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Abstract—To improve the power quality (PQ) and eliminate the 

neutral zone (NZ), a flexible traction power supply system 

(FTPSS) was proposed to provide flexible interfaces for hybrid 

energy storage system (HESS) and photovoltaic (PV). However, in 

order to realize the optimal scheduling of FTPSS, it is necessary to 

further study the high cost of HESS and battery available capacity. 

In this study, a two-layer model with the lowest comprehensive 

cost as the goal is proposed, which includes the cost of investment, 

replacement, operation and maintenance (O&M), and electricity. 

In the upper layer, the HESS sizing and replacement strategy are 

performed to achieve the lowest daily comprehensive cost within 

the project period. In the lower layer, based on the piecewise 

linear method, the battery capacity degradation is formulated as a 

linear mathematical model concerning the depth of discharge 

(DOD). Then, with the aim to achieve the lowest electricity charge, 

a mixed-integer linear programming (MILP) model is formulated 

by associating PV, regenerative braking energy (RBE) and HESS. 

Sparrow search algorithm (SSA) with CPLEX solver embedded is 

utilized to solve this two-layer nonlinear model. Finally, the 

simulation results show that the proposed model can achieve 

13.55% cost reduction. 

 
Index Terms—Flexible traction power supply system, hybrid 

energy storage system, mixed-integer linear programming, 

battery capacity degradation online model. 

 

NOMENCLATURE 

A. Abbreviations, Indices and Sets 

PQ     Power quality 

NZ     Neutral zone 

FTPSS    Flexible traction power supply system 

HESS    Hybrid energy storage system 

PV     Photovoltaic 

O&M    Operation and maintenance 

DOD    Depth of discharge 
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MILP    Mixed-integer linear programming 

RBE     Regenerative braking energy 

SSA     Sparrow search algorithm 

TPSS    Traction power supply system 

RFCM    Rain-flow counting method 

CPTC    Co-phase traction converter 

GA     Genetic algorithm 

GWO    Grey wolf optimization 

SOC     State of charge 

PCS     Power conversion systems 

BOP     Balance of Plant 

ECC     Energy consumption charge 

DMC    Demand charge 

PC     Penalty charge 

TOU    Time-of-use 

MPSO    Modified particle swarm optimization 

B. Parameters 

proT      Project period (year) 

bat

Pk , uc

Pk    Unit power cost of battery and UC (CNY/kW) 

bat

Ek , uc

Ek  Unit capacity cost of battery and UC 

(CNY/kWh) 
Ebat

repk , 
Euc

repk  Unit replacement cost of the capacity associated 

with battery and UC (CNY/kWh) 
bat

om,fk , 
uc

om,fk   Unit fixed O&M cost (CNY/kW/year) 

bat

om,vk , 
uc

om,vk   Unit variable O&M cost (CNY/kW/h) 

bat

dep , 
uc

dep  Depreciation coefficient for the recovery of 

battery banks and UC banks 

0r       Annual discount rate 

( )

lowP  , 
( )

upP 
 Lower and upper bounds of battery or UC 

power rating (WM)  
( )

lowE  , 
( )

upE 
 Lower and upper bounds of battery or UC 

capacity rating (MWh) 

( )      Battery or UC 

s      Probability of PV generation scenario 

,t sp  Electricity price for power imported from the 

utility grid (CNY/kWh) 
dem

.t sp  Electricity price of peak demand power 

(CNY/kWh) 

pvp      Unit O&M cost of PV (CNY/kWh) 
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cycleN     Number of life cycles 

batL      Battery lifetime (year) 

ucL      UC lifetime (year) 

bat

repN      Number of battery replacement 

uc

repN      Number of UC replacement 

cap

HESSC     HESS daily capital cost 

rep

HESSC     HESS daily replacement cost 

om

HESSC     HESS daily O&M cost 

eC      Daily electric cost 

pvC      PV daily O&M cost 

salC      HESS salvage daily cost 

totalC     Total daily cost 

T       Number of samples 

t      Sampling time interval (1 min) 
brake

tP , load

tP   Braking and tractive power (MW) 

bat

dis , bat

ch    Discharge and charge efficiency of battery 

uc

dis , uc

ch    Discharge and charge efficiency of UC 

bat , uc    Battery and UC self-discharge rate 

bat

minSOC    Minimum values of battery SOC 

bat

maxSOC    Maximum values of battery SOC 

uc

minSOC    Minimum values of UC SOC 

uc

maxSOC    Maximum values of UC SOC 

bat

0SOC    Initial SOC of the battery 

uc

0SOC     Initial SOC of the UC 

pvS      PV converter capacity (MW) 
pv

,t sF      Solar intensity (kW/m2) 

grid

limP      Maximum limit for power from grid (MW) 

fed

limP  Maximum limit for power fed back to grid 

(MW) 

pv      Efficiency of PV generation 

pvA      Total area of PV panels (m2) 

C. Variables 

bat

rateP , uc

rateP   Rated capacity of the battery and UC (MW) 

bat

rateE , uc

rateE   Rated power of the battery and UC (MWh) 

bat

opT , 
uc

opT    Daily operating time of battery and UC 

grid

,t sP      Power supplied from grid (MW) 

fed

,t sP      Power fed back to grid (MW) 

pv

,t sP  Power input from the PV power generation 

systems to FTPSS (MW) 
bake

tP , load

tP   Braking and tractive power (MW) 

bat,ch

,t sP , 
uc,ch

,t sP  Battery and UC charge power (MW) 

bat,dis

,t sP , 
uc,dis

,t sP  Battery and UC discharge power (MW) 

bat

,t sD      Cycle depth 

bat,st

,t sE , uc,st

,t sE  The energy stored in battery and UC (MWh) 

bat,act

,t sE     Actual battery capacity (MWh) 

bat ,ch

,t sO , uc,ch

,t sO  Binary variable: 1 if battery or UC charge, 0 

otherwise 
bat,dis

,t sO  Binary variable: 1 if battery or UC discharge, 0 

otherwise 
uc,dis

,t sO  Binary variable: 1 if battery or UC discharge, 0 

otherwise 
grid

,t sO  Binary variable: 1 if power is supplied from grid, 

0 if power is fed back to grid 

I INTRODUCTION 

N the traditional 27.5kV AC traction power supply system 

(TPSS), the PQ problem dominated by negative sequence is 

becoming more and more serious [1]. As shown in Fig. 1, speed 

loss and overvoltage problems will occur when electric trains 

pass through NZ, which not only reduces the power supply 

efficiency and quality, but also affects the economy of railway 

operation [2]. In addition, the rapid development of China's 

railway is also facing new challenges. Taking Sichuan-Tibet 

Railway as an example, the slope of 30% ramps is greater than 

300km, and a lot of RBE is generated during train braking, 

which cannot be effectively utilized. At the same time, western 

China is rich in solar energy resources, but the utilization of PV 

power generation along the railway is low. As shown in Fig.2, 

the proposal of FTPSS [3-5] can solve the above problems and 

provide flexible interfaces for HESS and PV [6]. 
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Fig. 2.  The structure diagram of the FTPSS. 
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Fig. 1.  The structure diagram of the traditional TPSS. 
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HESS is widely applied to recover RBE [7-12], but it is 

mainly about energy storage access rather than the energy 

management of the whole TPSS. Reference [13] proposed a 

hierarchical coordination model which focused on the 

improvement of energy and cost-efficiency of TPSS 

concerning real train parameters and timetables. The HESS was 

employed to reduce the TPSS operating costs and achieve the 

effective performance. In reference [14] and [15], the energy 

management models for optimal operation of TPSS considering 

renewable energy, RBE and HESS were proposed, and case 

studies showed that the HESS can improve the utilization rate 

of renewable energy and RBE. However, the cost of investment, 

replacement, operation and maintenance of HESS was ignored, 

which was key for the optimization of energy management. 

In FTPSS, DC link provides better access for HESS and PV. 

How to coordinate the power flow control of back-to-back 

converter is critical for the optimization scheduling. In 

reference [16], the rain-flow counting method (RFCM) was 

adopted and a hierarchical model considering diurnal 

scheduling of converter was proposed. Reference [17] proposed 

a multi-time scale optimization model, which realized the 

day-ahead optimal scheduling of back-to-back converters, 

HESS and PV, and modified day-ahead scheduling in the 

intra-day stage. Reference [18] proposed a two-stage model for 

the flexible control of co-phase traction converter (CPTC) with 

the integration of PV and HESS. The first stage determined the 

operating state of HESS and the converter, and the second stage 

aimed to find the optimal scheduling of CPTC in the worst-case 

scenario. In the filed application, the dynamical degradation 

characteristics of the battery have drawn more attention and the 

available capacity of the battery was decreased under different 

traction and regeneration condition [19]. 

Actually, the lifetime model of HESS including the 

comprehensive cost is nonlinear. Intelligent algorithm can 

provide effective solutions for engineering application[20-22]. 

In reference [23], the genetic algorithm (GA) was used to 

optimize the train control strategy so as to reduce the energy 

consumption of the train during the specified running time. In 

order to solve the large-scale nonlinear model proposed in 

reference [16], the grey wolf optimization (GWO) was adopted. 

However, the intelligent algorithm also has its limitations such 

as its optimization result may be the local optimal value, 

solving some models even do not converge, these are also 

problems that scholars are trying to solve. Reference [24] 

proposed SSA, and combining with case analysis, it is proved 

that SSA has faster convergence speed and higher precision 

than GWO and other algorithms. 

Accordingly, this paper aims at providing an insight into 

these problems. The main contributions of this paper are 

addressed as follows: 

(i) A novel two-layer scheduling model for FTPSS including 

the HESS and PV is developed. HESS configuration 

parameters and comprehensive cost are optimized at the upper 

level, and power dispatch is performed to minimize the railway 

operation cost at the lower layer. 

(ii) A piecewise linearization model is proposed to describe 

the degradation of battery capacity, which can effectively 

reduce the complexity of the model and improve computational 

accuracy. 

(iii) A SSA with CPLEX solver embedded is proposed to 

solve the proposed two-layer model, which has higher accuracy 

and faster convergence speed. 

The rest of this paper is organized as follows. Section 2 

introduces the PV uncertainty model and HESS lifetime model. 

Section 3 presents the equations of the two-layer model for 

FTPSS energy management. Section 4 introduces the method 

of SSA with CPLEX solver embedded. Section 5 performs the 

case study and the conclusions are reached in section 6. 

II. PV UNCERTAINTY AND HESS LIFETIME MODELING 

A. The Model of PV Uncertainty 

The PV power generation system is mainly composed of PV 

panels, PV inverters and controllers, which can convert solar 

energy into electric energy and realize grid connection. 

Therefore, PV power is restricted by PV panels and PV 

inverters. In addition, considering the intermittency and 

volatility of PV, it is necessary to model the uncertainty of PV. 

In this paper, the scenario reduction algorithms [25] is applied 

to form a typical scene so as to achieve both computational 

efficiency and precision. Take the annual solar intensity data of 

a certain place as an example [17], the daily PV data vary 

widely, as shown in Fig. 3(a). Fig. 3(b) shows that four typical 

scenarios will be generated and the probability of each scenario 

will be obtained when the scenario reduction method is 

employed. 

 

B. The Model of HESS Lifetime 

Battery aging includes calendar aging and cycle aging. 

Calendar aging is affected by the temperature and the state of 

charge (SOC) of the battery. At constant temperature and SOC, 

calendar aging and time can be approximately linear. Two 

metrics can be used to assess the degradation of battery life. 

One is the aging of cycle life, and the other is the capacity wear, 

which accounts for the available energy [26]. This paper mainly 

focuses on the cycling conditions that have a great impact on 

 
(a) 

 
(b) 

Fig. 3.  Initial and reduced scenarios: (a) Annual data of solar irradiance; (b) 

Typical scenarios of solar irradiance after scenario reduction. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

battery lifetime, such as frequent charging and discharging 

times and DOD of each cycle [27]. The DOD of each cycle is 

calculated by RFCM [28]. The principle of the RFCM is 

presented in Fig. 4. The process of discerning the full cycles 

and half cycles by RFCM is shown in Fig. 5. First, the peak and 

valley values of the daily SOC of the battery are found, and 

then the full cycle and half cycle are extracted. Next, DOD 

corresponding to each charge and discharge cycle is calculated, 

and the battery lifetime is obtained through the calculation of (1) 

- (4). Considering the effect of temperature on the battery 

lifetime [29], a constant operating temperature of 25℃  is 

assumed in this study. 

 

 
According to the data provided by manufacturers, the 

relationship between 
cycleN  and DOD of each cycle are fitted to 

(1) by applying least square interpolation. The parameters  , 

 ,   and   are 24090, -9.346, 6085 and -1.319 respectively. 

 cycle e eDOD DODN    = +  (1) 

In order to make connections between batL  and 
cycleN , the 

accumulated aging rate RATEA  is formulated in (2) by summing 

up the aging rate of each cycle. Therefore, the battery lifetime 

can be expressed in (3). 

 RATE

1 cycle

1N

i

A
N=

=   (2) 

 bat

RATE

1
=

365
L

A
 (3) 

 
probat

rep

bat

365
=

T
N

L

 
 
 

 (4) 

where     represents round down to an integer operand. 

The lifetime of a UC mainly depends on the principal 

function of temperature and terminal voltage [30]. And 

charging and discharging rates have little effect on UC 

degradation. The number of lifecycle and lifetime of UC are not 

limited by the DOD of each cycle [31]. In this study, it is 

believed that UCs are always working under rated conditions 

provided by the manufacturing specifications. Therefore, it is 

assumed that the value of the UC lifetime is equal to the number 

given in the manufacturing specification [29]. The number of 

UC replacement is constant during the fixed project time and 

can be formulated in (5). The capacity of UC is considered 

constant and rated. 

 
prouc

rep

uc

=
T

N
L

 
 
 

 (5) 

III. TWO-LAYER MODEL FOR FTPSS ENERGY MANAGEMENT 

A two-layer model aiming at the lowest total cost in the 

project period is proposed in this study, as illustrated in Fig. 6. 

At the upper level, taking the UC and battery degradation into 

account, a nonlinear model is established to minimize the 

comprehensive cost, which is composed of the investment cost, 

the operation and maintenance cost, the replacement cost, the 

electric charge, and the salvage cost. The configuration 

parameters of HESS are obtained through SSA. Among them, 

battery life is obtained by the RFCM, and UC degradation cost 

mathematical model is established. As shown in Fig. 6, the 

SOC related to battery life is derived from FTPSS scheduling 

model at the lower layer, and HESS O&M time and electricity 

cost are also calculated at the lower layer. 

 
At the lower layer, the online degradation model of battery 

capacity is established on account of the DOD and linearized by 

piecewise linearization method. According to the HESS 

parameters generated by SSA, the lowest daily electricity 

charge is derived and passed to the upper layer by establishing a 

series of constraint functions. Then, based on the PV prediction 

data and the measured traction load data, the power scheduling 

plan is achieved every minute. Besides, the operation hours of 

UC and battery included in the O&M cost function are 

transferred to the upper layer. 

In brief, the upper layer focuses on the overall cost within the 
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Fig. 6.  Two-layer optimization model 
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project lifecycle and optimal sizing of HESS, and the lower 

layer plans the daily scheduling of FTPSS. In the two-layer 

model, the lowest daily comprehensive cost, the optimal 

parameters of HESS, and the optimal scheduling of FTPSS are 

interactively obtained through SSA with CPLEX embedded. 

A. Upper Layer: Objective Function 

Equation (6) represents the objective function of the upper 

model: 

 

cap rep com

1 total HESS HESS HESS e sal

bat bat uc uc

rate rate rate rate

min  ( )

[ , , , ]

f x C C C C C C

x P E P E

 = = + + + −


=

 (6) 

The HESS provided by manufacturers consists of battery 

banks, UC banks, power conversion systems (PCS) and other 

devices related to the Balance of Plant (BOP). The cost of PCS 

is included in the cost of battery and UC. Equation (7) 

represents the investment cost of HESS, and (8) expresses the 

cost of devices related to BOP. 

 

0 procap bat bat

HESS P rate

bat bat uc uc uc uc

E rate P rate E rate BOP

( , )
= (

365

+ + + + )

CRF r T
C k P

k E k P k E C



  

 (7) 

 bat uc

BOP rate rate( + )bopC k P P=  (8) 

The replacement cost for HESS is presented in (9). The 

O&M cost includes the fixed O&M cost and the variable O&M 

cost, which can be expressed as (10) to (12). At the end of the 

engineering cycle, the battery may not reach the life cycle of 

recycling, which is the salvage value expressed by (13). 

 bat
rep

0 prorep

HESS

Ebat bat uc Euc uc

rep rate rep rep rate

1

( , )

365

[ ]

N

i

CRF r T
C

k E N k E
=

=

  +  （ ）

 (9) 

 om om,f om,v

HESS HESS HESSC C C= +  (10) 

 
om,f bat bat uc uc

HESS om,f rate om,f rate

1
( + )

365
C k P k P=     (11) 

 
om,v bat bat bat uc uc uc

HESS op om,v rate op om,v rate+C T k P T k P=      (12) 

 

bat

rep bat pro

sal

bat

bat Pbat bat

dep rep rate 0 pro

( +1) -

365

( , )

N L T
C

L

k P SFF r T


=

   

 (13) 

CRF represents the capital recovery factor. SFF denotes the 

sinking fund factor. Both are related to the annual discount rate 

0r  and 
proT , expressed as follows: 

 
pro

pro

0 0

0 pro

0

( 1)
( , )

( 1) 1

T

T

r r
CRF r T

r

+
=

+ −
 (14) 

 
pro

0

0 pro

0

( , )
( 1) 1

T

r
SFF r T

r
=

+ −
 (15) 

B. Upper Layer: Constraint Functions 

According to the objective function, the total cost is related 

to bat

rateP , bat

rateE , uc

rateP  and uc

rateE . Equations (16) and (17) state that 

the upper and lower boundaries of these decision variables are 

determined by the types of HESS and the traction load. Besides, 

(2) to (6) are also parts of the constraints of the upper level. 

 ( ) ( ) ( )

low rate upP P P     (16) 

 ( ) ( ) ( )

low rate upE E E     (17) 

C. Lower Layer: Objective Function 

The lower level model mainly focuses on the electricity 

which is composed of energy consumption charge (ECC) 
ECCC , 

demand charge (DMC) 
DEMC  and penalty charge (PC) 

PENC . 

The energy consumption charge represents the electrical energy 

provided by the utility grid to the TPSS. DMC is related to the 

maximum average value of active power for 15 consecutive 

minutes during a day [32]. Besides, the traction load produces a 

lot of RBE in the braking stage. Part of RBE is used by the 

traction load and the rest is returned to the grid. The RBE 

returned to the power grid contains a lot of harmonics, which is 

not conducive to the normal operation of the power grid. 

Therefore, railway operators should pay penalties to the utility 

grid. 

 ECC DEM PEN pv

e C +C +CC C= +  (18) 

 
ECC grid

, ,

1

=    ,
T

s t s t s

s t

C p P t t s
=

 
    

 
   (19) 

 

14
grid

,
DEM dem 1

.

max( )

= [ ]
15

    1,2,..., 14

t

t s

t

s t s

s

P

C p

s t T



+

= 

  = −


  (20) 

 
PEN fed

, ,

1

=    ,
T

s t s t s

s t

C p P t t s
=

 
    

 
   (21) 

 pv pv

pv ,

1

( )
T

s t s

s t

C p P t
=

=     (22) 

In order to make (20) linearized, it is transformed into (23) 

and (24) by introducing a new variable peak

sP . 

 DEM dem peak

.= ( )  ,s t s s

s

C p P t s     (23) 

 
peak dem

,     1,2,..., 14s t sP P s t T   = −  (24) 

D. Lower Layer: Constraint Functions 

In the FTPSS, energy conservation needs to be guaranteed, 

which can be expressed by (25). 

 

grid pv bat,dis uc,dis brake

, , , ,

load bat,ch uc,ch fed

, , ,

+ + + +

+ + +   ,

t s t s t s t s t

t t s t s t s

P P P P P

P P P P t s= 
 (25) 

This study mainly focuses on battery capacity degradation, 

which is related to the cycle depth and charge moved [33]. The 

charge moved refers to the amount of electricity in and out of 

the battery during charging and discharging. And the 

incomplete invertibility of side reaction is the main cause for 

permanent battery capacity degradation [34]. The battery cycle 

loss and cycle depth 
bat

,t sD  relate to a near-quadratic function 

[35]: 

 
bat 4 bat 2.03

, ,( ) (5.24 10 ) ( )    ,t s t sc D D t s−=     (26) 

The reasonable assumptions of DODs were made to build the 

battery capacity degradation model with different DODs. 

Firstly, battery degradation is considered as a linear process 

[36]. Secondly, under different SOC levels, the battery capacity 
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degradation is considered to be the same as long as the depth of 

charging and discharging is the same. Based on these two 

assumptions, DOD in per unit time interval can be represented 

by (27). 

 

bat,dis bat bat,ch

, ch ,bat

bat dis

, bat

rate

1

=    ,

t s t s

t s

P P

D t t s
E




 + 

    (27) 

Therefore, the recursive formula of actual battery capacity 
bat,act

,t sE  can be expressed as (28) and (29). Since the energy 

stored cannot mutate, the energy storage 
bat,st

,t sE  and 
uc,st

,t sE  at 

adjacent moments will have the constraint relationship as 

shown in (30) and (31). 

 bat,act bat

1, ratet sE E= =  (28) 

 bat,act bat,act bat bat

1, , rate ,0.2 ( )  ,t s t s t sE E E c D t s+ = −    (29) 

 

bat,st bat,st

1, bat ,

bat,dis bat bat,ch

, ch ,bat

dis

=(1 )

1
( )   ,

t s t s

t s t s

E E

P P t t s






+ −  −

 +    
 (30) 

 

uc,st uc,st

1, uc ,

uc,dis uc uc,ch

, ch ,uc

dis

=(1 )

1
( )   ,

t s t s

t s t s

E E

P P t t s






+ − 

−  +    
 (31) 

Equations (32) and (33) limit the SOC of HESS to avoid 

over-discharge and extend the lifetime of HESS. These 

boundaries can be obtained from the manufacturing 

specification. Equations from (34) to (36) set the start and end 

values of energy storage equal to make HESS diurnal, since this 

study focuses on daily power scheduling.  

 
bat bat,act bat,st bat bat,act

min , , max ,   ,t s t s t sSOC E E SOC E t s      (32) 

 
uc uc uc,st uc uc

min rate , max rate   ,t sSOC E E SOC E t s      (33) 

 
bat,st bat bat,act

=1, 0 1,  t s t sE SOC E s==    (34) 

 
bat,st bat bat,act

=T, 0 T,  t s t sE SOC E s==    (35) 

 
uc,st uc,st uc uc

=1, =T, 0 rate   t s t sE E SOC E s= =    (36) 

Equations from (37) to (42) ensure the unique working 

condition of HESS through binary variables 
bat ,ch

,t sO  and 
uc,ch

,t sO . 

Equation (43) and (44) sum to get the operation time of HESS 

during a day and feedback to the upper-level model. 

 
bat bat,act bat,st bat bat,act

min , , max ,   ,t s t s t sSOC E E SOC E t s      (37) 

 
uc uc uc,st uc uc

min rate , max rate   ,t sSOC E E SOC E t s      (38) 

 
bat,st bat bat,act

=1, 0 1,  t s t sE SOC E s==    (39) 

 
bat,st bat bat,act

=T, 0 T,  t s t sE SOC E s==    (40) 

 
uc,st uc,st uc uc

=1, =T, 0 rate   t s t sE E SOC E s= =    (41) 

 
bat bat,act bat,st bat bat,act

min , , max ,   ,t s t s t sSOC E E SOC E t s      (42) 

 
uc uc uc,st uc uc

min rate , max rate   ,t sSOC E E SOC E t s      (43) 

 
bat,st bat bat,act

=1, 0 1,  t s t sE SOC E s==    (44) 

The piecewise linearization method is applied to linearize 

(26), thus MILP is established at the lower layer. It divides (26) 

into K  segments to get K  linear functions of battery cycle 

loss and cycle depth, which are expressed as (45) and (46). It is 

noted that K  is equal to 16 [37]. 

 

bat bat

1 , ,

bat bat bat

, , ,

bat bat

, ,

1
( )       [0, ]

...

1
( )  ( )     [ , ]

...

1
( )     [ ,1]

t s t s

t s k t s t s

K t s t s

c D D
K

k k
c D c D D

K K

K
c D D

K






 −

= 




− 


 (45) 

 
bat bat

, ,

1
( ) ( )

1 1
( ) ( ) ( )k t s t s

k k
c c

k kK Kc D D c
K K K

−
−

− −
= − +  (46) 

In the PV generation system, the PV power is constrained by 

the solar intensity 
pv

,t sF  and converter capacity 
pvS . Likewise, 

back-to-back converter grid side power and traction side power 

are also constrained by the converter capacity ( grid

limP  and fed

limP ). 

In addition, a binary variable 
grid

,t sO  ensures a single working 

condition of back-to-back converter. 

 pv -3 pv

, pv pv ,10   ,t s t sP A F t s     (47) 

 pv pv

,t sP S  (48) 

 grid grid grid

, lim ,   ,t s t sP P O t s    (49) 

 fed fed grid

, lim ,(1 )  ,t s t sP P O t s  −   (50) 

IV. SPARROW SEARCH ALGORITHM WITH CPLEX SOLVER 

EMBEDDED 

In this paper, a nonlinear model considering the 

comprehensive cost is established at the upper layer and solved 

by SSA, a novel swarm intelligence optimization approach. At 

the lower layer, CPLEX solver, a large-scale commercial solver, 

is applied to solve the problem of diurnal FTPSS scheduling, 

which is formulated as the MILP model. 

A. Introduction of SSA 

The previous studies have verified the applicability of the 

heuristic algorithm in optimal energy management [16], [38]. 

As a novel swarm intelligence optimization approach, SSA is 

inspired by the behaviors of sparrow. The producers and the 

scroungers are two different types of captive sparrow house. In 

order to find food sources more efficiently, both the producer 

and the scrounger usually participate in the process of predation 

[24]. 

Equation (51) uses a matrix to simulate the position of 

sparrow. Equation (52) represents the fitness value of all 

sparrows. 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...

...

... ... ... ...

...

m

m

n n n m

x x x

x x x
X

x x x

 
 
 =
 
 
  

 (51) 

 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

([ ... ])

([ ... ])

... ... ... ...

([ ... ])

m

m

X

n n n m

f x x x

f x x x
F

f x x x

 
 
 =
 
 
  

 (52) 
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The location of sparrows is updated to avoid predators or 

find food sources, which can be expressed in (53). 

 
max

 

1 , 2
,

, (1 m) (1 m) 2

             R

   R

i

Itt
t i j
i j

t

i j

X e SST
X

X Q L SST



−


+

 


  

= 
 +  

 (53) 

where t  is the number of the current iteration. maxIt  represents 

the maximum number of iterations.   is a random number 

from 0 to 1. 2R  is a number from 0 to 1, indicating the alarm 

value; SST  is a number from 0.5 to 1, indicating the safety 

threshold.  

Scroungers will monitor, follow, and compete with the 

producers when producers find good food. The updated 

position of scroungers is as follows (54). 

 

worst i,j

2

1

,

1 1

, , (1 m)

           
2

| | ( )     
2

t tX X

i

t

i j

t t t T T

P i j i j

n
Q e i

X
n

X X X A A A L i

−

+

+ −




  


= 


+ − 

 (54) 

where 
worst

tX  is the global worst location in iteration t . 1t

PX +  

represents the optimal position occupied by the producer in 

iteration +1t . 

The mathematical model of the location updating for 

sparrows at the edge of the group can be established by (55). 

 

best i,j best

1

, i,j worst

i,j

| |     

| |
( )  

( )

t t t

i g

t t t
i j t

i g

i w

X X X f f

X X X
X H f f

f f





+

 +  − 


= −
+  =

− +

 (55) 

where 
best

tx  is the global best location in iteration t . H  is a 

random number from 0 to 1. if , wf  and 
gf  are the present 

sparrow, which are the current global best and worst fitness 

values respectively. 

 

B. Application of SSA Approach with CPLEX Solver 

Embedded 

In this paper, the heuristic algorithm SSA is applied to solve 

nonlinear problems (6). x  in (6) is a four-dimensional matrix, 

representing bat

rateP , bat

rateE , uc

rateP  and uc

rateE  in turn. By inputting 

various parameters and importing all the required data, 

Equation (6) works as a function in MATLAB. Then, the 

maximum number of iterations and population numbers are set, 

the SSA function is called to solve the above functions, and 

finally the optimal x  is obtained. The SSA first randomly 

generates x  of corresponding population number, as shown in 

(51), which is the position of sparrow. By substituting x  into 

the lower FTPSS scheduling model, the battery SOC, HESS 

operation time, and power cost are obtained and returned to the 

upper layer, and then the comprehensive cost is calculated at 

the upper layer. The lowest overall cost is found according to 

(52) to (55), which is also the optimal value in this iteration. 

The above steps are iterated till convergence so as to obtain the 

lowest comprehensive cost. Fig. 7 illustrates the overall 

flowchart of applying SSA and embedded CPLEX solver to 

achieve the lowest comprehensive cost. 

 

 

V. CADE STUDY 

A. Case Description and Input Parameters 

According to the daily operation data of a railway traction 

substation in reference [16], a detailed case analysis is made. 

Four different scenarios are adopted, specifically as follows: 

Case 1: FTPSS without HESS and PV power generation 

system is taken as the basic case; 

Case 2: FTPSS only connected to PV power generation 

system; 

Case 3: FTPSS only connected to HESS; 

Case 4: FTPSS connected to both HESS and PV power 

generation system; 

HESS is composed of lead-acid battery and UC. According 

to reference [16], the parameters of HESS are shown in Table I, 

and the engineering cycle and UC lifetime are set as 20 years 

and 10 years respectively. In this process, only the UC and 

battery need to be replaced in HESS, and other related devices 

TABLE II 

PARAMETERS OF ELECTRICITY CHARGE 

Time frames 
TOU tariff 

(CNY/kWh) 
Fix tariff (CNY/kWh) 

0:00-6:00 0.370 

0.782 

8:00-11:00 1.252 

18:00-21:00 1.252 
22:00-0:00 0.370 

Others 0.782 

 

TABLE I 

PARAMETERS OF HESS 

Parameters Unit Battery UC 

PCS costs  CNY/kW 2138 1680 

Energy capacity costs CNY/kWh 3240 61800 

Replacement costs CNY/kWh 1292 28600 
BOP costs CNY/kW 423 423 

O&M costs (fixed) 
CNY/kW/y

ear 
25.5 25.5 

O&M costs (variable) CNY/kW/h 2.78 2.78 

Salvage costs CNY/kW 298 6450 

Efficiency 
(charge/discharge) 

— 80%/80% 95%/95% 

SOC range — 20%-80% 5%-95% 

Initial SOC — 50% 50% 

Self-discharging rate /mon 5% 0 

Depreciation efficient — 0.7 0.7 

 

START

Read  all input data of traction power, 

solar and braking power

Given the number of search agents 

(NUM) and maximum number of 

iterations (It) 

Initial a population of NUM sparrows 

and define its revelent

END

Iteration index t=1 

Rank the fitness values and find the 

current best individual (fg) and the 

current worst individual (fw)

R2=rand(1)

Get new location of sparrows by 

Equation (53) – (55)

If t >It+1

Yes

No

If the new location better than before 

update it

Xbest denotes best producer agent 

positions

Transfer the position of each search 

agent to the lower model, obtained Ce via 

embedded CPLEX solver and calculate 

the fitness

Transfer the position of each search 

agent to the lower model, obtained Ce via 

embedded CPLEX solver and calculate 

the fitness

Iteration index t=1+t 

Output  fg and Xbest 

 
Fig. 7.  Follow chart of SSA with CPLEX solver embedded. 

. 
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are considered to be working during the whole project period. 

The battery capacity is attenuated and the capacity of UC is 

constant. Considering the upper bound and lower bound in (16) 

and (17), (56) is derived. 

 

bat

rate

bat

rate

uc

rate

uc

rate

[1,3] MW

[5,10] MWh

[10,20] MW

[0.1,0.5] MWh

P

E

P

E

 










 (56) 

As for PV power generation system, it is assumed that 
pv =12% , 

pv 1 CNY/MWk =  and pv 4 2=10 mA  [39]. PV 

converter capacity is 1 MVA. Different static pricing schemes 

including time-of-use (TOU) prices and fixed prices are 

illustrated in Table II [17]. The demand charge price is 1.2 

CNY/kW and annual discount rate 0r  is 5%. This method is 

implemented under the software environment of MATLAB 

with the integration of YALMIP toolbox (version 20190425) 

and IBM ILOG CPLEX solver (version 12.9). 

B. Cost Reduction Effect Comparison 

Based on the two-part electricity price, it is stipulated that the 

corresponding penalty should be paid for the power returned to 

the grid, and the optimal values of each parameter under the 

time-of-use (TOU) electricity price and the fixed electricity 

price are obtained. The following cases are analyzed and 

compared. In case 1, as the basic control group, there is no PV 

and HESS, and the original costs of TOU and fixed electricity 

price obtained from Table III are 96.01 k CNY and 108.82 k 

CNY respectively. 

 

 
The electricity cost is slightly higher than the total cost in 

case 2, because the PV O&M cost is taken into account. When 

PV is connected, the reduction of the comprehensive cost is 

6.61% and 6.65% respectively in the two price schemes. PV 

can only emit power rather than absorb power, so it can only 

achieve peak load clipping effect, instead of valley load filling 

effect. Correspondingly, the PC of Case 1 and Case 2 in Table 

IV are equal, with a small decrease in DMC. From the grid 

power ladder diagram in Fig. 8(a), it can be more intuitively 

observed that only the peak load is reduced. 

In case 3, peak load shaving and valley load filling are 

realized by the charge and discharge of HESS. However, 

considering the total cost of the HESS and under different price 

schemes, the electricity charge reduction rates in case 3 are 

4.06% and 5.55% respectively. It can be further confirmed 

from Fig. 8(b) that HESS can complete peak load shaving and 

restraining volatility well. According to Table IV, the PC in 

case 3 is almost zero, which is significantly lower than that in 

case 2 and case 1. This indicates that HESS can fully absorb the 

RBE generated by the train and improve the utilization rate of 

RBE. In addition, according to the energy conservation 

constraint (25), the RBE absorbed by HESS is used to provide 

train traction and reduce ECC and DMC. 

 

 

 
In case 4, under different electricity prices, the total cost 

reduction increases to 10.48% and 13.55%, respectively. Fig. 9 

shows that the SOC of the battery is very gentle, while UC is 

 
(b) 

Fig. 10.  (a) Optimal results at 8:00 to 11:00: power of utility grid in case 4 under 

TOU and Fixed, SOC of LA battery in case4 under TOU and Fixed. (b) Optimal 
results at 18:00 to 21:00: power of utility grid in case 4 under TOU and Fixed, 
SOC of LA battery in case4 under TOU and Fixed. 

 
(a) 

 
(b) 

Fig. 8.  (a) Power of utility grid in case 1 and case 2 under TOU; (b) Power of 

utility grid in case 1 and case 3 under TOU. 

 
(a) 

 
Fig. 9.  Power of utility grid in case 1 and case 4 under TOU, SOC of LA 
battery and UC in case 4 under TOU. 
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frequently charged and discharged. As a large-capacity energy 

storage device, batteries can store energy and corresponding 

low-frequency power. As a high-power energy storage device, 

UC frequently charges, discharges and responds to 

high-frequency power. In addition, the peak cutting of power 

grid is always accompanied by the discharge of UC, and the 

valley filling of power is always accompanied by the charging 

of UC. 

Based on the comprehensive comparison of the four cases, it 

can be found that the access to PV and HESS in case 4 can 

achieve the maximum cost reduction. Compared with other 

cases, the PC, DMC and ECC in case 4 are also the lowest, 

which indicates that HESS makes good use of PV and RBE and 

reduces electricity costs while improving PV and RBE 

utilization rates. 

C. Battery Lifetime Distribution in Different Cases 

According to batT in Table III, the battery life varies under 

different pricing strategies and in different cases. The battery 

lifetime shows such a rule: the battery life under the fixed tariff 

is longer than that under the TOU tariff. For example, the 

battery life under the TOU tariff in case 3 is 4.12 years while the 

battery life under the fixed tariff is 5.44 years, which is due to 

the high TOU electricity price during the peak period of 

electricity consumption. Batteries will release more electricity 

in the peak period than in the fixed period, thus reducing the 

electricity price to a greater extent. The SOC of the battery 

under TOU tariff is lower than that under fixed tariff in Fig. 10, 

which indicates that the battery will release more electricity at 

the cost of reduced battery life during the period from 8:00 to 

11:00 so as to achieve lower electricity cost. In the three hours 

from 8:00 to 11:00, the two price schemes in case 4 have the 

same price reduction effect, and both prices reduce by 28.71%, 

which also shows that the battery releases more energy at the 

peak of TOU tariff at the cost of sacrificing life. 

In Table III, due to the PV access, the battery life of case 4 is 

generally lower than that in case 3 when the same price scheme 

is adopted. The HESS will store part of the solar energy to 

better cut peak load and fill valley load, thereby reducing 

battery life. 

D. Battery Capacity Degradation Comparison 

In this paper, the piecewise linearization method is adopted. 

According to Fig. 11(a), the degradation degree of battery 

capacity decreases with the increase of piece, but the 

decreasing trend gradually flattens out. Starting from about 10, 

the range of battery capacity degradation becomes smaller and 

smaller. Therefore, considering the calculation time, K  is 

taken as 16 in this paper. 

The model without considering battery capacity degradation 

was selected as the comparison object [16]. Fig. 11(b) shows 

the battery capacity attenuation curves of the two models. The 

battery capacity attenuation rate of proposed model is slower 

than that of model without considering battery capacity 

TABLE III 

RESULTS OF DIFFERENT CASES 

Cases Caes1 Case2 Case3 Case4 

Pricing Schemes Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff 

bat

rateP /MW — — — — 1.46 1.1 2.5 1.7 

bat

rateE /MWh — — — — 5.0 5.0 5.0 5.0 

uc

rateP /MW — — — — 10.06 13.9 14.8 14.6 

uc

rateE /MWh — — — — 0.386 0.5 0.46 0.49 

batT /year — — — — 5.44 4.12 2.62 2.49 

eC /k CNY 96.01 108.82 89.65 101.57 72.4 78.77 58.73 66.13 

cap

HESSC /k CNY — — — — 12.00 14.58 15.13 15.02 

rep

HESSC /k CNY — — — — 5.622 7.39 10.75 12.10 

om

HESSC /k CNY — — — — 1.57 2.05 2.36 2.23 

salC /k CNY — — — — 14.17 5.06 0.27 1.41 

totalC /k CNY 96.01 108.82 89.66 101.58 92.11 102.78 86.94 94.07 

Electricity Cost 

Savings 
— — 6.62% 6.66% 24.59% 27.61% 38.83% 39.23% 

Total Cost Savings — — 6.61% 6.65% 4.06% 5.55% 10.48% 13.55% 

 
TABLE IV 

ELECTRICITY COST IN DIFFERENT CASES 

Cases Case 1 Case 2 Case 3 Case 4 

Cost /k CNY Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff Fixed Tariff TOU Tariff 

ECC 66.96 78.22 62.65 73.02 58.83 66.01 48.05 54.83 

DC 17.37 17.37 16.16 16.16 12.89 12.47 10.43 11.12 

PC 10.85 12.40 10.85 12.40 1.03 0.19 0.24 0.18 

eC  96.01 108.82 89.68 101.57 72.4 78.77 58.73 66.13 
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degradation. When the battery capacity degradation is not 

considered, the battery will be charged and discharged as much 

as possible to achieve the function of peak clipping and valley 

filling. However, each charge and discharge of the battery will 

lead to the decay of the battery capacity, so the battery capacity 

decay rate is slowed down when the battery capacity 

degradation is taken as the constraint. 

 

E. Comparison of Different Models and Algorithms  

In order to evaluate the performance and advantages of the 

proposed two-layer scheduling model, the proposed model is 

compared with the simplified MILP model [9] and the 

nonlinear bi-level model [16]. The maximum number of daily 

battery cycles for the simplified MILP model is set to 10. Table 

V shows the results of the comparative models in case 4 under 

TOU. As shown in Table V, the proposed model obtains the 

lowest total cost and reduces the cost by 13.55%, while the 

simplified MILP model and nonlinear bi-level model reduce the 

cost by 9.69% and 12.29%, respectively. The battery 

degradation model is simplified and a linear model is 

established in reference [9], which has faster solving speed but 

lower accuracy. In contrast, based on the number of battery 

cycles and DOD curve, the battery degradation model is 

established in reference [16], and the intelligent algorithm is 

used to solve the nonlinear model, so as to get a lower 

comprehensive cost. The battery capacity degradation is 

considered in the proposed model and the lowest cost is got by 

optimizing the HESS parameters. 

In the upper model, SSA is applied to solve nonlinear 

problems. As widely used intelligent algorithms, GWO and 

modified particle swarm optimization (MPSO) [40] have a 

strong application foundation. However, SSA, as a newly 

proposed algorithm, has more development potential. SSA, 

GWO, and MPSO are compared in terms of iteration times and 

optimization accuracy. Three algorithms optimized case 3 with 

the same parameters. Table VI and Fig. 12 show the faster 

convergence speed and higher accuracy of SSA, which 

converges to 92.11k in the tenth iteration. In addition, the 

optimization result of SSA in the first iteration is significantly 

lower than that of the other two algorithms, which demonstrates 

the excellent initial optimization ability of SSA. 

 

 

 

F. Sensitivities Analysis 

Fig. 13 shows the variation trend of total cost, HESS 

investment cost and cost reduction effect as the project period 

increases. As Fig. 13 shows, the proposed method pays for 

itself in the eighth year and becomes profitable each year 

thereafter. When the project period is 20 years, the total cost 

saving is 13.55%. 

 

VI. CONCLUSION 

In this paper, the FTPSS integrated with HESS and PV is 

studied. Considering the engineering cycle and daily 

scheduling, the FTPSS two-layer scheduling optimization 

model is proposed. In the upper layer, the comprehensive life 

TABLE V 
RESULTS OF DIFFERENT MODELS IN CASE 4 UNDER TOU 

Models 
bat

rateP  

/MW 

bat

rateE  

/MWh 

uc

rateP  

/MW 

uc

rateE  

/MWh 

totalC  

/k CNY 

Cost 
saving 

Simplified 

MILP model 
2.4 5.4 18.5 0.48 98.28 9.69% 

Nonlinear 
bi-level 

model 

2.5 5.0 15.4 0.50 95.45 12.29% 

Proposed 
two-layer 

model 

1.7 5.0 14.6 0.49 94.07 13.55% 

 

 
Fig. 13.  The impact of project period on cost saving. 
 

 
Fig. 12.  Iterative curves for different algorithms. 

TABLE VI 

CONVERGENCE CHARACTERISTICS OF DIFFERENT ALGORITHMS FOR CASE 3 

UNDER FIXED TARIFF 

Parameters GWO MPSO SSA 

Iterations 11 16 10 

Value( 410 ) 9.218 9.211 9.211 

 

 
(a) 

 
(b) 

Fig. 11.  (a) The curves of battery capacity degradation and lifetime changing 

with piece. (b) The battery capacity decline curve over 15 days. 
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cycle cost and replacement strategy of HESS are achieved, and 

HESS capacity and power are optimized. In the lower layer, the 

online battery capacity degradation model is established with 

respect to the depth of discharge (DOD), and optimized power 

flow control strategy of back-to-back converter is given for 

minimum electricity charge. Finally, the SSA algorithm 

embedded in CPLEX solver is introduced to solve the two-layer 

nonlinear model. 

Case study shows that the energy management of FTPSS 

reduces the railway operating cost by 10.48% and 13.55% 

under fixed tariff and TOU, respectively. The model proposed 

in this paper can effectively slow down the rate of battery 

capacity degradation. For the nonlinear model proposed in this 

paper, SSA has higher accuracy and faster convergence speed 

than GWO and MPSO. 
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