TITLE: Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

This article is provided by the author(s) and Teagasc T-Stór in accordance with publisher policies.

Please cite the published version.

The correct citation is available in the T-Stór record for this article.

NOTICE: This is the peer reviewed version of the following article: Soil Use and Management, 32: 92-100, which has been published in final form at http://dx.doi.org/10.1111/sum.12203 This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

This item is made available to you under the Creative Commons Attribution-Non commercial-No Derivatives 3.0 License.
Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland

K. Fischer¹,², W. Burchill¹, G.J. Lanigan¹, M. Kaupenjohann², B.J. Chambers³, K.G. Richards¹ and P.J. Forrestal¹

¹ Crops Environment and Land Use Program, Teagasc, Johnstown Castle, Wexford, Ireland.
² Department of Ecology, Soil Science, Technische Universität Berlin, Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
³ ADAS Gleadthorpe, Meden Vale, Mansfield, Nottinghamshire NG22 9PD, UK.

Corresponding author: P.J. Forrestal¹ patrick.forrestal@teagasc.ie

Short running head title: NH₃ emissions from dung, urine and urine+DCD
Abstract
Deposition of urine and dung in pasture-based livestock production systems is a major source of ammonia (NH₃) volatilisation, contributing to the eutrophication and acidification of water bodies and to indirect nitrous oxide emissions. The objectives of this study were to (i) measure NH₃ volatilisation from dung and urine in three seasons, (ii) test the effect of spiking urine with the nitrification inhibitor dicyandiamide (DCD) on NH₃ volatilisation and (iii) generate NH₃ emission factors (EFs) for dung, urine and urine+DCD in temperate maritime grassland. Accordingly, simulated dung, urine and urine spiked with DCD (at 30 kg DCD/ha equivalent rate) patches were applied to temperate grassland. Treatments were applied three times in 2014 with one measurement of NH₃ loss being completed in spring, summer and autumn. The NH₃-N EF was highest in spring, which was most likely due to the near absence of rainfall throughout the duration of loss measurement. The EFs across the experiments ranged between 2.8 and 5.3 % (mean 3.9 %) for dung, 8.7 and 14.9 % (mean 11.2 %) for urine and 9.5 and 19.5 % (mean 12.9 %) for urine+DCD, showing that ammonia loss from dung was significantly lower than from urine. Aggregating country specific emission data such as those from the current experiment with data from climatically similar regions (perhaps in a weighted manner which accounts for the relative abundance of certain environmental conditions) along with modelling are potentially resource efficient approaches for refining national ammonia inventories.

Key words: Ammonia, dung, urine, DCD, grazing, grassland

Introduction
Livestock production systems are major contributors to global agricultural ammonia (NH₃) emissions and are responsible for between 16 and 27 (mean 21) Tg/yr emission. Grazing animals contribute between 17 and 37 % of this total (Beusen et al., 2008). Therefore, NH₃
emissions from livestock systems are a substantial issue in many countries, particularly in the European Union where member states have agreed to establish national NH₃ emission ceilings (European Commission, 2015). In Ireland, for example, agriculture contributes approximately 98% of national NH₃ emissions and in 2012 it is estimated that 12% of these emissions arose from dung and urine-N deposited by grazing livestock (EPA, 2014).

Ammonia volatilisation is a major loss pathway for nitrogen (N) from dung and urine deposited on pasture. Volatilisation represents a loss in terms of soil fertility and causes negative environmental impacts by contributing to eutrophication and acidification of water bodies (Grizzetti, 2011). In addition, NH₃ deposition results in acidification of soils due to release of H⁺ during nitrification (Velthof, 2011). Ammonia is also vulnerable to the formation of secondary aerosols such as NH₄NO₃ and (NH₄)₂SO₄ because of its alkaline nature (Warneck, 1999). The transport distance of these secondary ammonium salt aerosols is considerably greater than for NH₃ gas (Warneck, 1999; Aneja et al., 2000). Furthermore, re-deposition of volatilised NH₃ is an important source of N for the production of nitrous oxide (N₂O) via biological nitrification of ammonium (NH₄⁺) (Martikainen, 1985) and subsequent denitrification of nitrate (NO₃⁻). Therefore, NH₃ contributes indirectly to greenhouse gas production. As a consequence, estimates of NH₃ emissions from urine and dung play an important role in determining the indirect element of N₂O emission factors (EFs) and are necessary to compliment recent studies which measured direct emission N₂O emissions from cattle excreta in temperate grassland (Bell et al., 2015; Krol et al., 2015).

The rate of NH₃ volatilisation from dung and urine is influenced by meteorological factors such as temperature, rainfall and wind speed. Generally, weather conditions which increase evaporation will increase volatilisation of NH₃ (Meisinger & Jokela, 2000). Ammonia volatilisation increases with increasing temperature (Clay et al., 1990; Lockyer & Whitehead, 1990; Sommer et al., 1991; Whitehead & Raistrick, 1991) due to increased urease activity in
soil and decreased water solubility of NH$_3$ (Freney et al., 1983), provided adequate soil water is present for hydrolysis of urea (Lockyer & Whitehead, 1990). The influence of rainfall on emissions depends on the intensity of the rainfall event: small volumes of rainfall (≤ 5 mm) with low intensity increase NH$_3$ volatilisation due to enhanced hydrolysis of urea (Engel et al., 2011; Sanz-Cobena et al., 2011), whereas higher volumes of rainfall minimise volatilisation due to increased soil infiltration of deposited N (Bouwmeester et al., 1985; Engel et al., 2011; Sanz-Cobena et al., 2011).

Mitigation strategies, such as the use of nitrification inhibitors, have been widely investigated to assess their effectiveness in reducing N losses from urine patches. For example, the nitrification inhibitor dicyandiamide (DCD) has been reported to reduce NO$_3^-$ leaching losses by 10 to 76% (Di & Cameron, 2004; Zaman & Blennerhassett, 2010; Dennis et al., 2012) and N$_2$O emissions from urine patches by 25 to 70% (Di et al., 2007; Smith et al., 2008; Zaman & Blennerhassett, 2010; Misselbrook et al., 2014). Dicyandiamide reduces these losses by slowing the conversion of soil NH$_4^+$ to NO$_3^-$ and consequently increases the period of time in which soil NH$_4^+$ is available for NH$_3$ volatilisation. Therefore, although the use of DCD is an effective leaching and N$_2$O emission mitigation strategy, it may promote increased NH$_3$ volatilisation from urea fertilisers and urine patches. However, this has not been consistently reported in the literature (Table 1): most previous studies (Prakasa Rao & Puttanna, 1987; Davies & Williams, 1995; Asing et al., 2008; Zaman & Blennerhassett, 2010) have found increased NH$_3$ volatilisation in presence of DCD, whereas Clay et al. (1990) and Di & Cameron (2004) did not observe a significant effect of DCD. Hence there is some uncertainty as to the effect of DCD usage on NH$_3$ loss when used as a NO$_3$ and N$_2$O loss mitigation strategy.

Table 1 here
At present, the grazing cattle contributions to national NH$_3$ inventories in many countries are estimates based on a limited number of urine and dung EF studies, often derived in other countries subject to differing environmental conditions. In Ireland’s case, EFs from the UK are currently used. To address the urine and dung NH$_3$ emission knowledge gap for grazing systems in Ireland, the objectives of this study were to (i) measure NH$_3$ volatilisation from dung and urine across three seasons (spring, summer, autumn), (ii) test the effect of spiking urine with the nitrification inhibitor DCD on NH$_3$ volatilisation and (iii) generate NH$_3$ EFs for dung, urine and urine+DCD, all in grassland in temperate maritime climatic conditions using dung and urine collected from animals grazing in these individual seasons.

Material and Methods

Experimental Site and Experimental Design

The experiment was conducted at a grassland site located at Teagasc Research Centre, Johnstown Castle, Co. Wexford, Ireland (52˚18ˊN, 6˚30ˊW; 62 m above sea level). In this area of Ireland the mean annual air temperature is 10.6 °C and the mean annual precipitation is 905.5 mm (Met Éireann, 2015). The soil is a luvic gleysol with a loam texture at the surface (0 to 10 cm depth). Soil properties (0 to 10 cm depth) at the site are presented in Table 2. The sward was a perennial ryegrass (Lolium perenne L.) and white clover mixture (Trifolium repens L.).

Table 2 here

The experimental design was a randomised complete block with three treatments and three replicates per treatment. The treatments were (i) dung, (ii) urine and (iii) urine+DCD. These treatments were applied three times over the course of the experiment to represent dung and urine depositions in spring, summer and autumn.
Weather and Soil Conditions

Meteorological parameters including air temperature, air pressure, rainfall and wind speed were recorded on an hourly basis at the nearest automatic weather station “Johnstown Castle” from the Irish Meteorological Service (Met Éireann) (ca. 500 m distant from the study site). Additionally, volumetric soil moisture in field was determined weekly with a theta probe (Delta-T, Cambridge, UK).

Collection and Application of Dung and Urine

Dung and urine were collected 7 to 10 days before each application. Urine was collected directly from lactating Holstein-Friesian dairy cows by stimulating the cows’ perineum before and after evening milking. The dung was collected in the field immediately following deposition. In all seasons, the cows’ diet consisted of grazed perennial ryegrass pasture. Urine and dung were homogenised following collection and stored in sealed plastic containers at 4 °C until application to reduce the risk of NH₃ volatilisation. For the urine+DCD treatment, DCD was added at a rate to deliver equivalent of 30 kg DCD/ha on application. Luo et al. (2015) indicated that increasing the DCD application rate from 10 to 60 kg/ha could decrease N₂O emissions from urine patches; the DCD rate chosen in this study was the same as their mid-point rate of 30 kg/ha.

Treatment application took place on 8 April 2014, 28 July 2014 and 30 September 2014 for spring, summer and autumn applications, respectively. The dung patches were simulated by applying 2 kg of fresh dung, which is within the range of 1.5-2.7 kg reported by Haynes and Williams (1993), in a constrained 28 cm diameter ring (0.0615 m²). Four of these dung patches were applied in a square configuration (edge length: 1 m), with the centre of the dung patch placed on each corner of the square. The urine and urine+DCD patches were applied in the same square configuration. These patches were simulated using 2 L of urine, the same
volume as used by Williams and Haynes (1994) and close to the 2.1 L mean urination volume from dairy cows reported in a meta-analysis by Selbie et al. (2014), and were applied using a watering can with a rosette attachment. The urine patches were constrained to a 0.16 m2 surface area using a stainless steel frame which was placed in the ground to a maximum depth of 1 cm and removed promptly following urine infiltration into the soil. The sward was cut to a uniform height of 5 cm ten days before each of the three treatment applications and allowed to regrow. A new plot was used for each of the three seasonal applications.

Ammonia Emission Measurement

A system of nine wind tunnels (Lockyer, 1984), were deployed to measure NH$_3$ volatilisation. Briefly, each wind tunnel unit consisted of (i) a canopy (0.5 m x 2 m) made of polycarbonate into which an inlet air sample line was integrated, (ii) a galvanised sheet steel duct housing an axial fan, anemometer and an outlet air sample line and (iii) a control box housing a diaphragm pump for the air sample lines, a flow meter and a critical orifice for both air sample lines. The air pumped through the inlet and outlet air sample lines passed through two individual conical absorption flasks which contained 100 ml of 0.02 M orthophosphoric acid (H$_3$PO$_4$, 85 %, Merck, Darmstadt, Germany), to capture NH$_3$-N in the air (i.e. acid traps).

The wind tunnel canopy was placed over two of the four urine or dung patches on each replicate immediately after treatment application. Emissions were measured continuously for a period of 15 to 17 days after each application. The acid traps were replaced every ~24 h (except during the first 24 h period in the summer application when they were changed twice in the initial 24 h), until 10th day after application and thereafter every ~48 h until the end of the experiment. The rain-shielding effect of the wind tunnel canopy in periods of rain was
minimized by moving the canopy back and forth between the two pairs of simulated urine or dung patches on each occasion that the acid traps were changed.

To account for evaporation in the field the acid trap samples were refilled to 100 ml with deionised water (Sartorius arium 611UV, Göttingen, Germany), decanted in plastic tubes (50 ml, Sarstedt, Nümbrecht, Germany), and stored at 4 °C until analysed.

Ammonium Analysis

The ammonium-N concentration in the acid trap samples (NH$_4^+$-N in 0.02 M H$_3$PO$_4$) was determined photometrically using an Aquakem 600A Analyser (Thermo Electron OY, Vantaa, Finland). Ammonium was converted by reaction with hypochlorite ions and salicylate ions into a blue compound. After 600 s incubation time absorbance was measured at wavelength 660 nm. The detection limit was 0.02 mg/L.

Dung and Urine Analysis

On each day of application, subsamples from the dung, urine and urine+DCD to be applied were taken and analysed for total N. A 10 mL portion of the urine subsamples was diluted 1:500 with deionised water (Sartorius arium 611UV, Göttingen, Germany) and then analysed unfiltered with Ganimede N (Hach-Lange, Düsseldorf, Germany). The dry matter content of dung samples was measured by freeze drying. A portion of the freeze-dried sample was ball milled and analysed for total N content with LECO TruSpec CN (St. Joseph, USA).

Data Analysis

The calculation of NH$_3$-N loss in kg/ha was carried out as described by Meisinger et al. (2001). If the difference between the inlet and outlet acid trap concentration was negative the loss was set to zero. The NH$_3$-N flux was calculated by dividing the emission rate by the
exposure time. The statistical analysis software R (version 3.1.2, R Development Core Team, 2014) was used to test for treatment effects with mean comparisons by F-protected LSD test. Data from each season were analysed separately because the effect of season was confounded with the effect of the slightly changed location at each application. A statistical probability of $P < 0.05$ was considered significant for all statistical tests.

Results

Weather Conditions

The average air temperatures during the measurement periods were 9.1, 15.4 and 11.6 °C during the spring, summer and autumn applications, respectively (Table 3). Total rainfall varied greatly between experimental periods (Table 3). During the spring application cumulative rainfall and intensity (Figure 1d) was very low compared with the summer and autumn applications (Figures 1i, n). Additionally, little rainfall occurred during the initial 11 days following the spring application (Figure 1d). The initial volumetric soil moisture at treatment application was highest in spring (42 %) and lowest in summer (11 %), while there was little difference in mean wind speed between seasons.

Table 3 here

Dung and Urine N Content, Dry Matter and N Loading

Dung dry matter contents were 15, 12 and 9 % for spring, summer and autumn applications, respectively. The dung N loading was highest in spring (Table 4). The mean urine N load was 695 kg/ha or in the case of urine+DCD 717 kg/ha (Table 4), with the highest N loading in summer.

Table 4 here
Ammonia Emissions

Hourly ammonia emissions (kg NH$_3$-N/ha/h) ranged from 0 to 0.66 kg N/ha/h for dung, 0 to 1.7 kg N/ha/h for urine and 0 to 2.02 kg N/ha/h for urine+DCD (Figures 1a, f, k). Hourly emissions peaked within the first two days following application for urine treatments and declined thereafter until the end of the measurement period in each season. Hourly NH$_3$ emissions from dung were lower compared to urine treatments in the first four days after each application and displayed little temporal variation within each season.

Emissions from urine treatments were rapid following application, with the majority (> 80 %) of the NH$_3$-N emissions occurring within the first three days in each of the three seasons (Figures 1b, j, l). Emissions from dung followed a more consistent emission pattern with > 80 % of the emissions occurring within 11 to 14 days of application in each of the three seasons (Figures 1b, j, l).

Total NH$_3$-N losses and EFs for each season are presented in Table 5. The EFs for urine treatments were significantly higher than the dung in each season. However, the EFs for urine and urine+DCD did not differ significantly. Substantial differences in NH$_3$ loss, particularly for urine and urine+DCD, were noted between spring and the other two seasons. These differences were not statistically evaluated as the experiment was not randomised to accommodate such comparison bearing in mind that the specific environmental factors following dung and urine application were expected to have a large influence on the measured EFs. Over the three applications dates the mean EFs were 3.9, 11.1, and 12.9 % for dung, urine and urine+DCD, respectively.
Discussion

Ammonia Emission Factors

The NH$_3$-N EFs for urine across the three seasons ranged between 8.7 % and 14.9 % (Table 5). Other researchers have observed larger ranges in urine EFs for temperate grassland. For instance, EFs for urine ranged between 3.7 % and 26.9 % in the UK (Ryden et al., 1987; Lockyer & Whitehead, 1990), between 3 % and 52 % in Denmark (Petersen et al., 1998) and between 3.6 % and 23 % in New Zealand (Zaman et al., 2009, 2013; Zaman & Blennerhassett, 2010). The lower range of emissions in the current experiment may be in part due to the small range in rainfall quantities experienced during the initial days following each urine application (Figure 1d, i, n). Ammonia EFs for urine applied to grassland have been found to decrease four-fold with the application of simulated rainfall (20 mm) immediately after urine application, compared to urine receiving no rainfall (Saarijärvi et al., 2006). This is a period which is highly influential on cumulative NH$_3$ loss as illustrated by Lockyer and Whitehead (1990) who reported that at least 70% of NH$_3$ loss occurred within four days of urine application and the current experiments where >80% of emissions occurred within three days of urine application.

In the current experiments, dung NH$_3$-N EFs ranged between 2.8 % and 5.3 % (Table 5). These values are consistent with values reported in the literature for dung EFs from temperate grassland of 1.2 % (Ryden et al., 1987), 4.7 % (MacDiarmid & Watkin, 1972) but substantially lower than the 11.6 % reported by Laubach et al. (2013); Petersen et al. (1998) detected only “insignificant” NH$_3$ volatilisation from dung pats. The lower NH$_3$ emission from dung compared to urine in this and previous studies is most likely due to the form of N in dung which is bound in proteins and bacterial cells as compared to the high proportion of urea N present in urine (Ryden et al., 1987). Petersen et al. (1998) suggested that the lower
emission from dung could also be due to the formation of a surface crust on the dung pat which limits NH$_3$ volatilisation.

The somewhat lower EFs reported in this study may be due, in part, to the specific environmental conditions experienced at the experimental site following the treatment applications. Inconsistency in EFs between studies conducted in different countries and indeed within countries is to be expected. This is because measurements are taken from a subsample of all possible soil and environmental conditions which occur in a given country and ammonia loss is heavily influenced by these factors. This presents challenges for generating robust loss estimates for grazing systems were urine and dung are deposited continually during the grazing season and each patch is subject to a very specific set of soil and environmental conditions flowing deposition. The generation of country-specific EFs is important to help refine the accuracy of national NH$_3$ emissions inventories, but importantly so too is the generation of larger NH$_3$ loss datasets across countries with similar climatic conditions. Given the limitations of subsampling all possible climatic and soil conditions which a urine or dung patch will be subjected to in a specific country, a practical approach may be to aggregate studies which have assessed loss under environmental conditions which are representative of a country. It may be useful to do this in weighted manner which takes account of the relative occurrence of the environmental conditions of specific experiments. This approach has potential to generate a more robust climatic (rather than country specific) EF. Currently emissions from dung and urine for Ireland’s national NH$_3$ emissions inventory are estimated using UK data, these loss estimates can be improved by incorporation of country specific data such those from the current study.
Temporal variation in NH$_3$ loss

The temporal pattern of NH$_3$ emission peaks for urine treatments was similar between seasons (Figures 1a, b, f, g, k, l). However, the emission period was substantially longer in spring than in summer and autumn experiments (14 days versus eight and seven days, respectively). Accordingly, higher cumulative emissions were measured in spring. In general, emissions in spring are thought to be lower than in summer and autumn due, in part, to lower air temperatures. Several studies have found NH$_3$ volatilisation to increase with increasing air temperature (Clay et al., 1990; Lockyer & Whitehead, 1990; Sommer et al., 1991; Whitehead & Raistrick, 1991). However, the highest emission in this experiment was measured in spring which had the lowest air temperature (Table 3). This highlights the point that other factors can play an influence which overrides the temperature effect on NH$_3$ loss. The high spring emissions observed can be explained by both high emission on day two and the protracted period of NH$_3$ emission in the spring measurement where rainfall did not occur (Figure 1d). The lack of rainfall may have allowed for this protracted period of NH$_3$ loss compared to other seasons. Previous studies have reported that significant levels of rainfall/irrigation, soon after application, can restrict NH$_3$ emissions from urea fertiliser (Bouwmeester et al., 1985; Engel et al., 2011; Sanz-Cobena et al., 2011) and urine patches (Saarijärvi et al., 2006).

Initial soil moisture content was highest in spring (Table 3) which may have promoted NH$_3$ loss due to increased urease activity (McGarry et al., 1987; Kemppainen, 1989; Whitehead & Raistrick, 1991). Higher initial soil moisture contents may have slowed the infiltration of urine N into the soil profile, contributing to the large peak in NH$_3$ loss observed in spring (Figure 1a). Similarly, Sommer & Jacobsen (1999) reported lower infiltration of slurry ammoniacal N and increased NH$_3$ volatilisation. Furthermore, protracted drying conditions due to the absence of rainfall (Figure 1d) for most of the duration of measurement in spring is consistent with higher NH$_3$ loss due to a prolonged emission period in addition to the initial
peak (Figure 1a). In the absence of rainfall, previous studies (Burch & Fox, 1989; Engel et al., 2011) have reported greater NH\textsubscript{3} volatilisation from urea fertiliser which could be either due to an increased transition of dissolved to gaseous NH\textsubscript{3} which is lost to the atmosphere or due to increased soil water evaporation and subsequent volatilisation of NH\textsubscript{3} dissolved in soil water.

Impact of Dicyandiamide on Ammonia Emissions

Although there is strong evidence in the literature, summarised by Kim et al. (2012), that the use of a nitrification inhibitor can increase NH\textsubscript{3} emissions, there was no statistical difference between urine and urine+DCD in the current experiments. However, in two seasons a trend towards increased EFs was present. Although not significantly different, EFs for the urine+DCD treatments in spring and autumn were numerically 31% ($P = 0.2$) and 9% ($P = 0.38$) higher compared to urine only. The soil properties at this site may have contributed to the lack of difference in NH\textsubscript{3} emissions between urine and urine+DCD treatments. For instance, a meta-analysis conducted by Kim et al. (2012) found that studies in which DCD significantly increased NH\textsubscript{3} volatilisation relative to control treatments (e.g. Davies & Williams, 1995; Asing et al., 2008; Table 1) had an average soil pH of 6.5 and CEC of 10.2 meq/(100 g), whereas the soils in studies with no significant effect of DCD (e.g. Di & Cameron, 2004; Table 1) had lower soil pH (5.5) and higher CEC (15.8 meq/(100 g)). These lower pH and higher CEC values are similar to the soil pH and CEC in the present study (5.8 and 15.5 meq/(100 g), Table 2). Therefore, the pH and high CEC of the soil at this site may have mitigated against DCD increasing NH\textsubscript{3} volatilisation loss.

Conclusions

Mean ammonia EFs in this study were 3.9 (2.8–5.3 %), 11.1 (8.7–14.9 %) and 12.9 % (9.5–19.5 %) for dung, urine and urine+DCD, respectively. Differing EFs between seasons were
attributed to the contrasting soil and ambient environmental conditions immediately following application of dung and urine, specifically soil moisture, and precipitation volume and pattern following application. The results of this experiment will aid refinement of national NH$_3$ inventories in Ireland and add to the limited body of excreta EFs available for temperate maritime grassland, particularly for urine+DCD. Other researchers have shown increased NH$_3$ emissions when nitrification inhibitors are used. However, the current experiments did not detect such an effect, indicating that increased NH$_3$ loss due to nitrification inhibitor usage will not occur in all cases. The present study highlights the need to fully understand the potential pollution swapping implications of utilising nitrification inhibitors as an N$_2$O loss mitigation strategy because their effect on NH$_3$ loss remains difficult to predict. Further research is needed to identify techniques for NH$_3$ mitigation from dung and urine, and practical and cost-effective mechanisms for implementation in grazing systems, which is quite challenging owing to the spatially and temporally haphazard nature of excreta deposited at pasture.

Acknowledgements

The authors would like to sincerely thank the laboratory and field staff at both Teagasc Johnstown Castle with their assistance on this project. This research was financially supported by the Department of Agriculture, Food and the Marine (Grant numbers RSF13S430 and 11S138).

References

Table Captions

Table 1 Summary of literature reported influence of DCD on NH$_3$ volatilisation.

Table 2 Soil properties (0–10 cm depth) at the experimental site.

Table 3 Applied N rate for each season and treatment.

Table 4 Summary of weather conditions during each experimental period.

Table 5 Total NH$_3$-N losses and emission factors for spring, summer and autumn dung and urine applications.
Figure Captions

Figure 1 Temporal trend of NH$_3$-N emissions and cumulative NH$_3$-N loss for dung, urine and urine+DCD in spring, summer and autumn. Air temperature, daily rainfall and wind speed for each experimental period. Error bars indicate standard deviation (n = 3).
<table>
<thead>
<tr>
<th>Type of Study</th>
<th>Control</th>
<th>Treatment</th>
<th>Effect of DCD</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasshouse</td>
<td>Urea, organic manure</td>
<td>Urea+DCD, organic manure+DCD</td>
<td>Increased volatilisation by 58 %* and 38 %</td>
<td>Asing et al. (2008)</td>
</tr>
<tr>
<td>Field</td>
<td>Urea</td>
<td>Urea+DCD</td>
<td>No effect</td>
<td>Clay et al. (1990)</td>
</tr>
<tr>
<td>Lysimeter</td>
<td>N-fertiliser</td>
<td>N-fertiliser+DCD</td>
<td>Significantly increased volatilisation</td>
<td>Davies & Williams (1995)</td>
</tr>
<tr>
<td>Lysimeter</td>
<td>Urea, urine</td>
<td>Urea+DCD, urine+DCD</td>
<td>No effect</td>
<td>Di & Cameron (2004)</td>
</tr>
<tr>
<td>Field</td>
<td>Urea</td>
<td>Urea+DCD</td>
<td>“Tremendous” increase in volatilisation</td>
<td>Prakasa Rao & Puttanna (1987)</td>
</tr>
<tr>
<td>Incubation</td>
<td>Urea</td>
<td>Urea+DCD</td>
<td>In- and decreased volatilisation</td>
<td>Rodgers (1983)</td>
</tr>
<tr>
<td>Lysimeter</td>
<td>Urine</td>
<td>Urine+DCD</td>
<td>Increased volatilisation by 41 %* and 18 %*</td>
<td>Zaman & Blennerhassett (2010)</td>
</tr>
<tr>
<td>Field</td>
<td>Urine</td>
<td>Urine+DCD</td>
<td>Increased volatilisation by 19 % and 55 %*</td>
<td>Zaman & Nguyen (2012)</td>
</tr>
<tr>
<td>Field</td>
<td>Urine</td>
<td>Urine+DCD</td>
<td>Increased volatilisation by 9–56 %</td>
<td>Zaman et al. (2009)</td>
</tr>
<tr>
<td>Field</td>
<td>Urine</td>
<td>Urine+DCD</td>
<td>Increased volatilisation by 10–45 %*</td>
<td>Zaman et al. (2013)</td>
</tr>
</tbody>
</table>

* Increase was significant
Table 2

<table>
<thead>
<tr>
<th>Soil pH</th>
<th>CECa (meq/(100 g))</th>
<th>Soil LOIb (%)</th>
<th>Soil Ca (mg/L)</th>
<th>Soil K (mg/L)</th>
<th>Soil Mg (mg/L)</th>
<th>Sand (%)</th>
<th>Silt (%)</th>
<th>Clay (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>15.5</td>
<td>7.0</td>
<td>917</td>
<td>125</td>
<td>121</td>
<td>51.7</td>
<td>33.9</td>
<td>14.4</td>
</tr>
</tbody>
</table>

a Cation exchange capacity
b Loss on ignition
<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (hPa)</td>
<td>1012</td>
<td>1002</td>
<td>999</td>
</tr>
<tr>
<td>Mean air temperature (°C)</td>
<td>9.1</td>
<td>15.4</td>
<td>11.6</td>
</tr>
<tr>
<td>Cumulative rainfall (mm)</td>
<td>10.9</td>
<td>104.2</td>
<td>142.9</td>
</tr>
<tr>
<td>Rain days</td>
<td>5</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Initial volumetric soil moisture (%)</td>
<td>42</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Mean wind speed (m/s)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>Spring (kg N/ha)</td>
<td>Summer (kg N/ha)</td>
<td>Autumn (kg N/ha)</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Dung</td>
<td>1274 ± 263 †</td>
<td>1220 ± 83</td>
<td>1091 ± 47</td>
</tr>
<tr>
<td>Urine</td>
<td>638 ± 12</td>
<td>731 ± 6</td>
<td>716 ± 4</td>
</tr>
<tr>
<td>Urine+DCD</td>
<td>664 ± 8</td>
<td>746 ± 4</td>
<td>741 ± 4</td>
</tr>
</tbody>
</table>

† standard deviation
Table 5

<table>
<thead>
<tr>
<th></th>
<th>Total NH$_3$-N losses (kg/ha)</th>
<th>NH$_3$-N Emission factors (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Summer</td>
</tr>
<tr>
<td>Dung</td>
<td>67 ± 36†</td>
<td>34 ± 18</td>
</tr>
<tr>
<td>Urine</td>
<td>95 ± 19</td>
<td>72 ± 19</td>
</tr>
<tr>
<td>Urine+DCD</td>
<td>129 ± 33</td>
<td>72 ± 25</td>
</tr>
</tbody>
</table>

† standard deviation
‡ Emission factors in the same column followed by a different letters are significantly different according to the LSD test ($P < 0.05$).