be introduced. Considering that, in the IR method for esti-
mating the steady-state parameters of a simulation model 
each version of a model (scenario) requires n replications of 
length m to be run, the levels “Replication” and “Observa-
tion” need to be introduced to the “Model” dimension. Fig-
ure 2 illustrates graphically the levels of the hierarchy and 
instances of dimension values. The tree structure of the di-
mension translates to the following: a model comprises sev-
eral scenarios, each scenario requires n replication to be exe-
cuted, while each replication is of length m. 

Having described the dimension “Model”, a simple 
example can used to illustrate the necessity for employing 
data warehousing techniques in analyzing simulation out-
put data. Assume a simulation model is executed by the IR 
method and requires 20 different scenarios, 20 replications 
per scenario, 5000 steady-state days per replication, and 3 
output parameters. If we also assume that we require one 
observation per simulated day, then the total number of ob-
servations is 2 million, while the total number of data items 
are 6 million. Clearly, this figure suggests the use of data-
base technologies since spreadsheets and most statistical 
packages cannot cope with this amount of data. 

A second dimension in the schema is that of simulated 
time or “Clock”. This dimension can be extremely useful 
in, for example, the BM method by facilitating the estima- 
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Figure 2: Schema (Left) and Instances (Right) of the 
“Model” Dimension 

 
tion of output parameters. Moreover, it can be useful in 
simulations where some trigger exists that temporarily 
changes the conditions of execution and thus, the estima-
tion of the parameters for different time periods is needed. 
In both cases the hierarchy of the dimension contains three 
levels: the root, the “period” i.e. the grouping level, and the 
actual time unit (“clock”) of the simulation (Figure 3). In 
the BM method for instance, the period level can be asso-
ciated with information regarding the batches. 

 
Clock 

Period A … 

1 2   ℓ … 

Period B 

Clock 

Period 

Clock 

 
Figure 3: Schema (Left) and Instances (Right) 
of the “Clock” Dimension  

4 DATABASE MODELS 

4.1 Analytical Requirements 

In this section, we propose a relational and a multidimen-
sional data model for storing simulation output data as part 
of an innovative approach in which, the main objective is 
to facilitate the necessary procedures for estimating the 
output parameters of the simulation. More specifically, we 
want to facilitate the implementation of the Welch graphi-
cal method for estimating the initial transient in steady 
state simulations (Welch 1983).  

Additionally, we seek to facilitate the estimation of the 
sample means (equation 1), unbiased estimators for µ (2) 
and sample variance (3) for the IR method, and the BM (5) 

and variance of the sample mean (6) for the BM method. 
Finally, the estimation of the 1 - α confidence intervals for 
µ (4), which is common in both methods. 

We use a previously described discrete simulation 
model of patient flow as a running example (El-Darzi et al. 
2000, Vasilakis and El-Darzi 2001). This simulation model 
exhibits particularly long initial transient periods and long 
replications or batches are required for an accurate estimate 
of its steady-state parameters. This phenomenon is due to 
the considerable longer length of stay of the patients that 
finally reach the long-stay compartment (Figure 4). The 
two queues between the compartments measure bed block-
age in the system while the external queue measures the 
time arriving patients may have to wait before being admit-
ted to hospital. For simplicity, in this paper we are only in-
terested in three system-state parameters, the number of 
patients in each of three compartments (short, medium and 
long-stay). Based on this simplification, we assume that 
stable-state has been reached when the time-series of the 
total number of patients in the system has converged. 
 

 Arrivals
Short 
Stay 

Medium 
Stay 

Discharges

Conversions 

Discharges

Long 
Stay 

Conversions 

Discharges

 
Figure 4: Network Representation of the 
Simulation Model of Patient Flow 

4.2 Relational-Dimensional Model  
for Simulation Output Data  

A snowflake schema for storing output simulation data is 
proposed in this section, while the simulation model of pa-
tient flow briefly described in section 1 is used to demon-
strate the usability of the environment. The snowflake 
schema is preferred to the star schema in this instance, as 
dimension “Model” conveys metamodel information about 
the simulation models, scenarios and replications (see Fig-
ure 5). As mentioned in section 2.1, ultimately the choice 
between star and snowflake schema is down to perform-
ance-related issues that are beyond the scope of this paper.  

Attributes serial_no and random_seed of the Replica-
tion entity store, respectively, the serial number of the rep-
lication and the random seed that is used to initialize the 
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Figure 5: Relational/Dimensional Schema (Snowflake) 
for Simulation Output Data  

 
random number generator. Attribute warm_up stores the 
warm up period once it has been estimated, while attributes 
ss_beds, ms_beds, ls_beds store the number of beds in the 
capacitated model. All these attributes are stored at the Sce-
nario level. Attribute descr in entities Scenario and Model 
stores a textual description at the model and scenario levels.  

The fact entity, Observation, has a composite primary 
key comprising of attributes clock_code for linking with 
the Clock dimension and replication_code for linking with 
the Replication entity, the first level of the Model dimen-
sion. For simplicity, we assume the values of the attribute 
replication_code to be unique in the database. Attributes 
ss_patients, ms_patients, and ls_patients contain the values 
of the three simulation parameters (short, medium and 
long-stay patients in each compartment) as sampled by the 
simulation engine on each simulated day.  

Having described the relational model we now demon-
strate how standard SQL can be used to facilitate the estima-
tion of the required parameters. The following view is used 
for calculating the steady-state sample means of parameter 
ss_patients for each replication in the IR method (1):  

 
CREATE VIEW   sample_means 
AS  SELECT  r.scenario_code, 
     o.replication_code, 
     AVG(o.ss_patients) AS mean 
  FROM  observation o, 
     replication r, scenario s 
  WHERE  o.replication_code = r.code 
  AND   r.scenario_code = s.code 
  AND   o.clock   > s.warm_up 
  GROUP BY r.scenario_code, 
     o.replication_code; 

 
If the batch/means method has been used and assuming 
that column “Period” of table “Clock” is populated accord-
ing to the length of the batches, the following view can be 
used to calculate the sample means of the batches: 
 

CREATE VIEW   sample_means 
AS  SELECT  r.scenario_code, c.period, 
     AVG(o.ss_patients)   
        AS sample_means 
  FROM   observation o, scenario s, 
     replication r, clock c 
  WHERE  o.replication_code = r.code 
  AND   r.scenario_code = s.code 
  AND   o.clock_code  = c.code 
  AND   o.clock   > s.warm_up 
  GROUP BY r.scenario_code, c.period; 

 

The following SQL statement can now be used to calcu-
late the unbiased estimator for µ and sample variance for 
each scenario in the database, either for the IR or the BM 
approach: 
 

SELECT   scenario_code, AVG(mean), 
   VAR(mean) 
FROM   sample_means 
GROUP BY scenario_code; 

4.3 Data Cube Model for Simulation Output Data 

In this section we define a data cube model that can be util-
ized in cases where a multi-dimensional database is pre-
ferred to a relational one for the data warehouse. With ref-
erence to the dimensions and hierarchical structures 
described in section 3, the analytical requirements set out 
in section 4.1, and according to the notation in (Thomas 
and Datta 2001), a data cube called OUTPUT can be de-
fined as follows: 
 
C={observation, model, clock}; 
d(model)=1, d(clock)=1, and d(observation)=0; 
D={clock, replication, par, period, scenario, model}, 
M={ss_patients, ms_patients, ls_patients); 
ƒ(model)={replication, scenario, model}, 
ƒ(clock)={clock, period}, 
ƒ(observation)={par}; 
Omodel={〈replication_code, scenario_code〉,  
  〈scenario_code, model_code〉}, 
Oclock={〈clock, period〉} and, 
Oobservation={} 
 
where par is the output parameter of the simulation. 

This data cube model can be utilized in applying the 
Welch graphical method for estimating the initial transient 
period (see section 2.2.1). The following OLAP algebra 
statement averages the ith observation of each replication 
and constructs a moving average of window w at the sce-
nario level:    
 

R

]par]on},{replicati[average,,{scenario}[MA(w),

COUTPUT)(... =

Γ Γ  

 
The innermost aggregate function (average) is performed at 
the “Replication” level of the “Model” dimension (for av-
eraging the ith observation of each replication) while the 
moving average function is performed at the “Scenario” 
level. Naturally, different windows can be easily imple-
mented to facilitate the trial-and-error approach of the 
Welch method. Once the point of convergence, ℓ, has been  
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established the unbiased estimator for µ (equation 2) can 
be calculated by the following statement: 
 

 

Rclock

]par]on},{replicati[average,,{scenario}[average,

COUTPUT)( =Σ

Γ

>

Γ

l
K

 

 
The innermost aggregate function that is performed at the 
“Replication” level essentially gives the sample means for 
each replication (equation 1), while the outmost function 
gives the unbiased estimator for µ. In similar fashion, as-
suming that “var” is the standard SQL function for calcu-
lating the variance, the following statement provides the 
unbiased estimator for the sample variance: 
  

 

R
COUTPUT)(

clock

]par]on},{replicati[average,,{scenario}[var,

=
>

Σ

ΓΓ

l
K

 

4.4 Implementation Issues 

The implementation of the dimensional models described in 
this paper can take place in any commercial relational data-
base management system (RDBMS) such as Oracle or SQL 
Server 2000, or an OLAP server that supports the ROLAP 
architecture. In either case, standard SQL can be used to per-
form the analytical queries. The relational tables can be eas-
ily populated with simulation output data by uploading the 
standard output files generated by the simulation engine or 
software package (e.g. in the case of Arena the .dat files, 
or in the case of Micro Saint the .res files). 

On the other hand, the data cubes can be implemented 
using an OLAP server that supports the MOLAP architec-
ture. The data cube model reported here was implemented 
on Microsoft’s Analysis Services while the OLAP queries 
were written in Multidimensional Expressions (MDX), a 
language specifically designed for OLAP analysis 
(Spofford 2001). The front-end of the OLAP prototype sys-
tems has been implemented with the Pivot Table Services 
of Excel. A typical MDX expression for a moving average 
(w = 40) on variable “ls_patients” is as follows: 

 
avg({[Time].CurrentMember.Lag(20): 
 [Time].CurrentMember.lag(-20)}, 
   [Measures].[LS Patients] 

 
A screenshot from the prototype application is illus-

trated in Figure 6. On the left-hand side are the dimensions 
and measures available to the user, while in the main pivot-
chart area two parameters are displayed in a time-series for-
mat, the total number of patients in the system and a moving 
average (w = 40) of the same parameter (bold line). The 
“Model” dimension is used as a filter dimension, while the 
“Clock” dimension is used on the x-axis of the plot. 

5 CONCLUSIONS 

In this paper we propose a database environment for ana-
lyzing simulation output data. The proposed database envi-
ronment is capable of providing the means for automating 
the necessary algorithms and procedures for estimating the 
parameters of the simulation. It can be readily employed 
for estimating the initial transient in steady-state simula-
tions. Several moving averages with different windows can  

 

 
Figure 6: Screenshot of the Prototype Application 
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Figure 6: Screenshot of the Prototype Application 

be easily plotted once they have been calculated. Parame-
ters such as the length of the initial transient, and the length 
and number of batches can be easily changed. Relational or 
multidimensional queries can also be used to accommodate 
the estimation of more complex performance measures. 
They may include measures such as average utilization in 
the system, average spare capacity, and parameters relating 
to the queuing measures. 

Such an environment can substantially reduce the com-
putational complexities in analyzing and interpreting simula-
tion output data. The capability of storing information about 
the simulation models (random seed, initial values of sys-
tem-state parameters) is another important feature of the 
proposed environment. By designing and developing a novel 
data warehouse and OLAP environment for analyzing simu-
lation output data we took a step toward rendering simula-
tion engines “black boxes” for the end-users. 

Further work is needed, particularly in testing how this 
environment can be extended to other methods for detect-
ing the end of the warm-up period and estimating steady-
state parameters. In addition, the seamless integration of 
this data warehouse environment with existing simulation 
packages could be of particular interest in future research 
and development endeavors. 
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