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Abstract

Forty eight individual pigs (8.760.26 kg) weaned at 2861 d of age were used in a 22-d study to evaluate the effect of oral
administration of a Bacillus pumilus spore suspension on growth performance and health indicators. Treatments (n = 16)
were: (1) non-medicated diet; (2) medicated diet with apramycin (200 mg/kg) and pharmacological levels of zinc oxide
(2,500 mg zinc/kg) and (3) B. pumilus diet (non-medicated diet + 1010 spores/day B. pumilus). Final body weight and average
daily gain tended to be lower (P = 0.07) and feed conversion ratio was worsened (P,0.05) for the medicated treatment
compared to the B. pumilus treatment. Ileal E. coli counts were lower for the B. pumilus and medicated treatments compared
to the non-medicated treatment (P,0.05), perhaps as a result of increased ileal propionic acid concentrations (P,0.001).
However, the medicated treatment reduced fecal (P,0.001) and cecal (P,0.05) Lactobacillus counts and tended to reduce
the total cecal short chain fatty acid (SCFA) concentration (P = 0.10). Liver weights were lighter and concentrations of liver
enzymes higher (P,0.05) in pigs on the medicated treatment compared to those on the non-medicated or B. pumilus
treatments. Pigs on the B. pumilus treatment had lower overall lymphocyte and higher granulocyte percentages (P,0.001)
and higher numbers of jejunal goblet cells (P,0.01) than pigs on either of the other two treatments or the non-medicated
treatment, respectively. However, histopathological examination of the small intestine, kidneys and liver revealed no
abnormalities. Overall, the B. pumilus treatment decreased ileal E. coli counts in a manner similar to the medicated treatment
but without the adverse effects on growth performance, Lactobacillus counts, cecal SCFA concentration and possible liver
toxicity experienced with the medicated treatment.
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Introduction

Weaning is a stressful event for young pigs characterized by

gastrointestinal disturbances caused by physiological, immunolog-

ical and microbiological changes within the gastrointestinal tract

(GIT) [1]. During this period, pigs are highly susceptible to enteric

diseases, and those caused by Escherichia coli (e.g. post-weaning

diarrhea and edema disease) are responsible for considerable

economic losses in the pig industry [1,2]. As a result, in-feed

antibiotics have long been used for the elimination or reduction of

pathogenic bacteria, in particular E. coli, during the post-weaning

period [1]. However, the routine use of in-feed antibiotics was

banned in the EU in 2006 (Regulation EC/1831/2003;[3]),

although their use is still permitted under veterinary prescription

as the need arises. For instance, apramycin (Apralan G200, Elanco

Animal Health, Eli Lilly & Co. Ltd) was prescribed for use on the

pig farm where the current study was conducted to control

persistent edema disease during the post-weaning period. Howev-

er, antibiotic-resistance is a major human health issue and effective

alternatives to antibiotics are required [1]. In-feed zinc oxide, at

pharmacological concentrations (i.e. concentrations in excess of

normal dietary requirements) is also commonly used for enteric

disease prevention in weaned pigs but there are concerns about its

accumulation in the environment [1].

Probiotics are defined as ‘live microorganisms which when

administered in adequate amounts confer a health benefit on the

host’ [4]. They offer potential as an alternative to antibiotics for

pigs, both as a means of controlling enteric pathogens and

improving growth rate and feed conversion [1,5]. Together with

modulation of the immune system and competitive exclusion,

antimicrobial production is one of the suggested mechanisms of

action of probiotics [6]. The latter can therefore be considered a

probiotic trait and is often listed as one of the properties required

PLOS ONE | www.plosone.org 1 February 2014 | Volume 9 | Issue 2 | e88599

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by T-Stór

https://core.ac.uk/display/45656487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


of a strain for it to be considered probiotic [7]. This is backed up

by the fact that strains selected in vitro for their anti-E. coli activity,

have proven successful in reducing E. coli shedding, preventing

diarrhea and improving growth performance in pigs [8–13].

However, as is usually the case with probiotics, benefits are strain-

specific [5].

The marine environment is largely untapped as a source of

probiotics but should not be overlooked given that it is a potential

source of novel microorganisms and that antimicrobial production

is common amongst marine microflora [14]. In fact, in vitro data

from our group have demonstrated that marine bacteria have

potential as probiotics for animal production [15,16]. One strain

of Bacillus pumilus showed most promise as it satisfies a number of

probiotic criteria and has activity against E. coli without being

cytotoxic. However, as with any potential feed additive, observa-

tions made in vitro need to be substantiated with in vivo data and to

date, this marine B. pumilus strain has not been tested in vivo.

The objective of the present study was therefore to evaluate this

pre-screened Bacillus strain for use as an in-feed probiotic for newly

weaned pigs in comparison to a negative control treatment without

antibiotic or pharmacological levels of zinc oxide (non-medicated

treatment) and a positive control treatment containing apramycin

and pharmacological levels of zinc oxide (medicated treatment).

Key parameters including growth performance and health

indicators were investigated in order to evaluate safety and

efficacy in vivo.

Materials and Methods

Ethical Approval
The pig study complied with European Union Council

Directive 91/630/EEC which lays down minimum standards for

the protection of pigs and European Union Council Directive 98/

58/EC which concerns the protection of animals kept for farming

purposes. Ethical approval was obtained from the Waterford

Institute of Technology ethics committee and an experimental

license (number B100/4229) was obtained from the Irish

Department of Health and Children.

Animals and experimental design
This study was conducted on the pig unit at the Teagasc, Pig

Development Department, Moorepark, Fermoy, Co. Cork, Ire-

land, which at the time was experiencing edema disease during the

post-weaning period. Forty-eight crossbred (Large White 6
Landrace) pigs (24 male and 24 female; 8.760.26 kg) were

weaned at 2861 d of age and blocked by sex, weight and litter

origin, before being randomly assigned as individual pigs to one of

three dietary treatments (n = 16 pigs/treatment) as follows: (1) non-

medicated diet (negative control); (2) medicated diet containing

200 mg apramycin/kg (Apralan G200, Elanco Animal Health, Eli

Lilly & Co., Basingstoke, Hampshire, UK) and zinc oxide

(2,500 mg zinc /kg provided from Zincotec, Provimi Ltd.,

Lichfield, Staffordshire, UK) (positive control); and (3) non-

medicated diet + ,1010 spores B. pumilus WIT 588 daily (prepared

and administered as outlined below). Treatments were adminis-

tered continuously for 22 d post-weaning and pigs were provided

with ad libitum access to feed and water.

The dietary and chemical composition of the experimental diets

is presented in Table 1. The diets were manufactured in the

Moorepark feed mill and were formulated to meet or exceed the

National Research Council requirements for weaned pigs [17]. All

phase 1 diets were formulated to 16.2 MJ/kg digestible energy and

16.2 g/kg lysine using the same ingredients except that apramycin

and pharmacological levels of zinc oxide were added to the

medicated diet. Similarly, all phase 2 diets were formulated to

15.0 MJ/kg digestible energy and 15.0 g/kg lysine using the same

ingredients except that apramycin and pharmacological levels of

zinc oxide were added to the medicated diet. All diets were fed in

3 mm pellet form. Phase 1 diets were fed for 1 week after which

phase 2 diets were fed for the remainder of the experiment.

Preparation of B. pumilus spores and administration to
pigs

Bacillus pumilus WIT 588 is a rifampicin resistant variant of a

strain (B. pumilus WIT 572) previously isolated from seaweed

[15,16]. It was generated to facilitate enumeration in the porcine

GIT and characterized in vitro as a probiotic for animal production

[16]. The strain was previously referred to as B. pumilus [15,16],

denoting the fact that it belonged to the B. pumilus group, as it

could not be distinguished from other members of this group (B.

altitudinis, B. aerophilus, B. safensis, B. stratosphericus) by 16S rRNA

gene sequencing. However, in the present study the identity of the

strain was confirmed as B. pumilus on the basis of sequencing of the

gyrB and pyrE housekeeping genes [18]. Bacillus pumilus WIT 588

was grown aerobically for ,24 h in Brain Heart Infusion (BHI)

broth (Oxoid Ltd, Basingstoke, Hampshire, UK) at 37uC with

agitation at 200 rpm. It was then induced to sporulate by spread-

plating 1 mL of this culture onto sporulation agar [16,19] and

incubating for 7 d at 37uC. The plates were then flooded with

10 mL sterile ice-cold water and the cells were suspended using a

glass spreader. This suspension was heated at 80uC for 15 min to

kill any vegetative cells. The spore concentration was determined

by diluting the suspension 10-fold in maximum recovery diluent

(MRD; Merck, Darmstadt, Germany), and spread-plating on BHI

agar incubated at 37uC for 24 h. The concentration was adjusted

to ,1010 spores/mL, and aliquots of this spore suspension were

stored at 220uC until use.

Aliquots of spore suspension were thawed at 4uC each night

before use, as required. On the day of weaning (d 0), pigs on the B.

pumilus treatment received an oral dose of 5 mL of the spore

suspension by syringe immediately after weaning (,561010 spores

B. pumilus WIT 588 per pig). Pigs on the two other treatments

received an oral dose of 5 mL sterile distilled water by syringe so

that the handling of pigs was identical across treatments.

Thereafter (from d 1 to 21), all pigs on the B. pumilus treatment

received a top dressing of ,1010 spores on their morning feed.

Animal housing and management
Pigs were housed individually in fully slatted pens

(1.2 m60.9 m) with plastic slats (Faroex, Manitoba, Canada) in

a total of four rooms with 12 pigs per room. Each treatment group

was represented in each room to avoid possible variation due to

environment. The pigs had unlimited access to water from one

nipple-in-bowl drinker (BALP, Charleville-Mezieres, Cedex,

France) per pen. The temperature was controlled by a hot air

heating system and an exhaust fan drawing air from under slat

level, both controlled by a Stienen PCS 8400 controller (Stienen

BV, Nederweert, The Netherlands). The temperature was

maintained at 28-30uC in the first week and reduced by 2uC per

week to 24uC. Pigs were observed closely at least three times daily.

Any pig showing signs of ill health was treated as appropriate. All

veterinary treatments were recorded including identity of pig,

symptom, medication used and dosage. Individual body weight,

recorded on d 0 and 22 of the study and feed disappearance,

recorded on d 0, 8, 15 and 22 of the study, were used for

calculation of average daily feed intake (ADFI), average daily gain

(ADG), and feed conversion ratio (FCR; ADFI/ADG). Fecal

consistency scores (0 = normal, 1 = soft, 2 = mild diarrhea, 3 =
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severe, watery diarrhea) [8] were recorded daily during the

experiment.

Blood sampling and analysis
Blood samples were taken from each of 12 pigs/treatment by

venipuncture from the anterior vena cava on d 0, 8 and 15. On d

22 of the experiment, 10 pigs/treatment were euthanized by

captive bolt stunning followed by exsanguination and blood

samples were taken at this time. All samples were collected in

plastic blood collection tubes (VacuetteH, Labstock, Dublin,

Ireland) and immediately inverted 10 times. Blood samples for

serum biochemistry were collected in serum collection tubes, and

allowed to clot at room temperature for 2–3 h prior to

centrifugation (20006g for 10 min). Serum was collected and

stored at 220uC for subsequent biochemical analysis. Whole

blood samples were collected in EDTA tubes and stored at room

temperature for hematology analysis within 6 h of sampling.

For hematological analysis, the EDTA blood samples were

analyzed on a Beckman Coulter Ac T Diff (Beckman Coulter Inc.,

Brea, CA, USA), as outlined previously [20]. Serum samples were

Table 1. Ingredient composition and nutrient content of experimental diets (on an air dry basis).

Diet type Phase 1 Phase 2

Non-medicated1 Medicated Non-medicated1 Medicated

Ingredient (g/kg)

Wheat 220.0 216.0 399.0 395.0

Maize 80.0 80.0 - -

Soybean meal 163.5 163.5 229.2 229.2

Full-fat soybean meal 100.0 100.0 70.0 70.0

Lactofeed 702 200.0 200.0 200.0 200.0

Dried skim milk 125.0 125.0 50.0 50.0

Soybean oil 78.1 78.1 25.0 25.0

Vitamin and mineral premix3 3.0 3.0 3.0 3.0

L-Lysine HCl 4.73 4.73 3.70 3.70

DL-Methionine 3.22 3.22 2.33 2.33

L-Threonine 2.41 2.41 1.62 1.62

L-Tryptophan 0.95 0.95 0.54 0.54

Di-calcium phosphate 5.0 5.0 1.52 1.52

Limestone flour 11.0 11.0 11.0 11.0

Salt 3.0 3.0 3.0 3.0

Phytase 5000 FTU/g4 0.1 0.1 0.1 0.1

Apralan G200premix5 - 1.0 - 1.0

Zinc oxide6 - 3.0 - 3.0

Chemical composition (g/kg)

Dry matter 921 919 889 889

Crude protein 213 212 213 209

Ash 62 64 58 61

Fat 114 114 56 56

Crude fiber 16 19 21 20

Lysine7 16.2 16.2 15.0 15.0

Threonine7 10.5 10.5 9.8 9.8

Methionine7 6.8 6.8 5.7 5.7

Methionine and cysteine7 9.7 9.7 9.0 9.0

Tryptophan7 3.6 3.6 3.3 3.3

Digestible energy (MJ/kg)7 16.2 16.2 15.0 15.0

1Probiotic treatment was provided by the addition of ,1010 spores/day of Bacillus pumilus WIT 588 to the non-medicated treatment.
2Lactofeed 70 contains 70% lactose, 11.5% protein, 0.5% oil, 7.5% ash, and 0.5% fiber (Volac, Cambridge, UK).
3Provided the following per kg of complete starter diet: Cu, 155 mg; Fe, 90 mg; Mn, 47 mg; Zn, 120 mg; I, 0.6 mg; Se, 0.3 mg; vitamin A, 6000 IU; vitamin D3, 1000 IU;
vitamin E, 100 IU; vitamin K, 4 mg; vitamin B12, 15 mg; vitamin B1, 2 mg; vitamin B6, 3 mg; riboflavin, 2 mg; nicotinic acid, 12 mg; pantothenic acid, 10 mg and choline
chloride, 250 mg.
4Natuphos 5000 (BASF SE, Lampertheim, Germany).
5Phase 1 and 2 medicated diets contained 200 mg apramycin per kg provided from Apralan G200, (Elanco Animal Health, Eli Lilly & Co., Basingstoke, Hampshire, UK).
6Phase 1 and 2 medicated diets contained 2500 mg of elemental zinc per kg provided from supplemental zinc oxide (Zincotec; Provimi Ltd., NuTec Mill, Eastern Avenue,
Lichfield, Staffordshire, UK) and nutritional zinc included in the vitamin and mineral premix.
7Calculated values.
doi:10.1371/journal.pone.0088599.t001

Marine Bacillus pumilus as a Livestock Probiotic

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e88599



analysed using an ABX Pentra 400 Clinical Chemistry Analyser

(Horiba ABX, Northampton, UK), as outlined previously [21].

Intestinal and organ histology
The kidneys, spleen and liver were removed, trimmed of any

superficial fat or blood, blotted dry and weighed (n = 10/

treatment). Samples of tissue were excised from two anatomical

regions of the small intestine: the jejunum (55 cm distal to the

pyloric junction) and the ileum (15 cm proximal to the ileo-cecal

junction). Samples of liver (centre of quadrate lobe) and kidney

(cortex and medulla) were also taken and all samples were

immediately placed in No-Tox fixative (Scientific Device Labora-

tory, Des Plaines, IL, USA) on a shaker for a minimum of 48 h.

Intestinal and organ samples were then treated, sliced and

mounted as described by Walsh et al. [20] and stained with

haematoxylin and eosin (Sigma Aldrich, Ireland) for light

microscopic examination. Determination of gross morphological

parameters of the structure of the jejunum and ileum (villus height

and crypt depth) was conducted according to Applegate et al. [22]

and Gao et al. [23]. For each pig 10 villi and 10 crypts were

measured on five fields of view, where villi were attached to the

lumen. Measurements were taken from images obtained using a

light microscope (Olympus, Southend-on-Sea, UK) fitted with an

Optikam PRO5 camera (Optika SRL, Ponteranica, Italy) using

Optika-Vision Pro software. The goblet cell number was

determined in jejunal and ileal sections by periodic acid-Schiff

staining according to Thompson & Applegate [24]. Positively

stained periodic acid-Schiff cells were enumerated on 10 villi/

sample. The means of all parameters were utilized for statistical

analysis. All intestinal and organ tissue samples were also

examined for histological evidence of abnormality by an experi-

enced histopathologist.

Fecal and intestinal digesta sampling and microbiological
analysis

Fecal samples were obtained by digital rectal stimulation from

12 pigs/treatment on d 0, 8, 15 and 20 and collected in sterile

containers. On d 22, digesta samples from the cecum (terminal tip)

and ileum (15 cm proximal to the ileo-cecal junction) were

collected aseptically into sterile plastic containers. Both digesta and

fecal samples were stored at 4uC until analysis (within 12 h).

Samples were homogenized as described by Gardiner et al. [25]

and 500 ml of each homogenate was heated to 80uC for 15 min.

Both heated and unheated homogenates were diluted as described

by Gardiner et al. [25]. Appropriate dilutions were plated, as

follows; (1) unheated and heated samples were spread-plated on

BHI agar containing 200 mg rifampicin/mL, 3.5% NaCl and

50 U/mL nystatin (Sigma) and incubated aerobically for 2 d at

37uC to enumerate the vegetative cells + spores and spores alone,

respectively of the administered B. pumilus strain; (2) unheated

samples were pour-plated on ChromoCultH tryptone bile X-

glucuronide (CTBX) agar (Merck) incubated at 44uC for 24 h to

enumerate E. coli; and (3) unheated samples were pour-plated on

Lactobacillus selective (LBS) agar (Becton Dickinson, Franklin

Lakes, NJ, USA) following anaerobic incubation at 37uC for 5 d

to enumerate Lactobacillus. Representative putative E. coli isolates

(four colonies per pig from fecal samples at each time point and

ileal and cecal digesta) were streaked onto nutrient agar and then

onto CTBX agar to obtain pure cultures. They were then streaked

onto eosin methylene blue (EMB) agar (Acumedia Manufacturers,

Neogen Europe, Ltd., Auchincruive, Scotland, UK) to confirm

identity. To determine if these representative E. coli isolates were

hemolytic, they were then streaked onto Columbia agar (Sigma)

containing 5% sheep blood (TCS Biosciences Ltd., Buckingham,

UK).

Determination of short chain fatty acid concentrations in
and pH of ileal and cecal digesta

Samples of cecal and ileal digesta were taken from individual

pigs to measure short chain fatty acid (SCFA) concentrations and

pH. The pH was measured using a Mettler Toledo pH meter.

SCFA concentrations were determined using gas chromatography

according to the method of Lynch et al. [26] with the following

modifications. A 5 g sample was centrifuged at 1,8106g for

10 min, with 1 mL of the resultant supernatant mixed with 1 mL

of internal standard. A 1 mL aliquot of centrifuged filtered sample

was then injected into an Agilent 5890 gas chromatograph with a

15 m60.53 mm i.d. Econo-Cap EC-1000 100% polyethylene

glycol-acid modified column (Alltech Associates Applied Science

Ltd, Carnforth, Lancashire, UK). Nitrogen was used as the carrier

gas at a flow rate of 5.6 mL/min. Oven, detector and injector

temperatures were set at 82, 280, and 240uC, respectively.

Statistical Analysis
Data for growth performance, digesta microbiology, histology,

organ weights, SCFA concentrations and pH of digesta were

analyzed as a complete randomized block design using the mixed

models procedure of SAS (SAS Institute, Inc., Cary, NC, USA)

[27]. Initial (d 0) body weight and the final (d 22) body weight were

used as covariates in the model for analysis of growth performance

(BW, ADG, ADFI and FCR) and organ weights, respectively.

Fecal microbiology, whole blood hematology and serum biochem-

istry data were analyzed as repeated measures using the MIXED

procedure of SAS with sampling day as the repeated variable. D 0

values were used as a covariate in the model for analysis of

hematology, serum gamma glutamyltransferase (GGT) and serum

total protein (TP). The appropriate covariance structure, as

indicated by the model fit statistics, was fitted to the data. The

denominator degrees of freedom were computed using the

Satterthwaite approximation. Fixed effects were treatment and

sex. Block was included as a random effect. Simple main effects

were obtained using the ‘slice’ option in SAS. Least squares means

were computed and P values were adjusted for multiple

comparisons using the Tukey-Kramer adjustment. Significance

was reported for P#0.05 and tendencies towards significance were

reported for 0.05,P#0.10. For all response criteria, the individual

pig was considered the experimental unit.

Results

Effects on growth performance and diarrhea scores
On d 12 one pig from the B. pumilus group displaying symptoms

of pneumonia was treated with injectable enrofloxacin (Baytril, 5%

v/v, Bayer Ireland, Dublin, Ireland; 1 mL/day) but died on d 13.

Also on d 12 one pig from the medicated group displaying

symptoms of pneumonia was treated with injectable enrofloxacin

(1 mL/day for 3 d) and penicillin (Norocillin, 300 mg/mL,

Norbrook, Monaghan, Ireland; 1 mL/day for 3 d). On d 13

another pig from the B. pumilus group with symptoms of

pneumonia was treated with injectable enrofloxacin and penicillin

as before. The latter two pigs made a complete recovery and their

data were included in the analysis of growth performance, but

excluded from the analysis of all remaining parameters.

The effect of treatment on the growth performance of pigs is

presented in Table 2. The initial and final body weight of pigs did

not differ between treatments (P.0.05), although pigs on the B.

pumilus treatment tended to be heavier at the end of the
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experiment than pigs fed the medicated treatment (P = 0.07).

Although no overall treatment effect was observed for ADFI, there

was a tendency for pigs on the B. pumilus treatment to have a

greater ADFI between d 15 and 22 than pigs fed the medicated

treatment (P = 0.07). Similarly, a tendency was observed for pigs

on the B. pumilus treatment to have a higher ADG than pigs fed the

medicated treatment (P = 0.07). Consequently, pigs on the B.

pumilus treatment also had improved FCR when compared to pigs

on the medicated treatment (P,0.05), whereas the FCR of pigs on

the non-medicated treatment was similar to that of pigs on the two

other treatments.

The mean piglet diarrhea scores for the entire experimental

period were 0.34, 0.02 and 0.23 (SE = 0.058; P,0.01) for the non-

medicated, medicated and B. pumilus treatments, respectively (data

not shown).

Effects on hematological parameters
The effect of treatment on hematological parameters is

presented in Table 3. No treatment x time interaction or

treatment effect was observed for total white blood cell (WBC)

counts (P.0.05). There was no treatment x time interaction for

the lymphocyte percentage (P.0.05). Lymphocyte percentage

was, however, lower for the B. pumilus treatment than for the other

two treatments for the overall experimental period (P,0.001) and

at d 15 (P,0.05). At d 8 the lymphocyte percentage was lower for

the B. pumilus treatment than the medicated treatment (P,0.001),

with the non-medicated treatment being similar to that of both

other treatments (P.0.05). There was a treatment x time

interaction for monocytes (%) (P = 0.01). Monocyte percentage

was higher for the non-medicated treatment than for the other two

treatments for the overall period (P,0.001) and at d 22 (P,0.001).

At d 8 the percentage of monocytes was higher for the non-

medicated treatment than the B. pumilus treatment (P,0.01), with

that of the medicated treatment being similar to both other

treatments (P.0.05). There was no treatment x time interaction

for granulocyte percentage (P.0.05). The percentage of granulo-

cytes was higher for the B. pumilus treatment than for all other

treatments for the overall period (P,0.001), at d 8 (P,0.001) and

at d 15 (P,0.01). At d 22, granulocyte percentage was higher for

the B. pumilus treatment than for the non-medicated treatment

(P,0.01), with that of the medicated treatment being similar to

that of both other treatments (P.0.05).

There was a treatment x time interaction for the erythrocyte

index, mean corpuscular hemoglobin (MCH) (P,0.001). The

MCH was also lower for the medicated treatment compared to the

B. pumilus treatment for the overall experimental period (P,0.05)

and at d 15 (P,0.05), with that for the non-medicated treatment

being similar to that of both other treatments for the overall period

(P.0.05). At d 22, MCH was higher for the B. pumilus and non-

medicated treatments than the medicated treatment (P,0.001),

with no difference observed between the former two treatments

(P.0.05). There was a tendency for a treatment x time interaction

for the erythrocyte index, mean corpuscular volume (MCV)

(P = 0.07), but no treatment effect was observed for the overall

period (P.0.05). At d 15 there was a tendency for MCV to be

lower in pigs on the medicated treatment than for pigs on the two

other treatments (P = 0.08). There was a treatment x time

interaction for the erythrocyte index, mean corpuscular hemoglo-

bin concentration (MCHC) (P,0.001) and although there was no

overall treatment effect (P.0.05), MCHC tended to be higher at d

8 for the B. pumilus treatment than the non-medicated treatment

(P = 0.08). There was no treatment x time interaction or treatment

effect for the erythrocyte index, red blood cell distribution width

(RDW) (P.0.05). Nevertheless, at d 22 RDW was 24.9, 27.7 and

23.0% (SE = 1.25%; P,0.05) for the non-medicated, medicated

and B. pumilus treatments, respectively (data not shown). For the

remainder of the hematological parameters measured [red blood

cell (RBC) counts, hemoglobin, hematocrit, mean platelet volume

(MPV) and platelet counts] no treatment x time interaction or

treatment effects were observed (P.0.05; data not shown).

Effects on serum biochemistry
The effect of treatment on serum biochemistry is presented in

Table 4. There was no treatment x time or overall treatment effect

on creatinine concentration (P.0.05). However, at d 15 the

creatinine concentration was 77.5, 83.1 and 76.9 mM/L

(SE = 1.93 mM/L; P,0.05) for the non-medicated, medicated

and B. pumilus treatments, respectively (data not shown). There was

a treatment x time interaction for urea concentration (P,0.001)

but no overall treatment effect (P.0.05). At d 8, urea concentra-

tion was 3.1, 1.9 and 3.0 mM (SE = 0.29 mM/L; P,0.01) for the

non-medicated, medicated and B. pumilus treatments, respectively

(data not shown). At d 22 urea concentration was 3.9, 4.4 and

3.6 mM (SE = 0.22 mM/L; P,0.05) for the non-medicated,

medicated and B. pumilus treatments, respectively (data not shown).

There was a tendency for a treatment x time interaction for

serum alanine aminotransferase (ALT) concentration (P = 0.10)

and there was an overall treatment effect (P,0.01). Serum ALT

concentration was increased in the medicated compared with the

non-medicated and B. pumilus treatments for the overall period

(P,0.01), as well as at d 15 (P,0.01) and d 22 (P,0.01). There

was a treatment x time interaction (P,0.001) for serum alkaline

phosphatase (ALP) concentration. Serum ALP was higher for the

medicated than the non-medicated and B. pumilus treatments for

the overall period (P,0.001) and at d 8 (P,0.001), d 15 (P,0.001)

and d 22 (P,0.001). There was a treatment x time interaction for

serum GGT concentration (P,0.05). Serum GGT concentration

was higher for the medicated treatment than for all other

treatments for the overall period (P,0.01) and at d 15 (P,0.01)

and d 22 (P,0.001). There was no treatment x time interaction or

treatment effect for serum aspartate aminotransferase (AST).

Table 2. Effect of feeding non-medicated, medicated or
B. pumilus treatments for 22 days on post-weaning pig
growth performance.1,2

Non-
medicated Medicated B. pumilus SE P

Day 0 BW3 (kg) 8.7 8.6 8.8 0.26 0.38

Day 22 BW (kg) 18.1 17.6 18.7 0.35 0.07

ADFI4 (g/d)

Day 0 to 7 182 186 163 10.4 0.12

Day 8 to 14 434 440 446 14.5 0.79

Day 15 to 22 756 713 774 19.8 0.07

Overall 471 458 475 12.6 0.53

ADG5 (g/d) 427 405 455 15.7 0.07

FCR6 1.11ab 1.14a 1.05b 0.023 0.04

1Mean values with their standard errors, n = 16 for non-medicated and
medicated treatments, n = 15 for B. pumilus treatment.
2Within each row, values with different superscripts are different at (a,b) P,0.05.
3BW = body weight.
4ADFI = average daily feed intake.
5ADG = average daily gain.
6FCR = feed conversion ratio (ADFI/ADG).
doi:10.1371/journal.pone.0088599.t002
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There was a treatment x time interaction for serum TP (P,0.05)

but no overall treatment effect (P.0.05).

Effects on organ weights and histology
The effect of treatment on organ weights is shown in Table 5.

Treatment did not affect renal or splenic weight; however, pigs on

the medicated treatment had lighter livers than pigs on either the

non-medicated or B. pumilus treatments (P,0.05). Histopatholog-

ical examination of the kidneys did not reveal any abnormalities

for pigs on any of the treatments. Subtle inflammation was

observed in the liver of one pig on the medicated treatment and in

one pig on the B. pumilus treatment, but in both cases the

inflammation was classified as ‘very mild’ in character and was

most likely subclinical.

Effects on small intestinal histology
The effect of treatment on small intestinal histology is shown in

Table 6. There was a tendency for jejunal villus height to be

higher for the B. pumilus and the medicated treatments compared

to the non-medicated treatment (P = 0.10). Treatment had no

effect on crypt depth, villus width or villus height:crypt depth ratio

in the jejunum (Table 4). The number of goblet cells/villus in the

jejunum was higher for the B. pumilus and the medicated

treatments compared to the non-medicated treatment (P,0.01);

however, the number of goblet cells/mm of villus was not

affected by treatment (P.0.05). Treatment had no effect on

any of the histological parameters investigated in the ileum.

Histopathological examination revealed crypt inflammation in the

ileum of one pig on the B. pumilus treatment, but this was

categorized as very subtle and unlikely to be of clinical

significance.

Fecal shedding and intestinal survival of the
administered B. pumilus strain and effects on fecal and
intestinal E. coli and Lactobacillus

Data on fecal shedding of the administered B. pumilus strain and

the effect of treatment on selected culturable fecal microbiota are

presented in Table 7. There was a treatment x time interaction for

E. coli counts (P,0.01). E. coli counts were lower for the medicated

than both the non-medicated and B. pumilus treatments for the

overall period (P,0.01) as well as at d 8 (P,0.001) and d 15

(P,0.01). However, none of the representative fecal E. coli isolates

examined were hemolytic. There was no treatment x time

interaction for fecal Lactobacillus counts (P.0.05). Lactobacillus

counts were lower for the medicated than both the non-medicated

and B. pumilus treatments for the overall period (P,0.001) and at d

8 (P,0.01). At d 15 and d 20, Lactobacillus counts were lower for

the medicated than the B. pumilus treatment (P,0.01) while

Lactobacillus counts for the non-medicated treatment were similar

to those of both other treatments (P.0.05). The administered B.

pumilus strain (vegetative cells plus spores as well as spores alone)

was detected in the feces of all pigs on the B. pumilus treatment at

all time points except d 0. The administered strain was not

Table 3. Effect of feeding a non-medicated, medicated or B. pumilus treatment for 22 days post-weaning on hematological
parameters of pigs.1,2,3

Day Treatments Mean SE P

Non-medicated Medicated B. pumilus Treatment Time Treatment X Time

Lymphocytes (%)

8 55.7ab 60.0a 47.5b 54.4 2.32 0.001

15 66.9a 67.1a 59.6b 64.5 2.54 0.03

22 77.1 75.4 72.7 75.1 2.41 0.28

Mean 66.6a 67.5a 59.9b 1.89 ,0.0005 ,0.0001 0.38

Monocytes (%)

8 7.7a 6.5ab 4.5b 6.2 0.77 0.004

15 6.4 6.6 5.0 6.0 0.80 0.26

22 11.8a 7.2b 7.0b 8.8 0.85 ,0.0001

Mean 8.6a 6.8b 5.6b 0.58 0.0003 ,0.0001 0.01

Granulocytes (%)

8 35.6b 33.1b 48.1a 38.9 2.76 0.0003

15 25.8b 25.8b 35.0a 28.9 2.58 0.007

22 10.3b 16.9ab 20.6a 15.9 2.56 0.008

Mean 24.0b 25.3b 34.6a 1.96 ,0.0001 ,0.0001 0.20

MCH4 (pg)

8 16.6 16.9 16.9 16.8 0.21 0.58

15 16.7ab 16.3b 17.4a 16.7 0.20 0.03

22 17.7a 16.3b 17.5a 17.2 0.22 ,0.0001

Mean 17.0ab 16.5b 17.2a 0.19 0.03 ,0.0001 ,0.0001

1Mean values with their standards errors, n = 12 on d 0, 8 and 15, n = 10 on d 22.
2Within each row, values with different superscripts are different at (a,b) P,0.05.
3D 0 values were used as covariate in the statistical model.
4MCH, mean corpuscular hemoglobin.
doi:10.1371/journal.pone.0088599.t003
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recovered from any of the pigs on either the non-medicated or

medicated treatments throughout the experiment.

Data on ileal and cecal counts of the administered B. pumilus

strain and the effect of treatment on selected culturable ileal and

cecal microbiota are presented in Table 8. E. coli counts in the

ileum were lower for the medicated and B. pumilus treatments

compared to the non-medicated treatment (P#0.05), but no

treatment effect was observed for cecal E. coli counts (P.0.05).

However, none of the representative E. coli isolates recovered from

either the ileum or cecum were hemolytic. Lactobacillus counts in

the ileum were not affected by treatment (P.0.05), while cecal

Lactobacillus counts were lower for the medicated than the non-

medicated and B. pumilus treatments (P,0.05). The administered

B. pumilus strain (vegetative cells plus spores as well as spores alone)

was detected in both the ileum and cecum of all pigs on the B.

pumilus treatment but not from pigs on either the non-medicated or

medicated treatments.

Effects on ileal and cecal SCFA concentrations and pH
The effect of treatment on SCFA concentrations in the ileum

and cecum and on the pH of the ileal and cecal digesta are

presented in Table 9. The pH of the ileal digesta was higher for

pigs on the B. pumilus treatment compared to those on the non-

medicated treatment (P#0.05), with pigs on both treatments

having ileal digesta with a similar pH to those on the medicated

treatment (P.0.05). The pH of the cecal digesta was higher for

pigs on the medicated treatment compared to those on the non-

medicated and B. pumilus treatments (P,0.01) with the latter two

treatments having cecal content with a similar pH (P.0.05).

The total concentration of SCFA in the ileum was higher for the

medicated treatment than for the non-medicated treatment

(P,0.01) with that for the B. pumilus treatment being similar to

that of both other treatments (P.0.05). This was also the case for

acetic acid concentrations in the ileum (P,0.05). The ileal

concentration of propionic acid was similar for the medicated

and B. pumilus treatments, but both treatments had higher

concentrations than that found in the non-medicated treatment

(P,0.001). There was a tendency for butyric acid concentration in

the ileum to be higher for both the medicated and B. pumilus

treatments than for the non-medicated treatment (P = 0.08). Total

SCFA concentrations in the cecum tended to be higher for the

non-medicated and B. pumilus treatments than for the medicated

treatment (P = 0.10). This pattern was significant for propionic

acid concentrations in the cecum (P,0.01). Higher cecal valeric

acid concentrations were found for the non-medicated treatment

compared to the medicated treatment (P,0.05), while both

treatments had similar concentrations to those of the B. pumilus

treatment (P.0.05). There was a tendency for cecal acetic acid

Table 4. Effect of feeding a non-medicated, medicated or B. pumilus treatment for 22 days post-weaning on serum biochemistry
parameters of pigs.1,2

Day Treatments Mean SE P

Non-medicated Medicated B. pumilus Treatment Time Treatment X Time

ALT (alanine aminotransferase) (U/L)

8 23.7 25.4 21.7 23.6 1.38 0.12

15 33.8b 39.6a 32.0b 35.1 1.77 0.01

22 40.5b 69.4a 41.5b 50.6 7.40 0.01

Mean 34.1b 44.4a 33.6b 2.30 0.002 ,0.0001 0.10

ALP (alkaline phosphatase) (U/L)

8 308b 498a 339b 382 28.8 ,0.0001

15 347b 686a 407b 480 33.2 ,0.0001

22 333b 846a 418b 532 51.8 ,0.0001

Mean 372b 624a 422b 28.3 ,0.0001 ,0.0001 ,0.0001

GGT3 (gamma glutamyltransferase)
(U/L)

8 35.1 39.3 38.4 37.6 1.95 0.32

15 38.6b 43.8a 38.3b 40.2 1.37 0.003

22 36.2b 50.0a 39.7b 35.1 2.37 0.001

Mean 36.7b 44.4a 38.8b 1.62 0.002 0.01 0.02

1Mean values with their standard errors, n = 12 on d 0, 8 and 15, n = 10 on d 22.
2Within each row, values with different superscripts are different at (a,b) P,0.05.
3GGT d 0 values were used as covariate in the statistical model, as there were significant differences.
doi:10.1371/journal.pone.0088599.t004

Table 5. Effect of feeding a non-medicated, medicated or
B. pumilus treatment for 22 days post-weaning on organ
weights (g) of pigs.1,2,3

Non-
medicated Medicated B. pumilus SE P

Kidneys 110.7 114.8 107.0 3.74 0.23

Spleen 38.6 37.4 33.8 2.04 0.17

Liver 554.5a 503.5b 547.9a 15.46 0.02

1Mean values with their standard errors, n = 10.
2Organ weights were analyzed using the final body weight on d 22 as a
covariate.
3Within each row, values with different superscripts are different at (a,b) P,0.05.
doi:10.1371/journal.pone.0088599.t005
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concentrations to be higher in pigs on the B. pumilus treatment

than the other two treatments (P = 0.08). Pigs on the medicated

treatment tended to have a higher concentration of isovaleric acid

in the cecum than those on the B. pumilus treatment (P = 0.10).

Discussion

The present study evaluates, for the first time, the safety and

efficacy of a marine-derived Bacillus strain for use as an in-feed

probiotic in newly weaned pigs. The B. pumilus used was pre-

screened and found to satisfy a number of probiotic criteria and

was selected in particular for its ability to inhibit porcine

pathogenic E. coli [16].

A number of studies to date have evaluated various Bacillus

strains for use as probiotics for pigs [28]. However, one of the

novel aspects of the present study is that intestinal survival of the

administered strain was proven via use of an antibiotic-marked

strain, a strategy that we have previously used in other studies [25].

Fecal shedding was relatively high, compared to intestinal

recovery. This, together with the fact that practically the entire

count recovered from both the feces and the intestine can be

accounted for by spores, indicates that the Bacillus spores may be

merely transiting the GIT. This is despite the fact that the B.

pumilus strain grows and its spores have been shown to germinate

under anaerobic conditions in vitro [16]. Nonetheless, a number of

beneficial effects were observed. For example, B. pumilus admin-

istration resulted in reduced ileal E. coli counts and an ,8%

improvement in FCR compared to the medicated treatment. The

latter resulted principally due to a 12% increase in ADG, although

this was only a tendency.

However, it should be borne in mind that these improvements

in growth performance were only observed in comparison to the

medicated feed containing a combination of apramycin and

pharmacological levels of zinc oxide. In fact, the data indicate

poorer ADG and FCR as a result of in-feed medication.

Pharmacological levels of zinc oxide are commonly added to pig

diets to prevent post-weaning diarrhea and improve growth

performance [1]. Although its mechanism of action is unclear [1],

zinc, at high concentrations, is thought to be active against Gram-

negative bacteria, such as E. coli, even though in vivo data do not

back this up [29–31]. Apramycin is an antibiotic that is mainly

used to treat E. coli infections, such as porcine colibacillosis [32]

and it has previously been shown to improve growth performance

in weaned pigs [32,33], although performance effects can vary

depending on age, health status and environment. Interestingly, in

the present study the medicated treatment did reduce the diarrhea

score, as well as fecal and ileal E. coli counts. The latter can be

considered beneficial, given that increased E. coli counts are

associated with a decline in growth and increased diarrhea in pigs,

especially when subject to stressors, such as weaning [34].

However, none of the representative fecal or intestinal E. coli

examined were hemolytic, indicating that they may not have been

pathogenic and may, in fact, be harmless, or even beneficial

commensals. Although only a representative number of E. coli

isolates were examined, the fact that none appear pathogenic

explains the fact that edema or diarrhea were not observed during

the experiment, even though there was a history of post-weaning

edema disease within the herd. The medicated treatment also

lowered counts of fecal and cecal Lactobacillus and this would not be

considered favorable, given that this genus is thought to have a

beneficial role within the porcine GIT [35]. Others have reported

Lactobacillus reductions in the stomach, ileum, cecum and colon

digesta and decreases in lactic acid bacteria in the colonic mucosa

in weaned pigs administered pharmacological levels of zinc oxide

or antibiotics, respectively in the diet [13,31]. Reduced Lactobacillus

counts, together with the reduction in possible E. coli commensals

may explain the negative growth performance effects observed in

pigs administered the medicated treatment.

Interestingly, the B. pumilus strain was as effective as in-feed

medication (apramycin plus zinc oxide) in reducing ileal E. coli

counts, although it had no effect on E. coli shedding in the feces.

However, E. coli inhibition in the ileum is probably more relevant

as regards disease prevention; for example, lowering ileal E. coli

has been proposed as one of the means by which edema disease

Table 6. Effect of feeding a non-medicated, medicated or B. pumilus treatment for 22 days post-weaning on small intestinal
histology of pigs.1,2,3

Non-medicated Medicated B. pumilus SE P

Jejunum

Villus height (mm) 422 471 497 25.5 0.10

Crypt depth (mm) 305 322 340 17.0 0.34

Villus width (mm) 185 187 193 15.5 0.94

Villus height: crypt depth ratio 1.41 1.54 1.51 0.127 0.73

Number of goblet cells/villus 9.67a 14.30b 13.97b 0.963 0.002

Number of goblet cells/mm of villus 0.025 0.031 0.029 0.0019 0.13

Ileum

Villus heights (mm) 353 332 355 16.5 0.49

Crypt depth (mm) 183 191 202 13.6 0.56

Villus width (mm) 158 159 151 5.0 0.54

Villus height: crypt depth ratio 2.02 1.94 1.79 0.176 0.58

Number of goblet cells/villus 12.66 13.58 12.82 0.874 0.72

Number of goblet cells/mm of villus 0.037 0.042 0.038 0.0027 0.36

1Mean values with their standard errors, n = 10.
2Ten villi and 10 crypts were measured on five fields of view for each pig and the means were utilized for statistical analysis.
3Within each row, values with different superscripts are different at (a,b) P,0.05.
doi:10.1371/journal.pone.0088599.t006
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Table 7. Effect of feeding a non-medicated, medicated or B. pumilus treatment for 22 days post-weaning on fecal bacterial counts
(log10 CFU/g) of pigs and fecal counts of the administered B. pumilus strain.1,2,3

Day Treatments Mean SE P

Non-medicated Medicated B. pumilus Treatment Time Treatment X Time

E. coli

0 8.24 8.10 7.37 7.90 0.490 0.36

8 6.84a 4.12b 6.63a 5.86 0.400 ,0.0001

15 6.05a 4.35b 6.10a 5.50 0.400 0.003

20 5.71 4.98 5.49 5.39 0.400 0.41

Mean 6.71a 5.39b 6.40a 0.250 0.002 ,0.0001 0.003

Lactobacillus

0 8.17 7.88 8.02 8.03 0.320 0.84

8 9.59a 8.44b 9.45a 9.16 0.215 0.001

15 9.2ab 8.68b 9.60a 9.16 0.194 0.008

20 9.07ab 8.68b 9.27a 9.01 0.123 0.006

Mean 9.01a 8.42b 9.08a 0.069 ,0.0001 ,0.0001 0.27

B. pumilus WIT 588 (vegetative cells
+ spores)

0 ND4 ND ND

8 ND ND 6.22

15 ND ND 5.99

20 ND ND 5.80

Mean ND ND 5.06

B. pumilus WIT 588 (spores)

0 ND ND ND

8 ND ND 6.10

15 ND ND 5.70

20 ND ND 5.61

Mean ND ND 4.86

1Mean values with their standard errors, n = 12.
2Bacterial counts are presented as log10 CFU/g wet weight.
3Within each row, values with different superscripts are different at (a,b) P,0.05.
4Non-detectable (the limit of detection was 100 CFU/g i.e. log10 2.0 CFU/g), although at d 0 low values were recorded for the vegetative cells + spores count in some
pigs, representing background rifampicin resistant microflora.
doi:10.1371/journal.pone.0088599.t007

Table 8. Effect of feeding a non-medicated, medicated or B. pumilus treatment for 22 days post-weaning on ileal and cecal
bacterial counts (log10 CFU/g) of pigs and ileal and cecal counts of the administered B. pumilus strain.1,2,3

Non-medicated Medicated B. pumilus SE P

Ileum

E. coli 4.01a 2.61b 2.88b 0.394 0.05

Lactobacillus 8.75 8.63 8.40 0.154 0.28

B. pumilus WIT 588 (vegetative cells + spores) ND4 ND 2.61

B. pumilus WIT 588 (spores) ND ND 2.73

Cecum

E. coli 4.49 4.68 5.44 0.395 0.34

Lactobacillus 9.10a 8.66b 9.07a 0.116 0.02

B. pumilus WIT 588 (vegetative cells + spores) ND ND 3.70

B. pumilus WIT 588 (spores) ND ND 3.92

1Mean values with their standard errors, n = 10.
2Bacterial counts are presented as log10 CFU/g21 wet weight.
3Within each row, values with different superscripts are different at (a,b) P,0.05.
4Non-detectable (the limit of detection was 100 CFU/g i.e. log10 2.0 CFU/g).
doi:10.1371/journal.pone.0088599.t008

Marine Bacillus pumilus as a Livestock Probiotic

PLOS ONE | www.plosone.org 9 February 2014 | Volume 9 | Issue 2 | e88599



can be prevented in weaned pigs [36]. Previous studies with

Bacillus probiotics have mainly shown reductions in fecal shedding

of E. coli [9–12], but one in which pigs were challenged with a

serotype of E. coli known to cause edema disease, also demon-

strated reductions in the ileal digesta [36]. Furthermore, the

decrease in E. coli observed in the present study was achieved

without the reductions in potentially beneficial Lactobacillus that

occurred with the medicated feed. This is explained by the fact

that the B. pumilus strain inhibited porcine E. coli in vitro but had

only limited anti-Lactobacillus activity [16]. However, it should be

noted, as outlined above, that none of the representative intestinal

E. coli isolates examined in the present study appeared pathogenic.

Apart from the fact that the B. pumilus strain administered in the

present study has antimicrobial activity against E. coli in vitro

[15,16], the reductions in ileal E. coli observed in vivo could

potentially be explained by the higher concentrations of propionic

acid in the ileum of these pigs compared with those fed the non-

medicated treatment. This is because propionic acid has been

suggested to reduce the growth of Enterobacteriaceae [37]. Intestinal

concentrations of SCFA are often increased by Bacillus adminis-

tration [38] and this is likely to be as a result of carbohydrate

degradation by the administered strains [39]. The reduction in

ileal E. coli counts could also lead to the proliferation of

endogenous bacteria and this could be responsible for the

increased propionic acid concentrations. In contrast, the tendency

for lower concentrations of cecal SCFA observed in pigs fed the

medicated treatment could be associated with the lower counts of

cecal lactobacilli in these animals. However, a global approach

using non-culture-based methods would be required to thoroughly

examine the effects on the intestinal microflora and such an

approach would help to explain these phenomena.

The B. pumilus administered in the present study lowered E. coli

counts without toxic effects. In contrast, liver weight was ,10%

less for pigs fed the medicated treatment compared to that of pigs

fed either the non-medicated or B. pumilus treatment, which could

be the result of chronic toxicity of apramycin, as previously

reported by the manufacturers [40]. The liver can atrophy, leading

to a reduction in size, when it is unable to regenerate following a

period of ongoing insult [41]. Apramycin could have toxic effects,

as, although it is excreted by the kidneys as the intact molecule

[42], high concentrations can accumulate in kidney and liver tissue

[43]. There are also suggestions that administration of elevated

levels of zinc oxide to pigs post-weaning may have toxic effects,

although this is largely unsubstantiated. While our study found no

evidence of histopathological abnormalities in the liver, overall

serum concentrations of the liver enzymes, GGT, ALT and ALP

were 21, 30.2 and 67.7% higher, respectively, in pigs fed the

medicated treatment, indicating possible liver damage [44–46].

However, despite the differences found, serum GGT and ALT

concentrations were within normal ranges for pigs and only the

serum ALP concentration of pigs on the medicated treatment was

higher than the normal range [41]. The higher concentrations of

serum creatinine found in pigs fed the medicated treatment could

indicate kidney damage; however, these differences were only

observed at one time point and the latter was only compared to the

B. pumilus treatment. Furthermore, kidney damage is also normally

associated with changes in kidney weight and reduced serum

protein concentrations [46,47], neither of which were found in the

present study. In addition, the overall concentrations of serum

creatinine and urea were inside the normal ranges for pigs of this

age [46].

Pigs on the B. pumilus treatment had lower percentages of

lymphocytes and monocytes, compared to pigs on the non-

medicated and medicated treatments, and to pigs on the non-

medicated treatment, respectively. However, this would not

necessarily be a cause for concern, as it is the opposite (i.e.

elevated concentrations of these blood cells) that is undesirable due

to its association with infection [48]. Furthermore, counts

remained within the normal ranges for pigs throughout the

experiment [41,48]. However, we did observe a higher percentage

of granulocytes in pigs administered the B. pumilus strain and this is

characteristic of an inflammatory response [48], but again the

counts remained within normal ranges [41,48]. The increased

density of goblet cells in the jejunal epithelium of pigs on the B.

pumilus and the medicated treatments may also be indicative of an

inflammatory response, as has previously been observed in weaned

pigs in response to total parenteral nutrition [49]; however,

histopathological examination revealed no signs of intestinal

inflammation except for subtle crypt changes in the ileum of one

pig which was considered unlikely to be of clinical significance.

There were also some differences in two of the RBC indices in pigs

fed the B. pumilus treatment i.e. higher MCH content (lower

hemoglobin in RBC) and lower RDW. However, these were only

observed in comparison to the medicated treatment. Most of the

RBC and platelet indices were slightly lower than the normal

ranges for 36-d old pigs [48]. Low hematocrit, RBC count and

hemoglobin concentrations could be an indication of anemia [41];

however, supplemental iron was administered to all pigs prior to

the experiment at 3 days post-partum. The lower than normal

range values were found across all treatments and could be

explained by factors such as breed and management practices

[48,50].

Table 9. Effect of feeding a non-medicated, medicated or
B. pumilus treatment for 22 days post-weaning on pH of and
short chain fatty acid concentrations (mM/g) in ileal and cecal
digesta of pigs.1,2

Non-
medicated Medicated B. pumilus SE P

Ileum

pH 6.73b 7.21ab 7.34a 0.168 0.05

Acetic acid 3.16b 4.77a 3.51ab 0.435 0.04

Propionic acid 0.46b 1.61a 1.7a 0.213 0.001

Isobututyric acid 0.06 0.02 0.05 0.029 0.43

Butyric acid 0.57 1.02 1.15 0.183 0.08

Isovaleric acid 0.44 0.31 0.30 0.097 0.52

Valeric acid 0.3 0.19 0.23 0.116 0.79

Total 5.01b 7.92a 6.94ab 0.672 0.01

Cecum

pH 5.79b 6.32a 5.84b 0.117 0.006

Acetic acid 37.65 33.48 43.76 3.061 0.08

Propionic acid 22.7a 17.13b 22.18a 1.686 0.007

Isobututyric acid 0.14 0.21 0.23 0.040 0.25

Butyric acid 11.49 8.55 9.71 1.520 0.38

Isovaleric acid 0.57 0.63 0.44 0.064 0.10

Valeric acid 2.05a 0.91b 1.32ab 0.272 0.02

Total 74.85 61.15 77.36 5.540 0.10

1Mean values with their standard errors, n = 10.
2Within each row, values with different superscripts are different at (a,b) P,0.05.
doi:10.1371/journal.pone.0088599.t009
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Conclusions

The data from the present study indicate that dietary

supplementation with a marine-derived B. pumilus strain improved

the growth performance of newly weaned pigs but only when

compared to a medicated treatment containing apramycin and

zinc oxide. The B. pumilus treatment decreased ileal E. coli counts

in a manner similar to the medicated treatment but without the

reduction in growth performance, decreased fecal and cecal

Lactobacillus counts, reduction in cecal SCFA and possible liver

toxicity found with the medicated treatment. The higher

granulocyte percentage and increased jejunal goblet cells found

in pigs on the B. pumilus treatment may be indicative of a response

to inflammation/local injury. However, no other intestinal or

organ abnormalities were observed and all serum biochemistry

and most hematological parameters were within normal ranges.

Overall, these data indicate that the marine B. pumilus strain tested

in the present study appears safe for use as a probiotic in weaned

pigs and demonstrates potential for use as an alternative to in-feed

antibiotics. However, additional investigations, including culture-

independent analysis of the intestinal microflora and more detailed

immunological assays are warranted.
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