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Abstract:  

More than fifty years ago Ronald Coase published ‘The Problem of Social Cost’. In his paper, 

Professor Coase presents an intriguing idea that has since become known among economists and 

lawyers as the ‘Coase Theorem’. Unlike most modern forms of economic analysis, however, Coase’s 

Theorem is based on a verbal argument and is almost always proved arithmetically. That is to say, 

the Coase Theorem is not really a theorem in the formal or mathematical sense of the word. Our 

objective in this paper, then, is to remedy this deficiency by formalizing the logic of the Coase 

Theorem. In summary, we combine Coase’s intuitive insights with the formal methods of game theory. 
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1. INTRODUCTION 
 
More than fifty years ago Ronald Coase published his seminal paper ‘The Problem of Social 
Cost’.1 In his paper, Professor Coase presents an intriguing idea that has since become 
known among economists and lawyers as the ‘Coase Theorem’.2 Unlike most modern forms 
of economic analysis, however, the Coase Theorem is based on a verbal argument and is 
almost always proved arithmetically. That is to say, Coase’s Theorem is not really a theorem 
in the formal or mathematical sense of the word. Our objective in this paper is to remedy 
this deficiency by presenting the Coase Theorem as a formal game. In summary, we try to 
combine Coase’s intuitive insights with the formal methods of game theory. 
 
The remainder of this paper is organized as follows. Sections 2 and 3 provide some 
background regarding the Coase Theorem. Specifically, Section 2 briefly discusses the 
significance of the Coase Theorem, while Section 3 presents two of the most famous 
illustrations of the Coase Theorem—Coase’s simple model of farmer-rancher interactions 
and Coase’s arithmetical analysis of the problem of railway sparks—as well as some 
previous attempts to formally model the Coase Theorem. Next, Section 4 presents a general 
game-theoretic model of the Coase Theorem, one that does not depend on artificial 
parameter values. Specifically, Section 4.1 presents a simple two-player ‘Coasian game’ with 
probabilistic payoffs, Section 4.2 presents a population model of the Coase Theorem with 
probabilistic payoffs, and Section 4.3 then models an alternative Coasian farmer-rancher 
population game with high transaction costs and the presence of legal rules, but with fixed 
instead of probabilistic payoffs. Section 5 concludes and identifies some areas for future 
research. 
 
2. BRIEF BACKGROUND: THEORETICAL SIGNIFICANCE OF THE COASE 
THEOREM 
 
Before proceeding, it is worth taking a moment to explain the wider significance of the 
Coase Theorem in ‘law and economics’ and legal studies generally. From a theoretical or 
academic perspective, the Coase Theorem is crucial to economic analysis of law. According 
to Richard Posner, for example, ‘The most celebrated application of the concept of 
opportunity cost in the economic analysis of law is the Coase Theorem’.3 Remove or 
disprove the Coase Theorem, and the economic approach to law is reduced to intellectual 
rubble or just another untestable or normative legal theory.4 But with Coase’s logical 
Theorem as its underlying theoretical foundation, the economic approach not only provides 
a clear and cogent lens for engaging in descriptive work and for understanding the effect of 

                                                 
1
 RH Coase, ‘The Problem of Social Cost’ (1960) 3 JLE 1.  
2
 ibid 2-8. See also RH Coase, ‘The Federal Communications Commission’ (1959) 2 JLE 1, 25-26.  
3
 Richard A Posner, Economic Analysis of Law (3rd edn, Little Brown 1986) 7. 
4
 For a small but fairly representative sample of stinging criticisms of the Coase Theorem over the years, see 

Andrew Halpin, ‘Coase’s World and Coase’s Blackboard’ (2011) 31 EJLE 91; Dan Usher, ‘The Coase Theorem 
Is Tautological, Incoherent, or Wrong’ (1998) 61 Economic Letters 3; Paul Samuelson, ‘Some Uneasiness with 
the Coase Theorem’ (1995) 7 Japan World Economy 1; Daniel Q. Posin, ‘The Coase Theorem: If Pigs Could 
Fly’ (1990) 37 Wayne LR 89. For a thoughtful critique (in French) that the Coase Theorem is not a ‘theorem’, 
see Elodie Bertrand, ‘Le théorème de Coase, une réflexion sur les fondements microéconomiques de 
l’intervention publique’ (2002) 41 Perspectives de la Vie Économique 111. 
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law on markets; at the same time, it also offers a powerful and forward-looking program for 
explaining and reforming almost all aspects of the legal system as well as myriad legal 
institutions, including property rights, tort law, and contracts.5 
 
Moreover, the Coase Theorem has major theoretical and even practical implications as well 
by exposing the ‘reciprocal’ nature of economic externalities.6 That is, the Coase Theorem 
substitutes the conventional ‘victim-wrongdoer’ paradigm prevalent in legal studies and 
moral philosophy with an entirely new and non-normative view of reciprocal conflict.7 
Consider a conflict situation between two parties, A and B. Instead of trying to identify the 
victim and the wrongdoer to the conflict—the traditional and still dominant method for 
analyzing conflicts and externalities in both the legal and economics literature—the Coasian 
approach invites one to see the conflict between A and B as a function of both parties’ 
behavior. On this view, the Coase Theorem is nothing less than a paradigm shift, a new way 
of looking at conflict situations.8 Before Coase, the central question in legal studies used to 
be: Who is responsible for the harm? After Coase, the interesting and relevant question 
becomes: Who can mitigate or avoid the harm at the lowest cost to society? And thus one of 
the most intriguing and counterintuitive insights of the Coase Theorem is that, oftentimes, 
it is the ostensible victim who can avoid the harm at the lowest cost. 
 
3. COASE’S ARITHMETICAL MODELS OF THE COASE THEOREM (STRAY 
CATTLE AND RAILWAY SPARKS) 
 
Given the theoretical importance of the Coase Theorem, we present some simple game-
theoretic models of Coase’s Theorem in Section 4 of the paper. Since our models of the 
Coase Theorem are based in large part on Coase’s analysis of the problem of railway sparks 
and his model of farmer-rancher interactions,9 we briefly review the most salient features of 
Coase’s models in subsections 3.1 and 3.2 below. 
 
3.1. Stray Cattle 
 
We begin by discussing Coase’s farmer-rancher model, or what one scholar has dubbed ‘the 
Parable of the Farmer and the Rancher’.10 Coase introduced this model in his classic paper 
‘The Problem of Social Cost’ to provide a vivid and concrete illustration of ‘the problem of 
harmful effects’.11 Although Coase’s social cost paper contains many other examples of the 
problem of harmful effects—such as railway sparks, airplane noise, and smoking 

                                                 
5
 See generally Stephen G Medema, ‘Legal Fiction: The Place of the Coase Theorem in Law and Economics’ 

(1999) 15 Economics & Philosophy 209. See also FE Guerra-Pujol, ‘Coase’s Paradigm’ (2010) 1 Indian JLE 1, 
27-30. 
6
 The word ‘reciprocal’ appears for the first time in the economics literature in Coase (n 1) 2 and in Coase (n 2) 

26. See also Guido Calabresi, ‘Neologisms Revisited’ (2005) 65 Maryland LR 736, 738. 
7
 For a novel application of Coase’s reciprocal conflict idea to a science-fiction context, see FE Guerra-Pujol 

and Orlando I Martinez-Garcia, ‘Clones and the Coase Theorem’ (2011) 2 JL Social Deviance 43. 
8
 For an extended discussion of ‘paradigms’ and ‘paradigm shifts’, see Thomas S Kuhn, The Structure of 

Scientific Revolutions (3rd edn, University of Chicago Press 1996) 77-91. See also Guerra-Pujol (n 5) 1-7. 
9
 Coase (n 1) 2-8 (stray cattle), 29-34 (railway sparks). 
10

 Robert C Ellickson, Order without Law: How Neighbors Settle Disputes (Harvard University Press 1991) 2. See 
also Robert C Ellickson, ‘Of Coase and Cattle: Dispute Resolution Among Neighbors in Shasta County’ (1986) 
38 Stanford LR 623, 624-629. 
11

 Coase (n 1) 1. Notice that the problem of harmful effects is more often referred to as ‘negative externalities’ 
or ‘spillover effects’ in the economics literature and is an important theoretical and practical problem in legal 
studies and in economics. For the standard economic analysis of harmful effects or ‘negative externalities’, see 
Paul A Samuleson and William D Nordhaus, Economics (19th edn, special India edn, McGraw-Hill 2010) 44-
45. 
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chimneys—it is the farmer-rancher problem that has captured the imagination of many 
scholars. Here, we describe the essential features of Coase’s farmer-rancher model and 
summarize Coase’s results in order to place our models of the Coase Theorem in their 
proper context. 
 
Coase presents his farmer-rancher model in the opening pages of his social cost paper as 
follows: ‘Let us suppose that a farmer and a cattle-rancher are operating on neighboring 
properties. Let us further suppose that, without any fencing between the properties, an 
increase in the size of the cattle-rancher’s herd increases the total damage to the farmer’s 
crops’.12 In other words, although the rancher’s business is socially useful, his cattle-
ranching activities may harm his neighboring farmer because stray cattle may often invade 
the farmer’s land and destroy the farmer’s crops. Coase also notes that this harm increases 
with the size of the rancher’s herd, and he illustrates the link between the magnitude of the 
externality and the size of the rancher’s herd with a simple arithmetical table.13 
 
Next, having framed the essence of the problem—cattle versus crops—Coase isolates the 
two most essential features of his model: transaction costs, and institutions or legal rules. 
Generally speaking, transaction costs refer to the costs of negotiating and enforcing a 
fencing agreement between the farmer and rancher. Notice that transaction costs are either 
high or low relative to the costs of the externality to be avoided, that is, the value of the 
damaged crops when stray cattle invade the farmer’s land. In general, transaction costs are 
low when the private costs of reaching and enforcing a fencing agreement are less than the 
costs generated by the externality. By contrast, transaction costs are high when the costs of 
the fencing agreement exceed the harm to be avoided. 
 
Institutions refer to the rules of the game, that is, the rules of legal liability for crop damage 
caused by stray cattle. In this case, there are two possible institutions or legal rules to deal 
with the problem of stray cattle: a ‘fence-in’ rule, or an alternative ‘fence out’ rule. In 
summary, the fence-in rule is pro-farmer because it imposes liability for crop damage on the 
rancher. The rancher must fence-in his cattle or he will be liable for the crop damage caused 
by his stray cattle. Thus the rancher assumes the cost of fencing under the fence-in rule. 
The fence-out rule, by contrast, has the opposite effect. It is a pro-rancher rule because it 
imposes the cost of fencing on the farmer instead of the rancher: it is the farmer who is 
required to fence-out his neighbor’s cattle under a fence-out regime. 
 
In summary, Coase’s farmer-rancher model is thus useful for two reasons. First, his model 
isolates two key variables—transaction costs and legal rules—and asks, what effect, if any, 
will these variable have on the allocation of resources among crops and cattle? Given these 
two key variables, there are four possible scenarios in all: 
 

Scenario #1 Low Transaction Costs and a Pro-Farmer Rule (fence-in) 

Scenario #2 Low Transaction Costs and a Pro-Rancher Rule (fence-out) 

Scenario #3 High Transactions Costs and a Pro-Farmer Rule (fence-in) 

Scenario #4 High Transaction Costs and a Pro-Rancher Rule (fence-out) 

 
Second, Coase’s model is falsifiable, for Coase is, in effect, making a prediction or conjecture 
regarding what effect these two basic variables will have on the total allocation of resources 
(ie cattle versus crops). Moreover, the results of Coase’s model are startling and surprising: 
the allocation of resources will depend entirely on the presence or absence of transaction 

                                                 
12

 Coase (n 1) 2-3. 
13

 ibid 3. 
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costs and not on the legal rules, and it is this counterintuitive conclusion that is referred to 
formally as the ‘Coase Theorem’ in the academic literature. 
 
Nevertheless, although the logic of Coase’s model is unassailable, the premises of his model, 
such as the existence of transaction costs, are not stated formally or expressed 
mathematically. And although Coase relies on a simple arithmetical table to illustrate the 
logic of his model, the parameter values in his make-believe arithmetical table are arbitrary 
and artificial, a problem that plagues most restatements of the Coase Theorem. 
 
3.2. Railway Sparks 
 
Next, we turn to Coase’s analysis of railway sparks, for Coase himself devotes considerable 
space in his social cost paper to the problem of railway sparks.14 In summary, Coase 
introduces the problem of railway sparks by reference to ‘Pigou’s example of 
uncompensated damage to surrounding woods by sparks from railway engines’.15 16 That is, 
the problem here is that (i) railway lines run through agricultural lands, and (ii) locomotive 
engines, especially when they run at high speeds, emit dangerous sparks, and (iii) these 
sparks may, in turn, produce destructive fires.  
 
Coase’s analysis of railway sparks—like his analysis of cattle trespass—is insightful, 
creative, and surprising. In place of a static analysis of the problem, Coase recognizes that 
the problem of railway sparks is really a strategic one, for the extent of the harm or 
damages caused by such sparks is the product of a joint interaction.17 In summary, the harm 
caused by railway sparks is not only a function of economic decisions made by the railway 
company, such as whether to install spark preventers or the number of trains to run per day. 
This harm is also a function of decisions made by the landowners of property adjoining the 
railway line, such as whether to plant fire-resistant crops or whether to take their lands out 
of cultivation. Thus, although the problem of railway sparks appears different from the 
problem of cattle trespass, Coase correctly shows that, from an economic or social cost 
perspective, both problems are reciprocal and logically the same. 
 
Despite the originality of his analysis, however, Coase does not really present a formal 
model of the problem of railway sparks, nor does he present a formal mathematical model of 
harmful effects or externalities generally. Instead, Coase illustrates his analysis of railway 
sparks with an arithmetical example. Coase himself, however, appears to recognize the 
limitations of his arithmetical analysis when he states, ‘Of course, by altering the figures, it 
could be shown that there are other cases in which it would be desirable that the railway 
should be liable for the damage it causes’.18  
 

                                                 
14

 As an aside, it is interesting to note that Professor Coase devotes as much space in his social cost paper to 
railway sparks (about five full pages) as he does to the problem of stray cattle (seven pages). See Coase (n 1) 2-
8 (cattle trespass), 29-34 (railway sparks). On a more personal note, the author also fondly recalls that his torts 
professor, Guido Calabresi, often referred to the problem of railway sparks in his lectures on tort law during 
the fall semester of the 1990-1991 academic year at Yale Law School. 
15

 Coase (n 1) 30. As an aside, Pigou was an English economist who had written an influential treatise on 
welfare economics. See AC Pigou, The Economics of Welfare (4th edn, Macmillan 1932). 
16

 It is worth noting that Coase refers to ‘Pigou’s example’ not for its own sake, but rather to refute Pigou’s 
approach to economics. In this paper, however, we will not enter into this fray, ie the details of Pigou’s 
approach. For a summary of Pigou’s approach, and a critique of Coase’s critique of Pigou, see Herbert 
Hovenkamp, ‘The Coase Theorem and Arthur Cecil Pigou’ (2009) 51 Arizona LR 633. See also Calabresi (n 6) 
738. 
17

 Or, in Coase’s own words, the problem is a ‘reciprocal’ one. Coase (n 1) 2. 
18

 ibid 33-34. 
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3.3. Some Non-Arithmetical Models of Coase’s Theorem 
 
Lastly, before proceeding, we briefly review some previous attempts to model Coase’s 
Theorem to set the stage for our models of the Coase Theorem in s 4 below. In summary, 
although some scholars have tried to formally model the Coase Theorem or test it 
experimentally, we explain why these previous approaches are deficient.  
 
The literature on the Coase Theorem is vast19; in addition, this literature is highly 
polarized: for every paper in defense of the Coase Theorem, it seems, there is a paper critical 
of Coase’s Theorem. But within this contentious Coasian corpus, formal or analytical models 
of the Coase Theorem are few and far between. Instead, most analyses, explanations, and 
extensions of the Coase Theorem (including both defenses and criticisms of Coase’s 
Theorem) are expressed either in arithmetical terms or simply in words.20 
 
One notable and early exception, however, is Posner, who presents a graphical analysis of 
the problem of railway sparks.21 Since Posner’s model is analytical, like the models we 
present in this paper, it is more general than most statements of the Coase Theorem, which 
rely on artificial parameter values or fanciful arithmetical tables. The problem with Posner’s 
model, though, is that it is not really Coasian in spirit because his model assumes that only 
one of the parties is able to avoid the externality in his model. In summary, Posner models 
the problem of railway sparks in which sparks emitted by railroad locomotives cause fires 
that destroy crops, since the crops of some farmers are planted next to the railroad tracks, 
that is, within close range of the flying, fire-causing sparks. Posner states that ‘changing the 
number of trains is assumed to be the only way of changing the amount of crop damage’.22 
But Posner’s assumption misses the whole point of Coase’s analysis, the idea that harms are 
‘reciprocal’: a harm is the product of a joint interaction, such as the railroad company’s 
decision to run a given number of trains per day and the farmer’s decision not to plant fire-
resistant crops.23  
 
Aside from Posner, a few other scholars have also presented non-arithmetical models of the 
Coase Theorem. Among the most promising such models, we would point out the formal 

                                                 
19

 See, for example, Steven G Medema, ‘The Coase Theorem’ in Cary L Cooper and Chris Argyris (eds), The 
Encyclopedia of Managerial Economics (Basil Blackwell 1996). In addition, Professor Coase’s social cost paper is 
(still) the most-cited law review article of all time. See Fred R Shapiro and Michelle Pearse, ‘The Most Cited 
Law Review Articles of All Time’ (2012) 110 Michigan LR 1483, Table I, 1489 and 1504. 
20

 Most of the academic literature in this field restates the Coase Theorem arithmetically with arbitrary or 
make-believe values. For a small sample this literature, see Varouj Aivazian and Jeffrey L. Callen, ‘The Coase 
Theorem and the Empty Core,’ (1981) 24 JLE 175, 176-179; Kenneth R Vogel, ‘The Coase Theorem and 
California Animal Trespass Law’ (1987) 16 JLS 149, 159; Robert Cooter, ‘The Cost of Coase’  (1982) 11 JLS 1, 
2-4; A Mitchell Polinsky, An Introduction to Law and Economics (2nd edn, Little Brown 1989) 11-14; Stewart J 
Schwab, ‘Coase, Rents, and Opportunity Costs’ (1991) 38 Wayne LR 55, 73-74; Stephen G Medema, ‘Legal 
Fiction: The Place of the Coase Theorem in Law and Economics’ (1999) 15 Economics & Philosophy 209, 214-
215. Likewise, for a small sample of the literature in which the Coase Theorem is expressed exclusively in 
words, see, for example, Richard A Epstein, ‘A Theory of Strict Liability’ (1973) 2 JLS 151; George J Stigler, 
‘Two Notes on the Coase Theorem’ (1989) 99 Yale LJ 631; Michael R Butler and Robert F Garnett, ‘Teaching 
the Coase Theorem: Are We Getting It Right?’ (2003) 31 Atlantic Economic J 133, 133-135; FE Guerra-Pujol 
and Orlando I Martinez-Garcia, ‘Clones and the Coase Theorem’ (2011) 2 JL Social Deviance 43, 65-81. 
21

 Richard A Posner, Economic Analysis of Law (7th edn, Aspen 2007) 52-54. As an aside, Posner’s elegant 
model first appears in print in the third edition of his textbook. See Posner (n 3) 44-46. 
22

 Posner, Economic Analysis (n 21) 53. 
23

 That is why our models of the Coase Theorem (see s 4 below) assume, unlike Posner’s model, that either 
party (not just the railroad company, for example) can take steps to avoid or reduce the risk of harm. 
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models of Lee and Sabourian,24 Anderlini and Felli,25 Acemoglu,26 and Hurwicz.27 Leonid 
Hurwicz, for example, presents an elegant formal of the Coase Theorem, but his model, 
however, is of limited scope and usefulness, since it assumes zero transaction costs, and as 
Coase himself has noted, most Coasian interactions (or ‘Coasian games’) will most often 
occur under conditions of high transaction costs.28 
 
Some scholars have focused on the problem of transaction costs and have tried to formally 
model the process of Coasian bargaining. For instance, Lee and Sabourian model Coasian 
interactions as a dynamic bargaining game.29 In summary, Lee and Sabourian demonstrate 
that such interactions produce a large number of equilibria and conclude that the Coase 
Theorem is valid if and only if there are no transaction costs. Of course, in real-world 
interactions, strategic considerations may often obstruct Coasian bargains, even when 
transaction costs are low, especially in situations of bilateral monopoly.30 For their part, 
Anderlini and Felli model ‘Coasian negotiations’ as a two-stage bargaining game with ex 
ante negotiation costs and show that such ex ante costs may produce a hold-up problem, 
thus preventing the parties to the negotiations from reaching an efficient Coasian bargain.31 
Their model, however, is also of limited usefulness, since in many real-world interactions, 
Coasian bargains are often made even under the conditions of their model. 
 
Next, we wish to say a few words regarding Acemoglu’s fascinating bargaining model in his 
2003 paper, ‘Why not a political Coase Theorem?’32 Although some scholars have attempted 
to extend the domain of the Coase Theorem to certain specified areas of politics,33 Acemoglu 
presents a generalized model of Coasian interactions between rulers and citizens. In essence, 
Acemoglu presents a model of political bargaining and shows that the applicability of the 
Coase Theorem to politics is limited because of commitment problems inherent to the 
political process.34 But to the extent such commitment problems can be solved, the 
conclusions of the Coase Theorem would apply, even to the domain of politics. 
 
In any case, it is worth noting that these various bargaining models of Coasian interactions 
are not really models of the Coase Theorem per se, for these approaches model the decision 
whether to negotiate and whether to make a Coasian bargain; that is, they model ex post 
behavior after the externality has occurred. Coase, in contrast, was not concerned with ex 
post bargaining per se; he was concerned with the ex ante problem of harmful effects, that 
is, with avoiding or reducing externalities ex ante, either through legal rules or through 

                                                 
24

 Jihong Lee and Hamid Sabourian, ‘The Coase Theorem, Complexity, and Transaction Costs’ (2007) 135 J 
Economic Theory 214. 
25

 Luca Anderlini and Leonardo Felli, ‘Transaction Costs and the Robustness of the Coase Theorem’ (2006) 
116 Economic J 223. 
26

 Daron Acemoglu, ‘Why Not a Political Coase Theorem?’ (2003) 31 J Comparative Economics 620. 
27

 Leonid Hurwicz, ‘What Is the Coase Theorem?’ (1995) 7 Japan World Economy 49. 
28

 See, for example, Ronald H Coase, ‘The Coase Theorem and the Empty Core: A Comment’ (1981) 24 JLE 
183, 187. 
29

 Lee and Sabourian (n 24). Their dynamic bargaining model of the Coase Theorem is based on the work of 
Rubinstein. See Ariel Rubinstein, ‘Perfect Equilibrium in a Bargaining Model’ (1982) 50 Econometrica 97. See 
also Lutz-Alexander Busch and Quan Wen, ‘Perfect Equilibria in a Negotiation Model’ (1995) 63 
Econometrica 545. 
30

 See Robert Cooter, ‘The Cost of Coase’ (1982) 11 JLS 1. 
31

 Anderlini and Felli (n 25). 
32

 Acemoglu (n 26). 
33

 See, for example, J Gregory Sidak, ‘The Inverse Coase Theorem and Declarations of War’ (1991) 41 Duke 
LJ 325. 
34

 For an overview of the commitment problem, see chapter 2 of Thomas C Schelling, The Strategy of Conflict 
(rev edn, Harvard University Press 1980). 
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Coasian bargaining. That is why our models of the Coase Theorem (see s 4 below) are ex 
ante models, not ex post models. In other words, we model the decision whether to produce 
the externality in the first place. 
 
Other scholars, in contrast, have taken an experimental or behavioral approach to the Coase 
Theorem.35 That is, instead of attempting to model the Coase Theorem formally, these 
researchers have tried to test the Coase Theorem experimentally. In summary, these 
experimental studies purport to test whether Coasian bargains will occur under artificial 
bargaining conditions with low transaction costs. The problems with the design and 
implementation of these experimental studies, however, are legion. Among other things, the 
main problems or design defects with these experimental tests of the Coase Theorem are 
that the objects subject to bargaining are low-value items, their prices are not set by 
markets but rather by the authorities conducting the experiments, and the human subjects 
participating in these experiments are not drawn from a random sample of the population. 
 
Therefore, in place of artificial experimental studies, or complex ex post bargaining models, 
or verbal restatements of the Coase Theorem, or arithmetical analysis with arbitrary values, 
or instead of simply assuming that the Coase Theorem is true (as the late George Stigler 
would do36), in the remainder of this paper we present a simple analytic and game-theoretic 
treatment of Coasian games and the Coase Theorem. 
 
4. COASIAN GAMES 
 
In this paper, a ‘Coasian game’ refers to any interactive, strategic, or game-theoretic model 
in which the interests of the players are conflicting due to the presence of negative 
externalities or harmful effects, such as stray cattle, airplane noise, or railway sparks. First, 
we present a simple two-player Coasian game in s 4.1 of the paper. Next, we present an even 
more generalized population model of Coasian interactions in s 4.2. Lastly, we return to 
Coase’s simple model of farmer-rancher interactions and present an alternative farmer-
rancher game in s 4.3 below. 
 
4.1. A Two-Player Coasian Game with Probabilistic Payoffs 
 
Our two-player Coasian game consists of a simultaneous-move game in which the players, 
whom we designate abstractly as Player A and Player B, share a simple strategy set: 
cooperate or defect. Our model is based on the following intuition: in the real world, when a 
person or a firm is engaged in a socially-useful activity, such as cattle ranching, his activity 
may produce a probabilistic risk of harm. For example, cattle may trespass on a neighboring 
farm and damage the farmer’s crops, unless such crops are resistant to cattle, or a railroad 
locomotive may emit sparks and produce a fire, unless landowners next to the railroad 
tracks avoid storing inflammable substances, such as hay, too close to the railroad tracks. 
Each player in our model must thus decide whether to cooperate by paying a cost to avoid or 
reduce the risk of a harm, such as damaged crops or to defect by not paying any harm-
avoiding costs.  
 

                                                 
35

 For a small sample of this experimental literature, see Daniel Kahneman, Jack L Knetsch, and Richard H 
Thaler, ‘Experimental Tests of the Endowment Effect and the Coase Theorem’ (1990) 98 JPE 1325; Glenn W 
Harrison and Michael McKee, ‘Experimental Evaluation of the Coase Theorem’ (1985) 28 JLE 653; Elizabeth 
Hoffman and Matthew L Spitzer, ‘The Coase Theorem: Some Experimental Tests’ (1982) 25 JLE 73. 
36

 George J Stigler, ‘Two Notes on the Coase Theorem’ (1989) 99 Yale LJ 631. 
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Before proceeding, we wish to make an important observation about our model: both 
players—not just the player who is ‘causing’ the harm in the traditional sense—are able to 
cooperate by taking steps to avoid harming the other player. For example, consider again 
Coase’s problem of cattle trespass. The rancher can avoid harming the farmer by fencing-in 
his cattle, but the farmer himself can avoid this harm by fencing-out the cattle or by 
growing cattle-resistant crops. Likewise, with respect to the problem of railway sparks, the 
owner of the railroad company may reduce the risk of fires by reducing the speed of the 
locomotives or by installing costly spark-arresters, but at the same time, landowners can 
also reduce the risk of fire by not storing any inflammable substances next to the railroad 
tracks. The larger point is that (i) all these risk-reducing or harm-avoiding measures are 
costly cooperative measures and (ii) both players (not just the harm-producing player) must 
decide whether to cooperate or defect. If a player decides to cooperate, that means he is 
willing to pay a cost to avoid harming the other player; if, however, a player decides to 
defect, that means he is not willing to pay such a cost and is, in effect, creating a risk that 
the other player will be harmed. 
 
Now, returning to our Coasian game, recall that both players in our model have to decide 
whether to cooperate (invest in a harm-avoidance measure to reduce the risk of an 
externality) or defect (make no such investment in risk reduction). Given this simple 
strategy set, and given that there are only two players, there are four possible scenarios or 
Coasian interactions in this Coasian game: 
 

Scenario #1 both players cooperate: a ‘cooperation-cooperation’ interaction 

Scenario #2 player A defects, while player B cooperates: a ‘defection-cooperation’ 
interaction  

Scenario #3 player A cooperates, but player B defects: a ‘cooperation-defection’ 
interaction 

Scenario #4 both players defect: a ‘defection-defection’ interaction 

 
Since this is a game-theoretic model, the payoffs depend on the strategies simultaneously 
chosen by the players at the beginning of our Coasian game, and the payoffs associated with 
each possible interaction of the game may be expressed in ‘normal form’ as follows:37  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
37

 For simplicity, the payoffs expressed in this table are player A’s payoffs (i.e the row player’s) because player 
B’s payoffs are the same as player’s A payoffs when both players cooperate or when both players defect and are 
the exact opposite of player’s A payoffs when the players play different strategies. 

 
 
 

Player B 
cooperate 

Player B 
defect 

Player A 
cooperate 

b – c1 – pc2 b – c1 – pc2 

Player A 
defect 

b – pc2 
(1 – p)(–
c2) 

 
                                   Figure 1 
                         Normal-form payoff table.  

 



 

148 
 

where c1 is the cost of avoiding a given harm (ie the cost of investing in a safety device, such 
as a spark arrester, or the cost of reducing one’s activity level, such as running fewer trains); 
where c2 is the cost of the harm if such harm occurs (ie crop damage caused by fires); where p 
is the probability of such harm occurring; and where b is the benefit of avoiding the harm.38 
 
Now that we have defined strategy set of the players (cooperate or defect) and assigned 
payoffs, we shall explain the assumptions in our model and explain the logic of each possible 
interaction of our Coasian game as follows: 
 
First, consider scenario #1: mutual cooperation. For illustration, assume player A is a 
landowner whose land adjoins a railroad line and player B is a railroad whose locomotives 
produce sparks. If both players cooperate by investing in safety or reducing their activity 
levels,39 then each player’s payoff for mutual cooperation is equal to b – c1 – pc2, where c1 is 
the cost of avoiding the harm, and pc2 the cost of the harm (if it occurs) discounted by the 
probability of such harm occurring, and b the benefit of avoiding a given harm.40 Moreover, 
notice that one of the terms, pc2, is probabilistic in nature. The probabilistic nature of this 
cost distinguishes our model from many other game-theoretic models in law and economics 
in which costs (and payoffs) are usually fixed. In our model, by contrast, the payoffs are 
probabilistic because investment in a given harm-avoidance measure (eg spark arresters, 
fences, etc) merely reduces the probability that a harm will occur (eg damaged crops or the 
payment of money damages) but such investment does not eliminate this risk altogether. 
 
Next, consider scenario #2, a mixed (defection-cooperation) interaction. If player A defects 
and player B cooperates,41 then player A’s ‘temptation payoff’ is b – pc2, while player B’s 
‘sucker’s payoff’ is b – c1 – pc2. The logic of these payoffs is as follows: player B receives a 
‘temptation’ payoff b – pc2 because he gets the benefit of player A’s costly investment in 
harm-avoidance without having to pay this cost himself, but player A’s payoff is b – c1 – pc2 
because he ends up paying the cost of avoiding the harm. (Again, notice that the last term, 
pc2, of both players’ payoffs is probabilistic for the same reasons stated in the paragraph 
above.42) Now, in contrast to the scenario above, consider the converse situation (scenario 
#3). That is, if player A cooperates instead of defecting, and player B defects instead of 
cooperating, then the payoffs of the players are reversed: player A now receives the payoff b 
– c1 – pc2, while player B receives the temptation payoff b – pc2 because in this case it is player 
B who avoids having to pay c1, the cost of avoiding the harm. 
 
Before proceeding, the reader may ask: if only one player is willing to invest in a costly 
harm-avoidance measure (as in scenarios #2 and #3 above), why does the term p, the 

                                                 
38

 Also, notice that the payoffs of this Coasian game – that is, the benefits and costs corresponding with each 
strategy – are expressed in abstract terms, rather than in arithmetical terms, in order to illustrate the 
underlying logic and structure of seemingly unrelated problems, such as the problem of cattle trespass, railway 
sparks, and other harmful effects. In addition, another advantage of expressing these values as abstract values 
is flexibility and generality; that is, our abstract model permits us to derive results for any actual value that 
these parameters might take. 
39

 For example, player A, the landowner, cooperates by planting fewer crops next to the railroad line, while 
player B, the railroad, cooperates by installing costly spark arresters on its locomotives or by operating fewer 
locomotives. 
40

 For player A, the landowner, b might consist of the value of reducing the risk of harm to his crops. For 
player B, the railroad, b might be value of avoiding the risk of a lawsuit from the landowner. 
41

 For example, player A, the landowner, might decide to defect by planting inflammable crops next to the 
railroad line (thus increasing the risk of harm to his crops from railway sparks). In contrast, player B, the 
railroad, might nevertheless decide to cooperate by installing spark arresters to reduce the risk of fires. 
42

 That is, player B’s costly investment in a given harm-avoidance measure merely reduces the risk that such 
harm will occur, it does not eliminate this risk. 
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probability of avoiding the harm, remain the same as when both players invest in harm-
avoidance measures separately (as in scenario #1)? That is, why is the probability of 
avoiding a given harm constant? In our model, we assume for the sake of simplicity that 
when one player invests in safety, any additional investment in safety by the other player 
does not further reduce the probability of harm.43 That is, we assume that when both 
players invest in safety, their joint investment is redundant. 
 
Lastly, consider scenario #4: mutual defection. What are the payoffs when both players 
defect, that is, when neither player A, the landowner, nor player B, the railroad, invests in 
any harm-avoidance measure or reduces their activity levels? In our model, both players 
forego the benefit b and avoid paying the harm-avoidance cost c1 and instead receive a 
mutual defection payoff consisting of (1–p)(–c2).44 In essence, the players ‘take their chances’ 
when neither invests in safety or reduces their activity levels. The logic of this mutual 
defection payoff is as follows: when neither player is willing to invest in a costly harm-
avoidance measure, then this set of choices creates a probabilistic risk that a harm will 
occur, and moreover, we further assume for simplicity that this probabilistic risk is equal to 
1–p. That is, we assume that if p is the probability of harm when at least one of the players 
pays a cost to avoid that harm, then the probability of harm must be 1–p when no one 
invests in safety.45 
 
Given this payoff structure, and given our simplifying assumptions, which of these four 
Coasian scenarios is most likely to occur? Put another way, what is the optimal strategy or 
best response from the point of view of each Coasian player? Is there a stable Coasian 
equilibrium? 
 
For his part, Coase famously asserts in his social cost paper that the players will negotiate 
and strike a Coasian bargain to solve the reciprocal harm/harm-avoidance problem, but 
only when transaction costs are zero.46 This is the core of the Coase Theorem. But what 
happens when transaction costs are high, or when strategic behavior prevents the formation 
of Coasian bargains even when transaction costs are low? 
 
If we take another glance at the game tree or at the payoff table of our Coasian game, the 
equilibrium path is not obvious. Since the payoffs are probabilistic and are expressed in 
variables, it is difficult to tell whether there are any dominant or dominated strategies or 
what the best responses of the players are. As a result, we will re-introduce the concept of 
probability, as well as the related idea of an ‘expected payoff’, in order to solve this game 
and find the existence of any possible equilibria.   
 

                                                 
43

 In reality, such additional investment in harm-avoidance may reduce the risk of harm by some linear or 
marginally-declining amount, but we make the assumption of redundancy to keep our Coasian model as simple 
as possible. 
44

 Notice that the mutual defection payoff is a function of c2, not c1. As one anonymous referee of this paper 
noted, making the mutual defection payoff a function of c1 is problematic (and artificial) because c1 refers to the 
cost of prevention, not the cost of the harm. 
45

 This assumption, however, is open to debate. For instance, as one anonymous referee of this paper noted: if 
the probability of crop damage is only 0.1 when one of the parties builds a fence, then the probability of crop 
damage without a fence is not necessarily 0.9. (It could very well be higher or lower than 0.9 depending on the 
specifics of the situation.) Nevertheless, we make this simplifying assumption for ease of exposition and 
convenience, since our general assumption is that investment in safety tends to reduce the probability of harm, 
while the lack of such investment tend to increase this probability. Also, notice that if the magnitude of the 
harm to be avoided were less than the cost of avoiding it, then it would not make sense to invest in the harm-
avoidance measure in the first place. 
46

 That is, when ‘the pricing system works smoothly’. Coase (n 1) 5. 
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Consider player A first.47 Player A’s expected payoff from playing a given strategy (cooperate 
or defect) depends on the probability P that player B might also play the same strategy as 
well as the probability 1–P that player B might choose a different strategy.48  
 
Recall that player A has two choices in his strategy set. If player A cooperates, he will 
obtain the payoff b – c1 – pc2 with probability P (ie the probability that player B also 
cooperates), and he will also obtain the same payoff, b – c1 – pc2, with probability 1–P (ie the 
probability that player B defects). Player A’s expected payoff of cooperating, which can be 
written as E(C), is expressed formally as follows: 
 
 E(C) = (b – c1 – pc2)(P) + (b – c1 – pc2)(1–P) 
 E(C) = Pb – Pc1 – Ppc2 + b – c1 – pc2 – Pb + Pc1 + Ppc2 

 E(C) = b – c1 – pc2          (1.1) 
 
In other words, when player A cooperates by investing in safety or reducing his activity 
level, his payoff is constant regardless of what player B does. By contrast, player A’s 
expected payoff from defecting does depend on what player A does. In summary, player A 
receives the payoff b – pc2 when player B cooperates and the payoff (1 – p)(–c2) when Player B 
defects. Since player B will cooperate with probability P and defect with probability 1–P, we 
can express player A’s expected defection payoff E(D) as follows: 
 

E(D) = (b – pc2)(P) + [(1 – p)(–c2)](1–P) 
E(D) = Pb – Ppc2 + (pc2 – c2)(1–P) 
E(D) = Pb – Ppc2 + pc2 – c2 – Ppc2 + Pc2  
E(D) = Pb – c2(2Pp + P + p – 1)         

(1.2) 
 
What if we assume that pc2 = 0 for simplicity; that is, what if we assume that the probability 
of harm is low, close to zero, when at least one of the players invests in safety or reduces his 
activity level. Under this assumption, player A’s expected cooperation payoff is 
 
 E(C) = b – c1            

(1.1a) 
 
and player A’s defection payoff E(D) becomes: 

 
E(D) = Pb – c2 + Pc2  
E(D) = P(b + c2) – c2           

(1.2a) 
 
Notice that the size of player A’s defection payoff (equation 1.2a) is a function mostly of P, 
the probability the player A will cooperate. By contrast, player A’s cooperation payoff is a 
function only of the terms b and c1. In other words, player A’s best response depends mostly 
on what strategy player B chooses. If player B decides to cooperate, ie P = 1, then E(D) will 
be greater than E(C) because player A’s expected payoff for defecting will be b, while his 
expected payoff for cooperating will remain b – c1. 

                                                 
47

 In fact, the analysis in the remainder of this section applies equally to both players since, for as we stated 
earlier in n 37, the payoffs in our simple model are symmetrical. 
48

 For reference, notice that this type of probability (ie the probability P of the other player’s strategy 
selection) is written as a capital letter to distinguish it from the earlier type of probability, that is, the 
probability p that a harm will occur if one or both of the players invests in safety. 
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Now, assume that player B decides to defect, ie P = 0. In this case, E(C) will be greater than 
E(D) because player A’s expected payoff for defecting will be –c2, while his expected payoff 
for cooperating will remain b – c1. Assuming that b>c1,49 Player A should cooperate when B 
defects, and conversely, player A should defect when B cooperates. 
 
In other words, our model shows that player A’s decision to cooperate or defect is not so 
much a function of legal rules or transaction costs but of player B’s choice, which in turn is a 
function of player A’s decision.50 Is there any way around this circular result? 
 
One possible solution is to deny the Coase Theorem: in the absence of an equilibrium 
solution to our Coasian game, the choices of both players might then be a function of the 
legal rules, contra the invariance thesis of the Coase Theorem. On this view, legal rules are 
a device for coordinating the choices of the players, specifically, a device for getting at least 
one of the parties to invest in safety or reduce his activity level. This analysis also confirms 
a central axiom of law and economics, that the applicable legal rule should impose liability 
on the party with the lowest cost of avoiding the harm.51 Thus, under the assumptions of 
our model, we would expect the rule of legal liability to matter, even under conditions of 
low transaction costs. 
 
4.2. An n-Player Coasian Game with Probabilistic Payoffs 
 
Next, we present a multi-player evolutionary model of our Coasian game. In summary, our 
n-player evolutionary game works as follows:  
 

(a) There is a large and well-mixed population of players. 

 

(b) This population contains two types of players, cooperators and defectors. 

 

(c) At the start of each round of play, two players are selected at random from the 

population and then, during each round of play, these two players play a 

Coasian micro-game. 

 

(d) After each round of play, the player with the highest payoff in the micro-

interaction not only survives but also produces a descendant-clone who 

asexually inherits the victor’s player’s type (ie if the victor was a cooperator, 

then his descendant is a cooperator). 

 

(e) The player with the lowest payoff, in contrast, is eliminated from the 

population. 

 

(f) Lastly, if the interaction ends in a draw or tie (ie cooperator-cooperator or 

defection-defection interactions), both contestants survive but neither produces 

a descendant.  

                                                 
49

 This is a reasonable assumption, since otherwise, it would not make sense to invest in safety when the cost 
of such investment is greater than the benefit to be received from such investment. 
50

 Also, notice that this analysis is independent of the level of transaction costs. 
51

 For the classic ‘cheaper cost avoider’ theory of tort liability, see Guido Calabresi, The Costs of Accidents: A 
Legal and Economic Analysis (Yale University Press 1970). 
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The purpose of this game is to determine which strategy will spread through our population 
of Coasian players. Will cooperators outperform defectors, or will defectors displace 
cooperators, or will the population consist of a stable mix of cooperators and defectors? To 
answer these questions, we proceed in several stages.  
 
First, we restate the expected payoffs corresponding to each possible Coasian micro-game. 
In summary, there are four possible micro-interactions in the n-player evolutionary game, as 
in the traditional two-player model: (1) mutual cooperation, or C|C for short; (2) 
cooperation-defection, or C|D; (3) defection-cooperation, or D|C; and (4) mutual defection, 
or D|D. Since the structure of the payoffs in the n-player game are the same as in the two-
player game, the payoffs corresponding to each Coasian micro-game are as follows: 
 

E(C|C) = [the payoff to a cooperator given that he interacts with another cooperator] 
= b – c1 – pc2 

E(C|D) = [the payoff to a cooperator given that he interacts with a defector] = b – c1 
– pc2 

E(D|C) = [the payoff to a defector given that he interacts with a cooperator] = b – pc2 

E(D|D) = [the payoff to a defector given that he interacts with another defector] = (1 
– p)(–c2) 

 
 
In summary, on the far left- and far-right hand sides of the table above, we have expressed 
the payoffs corresponding to each Coasian micro-interaction in mathematical form, while in 
the middle section, separated by brackets […], we have ‘translated’ the mathematical 
notation into plain English for the non-mathematical reader.  
 
Moreover, since this is a population model, the success of a given strategy is said to be 
‘frequency dependent’ because the success or survival rate of a strategy depends not only on 
the frequency of the other strategy but also on that strategy’s own frequency.52 Since 
success or ‘fitness’ (rate of survival) is frequency dependent, we proceed to use the methods 
of evolutionary game theory to determine whether a strategy is an ‘evolutionarily stable 
strategy’ or ESS and to find the long-run evolutionary equilibrium of the population—that 
is, the frequency of cooperators and defectors over many generations.53 Specifically, we wish 
to answer the following key questions: (i) is cooperation an evolutionarily stable strategy or 
ESS? In other words, are cooperators able to resist invasion by defectors? (ii) Likewise, is 
defection an ESS? That is, are defectors able to resist invasion by cooperators? (iii) Or, do 
Coasian interactions produce an evolutionarily stable mix of cooperators and defectors? 
 
Let P be the frequency of cooperators in the population, and thus let 1 – P the frequency of 
defectors in the population. First, consider a population in which the frequency of 
cooperators is very high (P≈1). With this population structure, cooperators rarely interact 
with defectors because the frequency of defectors is low (1 – P≈0), and thus the average 

                                                 
52

 For an illustration of frequency dependency, see Richard McElreath and Robert Boyd, Mathematical Models 
of Social Evolution (University of Chicago Press 2007) 38. 
53

 For an overview of the ESS concept, see generally John Maynard Smith, Evolutionary Game Theory 
(Cambridge University Press 1982). See also George R Price and John Maynard Smith, ‘The Logic of Animal 
Conflict’ (1973) 246 Nature 15. 
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fitness of a cooperator, written as W(C), is determined by his interactions with other 
cooperators in the population as follows: 54 
 
 W(C) = w’ +1[E(C|C)] + (1 – 1)[E(C|D)]  
 W(C) = w’ + E(C|C) + 0 

W(C) = w’ + b – c1 – pc2 
 
At this point, consider the appearance of a rare defector mutant in this population of 
cooperators. Will this defector be able to spread across the population, gradually displacing 
the cooperators, or will the cooperators be able to resist invasion by the defectors? To 
answer this question, we must determine the average fitness of the rare defectors among the 
population of cooperators, and then compare the average fitness of such defectors with the 
average fitness of cooperators. Since defectors are rare (1 – P≈0), the chance one defector 
will meet another defector is likewise small. As a result, the average fitness of a defector, 
written as W(D), is determined by his interactions with cooperators as follows: 
 

W(D) = w’ +1[E(D|C)] + (1 – 1)[E(D|D)]  
 W(D) = w’ + E(D|C) + 0 

W(D) = w’ + b – pc2 
 
Thus, when we compare the average fitness levels of the majority cooperators and the rare 
defectors, we see that defectors have a higher average fitness than cooperators. Stated 
formally, we see that W(D) > W(C) because b – pc2 > b – c1 – pc2.55 This means that defectors 
will outperform cooperators and thus spread across and invade the population of 
cooperators. 
 
But now this state of affairs raises a new question: can a population of defectors resist 
invasion by cooperators? Consider a population in which the frequency of defectors is high 
(1 – P≈1). With this population structure, defectors interact with other defectors most of 
the time, so the average fitness of a defector, W(D), is determined by his interactions with 
other defectors as follows: 
 

W(D) = w’ +1[E(D|D)] + (1 – 1)[E(D|C)]  
 W(D) = w’ + E(D|D) + 0 

W(D) = w’ + (1 – p)(–c2) 
W(D) = w’ + pc2 –c2 
W(D) = w’ + c2(p –1) 

 
Next, consider the appearance of a rare cooperator mutant in this Hobbesian population of 
defectors. Will the rare cooperators be able to invade the population and displace the 
defectors, or will the defectors be able to resist invasion by the cooperators? To answer this 
question, we must compare the average fitness level of the rare cooperators with that of the 
majority defectors. Since cooperators are rare (P ≈0), the average fitness of a cooperator is 
thus determined by his interactions with defectors as follows: 
 

W(C) = w’ +1[E(C|D)] + (1 – 1)[E(C|C)]  

                                                 
54

 Before proceeding, note that the parameter w′ in our equations refers to the ‘baseline fitness’ or baseline 
survival rate of all the individuals in the population—that is, the probability of survival from generation to 
generation—and thus reflects the strength of selection on a given population. See McElreath and Boyd (n 51) 
40-41. 
55

 Notice that the baseline fitness terms,  ′, cancel out. 
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 W(C) = w’ + E(C|D) + 0 
W(C) = w’ + b – c1 – pc2 

 
Now, when we compare the average fitness levels of the majority defectors and rare 
cooperators, we see that the rare cooperators have a higher average fitness than the 
majority defectors do. This result also raises an intriguing question: will the population of 
cooperators and defectors continue to cycle depending on which group is in the majority, or 
is there an evolutionarily stable mix of cooperators and defectors?56  
 
In any case, how does this result relate to Coase’s Theorem? In summary, our result shows 
another dimension of the Coase Theorem. Recall that Coase himself was concerned with 
negative externalities, or ‘the problem of harmful effects’.57 Most of the literature on the 
Coase Theorem focuses on transaction costs, legal rights, bargaining, the endowment effect, 
and willingness to pay, and thus most commentators tend to focus exclusively on law, 
behavioral economics, or on economics proper: the benefits and costs of various negative 
externalities, such as the harmful effects produced by cattle ranching, crop farming, 
railroads, and so forth. In brief, the Coase Theorem asks two basic questions: what is the 
harm, and who should pay the cost to avoid this harm? Thus, under traditional economic or 
Coasian analysis, once the harm has been identified, the main questions are always economic 
in nature: ‘who pays whom?’ 
 
Our analysis, in contrast, raises a different set of questions. Instead of ‘who pays whom?’, 
our analysis asks: which harm-avoidance measure more effectively reduces the probability or 
risk of harm? Unlike traditional economic or Coasian analysis, our analysis shows that what 
really matters is not the (social or private) benefits generated by a conflicting activities and 
not the (social or private) costs imposed by such activities, but rather what really matters is 
the effectiveness of the harm-avoidance measures that are available to the parties to address 
a given harm, and this insight is captured by the probabilistic payoffs, namely, the 
parameter p, in our models of Coasian games. 
 
This insight is not necessarily inconsistent with main results of the Coase Theorem: the 
invariance thesis and the efficiency thesis. For example, the efficiency criterion is consistent 
with the proposition that courts and legislatures should impose legal liability on the party 
that can most effectively reduce the probability of a given harm, but notice that our 
emphasis is not on the cost of avoiding a given harm but rather on the probability of 
avoiding such harm. In many cases, cost and probability will be close proxies for each other, 
but in other cases, these issues may diverge: the ‘cheaper cost avoider’ may not necessarily 
be able to reduce the probability of a given harm more effectively than another party might. 
In other words, a different party might able to reduce the risk of such harm more effectively 
(although at greater cost) than the designated cheaper cost avoider. This possibility opens 
up a new avenue of research, a new door for the Coase Theorem to open. 
 
4.3. An Alternative Coasian Game with High Transaction Costs, Fixed Legal Rules, 
and Deterministic Payoffs  
 
Lastly, we model a farmer-rancher game with high transaction costs (ie no Coasian 
bargaining among the players) and with fixed legal liability rules but with deterministic 

                                                 
56

 One could easily find for this equilibrium mix of defectors and cooperators by setting W(C) equal to W(D), 
substituting p’ for p, and solving for p’. 
57

 Coase (n 1) 1. 
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(non-probabilistic) payoffs. For this revised Coasian game, we now add the following 
assumptions: 
 

(a) The population is large, well-mixed, and composed of two ideal types: farmers F and 

ranchers R. 

 
(b) Individuals from this large, well-mixed population are selected at random and 

interact in pairs. 

 
(c) Individuals are not permitted to make side deals or Coasian bargains with each other 

(that is, we assume high transaction costs). 

 
(d) In the absence of a legal rule, no fence gets built. 

 
(e) When a legal rule is enacted (either fence-in or fence-out), there is full compliance 

with the rule; that is, if the rule is fence-in, all cattle ranchers comply with the rule 

and fence-in their lands, and by the same token, if the rule is fence-out, all farmers 

comply with the rule and fence-out their lands. 

 
(f) The cost of fencing is constant and the payoffs to farming and ranching are equal, or 

stated formally, bR=bF. 

 
As before, we recognize that these simplifying assumptions are not necessarily consistent 
with real-world conditions. For example, in a real-world situation, the cost of fencing will 
vary depending on the size of one’s land, and the revenues generated by farming and 
ranching will likewise vary depending on a wide variety of factors. Nevertheless, we make 
these artificial and unrealistic assumptions to simplify our mathematical analysis and test 
the main insight generated by the Coase Theorem: the conjecture that the rules of the game 
will have no effect on the allocation of resources when transaction costs are high. 
 
Now, consider a large, well-mixed population consisting of farmers and ranchers. Ranchers 
receive a fixed payoff of bR, while farmers receive a fixed payoff of bR – dp, where d is the 
cost of the damages or harm to crops caused by stray cattle, p is the probability that this 
harm will occur (in the absence of a fence), and dp > 0. For now, assume there is no fencing 
rule or convention in place and that bR=bF.  
 
Given this set of assumptions, we see that ranching is an evolutionarily stable strategy or 
ESS since the ranching payoff exceeds the farming payoff, since by definition bR > bF – dp. 
As a result, the population dynamic will be pro-rancher: when ranchers are common, 
farmers will not be able to invade a population of ranchers, and when farmers are common, 
ranchers will be able to invade the population and displace the farmers, and so either way, 
ranchers will always dominate the population in the absence of any fencing rule or 
convention. 
 
But now consider what effect a fencing rule would have on our model. There are two 
possible rules: fence-in and fence-out. Assume both fencing rules are equally effective in 
solving the problem of stray cattle, so the main effect of either rule is simply to rearrange 
the payoff structure of farmer-rancher interactions, since fences are costly to build and 
maintain. Specifically, under a fence-in regime, the payoff to a rancher is V(R)=bR – c, where 
c is the cost of fencing-in the rancher’s land, and likewise, the payoff to a farmer is V(F)=bF 
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– (1 – p)d, where this last term is the probability that the farmer’s crops are damaged even 
with a fence in place. To keep this model as simple as possible, we will assume that the 
fence-in rule neutralizes the problem of stray cattle, that is, we assume that (1 – p)d = 0. To 
recap, then, when ranchers are required to fence in their cattle, an individual rancher’s 
payoff is reduced by the cost of fencing-in his land, while farmers receive a fixed payoff bF 
since the fence-in rule neutralizes the problem of stray cattle, ie (1 – p)d = 0.  
 
Given a fence-in rule, we now see that farming will be an ESS because the farming payoff 
exceeds the ranching payoff, or bF > bR – c. Thus, under a fence-in regime, the proportion 
of farmers in the population will increase in frequency over time. This means the following 
population dynamic will occur: when farmers are common, ranchers will not be able to 
invade a population of farmers, but when ranchers are common, farmers will always invade 
the population and displace the ranchers. 
 
Next consider, what happens when the applicable rule is fence-out, instead of fence-in. 
Under a fence-out regime, the payoff to a rancher is V(R)=bR, while the payoff to a farmer is 
V(F)=bF – c, since now it is the farmer who must pay the fencing costs.58 In summary, given 
a fence-out rule, ranching will be an ESS because the ranching payoff exceeds the farming 
payoff, that is, bR > bF – c. As in the case with no legal rule, the population dynamic will be 
pro-rancher: when ranchers are common, farmers will not be able to invade a population of 
ranchers, and when farmers are common, ranchers will always be able to invade the 
population and displace the farmers. 
 
In summary, the lesson of this Coasian game is clear: the dynamic of the population over 
time is a function of the rules. That is, when transaction costs are high, or when Coasian 
bargaining is not possible, the payoffs of the players, and thus the outcome of the game, is 
dependent on the legal rule. This result thus confirms one of the conclusions or predictions 
of the Coase Theorem: when transaction costs are high, the choice of legal rule will 
determine the allocation of resources. 
 
5. CONCLUSION 
 
In closing, we concede that the Coasian games presented in this paper abstract from reality. 
Specifically, our models of the Coase Theorem are much more abstract and idealized than 
actual or real-life farmer-rancher interactions in many respects: the population of farmers 
and ranchers in our models are well-mixed and large, their corresponding strategies are 
simple and stylized, and the payoffs to each strategy are kept constant. In addition, we have 
omitted stochastic effects such as noise or errors from our model. Instead, we have decided 
to trade off realism for tractability. That is, we have intentionally designed our model of 
farmer-rancher interactions to be as simple as possible to illustrate the logic of the Coase 
Theorem. 
 
We now wish to close this paper by looking towards the future and sketching some other 
possible Coasian games. Specifically, we briefly consider some variations to our model of the 
Coase Theorem and identify some new questions for future research: 
 
Question #1 What happens when bR≠bF? 
 

                                                 
58

 Again, for simplicity, we assume that bR = bF, ie, there is no reason to prefer farming over ranching or vice-
versa, and we assume that the fence-out rule solves the stray cattle problem, so we ignore d. 
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One direction for future work is to relax the assumption of equal payoffs, such as making 
the payoffs vary inversely with the choice of legal rule. For example, with a pro-farmer 
fence-in rule, a rancher might respond by investing less in ranching (eg by decreasing his 
herd from n steer to n – 1 steer), while farmers might respond by investing more in farming 
(by planting more crops), and this change in investment levels will, in turn, affect the 
expected payoffs corresponding with each activity.  
 
Question #2 What happens when the choice of legal rule is endogenous to the model? 
 
That is, what happens when the players must not only decide how much to invest in 
farming or ranching but must also decide how much to invest in rent-seeking activities, 
such as lobbying or litigation, in order to obtain a favorable legal rule. Now, the payoffs of 
the players will be a function of their farming or ranching activities; their payoffs will also 
be a function of their lobbying or litigation activities as well, and since activities like 
lobbying and litigation tend to increase the probability of a favorable ruling, such a 
possibility also lends itself to a probabilistic analysis. 
 
Question #3 What happens if we assume a different population structure? 
 
That is, instead of assuming a large and well-mixed population, as we have done in this 
paper, what if we were to model the population structure graphically? For example, imagine 
a large number of evenly-sized towns distributed over a large square grid. Each town 
contains n number of plots of land with n number of farmers and ranchers, and in addition, 
each town must decide whether to adopt a pro-farmer rule (fence-in) or a pro-rancher rule 
(fence-out), with the choice of legal rule depending on which group is a majority in each 
town. Given this graphical configuration of the problem, we would then find what mix of 
pro-farmer and pro-rancher rules will result over the long run. That is, instead of modelling 
a population of farmers and ranchers, we would model a population of legal rules, with 
feedback effects between the population of legal rules and the population of farmers and 
ranchers in each town, since the choice of legal rule depends on the population dynamic in 
each town, and since the population dynamic in turn, depends on the choice of legal rule. 
Such an approach to the Coase Theorem, one with feedback loops between the legal rules 
and the economic activities of the actors, seems to be an especially promising area for future 
Coasian analyses. 
 
 
 
 
 


