
 1 

TITLE: Beneficial modulation of the gut microbiota 2 

 3 
AUTHORS: Calum J. Walsh, Caitriona M. Guinane, Paul W. O’Toole, Paul D. Cotter 4 

 5 
 6 

 7 

 8 

 9 
 10 

 11 
 12 

  13 

This article is provided by the author(s) and Teagasc T-Stór in accordance with publisher policies. 
 

Please cite the published version. 
 

The correct citation is available in the T-Stór record for this article. 

This item is made available to you under the Creative Commons Attribution-Non commercial-No 
Derivatives 3.0 License. 
NOTICE: This is the author’s version of a work that was accepted for publication in FEBS Letters. 
Changes resulting from the publishing process, such as peer review, editing, corrections, 
structural formatting, and other quality control mechanisms may not be reflected in this 
document. Changes may have been made to this work since it was submitted for publication. A 
definitive version was subsequently published in FEBS Letters, available online 26 March 2014,  
DOI: 10.1016/j.febslet.2014.03.035 

This item is made available to you under the Creative Commons Attribution-Non commercial-No 
Derivatives 3.0 License. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by T-Stór

https://core.ac.uk/display/45656343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


Beneficial modulation of the gut microbiota  14 

Calum J. Walsh
a,b

, Caitriona M. Guinane
a
, Paul W. O’Toole

b,c
, Paul D. Cotter

a,c
 15 

a
Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland. 16 

b
Department of Microbiology, University College Cork, Cork, Ireland. 17 

 c
Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. 18 

 19 

Corresponding author: Dr. Paul D. Cotter, 20 

Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland. 21 

Tel: +353 (0)25 42694 22 

Email: paul.cotter@teagasc.ie  23 



ABSTRACT 24 

The human gut microbiota comprises approximately 100 trillion microbial cells and has a significant 25 

effect on many aspects of human physiology including metabolism, nutrient absorption and immune 26 

function. Disruption of this population has been implicated in many conditions and diseases, including 27 

examples such as obesity, inflammatory bowel disease and colorectal cancer that are highlighted in 28 

this review. A logical extension of these observations suggests that the manipulation of the gut 29 

microbiota can be employed to prevent or treat these conditions. Thus, here we highlight a variety of 30 

options, including the use of changes in diet (including the use of prebiotics), antimicrobial-based 31 

intervention, probiotics and faecal microbiota transplantation, and discuss their relative merits with 32 

respect to modulating the intestinal community in a beneficial way. 33 
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INTRODUCTION 37 

Humans are now thought of as “superorganisms” on the basis of the genetic potential encoded within 38 

our resident microbial populations in addition to our own genome. It has been suggested that our 39 

microbiota develops with us and alters its own composition and gene expression in response to 40 

changing environmental conditions [1]. The largest and most varied of the human-associated 41 

microbial communities exists in the gastrointestinal (GI) tract. 42 

The gut microbial population is made up of approximately 1000 species from relatively few 43 

phyla. The most abundant species are members of the phyla Firmicutes and Bacteroidetes, with 44 

smaller numbers being representatives of the Proteobacteria, Fusobacteria, Cyanobacteria, 45 

Verrucomicrobia and Actinobacteria, amongst others [2]. The gut microbiota is composed mainly of 46 

anaerobes, which outnumber facultative anaerobes and aerobic bacteria by approximately 2-3 orders 47 

of magnitude [3]. It has been noted that, although there is great inter-individual variation in the 48 

composition of the gut microbiota, there are a conserved set of encoded functions shared between 49 

individuals referred to as the core gut microbiome [4], suggesting that it is the functionality of the 50 

microbiota rather than its composition that is of greatest importance to the host. The functions and 51 

pathways encoded in the core microbiome are thought to confer the greatest benefit to the host and are 52 

probably essential for the correct functioning of the gut.  Some well-studied benefits include 53 

protection against potential pathogens, digestion of polysaccharides, production of essential vitamins, 54 

stimulation of angiogenesis, regulation of fat storage and modulation of the host’s immune system [5]. 55 

Recent studies have also shown that the gut microbiota influences the gut-brain axis and shapes stress-56 

related symptoms such as anxiety and pain tolerance [6]. 57 

Advances in high throughput sequencing technologies (HTS) and tools enabling comparative 58 

analysis of the large amount of data that are generated by these technologies have led to a better 59 

understanding of what constitutes a ‘healthy” gut microbiota. One of the most interesting observations 60 

drawn from the data generated is that the resident microbiota encodes > 100 fold more genes than the 61 

human genome [7]. The genes present in the microbiome are responsible for many functions essential 62 



to host survival but which are not encoded within the human genome. Due to the range and 63 

importance of the metabolic and biochemical processes carried out by the microbiome it has been 64 

referred to as “our hidden organ” [8].  65 

While the “healthy” gut microbiota is seen to be a stable community, there are stages within 66 

the life cycle of humans during which there can be dramatic alterations in the structure and function of 67 

this population. These “natural” changes begin with initial colonisation immediately following birth 68 

and subsequent development of the microbiota over the first two years of life. The earliest colonizers 69 

are usually members of the enterococci and enterobacteria followed by strict anaerobes such as 70 

Bifidobacterium, Clostridium and Bacteroides spp. once the initial oxygen supply present has been 71 

depleted [9]. Despite this general pattern, it is important to appreciate that the method of delivery and 72 

subsequent feeding type have a profound effect on the initial populations [10]. Once the infant reaches 73 

two years of age the microbiota has already begun to transform into its adult form, which is thought to 74 

be relatively stable before it undergoes a final “shift” when entering old age [11]. Indeed, with respect 75 

to the latter phenomenon, a study by Claesson and colleagues that compared the gut microbiota of 76 

individuals ages 65 or older to 9 younger control subjects has highlighted significant changes in 77 

community structure associated with ageing, specifically an increase in the abundance of Bacteroides 78 

spp. and distinct shifts within the Clostridium genus [12]. It has been hypothesised that alterations in 79 

the elderly microbiota are due to physiological changes in the elderly gastrointestinal tract such as 80 

chronic low-grade inflammation, in addition to dietary habits [13]. 81 

It has been well established that the human gut microbiota is integral to human health, and, as 82 

will be discussed below, it also plays an important role in gastrointestinal disease. It is therefore 83 

reasonable to assume that modulation of the gut microbiota can be used as a therapeutic approach to 84 

treating chronic gastrointestinal diseases. Thus, this review is focussed primarily on the methods that 85 

can be employed to modulate the gut microbiota while highlighting the benefit of guiding community 86 

structure towards a more desirable state. 87 

 88 



ROLE OF THE GUT MICROBIOTA IN GASTROINTESTINAL DISEASE 89 

There are a growing number of gastrointestinal conditions that have been linked with alterations in the 90 

gut microbiota. To properly implement strategies to modulate the gut microbiota as a therapeutic tool, 91 

it is first necessary to understand the role of the gut microbiome in specific GI, and other, diseases.  92 

Given the recent rapid expansion in the number of disease states that have been linked with alterations 93 

in the gut microbiota, it is not possible to address the issue in depth in the confines of this review. 94 

Instead, some well-studied examples are discussed below and we refer you to some other recent 95 

reviews that address this topic in depth [3,14].  96 

Inflammatory Bowel Disease 97 

Inflammatory Bowel Disease (IBD) is a relapsing disorder characterized by chronic 98 

inflammation of the GI tract, and of the colon in particular. The two major types of IBD are Crohn’s 99 

disease (CD) and ulcerative colitis (UC).  Evidence suggests that IBD is a complex disease arising 100 

from a combination of genetic and environmental factors. From a genetics perspective, genome-wide 101 

association studies (GWAS) and subsequent meta-analyses have identified a total of 163 genetic risk 102 

loci for IBD [15-17]. A German twin cohort study confirmed the strong genetic element to IBD by 103 

observing that monozygotic twins are significantly more likely to be concordant for the disease than 104 

dizygotic twins [18]. However, concordance rates between monozygotic twins are nonetheless low 105 

(35% for CD and 16% for UC), highlight that environmental triggers do indeed play an important role 106 

in both diseases, and in UC in particular. 107 

It is notable that murine studies have revealed that the presence of commensal enteric bacteria 108 

is necessary for the development of spontaneous colitis and immune system activation [19] and, 109 

indeed, transferring colitogenic gut microbiota into healthy mice can induce spontaneous colitis [20]. 110 

Similarly, it has consistently been observed that patients suffering from IBD harbour an altered gut 111 

microbiota [21,22], specifically reduced bacterial diversity and changes within the Firmicutes phylum 112 

[23]. The changes in microbiota composition appear to be somewhat different between UC and CD. 113 

For example, decreased abundance of the butyrate-producing bacteria Roseburia hominis and 114 



Faecalibacterium prausnitzii have been observed in UC patients relative to controls [24], while the 115 

opposite has been observed in CD patients who possessed increased F. prausnitzii levels in addition to 116 

a reduced overall diversity [25]. Although these microbial changes could be a result of increased 117 

inflammation, evidence suggests that it is more likely that shifts in the microbiota are involved in the 118 

disease’s pathogenesis, either due to an intolerance to a specific group of commensals or due to an 119 

imbalance between protective and harmful members of the population [21,23,26].  120 

Irritable Bowel Syndrome 121 

Irritable Bowel Syndrome (IBS) is a chronic GI disorder that presents with symptoms 122 

including abdominal pain, bloating and altered bowel function. IBS is divided into several subtypes 123 

based on stool characteristics; diarrhoea, constipated or mixed. It’s cause, as of yet, is not fully known 124 

and although the aetiology is thought to be a combination of a number of factors, it is hypothesised 125 

that perturbations in the normal microbial microbiota play a role in the syndrome’s characteristic low-126 

grade inflammation [27]. Indeed, Rajiić-Stojanović et al. used qPCR and phylogenetic microarrays to 127 

show that the gut microbiota of IBS patients differed significantly from healthy controls, with IBS 128 

sufferers having a 2-fold higher Firmicutes to Bacteroidetes ratio and correlation analysis implicating 129 

several groups of Firmicutes and Proteobacteria in IBS pathogenesis [28]. Contrastingly, Jalanka-130 

Tuovinen and colleagues observed that the faeces of diarrhoea-predominant IBS sufferers harboured 131 

12-fold higher levels of several Bacteroidetes members. This group also noted that healthy controls 132 

have 35-hold higher numbers of uncultured clostridia [29]. Interestingly, these alterations in the 133 

microbiota correlated with changed in expression of host genes involved in amino acid synthesis, cell 134 

junction integrity and inflammatory response, suggesting impaired epithelial barrier function in IBS 135 

patients. Small intestinal bacterial overgrowth (SIBO), which is characterized by excessive bacteria in 136 

the small intestine, has also been put forward as a possible factor in IBS aetiology [30]. Bacterial 137 

overgrowth can result in overproduction of gas in the small intestine by degradation of carbohydrates, 138 

contributing to the symptoms of IBS [31]. The most commonly isolated bacteria from SIBO patients 139 

are Escherichia coli, Streptococcus, Lactobacillus, Bacteroides and Enterococcus species [32]. 140 

However it is not fully understood if any of these microorganisms play a specific role in IBS 141 



progression. It should also be recognised that differences between studies may be due to the causative 142 

microorganisms or imbalances differing between IBS subtypes. Regardless, a bacterial role in IBS 143 

onset would seem to be clear, as further evidenced by the disease’s response to antibiotic therapy [33] 144 

and differential expression levels of Toll-like receptors in colonic biopsies of patients with IBS [34].  145 

 146 

Obesity 147 

Obesity is a complex disease resulting from a prolonged imbalance of energy input and energy 148 

expenditure. Modern dietary and exercise habits are major contributing factors but it is now 149 

understood that the composition and function of the gut microbiome plays an important role through a 150 

variety of mechanisms [35]. A number of comprehensive reviews focussing on the association 151 

between the microbiota and obesity have been published [36,37]. Differences in the gut microbiota 152 

between obese and lean individuals have been the subject of great scrutiny. A range of different 153 

murine models have been used to this end, including genetically obese [38,39], diet-induced obese 154 

[40] and humanized [41] mice. Although a number of studies have reported an increased ratio of 155 

Firmicutes to Bacteroidetes in obese mice compared to their lean counterparts, these findings continue 156 

to be the subject of much debate in relation to human studies, which have revealed a number of 157 

microbial populations that have been associated with obesity [37]. Notably, transplanting the faecal 158 

microbiota of obese humans into germ-free mice brought about significant increases in the fat-mass 159 

of, and obesity-related metabolic phenotypes in, these mice relative to those which occurred when the 160 

corresponding faecal microbiota from lean monozygotic twins was transplanted [42]. Furthermore, a 161 

second trial showed that cohousing mice harbouring these two microbial communities prevented 162 

development of the obese phenotype, a trend correlating with invasion of specific Bacteroidetes 163 

members from lean to obese microbiota [42]. Another recent paper of note has linked the mucin-164 

degrading bacterium Akkermansia muciniphila with obesity and type 2 diabetes [43]. The study 165 

showed A. muciniphila abundance was decreased in obese and type 2 diabetic mice and that prebiotic 166 

feeding normalised A. muciniphila levels, which in turn correlated with an improved metabolic 167 



profile. Orally administered A. muciniphila also reversed high-fat diet induced metabolic disorders in 168 

these mice [43]. The results of these, and other studies, make it apparent that the microbiota plays a 169 

role in obesity but the specific changes associated with the phenotype are complex and remain 170 

unclear. 171 

Type 2 Diabetes 172 

Type 2 diabetes (T2D) is a metabolic disorder with both genetic and environmental 173 

influences. It is a major health concern throughout the western world, arising particularly as a result of 174 

increasing obesity-related insulin resistance [44,45]. It is evident from a number of studies that the gut 175 

microbiome is altered in patients suffering from T2D [46-48], although, as with many obesity-related 176 

associations, it is not clear whether these changes are a cause or simply a consequence of the disorder. 177 

Nonetheless, it was an interesting development when, in 2010 it was reported that the proportions of 178 

Firmicutes, and in particular species of clostridia, were significantly reduced in T2D sufferers 179 

compared to healthy individuals [46]. A subsequent, and much larger, metagenome-wide association 180 

study of 345 Chinese individuals showed that the gut microbiota of patients with T2D was 181 

characterized by a moderate degree of microbial dysbiosis, lower levels of butyrate-producing 182 

bacteria and an enrichment of microbial functions relating to sulphate reduction and resistance to 183 

oxidative stress [48]. Almost all of the microbial genes enriched in T2D patients were from 184 

opportunistic pathogens, including genes from several Clostridium spp. as well as Bacteroides caccae 185 

[48]. These results provided a number of markers that were assessed to determine if they could 186 

successfully identify patients with T2D on the basis of an analysis of faecal samples. Notably, this 187 

method successfully identified the T2D disease state with 81% accuracy [48], i.e. a greater success 188 

rate than using a combination of clinical risk factors and genetic information [49]. 189 

Colorectal Cancer 190 

Colorectal cancer (CRC) is the third most common cause of cancer mortality in the world 191 

[50]. It is becoming apparent that, even though a single causative microorganism has not been 192 

explicitly identified, the gut microbiota plays a role in CRC [51,52]. Wang and colleagues noted that 193 



there was a clear segregation between the microbiota of CRC patients and healthy volunteers, 194 

particularly, as was the case for T2D, a decrease in the abundance of butyrate producers and an 195 

increase in the incidence of opportunistic pathogens in CRC patients [53]. Members of the 196 

Fusobacterium genus have also been recently identified as potential causative agents after it was 197 

observed that they were enriched in colorectal carcinomas [54], a pattern also noted in other studies 198 

[53,55-57]. The authors hypothesised that Fusobacterium spp. may contribute to tumourigenesis by an 199 

inflammatory-mediated mechanism, a hypothesis supported by a follow-up study which showed that 200 

members of fusobacteria could generate a proinflammatory microenvironment through the 201 

recruitment of tumour-infiltrating immune cells [58]. E. coli has also been linked with CRC in a 202 

number of studies. Arthur et al. observed that E. coli levels were ~100-fold higher in the microbiota 203 

of the colitis-susceptible IL10 
-/-

 mouse strain compared to the wild type [51]. They went on to show 204 

that E. coli NC101 mono-association significantly promoted development of invasive mucinous 205 

adenocarcinomas in azoxymethane treated, IL10 
-/-

 mice and that deletion of the polyketide synthase 206 

(pks) genotoxic island from this E. coli strain decreased tumour multiplicity and invasion [51]. While 207 

further investigations are required, these results suggest that colitis promotes tumourigenesis in mice 208 

by altering the composition of the gut microbiota and selecting for members with genotoxic 209 

capabilities. 210 

Ultimately, identification of microorganisms, microbial populations or microbial 211 

functionalities involved in GI disease is fundamental to developing novel therapies. It is evident that 212 

the gut microbiota plays a large role in intestinal health and disease, and therefore manipulation or 213 

modulation of this community, is a clinical option that merits serious consideration.  214 

 215 

MODULATION OF THE GUT MICROBIOTA 216 

Modulation by Diet 217 



Environmental factors, including dietary intake, can shape the composition of the intestinal 218 

microbial community.  Indeed, a number of recent studies have highlighted the links between diet and 219 

distinct microbial profiles and, in turn, overall gut health [40,59-63]. Having an understanding of how 220 

diet influences microbial communities will be of critical importance with respect to employing food to 221 

beneficially alter the gut microbiota.  222 

The amount, type and balance of the three main dietary components, i.e. protein, 223 

carbohydrates and fat, have a profound impact on the gut microbiota. Short-chain fatty acids (SCFAs), 224 

primarily butyrate, propionate and acetate, are the major end products from the microbial degradation 225 

of carbohydrates and protein in the gut. SCFAs have a diverse range of physiological effects on the 226 

host, with perhaps the most important being their oxidation by mucosal cells to provide energy. An 227 

excellent review of the benefits of SCFAs on the host has been published by Macfarlane & 228 

Macfarlane [64]. The majority of microbial protein degradation occurs in the distal colon where the 229 

pH is neutral and conditions are favourable for the growth of proteolytic bacteria such as Bacteroides 230 

spp., Propionibacterium spp. and Clostridium perfringens [65,66]. The main pathway of protein 231 

degradation by this population is deamination of amino acids to the aforementioned SCFAs and 232 

ammonia [67], high concentrations of the latter have been shown to act as tumour promoters in rats 233 

[68]. The range of end products generated by protein digestion is broader than that of carbohydrates 234 

(see below) and also includes branched-chain amino acids, phenols, indoles and amines [69]. The 235 

majority of studies examining the effect of dietary protein on the gut microbiota have focussed 236 

primarily on the detection of altered fermentation products in the cecum [70] and faeces [71]. 237 

However, the effects of whey protein isolate on the microbiota have been the topic of some scrutiny in 238 

recent years as it has been indicated that dairy products can alleviate several disorders relating to 239 

metabolic syndrome [72]. One such study noted significantly increased counts of bifidobacteria and 240 

lactobacilli in the faeces of rats whose diets included cheese whey protein isolate or casein 241 

supplemented with either threonine or cysteine [73]. Whey protein isolate (WPI) has also been 242 

observed to alter the composition of the gut microbiota of mice in a dose-dependent manner [74]. All 243 

mice whose high fat diet was supplemented with WPI had significantly increased proportions of 244 



Lactobacillaceae and significantly decreased proportions of Clostridiaceae compared to high-fat fed 245 

controls, and increasing the amount of total energy derived from WPI caused a more profound shift in 246 

the microbiota [74]. Certain components of the normal human dietary intake of carbohydrates cannot 247 

by digested directly by the host and act as the major diet-derived energy source for microorganisms in 248 

the gut [75]. This fraction, comprised largely of resistant starches and non-starch polysaccharides, is 249 

degraded by microbial fermentation to a mixture of gasses and the aforementioned SCFAs. Many 250 

such carbohydrates are also referred to as prebiotics. The term prebiotic was introduced by Gibson 251 

and Roberfroid in 1995 [76] and are defined as “selectively fermented ingredients that allow specific 252 

changes, both in the composition and/or activity in the gastrointestinal microflora that confer benefits 253 

upon host well-being and health” [77]. Prebiotics have most frequently been employed with a view to 254 

stimulating the growth of either lactobacilli or bifidobacteria, with many studies focussing on inulin 255 

[78-80], oligofructose [81,82] or fructooligosaccharides [83,84]. There is a substantial body of 256 

evidence linking prebiotic consumption to human health benefits through modulation of the gut 257 

microbiota, with research in this area having been the subject of  a number of recent reviews [85-87]. 258 

In one particularly notable recent study, it was observed that supplementing the murine diet with 259 

SCFAs or fructooligosaccharides caused a shift in microbiota composition which strongly correlated 260 

with beneficial changes in body weight, adiposity and glucose control. These physiological changes 261 

were brought about via butyrate- and propionate-mediated activation of intestinal gluconeogenesis 262 

[88]. 263 

The majority of dietary fat is absorbed in the human small intestine but it has been shown that 264 

a substantial amount survives digestion and can be recovered in faeces [89]. The undigested portion 265 

passes through the colon where it can have a profound effect on the intestinal microbiota. Murphy et 266 

al. observed that high-fat feeding caused a greater compositional change in the gut microbiota than 267 

genetically induced obesity [90], in accordance with a previous study which showed that, when fed a 268 

high-fat diet, RELMβ knockout mice showed a significantly altered gut community while staying 269 

lean. RELMβ knockout mice were employed as they are known to stay relatively lean when fed a 270 

high-fat diet. The authors could therefore conclude that the change in diet, as opposed to the obese 271 



state, was responsible for the observed changes in the microbiota [91]. Many studies have established 272 

that mice fed a high-fat diet have significantly dissimilar microbial populations in the gut compared to 273 

mice fed on normal chow [38,40,92]. However, a recently published study showed that life-long 274 

calorie restriction significantly altered the gut microbiota in mice fed on both high-fat and low-fat 275 

diets [93]. This implies that not only the fat content of the diet, but also the number of calories 276 

consumed, has the potential to influence the bacterial communities present in the GI tract. The study 277 

also linked changes in the gut microbiota to claims that calorie restriction promotes healthy-ageing 278 

and increases lifespan in various animal models as the healthiest and longest living mice were those 279 

that were fed a low fat diet with calorie restriction [93]. In addition to the studies referenced above, 280 

there are many excellent reviews of the effect of dietary fat on the intestinal microbiota [37,94,95]. 281 

This specific combination of dietary components can vary according to geographic location, 282 

food availability, cultural practices and age and can have a profound impact on the conditions within 283 

the gut and the requirements of the microbiota (Table 1 highlights some studies which have 284 

investigated this impact). In one instance, the faecal microbiota of European children and children 285 

from an African village in Burkina Faso, whose diets differed considerably, was investigated. The diet 286 

of the African children was predominately vegetarian; high in starch, fibre and plant polysaccharides 287 

and low in fat and animal protein. This diet correlated with a significant increase in the 288 

Bacteroidetes:Firmicutes ratio in addition to an abundance of Prevotella and Xylanibacter when 289 

compared to the microbiota of the children consuming a carbohydrate-rich European diet [96]. The 290 

Xylanibacter genus, which was absent in European children, is known to contain genes for xylan and 291 

cellulose hydrolysis and so it was hypothesised that the gut microbiota coevolved with the 292 

polysaccharide-rich diet of the Burkina Faso children, allowing them to increase the energy extracted 293 

from dietary fibre while also conferring protection from inflammation and non-infectious colonic 294 

disease [96]. The comparatively high abundance of Prevotella in the faecal microbiota of the African 295 

children and the fact that it coincides with a carbohydrate-rich diet is consistent with the observations 296 

of Wu et al. who found that the overall composition of the microbiota was strongly associated with 297 

long-term diet [62].  Specifically, a diet rich in protein and animal fat was associated with higher 298 



proportions of Bacteroides while Prevotella were more abundant when the diet was enriched with 299 

plant-derived carbohydrates [62]. A recent study by De Filippo et al. took these investigations a step 300 

further by focussing specifically on the effect of diets composed entirely of animal or plants products 301 

on the gut microbiota [61]. It revealed that an animal-based diet increased the numbers of bile-tolerant 302 

microorganisms present and decreased the numbers of plant polysaccharide degrading Firmicutes. 303 

Interestingly, the respective diets brought about a transcriptional response among the gut microbiota 304 

that was consistent with previously reported differences in gene abundances between herbivorous and 305 

carnivorous animals [61]. In other studies, members of the Clostridium clusters IV and XIVa have 306 

been found to be enriched in the faeces of omnivores compared to vegetarians and lacto-vegetarians, 307 

who generally consume higher proportions of carbohydrates as part of their diet [97-99]. These 308 

clusters of bacteria are noted for their ability to convert dietary fibre to SCFAs. 309 

The overall dietary patterns in the De Filippo study above are similar to a study in mice where  310 

conventionalised mice were switched from a low-fat diet rich in complex plant polysaccharides 311 

(CHO) to an obesity-inducing high-fat/simple carbohydrate “Western” diet [40].  Mice fed on the 312 

“Western” diet had a significantly lower level of bacterial diversity, a characteristic seen to be an 313 

indicator of an unhealthy microbiota [59]. These mice possessed a significantly higher relative 314 

proportion of Firmicutes and lower relative proportions of Bacteroidetes compared to littermates 315 

which remained on the CHO diet. This population shift is similar to what is seen in the ob/ob mouse 316 

model of obesity [38] but differs in that the Firmicutes shift in the genetically-induced obesity model 317 

is division-wide whereas the dietary intervention above caused a bloom in a single uncultured clade 318 

within the Mollicutes class. A subsequent microbiota transplantation from these diet-induced obese 319 

mice into germ-free recipients promoted greater adiposity than transplants from lean donor [38]. A 320 

further study by the same group showed that this response of the microbiome to dietary intervention is 321 

rapid and can occur within 24 hours [41], a phenomenon also observed by Wu et al., [62].  322 

 A gut microbiota with decreased diversity has been linked with increased frailty and poorer 323 

general health in elderly subjects [60]. In this study, clustering of subjects by diet, residence location 324 

and by microbial groupings was apparent. Ultimately, it was evident that subjects that were living in 325 



the community had a healthier and more varied diet than subjects in long-term residential care, which 326 

gave rise to a more diverse gut microbiota with significant changes being noted at phylum and family 327 

levels. Differences were also apparent at the genus level with long-stay subjects possessing higher 328 

levels of Parabacteroides, Eubacterium, Anaerotructus, Lactonifactor and Coprobacillus, while 329 

Coprococcus and Roseburia (both members of the Lachnospiraceae family) were more abundant in 330 

community-dwelling subjects [60]. The data also linked microbiota composition to the duration spent 331 

in long-stay care. The longer the subject stayed in residential care (and consumed a less varied diet), 332 

the more dissimilar their microbiota became to the microbiota of healthy community-dwelling 333 

subjects [60]. Another study investigating the temporal relationship between food intake, gut 334 

microbiota and metabolic and inflammatory phenotypes reported that individuals with reduced 335 

microbial gene richness present more pronounced dys-metabolism and low-grade inflammation than 336 

their richer counterparts [100]. This microbiota-associated phenotype was suggested to be a result of 337 

long-term dietary habits as it was noted that these subjects seemed to consume less fruits, vegetables 338 

and fish than their high gene richness equivalents, i.e. a pattern consistent with that reported by 339 

Claesson et al [60]. More specifically, the initial sampling of the cohort (49 obese or overweight 340 

subjects) showed that subjects with lower gene richness in the gut microbiota presented with 341 

increased obesity-associated phenotypes such as higher insulin resistance and increased levels of 342 

fasting serum triglyceride, LDL cholesterol and inflammation. Dietary intervention (6 week energy-343 

restricted high-protein diet) increased gene richness significantly in individuals that originally had a 344 

low gene count. This increased gene richness remained after the subjects were switched to a 6 week 345 

weight-maintenance diet suggesting that dietary intervention as the potential to, at least partially, 346 

correct a loss of richness in the microbiota [100]. 347 

Given the complexity of the relationship between diet and the gut microbiota, there would 348 

seem to be merit in developing and utilising models that allow one to elucidate the specific 349 

relationship between specific dietary components and microorganisms. An elegant strategy to 350 

facilitate this was provided by Faith et al. when they introduced a model community of ten human gut 351 

bacteria into gnotobiotic mice and developed a relatively simple statistical model which predicted 352 



over 60% of the species variations that occurred in response to changes in diet [101]. The amount of 353 

casein in the diet was observed to be significantly associated with the abundances of all 10 microbial 354 

species and highly correlated with the total biomass of the community. Interestingly, E. coli and 355 

Clostridium symbosium were the only two species that had a second dietary variable significantly 356 

associated with their abundance, sucrose and starch respectively. The statistical model was 357 

subsequently able to determine 61% of the variation of the community members when the host was 358 

fed a new, previously unseen diet [101]. These results represent a significant step towards tailoring 359 

diet to address chronic microbiota-associated illnesses and a potential evolution of research within the 360 

field. 361 

It is clear that microbial composition varies between groups living on different long-term 362 

diets. Recent investigations that suggest that short-term dietary changes can also alter the 363 

composition, and result in changes to the metabolic activity of the microbiome as a whole, are 364 

noteworthy but further investigations are required to determine how best to take advantage of these 365 

observations. 366 

Modulation by Antimicrobials 367 

The manipulation of the gut microbiota by antimicrobials is emerging as an attractive 368 

therapeutic strategy (Table 2). The success of this approach is likely to ultimately depend on the target 369 

specificity of the antimicrobials in question, especially as the undesirable consequences of the overuse 370 

of broad-spectrum antimicrobials have become ever more apparent in recent years. For quite some 371 

time broad-spectrum antibiotics have been commonly used by clinicians as they can be used in the 372 

treatment of a wide range of infections or when the causative bacterium has not been formally 373 

identified. However, due to the frequent use of these antibiotics, the spread of antibiotic resistance is 374 

now posing a serious problem in health care settings.  In addition, antibiotic therapies not only affect 375 

the target microorganism but can also perturb the host gut microbial communities. The extent of this 376 

damage has recently become more evident through the application of high throughput DNA-based 377 

sequencing technologies to assess the composition of gut microbial populations (for review see Cotter 378 



et al. 2012) [102]. Here we provide just a few examples of the negative consequences of the use of 379 

broad-spectrum antibiotics on the gut microbiota and, in turn, health. 380 

The widespread use of broad-spectrum antibiotics, such as amoxicillin, to treat childhood 381 

infections has been linked to a dramatic decrease in Helicobacter pylori carriage [103]. However, 382 

studies indicate that those who did not acquire H. pylori in childhood were more likely to 383 

subsequently develop asthma, hay fever and skin allergies [104], while other investigations suggest 384 

that H. pylori infection has a protective effect with respect to the development of allergic asthma in 385 

mouse models [105]. The use of some broad-spectrum antibiotics, including clindamycin, ampicillin, 386 

amoxicillin, cephalosporins and flouroquinolones, can also result in Clostridium difficile overgrowth 387 

by impacting the resident gut microbiota, followed by antibiotic-associated diarrhoea, 388 

pseudomembranous colitis and, potentially, life-threatening complications such as toxic megacolon 389 

[106,107]. Low doses of antibiotics have also been used as growth promoters in agriculture since the 390 

1950’s despite an unclear understanding of the mechanisms at work. A recent investigation into this 391 

effect revealed subtherapeutic antibiotic treatment (STAT) of various antibiotics increased adiposity 392 

and hormones related to metabolism in young mice compared to untreated controls [108]. Analysis of 393 

the composition and function of the gut microbiota of these animals made it apparent that STAT 394 

exposure selected for microbial species that were able to extract more calories from dietary complex 395 

carbohydrates that were otherwise indigestible in the control group [108]. 396 

When considering these results, it is important to be aware that different broad-spectrum 397 

antibiotics differ with respect to their impact on the gut microbiota. Changes to the gut microbiota can 398 

also be either long- or short-term. In one instance this was highlighted through murine studies which 399 

established that mice treated with a cocktail of amoxicillin, metronidazole and bismuth [3.0 mg, 0.69 400 

mg and 0.185 mg, respectively] daily for 10 days had largely recovered their baseline microbial 401 

community structure 2 weeks post-treatment but that treatment with cefoperazone [0.5 mg/ml of 402 

drinking water] had long-term effects on community structure and reduced overall diversity [109]. 403 

The effect of an antibiotic on the gut microbiota is influenced by several factors including its 404 



antimicrobial effect (bactericidal or bacteriostatic), its mode of action, the structure of the microbiota 405 

and the distribution of antibiotic resistance genes among this population [110]. 406 

In light of this greater appreciation of the impact of broad spectrum antimicrobials on the gut 407 

microbiota, it is apparent that there is value in utilising antimicrobials with a narrow spectrum of 408 

inhibition. In addition to existing repositories of narrow spectrum antimicrobials that were not 409 

previously commercialised, it is worth noting that the gut microbiota is considered a rich, but yet 410 

relatively, underutilised source of antimicrobial-producing, and in particular bacteriocin-producing, 411 

bacteria. Bacteriocins are ribosomally synthesised peptides to which the producer has a specific 412 

immunity gene and can have either a narrow or broad spectrum of activity [111]. Many bacteriocins 413 

have a number of desirable traits, including low toxicity, high potency and, in the case of gut 414 

associated strains, the possibility of in situ antimicrobial. This combination of traits makes them 415 

attractive alternatives to traditional antibiotic therapies. Despite being, as stated above, a relatively 416 

underutilised source of antimicrobials, a number of bacteriocins have previously been isolated from 417 

mammalian gut microbes [112-115]. Indeed, for example, screening of faecal samples from 266 418 

elderly Irish subjects identified 13 bacteriocin producing strains [115] while a further study lead to the 419 

isolation of 23 distinct bacteriocin-producing strains from a range of mammalian gastrointestinal 420 

sources [112]. Given that, for a bacteriocin to be produced and be active in the gut, the producer needs 421 

to be able to survive in and colonize the human gut and the associated antimicrobial needs to be active 422 

in the gut environment, it has been argued that the gut is an ideal source of bacteriocin producers with 423 

the potential to alter the gut microbiota [116]. There have already been a number of studies which 424 

have highlighted the merits of employing gut-associated bacteriocins, several of which we refer to 425 

here. In a distal colon model, the narrow spectrum bacteriocin thuricin CD has been observed to 426 

inhibit the growth of C. difficile without having any significant additional impact on the other 427 

components of the gut microbiota [113]. This contrasted with the significant shift in the relative 428 

proportions of the dominant bacterial populations that were observed when the broad-spectrum 429 

antimicrobials lacticin 3147, metronidazole and vancomycin, respectively, were employed. Notably, 430 

thuricin CD also exhibited a potency comparable to that of the control antimicrobials [113], thereby 431 



establishing that thuricin CD has potential as an alternative to the conventional antimicrobial 432 

strategies employed to treat C. difficile infection, especially as it is less likely to impact negatively on 433 

the commensal gut microbiota and, thus, is more likely to prevent recurrent C. difficile infections. 434 

While, in the above example, thuricin CD, rather than the associated Bacillus thuringiensis producer 435 

[106], was employed, there are other examples that have highlighted the merits of using the 436 

bacteriocin-producing strain itself. In one such instance, ingestion of the bacteriocin producing 437 

probiotic strain Lactobacillus salivarius UCC118 provided significant protection against infection by 438 

Listeria monocytogenes in mice [117]. Production of the Abp118 bacteriocin by UCC118, which has 439 

previously been shown to be capable of altering the intestinal microbiota of pigs and mice [118], 440 

proved to be the key protective factor as a non-bacteriocin producing mutant failed to confer the same 441 

protection. This protective effect was also lost when infection was with a bacteriocin-immune L. 442 

monocytogenes mutant, thereby confirming that the mode of action was direct antagonism by Abp118 443 

rather than via some other indirect effect [117]. In another instance a combination of 5 probiotic 444 

strains were employed to control Salmonella Typhimurium-induced diarrhoea in pigs [119]. It was 445 

subsequently established that the only bacteriocin-producing strain, L. salivarius DPC6005, was the 446 

dominant member of the cocktail in both the ileum digesta and in the mucosa. It could not be 447 

established, however, if bacteriocin production was directly responsible for anti-Salmonella activity 448 

[120]. 449 

In addition to the control of pathogens, antimicrobials have also been investigated with a view 450 

to altering metabolic health in diet-induced obese mice [121]. Supplementation of a high-fat diet with 451 

vancomycin caused a significant decrease in Firmicutes and Bacteroidetes populations with a 452 

corresponding increase in Proteobacteria. This compositional shift was accompanied by a marked 453 

decrease in weight gain, fasting blood glucose, plasma TNFα and triglyceride levels compared to the 454 

diet-induced obese controls. Although supplementation of the high-fat diet with the bacteriocin-455 

producing probiotic L. salivarius UCC118 did not produce any significant changes in the metabolic 456 

profiles of the mice, it did result in an increase in relative proportions of Bacteroidetes and 457 

Proteobacteria with a corresponding decrease in Actinobacteria. The authors concluded that 458 



antimicrobial strategies have the potential to alter both the composition of the gut microbiota and the 459 

metabolic health of the host. However, it was noted that care must be taken when choosing the 460 

antimicrobial to be used so as to bring about extended beneficial impacts on metabolic health. 461 

As with diet, the vast majority of work concerning modulation of the microbiota by 462 

antimicrobials has taken place in mouse models. Nevertheless, the results are encouraging and suggest 463 

that carefully selected antimicrobials represent a viable option with respect to intelligently altering the 464 

bacterial populations within the human gut. 465 

Modulation by Probiotics 466 

The World Health Organization defines probiotics as “live microorganisms which when administered 467 

in adequate amounts confer a health benefit on the host” [122]. Probiotics are becoming increasingly 468 

popular and are generally marketed as functional foods or dietary supplements. As it has been 469 

recognised that changes in the gut microbiota play a role in GI disease then it is not surprising that 470 

probiotics are an attractive option with respect to modulation of the gut microbiome. For a probiotic to 471 

successfully exert its benefit on the host’s gut microbiota it should be able to remain viable during 472 

storage and also be capable of surviving, and potentially colonizing, the host’s intestinal environment 473 

[123]. The majority of probiotics currently used are members of lactic acid bacteria (LAB) and, more 474 

specifically, strains from the genera Lactobacillus and Bifidobacterium are most commonly used in 475 

commercial probiotics. Mixtures of these strains are becoming increasingly popular as researchers 476 

gain a deeper understanding of increasing efficacy via possible additive or synergistic effects [124]. 477 

Rijkers et al. categorised the benefit of probiotics into three levels based on location and method; 1) 478 

interference with the growth or survival of pathogenic microorganisms in the gut lumen, 2) 479 

improvement of mucosal barrier function or mucosal immune system and 3) influence beyond the gut 480 

through the systemic immune system and other organs [125]. A study undertaken by Park et al. found 481 

that DIO mice treated with the probiotic strains Lactobacillus curvatus HY7601 and Lactobacillus 482 

plantarum KY1032 experienced reduced body weight gain and fat accumulation in addition to 483 

lowered plasma insulin, leptin, total-cholesterol and liver toxicity biomarkers compared to a group on 484 



the same diet supplemented with a placebo [126]. Supplementation with these probiotic strains also 485 

resulted in down-regulation of pro-inflammatory genes in adipose tissue, up-regulation of fatty acid 486 

oxidation-related genes in the liver and significant alterations in the diversity and function of the gut 487 

microbiota. Similar results were observed by Yadav et al., who found that administration of the 488 

probiotic VSL#3 prevented and treated obesity and diabetes in a number of different murine models 489 

through modulation of the gut microbiota. In particular, an increase in the number of butyrate-490 

producing bacteria was linked with enhanced secretion of the hunger-reducing hormone GLP-1 as 491 

well as upregulation of genesinvolved in GLP-1 synthesis and excretion [127]. McNulty et al. 492 

observed that, in gnotobiotic mice harbouring a 15-member model human gut microbial community, 493 

introduction of 5 probiotic strains isolated from a fermented milk product did not significantly alter 494 

the composition of the intestinal microbiota but instead increased the expression of microbial genes 495 

involved in carbohydrate and nucleotide metabolism while decreasing expression of genes involved in 496 

the metabolism of lipids and amino acids [128]. These metatranscriptomic changes were also apparent 497 

in the microbiota of human monozygotic twins when fed the same fermented milk product, primarily 498 

upregulation of genes involved in carbohydrate metabolism. In addition to their investigation with a 499 

view to contributing to the prevention/treatment of obesity and T2D, it should be noted that probiotics 500 

are thought to have the potential to treat a wide range of other conditions such as IBS, allergies, C. 501 

difficile infection, IBD and others by modulation of the gut microbiota as highlighted in a number of 502 

recent manuscripts [129-135]. As we learn more about other gut microbes and their role in human 503 

health it may emerge that the future of probiotics lies in different, non-traditional probiotics, for 504 

example Akkermansia muciniphila as mentioned previously [43].  A recent review by Neef and Sanz 505 

discusses some of the strains already being investigated and the new techniques employed to assess 506 

their impact on human health [136]. 507 

Modulation by Faecal Microbiota Transplantation 508 

Following on from the probiotics principle, but on a community rather than strain level, faecal 509 

microbial transplantation (FMT) is the process of transplanting faecal bacterial communities from a 510 

healthy individual to a recipient whose microbiota has been disrupted or altered. Although still 511 



somewhat in its infancy, FMT is becoming more commonly used as an approach to replenish the gut 512 

microbiota in order to alleviate the symptoms of disease. To date, FMT has most commonly been 513 

used to treat recurrent C. difficile infection (CDI) by replacing populations of commensal bacteria 514 

which have been wiped out by antibiotic therapy. Khoruts and colleagues used terminal-restriction 515 

fragment length polymorphism and 16S rRNA approaches to compare the bacterial component of a 516 

CDI patient’s microbiota before and after FMT intervention [137] and found that, before intervention, 517 

the microbiota was deficient in both Bacteroidetes and Firmicutes but 14 days post-transplantation the 518 

microbiota was changed to closely resemble the donor’s microbiota and was dominated by 519 

Bacteroides spp. [137]. These results are similar to findings by Tvede and Rask-Madsen who reported 520 

Bacteroides spp. were absent in CDI patients but were replenished after FMT intervention [138]. The 521 

composition of the donor’s microbiota is the key factor in determining the efficacy of this treatment, 522 

as shown by Grehan et al. who collected faecal samples from patients undergoing FMT at 4 time 523 

points; pre-treatment and at intervals of 4, 8 and 24 weeks post-treatment to determine the effect of 524 

FMT on its microbial content [138]. Using a molecular approach they found that the microbiota was 525 

altered by FMT intervention and that at 4, 8 and 24 weeks the community of the recipient was 526 

composed predominately of bacteria derived from the healthy donor’s samples. Crucially, in addition 527 

to bringing about desirable microbiota-related changes, FMT has in a high frequency of cases been 528 

successful in controlling CDI. In one such study it was revealed that only 1 of 16 patients treated with 529 

FMT experienced a recurrence of colitis during the 90 day follow-up period [139]. Indeed, when 530 

many such studies were combined in a systematic literature review by Gough et al., i.e. to examine 531 

the effect of FMT on 317 CDI patients across 27 case studies, it was revealed that disease was 532 

resolved in 92% of cases [140]. An interesting development in the application of FMT is the use of 533 

synthetic microbial communities in place of undefined mixtures from donors (for review see de Vos et 534 

al [141]). The synthetic mixtures have the advantage of being controlled, tested extensively for the 535 

presence of viruses or pathogens and have the potential to be reproducibly manufactured. Petrof et al. 536 

showed that a defined mixture of 33 isolates, when administered during a colonoscopy, cured the CDI 537 

of 2 patients who had previously failed to respond to antibiotic treatment [142]. 16S rRNA analysis 538 

showed that the strains found in the stool substitute were rare in the patient’s gut microbiota before 539 



intervention, however following treatment these strains accounted for over 25% of sequences 540 

recovered from the gut microbiota. Although FMT has been most extensively studied with a 541 

view to CDI treatment, it has, however, also been investigated as a potential treatment option for a 542 

range of microbiota-associated diseases including IBD, IBS, obesity, idiopathic thrombocytopaenic 543 

purpura and even multiple sclerosis. A recently published review by Borody et al. summarises the 544 

current state of research and possible future directions of the technique [143].  545 

CONCLUDING REMARKS 546 

It is well established that the gut microbiota influences host metabolism, nutrient absorption 547 

and immune function, and that disruption of this balanced community can have very serious health 548 

implications. As we gain a deeper understanding of the specific relationships between the gut 549 

microbiota and disease, we expose potential therapeutic targets. Intelligent modulation of the 550 

intestinal community is a topic that had gained considerable interest and has the possibility to be 551 

extremely beneficial for human health. 552 
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Table 1. Some examples of studies assessing the influence of diet on the microbiota and health of the 558 
host. 559 

Diet Effect on microbiota Effect on host 

Rich in plant-derived 

polysaccharides [62,96]. 

Increased Bacteroidetes, 

decreased Firmicutes [96]. 

Associated with Prevotella-rich 

enterotype [62]. 

Faster gut transit time 

compared to high protein 

and animal fat diet [62]. 

Omnivorous compared to 

vegetarian and lacto-vegetarian 

[97-99]. 

Increased Clostridium clusters IV 

and XIVa [97-99]. 

Not reported 

High-fat, simple carbohydrate 

“Western” diet [38,40]. 

Increased Firmicutes, decreased 

Bacteroidetes [38,40]. 

Diet-induced obesity. 

Subsequent transplantation 

of obese microbiota to 

germ free mice increased 

adiposity [40]. 

Reduced carbohydrate intake 

[63]. 

Reduced Bifidobacterium, Roseburia 

spp. and Eubacterium rectale [63]. 

Not reported 

Animal product-based [61]. High 

protein and animal fat [62]. 

Increased β-diversity and bile-

tolerant bacteria, including 

Bacteroides, decreased Firmicutes 

[61]. Associated with Bacteroides-

rich enterotype [62]. 

Decreased weight 

independent of calories 

consumed [61]. 

Less fruit, vegetables and fish 

[100]. 

Reduced microbial gene richness 

[100]. 

Increased insulin resistance, 

fasting serum triglyceride 

levels, LDL cholesterol and 

inflammation [100]. 

Reduced variety due to long-stay 

care [60]. 

Increased Bacteroidetes and reduced 

overall diversity [60]. 

Increased frailty and poorer 

general health [60]. 

Changed from a vegetarian diet to 

an animal-based diet [61]. 

Decreased Prevotella, increased 

Bacteroides [61]. 

Not reported 

 560 

  561 



Table 2. Some examples of studies assessing the influence of antimicrobials on the gut microbiota 562 
and, where relevant, the host. 563 

Antimicrobial Effect on Microbiota Physiological effect on host 

Thuricin CD Eliminated C. difficile without impacting 

overall microbiota composition [113]. 

Not examined – distal colon model 

Abp118 Protection against Listeria monocytogenes 

infection [117]. 

Increased Bacteroidetes and Proteobacteria, 

decreased Actinobacteria [120]. 

Temporarily reduced weight gain in pigs 

[117]. 

Vancomycin Decreased Firmicutes and Bacteroidetes, 

increased Proteobacteria [121]. 

Decrease in weight gain, fasting blood 

glucose, plasma TNFα and triglyceride 

levels in DIO mice [121]. 

Sub-

therapeutic 

antibiotic 

therapy* 

Increased Firmicutes, especially 

Lachnospiraceae, relative to Bacteroidetes 

[108]. 

Increased adiposity and bone mineral 

density in mice [108]. 

5 strain 

probiotic 

mixture** 

Reduced shedding of Samonella enterica 

serovar Typhimurium in pigs[119]. 

Reduced incidence, severity and 

duration of diarrhoea in pigs. Also, 

increased weight gain [119]. 

Lactobacillus 

gasseri 

SBT2055, 

producer of 

gassericin T 

bacteriocin 

Not reported Decreased abdominal adiposity, body 

weight, BMI, waist circumference and 

hip circumference in human adults 

[131]. 

Lower triglyceride levels and reduced 

expression of lipogenic and pro-

inflammatory genes in DIO mice [135]. 

* Penicillin, vancomycin, penicillin plus vancomycin, and chlortetracycline 564 

** Lactobacillus murinus DPC6002, Lactobacillus murinus DPC6003, Lactobacillus 565 

pentosus DPC6004, Lactobacillus salivarius DPC6005, and Pediococcus pentosaceus DPC6006 566 

  567 



 568 

Fig. 1. Potential strategies for manipulation of the gut microbiota. 569 
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