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Abstract We propose a data augmentation technique to improve performance and decrease complexity
of the supervised learning of nonlinearity compensation algorithms. We demonstrate both numerically
and experimentally that the augmentation allows reducing the training dataset size up to 6 times while
keeping the same post-compensation bit-error rate.

Introduction

The Kerr nonlinearity is one of the main factors
limiting the capacity of modern fiber-optic com-
munication systems[1]. Among others, the non-
linearity compensation (NLC) algorithms trained
via supervised learning (SL-NLC) like perturba-
tive post-distortion[2] or machine-learning-based
methods[3]–[5] have been intensively studied re-
cently. The SL-NLC algorithms obtain the system
parameters required for their operation by analyz-
ing the pre-collected dataset of the algorithm in-
puts and desired outputs[6]. The main advantages
of the SL-NLC algorithms are: i) not requiring the
prior knowledge of the link parameters; ii) the abil-
ity to automatically adapt to changes in the link by
re-training on a newly collected dataset.

Nevertheless, SL approaches may require
huge training datasets which can lead to techni-
cal challenges. The first emerges from the in-
crease of the training complexity with the dataset
size[7], imposing an upper bound on the size.
The second is the idleness of the communication
line during SL-NLC training and dataset collec-
tion. These factors may limit the capacity of the
link if frequent SL-NLC re-training on big data is
needed due to the rapid change of model param-
eters or usage of flexible routing. Therefore, the
efficient use of a limited dataset is highly desir-
able for the practical implementation of SL-NLC
algorithms. We propose here to synthetically ex-
pand the dataset by generating new artificial input
objects from the original ones. This technique is
referred to as data augmentation (DA) in the gen-
eral ML context[8]. DA generally improves the di-
versity of dataset objects and, thereby, makes the
dataset a more representative sample of the set
of all possible transmitted signals. Such a tech-
nique is frequently used in computer vision ap-

plications[8]. In optical communications, DA was
already explored for predicting failures[9],[10] and
traffic peculiarities[11].

In this work, we propose for the first time, to
the best of our knowledge, the DA for SL-NLC
training. We demonstrate numerically and experi-
mentally that the SL-NLC algorithms, trained with
datasets augmented using the proposed tech-
nique, achieve similar bit-error rate (BER) as SL-
NLC algorithms trained with 4 to 6 times larger
pure datasets. The suggested DA can be used
to improve the performance of a general SL-NLC
trained with insufficient data or, for the case of
abundant data, to decrease its training complexity
by further limiting the dataset used.
Data augmentation technique
We demonstrate the proposed technique for DA
using the Manakov equations[1],[12] describing the
practical case of the averaged evolution of a dual-
polarized (DP) optical signal along a fiber-optic
link:
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where uh(z, t) and uv(z, t) are, respectively,
the horizontal (h) and vertical (v) polarizations
of the optical signal waveform u(z, t); β2(z)

is the group velocity dispersion (GVD) coef-
ficient; γ(z) is the effective nonlinear coeffi-
cient; G(z) = −α(z) +

∑NOA
m=1 Γmδ(z − Lm) de-

scribes the optical losses α(z) fully compen-
sated by lumped optical amplifiers (OAs) with gain
Γm located at the end of every fiber span Lm;
and ξ(z, t) is the amplified spontaneous emission
(ASE) noise injected by OAs.

Let us define the solution of Eq. (1) as a
pair of signal waveforms at the channel input
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(a) Scheme of the numerically studied system.
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(c) Numerical results for the DNN training.

Fig. 1: Numerical study of the dependence of BER (after SL-NLC) on the size of dataset Ntr for a 25×80 km SSMF system.

and output: {uh/v(0, t), uh/v(z, t)}. Several
transformations can be used to generate the
new solutions of Eq. (1) out of the known
ones, for instance: i) the discrete phase shift
(∆ϕdisc) – {ūh/v(0, t)· expiϕ, ūh/v(z, t)· expiϕ}
∀ϕ ∈ {0, π/2, π, 3π/2}; ii) the time-inversion
(tinv) – {ūh/v(0,−t), uh/v(z,−t)}; and iii)
the polarization swapping (H/Vswap) –
{uv↔h(0, t), uv↔h(z, t)}.

Essentially, the NLC aims to predict the trans-
mitted signal u(0, t) from the received one u(z, t).
Therefore, the SL-NLC training dataset is formed
by Eq. (1) solutions. We propose augmenting this
dataset before every training epoch, i.e., a sin-
gle run over the dataset of the algorithm optimiz-
ing the SL-NLC model, by replacing a randomly
chosen part of the original dataset with the ob-
jects generated via the transformations itemized
above. In more detail, we apply a randomly cho-
sen discrete phase shift ∆ϕdisc to every dataset
object, while the time-inversion tinv and polariza-
tion swapping H/Vswap are each applied to sepa-
rately randomly chosen halves of the dataset ob-
jects. To augment the received signal features
used by NLC algorithms, like nonlinear perturba-
tion triplets (NPTs) Tj,k from Eq. (3), one can,
first, apply the transformations (AUG) to the re-
ceived signal u(z, t) and then extract the fea-
tures out of it (FE) (see Fig. 1a). Thus, during
every epoch, SL-NLC is effectively trained on a
new dataset and, hence, obtains more informa-
tion about the channel than via the conventional
training on a fixed dataset.

Notably, the proposed DA is applicable to the
SL-NLC algorithms operating after conventional
digital signal processing (DSP)[13]. The collateral
distortion introduced by DSP into the restored re-
ceived signal can be viewed as its normalization
by a constant KDSP ∈ C chosen to satisfy:

KDSP = min
K

∥∥K · uh/v(z, t)− uh/v(0, t)
∥∥
2
, (2)

where ‖·‖2 is the Euclidean norm. Since the aug-
mentation transformations are still valid if the re-
ceived signal uh/v(z, t) is multiplied by an arbitrary
complex-valued coefficient K ∈ C, they are robust
to the side-effect DSP normalization (Eq. (2)).

The condsidered SL-NLC algorithms
The potential of DA was evaluated considering
two SL-NLC algorithms. Firstly, we consider
the adaptive perturbative post-distortion (PPD)[2].
PPD estimates the nonlinear distortion ∆uh =

uh(z, t0)−uh(0, t0) in the transmitted symbol of in-
terest (SOI) HTX = uh(0, t0) via a weighted sum
of NPTs Tj,k:

∆uh =
∑
j,k

Cj,k Hj(HkH
∗
j+k + VkV

∗
j+k)︸ ︷︷ ︸

Tj,k

. (3)

HereHj = uh(z, t0+j∆t), Vj = uv(z, t0+j∆t) are
the elements of the received symbol sequences
H̄, V̄ in h- and v- polarizations, respectively; ∆t

is the symbol period; Cj,k ∈ C are the learnt
coefficients; and j and k are the symbol indices
with respect to the received SOI uh(z, t0) = H0.
Secondly, we examine the deep neural network
(DNN) used in[14]. The DNN input is formed
by separated real and imaginary parts of NPTs
Tj,k along with the received symbol sequences
H̄, V̄ centered around the SOI. The DNN has
two hidden layers with, correspondingly, 2 and 10
neurons employing SeLU[15] activation function.
The second hidden layer is followed by a 20%
dropout[16]. The output layer has 2 neurons with-
out activation, each predicting the real and imagi-
nary part of nonlinear distortion ∆uh.

For the NLC input we used the symbol se-
quences H̄, V̄ of length 2 ∗ 75 + 1, i.e. |j| ≤
75 and NPTs Tj,k fulfilling the condition |k| ≤
min{ceil(75/|j|), 75}, as in[17]. This procedure
led us to 301 complex-valued input symbols from
both polarizations and 1929 NPTs. The algo-
rithms were trained by Adam optimizer[18] min-
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Fig. 2: Experimental study of the dependence of BER after SL-NLC on the size of dataset Ntr for 9× 50 km TWC system.

imising the mean-squared error (MSE) ‖HTX −
(H0 − ∆uh)‖2. The training was carried out for
200 epochs with a batch size 100. The testing
dataset, used to evalute BER, had 217 objects.
Numerical setup
We numerically simulated the transmission of a
single-channel DP-16QAM 64 Gbaud signal with
root-raised-cosine (RRC) 0.06 roll-off pulse over
a system consisting of 25×80 km standard single-
mode fiber (SSMF) spans (see Fig. 1a). The
SSMF parameters are: α = 0.21 dB/km, D =

16.8 ps/(nm*km), and γ = 1.14 (W*km)−1. Ev-
ery span was followed by an ideal OA with noise
figure NF = 4.5 dB. The waveform evolution
was simulated by solving Eq. (1) via split-step
Fourier method[19]. At the receiver, after full elec-
tronic chromatic dispersion compensation (CDC)
by the frequency-domain equalizer (FDE) and
downsampling to the symbol rate, the received
symbols were normalized by Eq. (2). The SL-NLC
algorithms were applied off-line, like in[17],[20], on
the pre-collected datasets. The symbol patterns
forming the training and testing datasets were
randomly generated by the Mersenne Twister[21].
Experimental setup
In practice, not only Kerr nonlinearities but also
transceiver impairments are a significant source
of distortion[22]. To demonstrate the full potential
of the proposed method, we consider an experi-
mental setup where both impairments contribute
to signal distortion (see Fig. 2a). We transmitted
DP-16QAM 34.4 Gbaud RRC 0.1 roll-off symbol
sequences in a single 37.5 GHz channel centered
at λ = 1.55 µm. The used digital-to-analog con-
verter (DAC) operated at 88 Gsamples/s. The op-
tical path consisted of 9×50 km spans of TrueWave
Classic (TWC) optical fiber with each span fol-
lowed by an erbium-doped-fiber amplifier (EDFA)
fully compensating for the losses. The param-
eters of the TWC fiber are: α = 0.23 dB/km,
D = 2.8 ps/(nm*km), and γ = 2.1 (W*km)−1. The

EDFA noise figures were in the 4.5 to 5 dB range.
After the link, the optical signal was received by
an integrated coherent receiver (ICR), followed
by balanced photodiodes (PD) and an 80 Gsam-
ples/s analog-to-digital converter (ADC) and then
processed using the DSP. After the DSP, the soft
symbols were collected for off-line processing by
NLC. The testing and training data were randomly
generated using PRBS 232−1 bit sequences.
Results and discussion
We compared the BERs achieved for different
training dataset sizes Ntr: i) before the NLC; af-
ter the SL-NLC trained ii) with non-augmented
datasets (pure data) or iii) with the dataset aug-
mented by joint application of several transfor-
mations (joint aug). In the numerical study, the
joint augmentation was formed by ∆ϕdisc + tinv +

H/Vswap transformations, while in the experiment
the time-inversion tinv was excluded, since it led
to a higher BER compared to training with pure
dataset, supposedly, because of the asymmet-
rical memory introduced by the transceiver im-
pairments. For every considered size Ntr and
augmentation type, we separately optimized the
power level and the learning rate to reach the best
BER. The BERs were averaged over 20 epochs to
remove local performance fluctuations.

In the numerical study, the joint augmentation
led to the same BER achieved on a 6 times
smaller pure dataset for both PPD (Fig. 1b) and
DNN (Fig. 1c). In the experiment, the joint aug-
mentation led to the reduction of the dataset size
by 4 times while keeping the same BER after the
DNN (see Fig. 2b). As expected, PPD did not
show BER improvement in the experiment, since
it is not designed for the considered metro link
with significant transceiver distortions[22],[23].
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