<table>
<thead>
<tr>
<th>Title</th>
<th>Immunosuppressive compounds of Pestalotiopsis sp., an endophytic fungus of Tripterygium wilfordii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kumar, DSS; Lau, WCS; Wan, JMF; Yang, D; Hyde, KD</td>
</tr>
<tr>
<td>Citation</td>
<td>The 9th Medical Research Conference (MRC 2004), Faculty of Medicine, The University of Hong Kong, Hong Kong, 7-8 February 2004. In Conference Abstracts, 2004, abstract no. RI-08</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/226678</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
9TH MEDICAL RESEARCH CONFERENCE
MEDICAL SCIENCE GROUP
THE UNIVERSITY OF HONG KONG
QUEEN MARY HOSPITAL
HONG KONG

7 - 8 February 2004
Abstracts of
9th Medical Research Conference
Medical Science Group
The University of Hong Kong
Queen Mary Hospital
Hong Kong

7 – 8 February 2004
Immunosuppressive compounds of Pestalotiopsis sp., an endophytic fungus of Tripterygium wilfordii
D.S.S. Kumar1, C.S. Lai2, D. Yang3, H.Y. Cheung4, F. Chen5 and K.D. Hyde6, 1Department of Ecology &
Biodiversity, 2Department of Medicine, 3Department of Chemistry, 5Department of Botany, The University
of Hong Kong, and 6Department of Biology & Chemistry, City University of Hong Kong.

Background and aim: Endophytic fungi from medicinal plants are potential sources of bioactive
compounds for therapeutic uses. In this study, an endophytic fungus isolated from the Chinese medicinal
plant Tripterygium wilfordii and screened for the presence of immunosuppressive substances.

Methods: The purified compounds of Pestalotiopsis leucothēs were screened for effects on peripheral blood
mononuclear cells (PBMC) proliferation, mixed lymphocyte reaction (MLR), cytokine production, IgG and
IgM production and T-cell subpopulation. The purity and molecular weight of the isolated compounds
were assessed by Liquid Chromatography-Mass Spectroscopy (LC-MS).

Results: 3 active compounds were extracted: BS, GS, and YS. BS had significant anti-proliferative activity
of PBMC in presence of various mitogens. The IC50 value of BS in antiproliferative assays in the presence
of PHA, PMA-I, MLR and PWM is 1, 4.5, 2.3 and 15 μM respectively. Also, there was significantly reduced
the IL-2, sIL-2R, IFN-γ, IL-4 and IL-1β, TNF-α production at concentrations up to 2.8 μM. In contrast, GS
showed both suppression and enhancement of PBMC proliferation in presence of various mitogens and also
in MLR system. It also expressed similar pattern of inhibition on cytokines. However, it remarkably
inhibited PMW stimulated PBMC proliferation (IC50 = 6.0 μM) and IL-4 production up to 2.9 μM. In
supportive to these action, GS consistently inhibited immunoglobulin such as IgG and IgM up to 2.9 μM. YS
had ten fold lesser activity than BS in all assay systems. The active compounds alter the percentage of T-cell
subpopulations only at higher concentrations. Cell viability was not affected. LC-MS of BS, GS and YS
compounds showed single major peaks at 6.62, 13.20 and 9.4 RT and their corresponding molecular weight
is 355, 347 and 387 respectively.

Conclusions: P. leucothēs has both immunostimulating effects on PBMC. Structural elucidation of the active
compounds by NMR spectral analysis is underway.

Clinical Trials

CP-14
Infrared Thermography to Screen for Fever
CR Kurnag, GTY Cheung, LI Jiau and LS Chan
Departments of Medicine, Statistics & Actuarial Science and Earth Science, The University of Hong Kong, Hong
Kong SAR, China

Introduction: Following the Severe Acute Respiratory Syndrome (SARS) outbreak, front face infrared thermography
(IRT) mainly targeting the forehead is being used extensively to screen for fever in travelers at airports and border
crossings, but its efficiency remains unclear. We therefore set out to compare estimation of body temperature by IRT
and more conventional means.

Methods: With their informed consent, 176 volunteers including 49 hospital inpatients (without SARS or suspected
SARS and able to cooperate) were recruited over a 20-day period. Remotely sensed IRT camera temperature readings
were obtained from various parts of the front and side face at a distance of 1.5 M and the ear also at 0.5 M. These
readings were compared to concurrently measured conventional body temperature (determined by aural tympanic IRT).
The IRT camera operators were blinded to the conventional temperature readings. The data was submitted to
regression/correlation and sensitivity analyses. The Faculty Institutional Review Board approved the entire study.

Results: Conventionally obtained body temperature correlated best with maximum IRT readings from: i) the front face
with mouth open (r = 0.80; p<0.01), ii) the side face (r = 0.76; p<0.01), and iii) the ear at 0.5 M (r = 0.79; p<0.01). The
latter readings yielded the narrowest 95% confidence intervals and could be used to predict conventional body
temperature readings of 38 degrees C or higher in this population with a sensitivity of 83% and a specificity of 88%.
A relatively poor correlation was obtained between IRT readings from the forehead and conventional body temperature.

Conclusion: IRT readings from the ear at 0.5 M yielded the most reliable, precise and consistent estimates of
classically determined body temperatures. These observations therefore raise questions about current screening
procedures at airports and border crossing points, especially as the point prevalence of fever in the targeted population
is likely to be very low.